
On Protection by Layout Randomization

Martı́n Abadi
Microsoft Research, Silicon Valley and
University of California, Santa Cruz

Gordon Plotkin
Microsoft Research, Silicon Valley and

LFCS, University of Edinburgh

Abstract—Layout randomization is a powerful, popular tech-
nique for software protection. We present it and study it in
programming-language terms. More specifically, we consider
layout randomization as part of an implementation for a high-
level programming language; the implementation translates
this language to a lower-level language in which memory
addresses are numbers. We analyze this implementation, by re-
lating low-level attacks against the implementation to contexts
in the high-level programming language, and by establishing
full abstraction results.

I. INTRODUCTION

Several techniques for protection are based on random-
ization (e.g., [6–9, 11, 12, 14, 17, 24, 31]). The randomization
may concern the layout of data and code within an address
space, data representations, or the underlying instruction set.
In all cases, the randomization introduces artificial diversity
that can serve for impeding attacks. In particular, layout
randomization can thwart attacks that rely on knowledge of
the location of particular data and functions (such as system
libraries). In addition, randomization can obfuscate program
logic, against reverse engineering.

Other techniques for protection address similar goals. For
example, methods that ensure the integrity of control flow
and data flow, statically or dynamically, can also regulate
the use of system libraries (e.g., [2, 12, 18, 23]). The static
methods may be based on types or other static analyses. The
dynamic methods often rely on reference monitors, whether
implemented in hardware or software, at the boundaries
of address spaces or inline. In addition to the diversity
of their mechanisms, protection techniques vary in their
goals and the underlying attack models. Some aim to offer
precise, general guarantees, while others stop only some
specific attack that can be easily modified to overcome the
protection. They also vary in the difficulty of deploying them
and in their costs. No single protection technique appears to
be always superior to all others. In this paper we focus on
layout randomization because it is in widespread use [16,
26], it has been subject to practical attacks (e.g., [4, 28, 29]),
and it has hardly been studied rigorously.

We present layout randomization as part of an implemen-
tation for a high-level programming language. The language
that we consider includes higher-order functions and mutable
variables that hold natural numbers, which we call locations.
Some of the locations are designated as public while others
are designated as private, with the intent that an attacker

should not have direct access to the latter. For instance, a
program may store secret quantities in a private location;
it may publish a function that internally uses the private
location, and this function may be invoked by untrusted
pieces of code. The implementation translates the high-
level language to a lower-level language in which memory
addresses are natural numbers; layout randomization consists
in mapping the private locations to random addresses in
data memory. If the data memory is large enough and the
randomization good enough, then even an attacker with
access to all of data memory cannot find the private locations
efficiently with high probability. (Otherwise, the attacker
may succeed, as demonstrated in actual exploits, e.g., [28].)
We derive that the security properties that hold against
attackers that cannot access the private locations directly
continue to hold in this implementation, in a probabilistic
sense and against resource-bounded adversaries.

Thus, our work takes place in a programming-language
setting, and it draws on a line of research on protection
in programming languages, and more broadly on ideas
and techniques from programming-language theory (e.g., [1,
22]). These include the use of contexts for representing
attackers, and of contextual equivalence and similar relations
for expressing security properties. Remarkably, though, this
line of research has said little on randomization; a notable
exception is the work of Pucella and Schneider [27], which
we describe further below. In addition, our probabilistic
results are analogous to computational-soundness theorems
in the analysis of security protocols (e.g., [3, 5, 10]). These
theorems relate symbolic proofs of protocol security, in
which keys and ciphertexts are formal expressions, to proofs
in a computational model in which keys and ciphertexts
are bitstrings subject to complexity-theoretic assumptions.
Unlike security protocols, however, the systems that we con-
sider neither include concurrency nor rely on cryptography,
but they do include higher-order functions. Despite these
important differences, we hope that our work will enrich the
study of computational soundness, in particular by showing
that some of its themes and methods are applicable beyond
security protocols.

The next section (Section II) discusses our results in more
detail but still informally. Section III contains preliminary
technical material. Sections IV and V are the core of the
paper; they treat models in which errors are non-fatal (but
costly) and fatal, respectively. Section VI concludes.

II. DISCUSSION OF RESULTS

Layout randomization can be applied in a variety of
systems contexts. In some (in particular, in kernel mode),
accesses to unmapped memory addresses may be fatal
violations that result in immediate termination. In others
(often in user mode), erroneous accesses may take place
repeatedly without causing execution to abort; a program
that performs an erroneous access may often recognize that
it has done so.

This distinction leads to two models for what happens
when an attacker accesses an unused address in data memory
(rather than an address that houses a private location). In one
model, such accesses are fatal violations; in the other, such
accesses are not fatal and can be detected.

In both cases, our main results concern translations be-
tween the high-level language with locations and a lower-
level language with natural-number addresses. In the high-
level language, there is a distinct type of locations loc and,
assuming that the expression M has this type, one can write
expressions like !locM and M :=loc M

′ for reading from
and storing into a location. In contrast, in the low-level
language, if M has type nat then one can write !natM and
M :=nat M ′ for reading from and writing to a natural-
number address, which may be obtained as the result of
arbitrary numerical computations in M .

In order to study the security of these translations, we
represent high- and low-level attackers as contexts. More
precisely, for a program M of type σ, we take attackers to
be expressions C of type σ → bool. The boolean output is
standard in programming-language theory, and intuitively it
could be seen as indicating whether the attacker is “happy”,
but technically we could as well use the type σ → nat, for
example. Informally, we think of C as interacting with M
and possibly trying to obtain information about the contents
of private locations or to tamper with them. Attackers
must not have direct access to the private locations, so we
consider only public attackers C, which are those containing
no occurrences of any private locations. (Public low-level
attackers do have access to all of memory, nevertheless, but
via natural-number addresses rather than via locations.)

This representation of the attacker as a context amounts to
a threat model, which allows rich interactions between the
program being protected and its attacker. Both theoretical
work and practical attacks often employ more limited threat
models, in which, for example, the attacker provides only
one input or a small number of inputs. On the other hand,
this representation excludes power-analysis attacks, timing-
analysis attacks, and the like, as well as any attacks that sub-
vert the underlying execution platform. Realistically, layout
randomization may not withstand such attacks anyway.

In general, a low-level attacker could exploit the oper-
ations !nat and :=nat for crafting attacks that would be
impossible in the high-level language. In an extreme case,

when erroneous accesses are not fatal, an attacker could
iterate over all addresses.

Nevertheless, we show that the attacks possible in the
low-level language are no worse than those that are possible
in the high-level language, in a probabilistic sense and, if
erroneous accesses are not fatal, within some number of such
memory accesses that serves as a bound on the complexity
of the attacks. More precisely, we map each high-level
program M to a low-level program M↓, and consider the
behavior of M↓ in an arbitrary low-level context C. We
construct a corresponding high-level context C↑ which does
not directly access M ’s private locations and is such that
M in C↑ exhibits the same behavior as M↓ does in C. For
example, in the model where erroneous accesses are fatal,
if C↑M returns a given boolean then, with high probability,
so does CM↓ (Theorem 5.2). In the model where erroneous
accesses are not fatal, this implication holds too, but only
with an assumption on the number of memory accesses
being bounded (Theorem 4.16).

Some of our results are phrased as full abstraction theo-
rems for translations between the high-level language with
locations and the lower-level language with natural-number
addresses (Theorems 4.17 and 5.3). These theorems say,
roughly, that two programs are equivalent in the high-
level language if, and only if, their translations are equiv-
alent (in a probabilistic sense) in the low-level language.
(Computational soundness is the implication from the high-
level equivalence to the low-level one.) The equivalences
capture indistinguishability in the presence of an arbitrary
attacker, represented as the context of the programs. Thus,
the equivalences can express both secrecy and integrity
properties. Therefore, the theorems imply the preservation
of those secrecy and integrity properties.

For instance, assuming that l is a private location and
c and c′ are two natural-number constants, the following
expressions M and M ′:

M = l := c
M ′ = l := c′

are two trivial programs in the high-level language that
differ only by the value they store in l. (Here and in other
examples, we omit the subscript loc on memory operations,
for brevity.) The programs M and M ′ are equivalent with
respect to contexts that cannot access private locations. This
property captures a secrecy guarantee. Similarly, if l′ is a
public location, the following expressions M and M ′:

M = λf :nat→ unit.
l := c;
f(c);
if !l = c then l′ := c else l′ := c′

M ′ = λf :nat→ unit.
l := c;
f(c);
l′ := c

are equivalent with respect to contexts that cannot access
private locations, because the command f (supplied by the
context) cannot tamper with l. This property captures an
integrity guarantee. In an implementation in which l is
housed in a random address in data memory, an attacker
should find it hard to read or write the contents of l, so the
secrecy and integrity guarantees should be preserved. We
prove that this is indeed the case.

Such a result may seem obvious. However, as we discuss,
some other “equally obvious” results do not hold, and some
variants and extensions appear problematic. We illustrate this
point with the following small example. Writing Ω for a
nonterminating program and ∗ for the value of type unit,
we consider the programs:

M = λf :unit→ unit.Ω
M ′ = λf :unit→ unit. letx be f(∗) inΩ

The implementations of M and M ′ can be distinguished by a
context that passes a function f that always produces a fatal
error. Such a function can easily be expressed in the model
where erroneous accesses are fatal. On the other hand, M
and M ′ will be equivalent in the high-level language unless
this language too includes constructs that force immediate
termination. Therefore, full abstraction fails without such
constructs. Although of mostly theoretical interest, this small
example is reminiscent of some actual attacks in which the
distinction between error and nontermination leaks important
information [30].

Thus, our work demonstrates that layout randomization
can offer some delicate but strong guarantees. Layout ran-
domization is not just an ad hoc mitigation, or “security by
obscurity”.

Nevertheless, our results have substantial limitations.
They provide an incomplete account of software protection,
ignoring most of the complications of practical implemen-
tations.

Many of the limitations directly correspond to limitations
of the languages that we consider. For instance, these lan-
guages do not include the storage of functions in the heap,
which our results do not treat; so we do not study whether
an attacker can call a piece of code by guessing where in
memory it resides, as in “jump-to-libc” attacks [12].

Another limitation of our results is that they do not all
apply to programs that receive or send “raw” locations—-
although they do apply to higher-order programs that receive
or send functions for manipulating locations. We deliberately
define our languages with locations as first-class values of a
type loc. While this generality leads to an extra hypothesis
in some of our theorems, it also enables us to discuss the
difficulties that arise with locations as first-class values:

• Suppose that we allow loc to occur in contravariant
positions in the types of the programs that we are
protecting. In the implementations of those programs,

locations correspond to natural numbers, but in gen-
eral this correspondence is not surjective. So a low-
level attacker may attempt to poison the programs by
providing a number that does not represent a location
instead of one that does represent a location, and might
gain information from the resulting errors. Consider for
instance the programs:

M = λx :loc.Ω
M ′ = λx :loc. let y be !x inΩ

While a high-level attacker cannot distinguish these
two programs, a low-level attacker may attempt to
distinguish them, with high probability, by passing
a number that does not represent a public location:
the naive implementation of M will diverge, that of
M ′ will produce an error. Such examples might be
addressed by an implementation strategy in which
incoming numbers that should represent locations are
tested. These tests are reminiscent of how pointers are
treated with suspicion when they cross trust boundaries
in operating systems and other software systems.

• Suppose that we allow loc to occur in covariant posi-
tions in the types of the programs that we are protecting.
Then a low-level attacker may store the numbers that
represent the locations that it receives, and use them
later, while analogous storage is not possible for a high-
level attacker—simply because locations cannot hold
locations in our high-level model. Letting l1 and l2 be
private locations, consider for instance the programs:

M = λf :loc→ unit.
if !l2 = 0 then l2 := 1; f(l1) elseΩ;
l1 := 0

M ′ = λf :loc→ unit.
if !l2 = 0 then l2 := 1; f(l1) elseΩ;
l1 := 1

They differ only in whether they store 0 or 1 in l1.
Both of these leak l1 to an argument function f ,
then set l1. They do the leaking at most once: this
linearity is enforced by the flag l2. A low-level context
can store the number that represents l1, then use it
for reading what is stored in l1, and thereby could
distinguish the implementations of M and M ′ if no
additional precautions are taken. This counterexample
is reminiscent of some that arise in the study of cryp-
tographic protocols, most notably a counterexample to
forward secrecy [1]. It could perhaps be addressed
by some of the techniques developed in such con-
texts. Unfortunately, those techniques may not result
in attractive, realistic implementation strategies for a
programming language such as ours, or for its obvious
extensions where locations can hold other locations.
Such extensions can bring up further problems, which
it would be interesting to investigate in future research.

The significance of this limitation remains open to debate:
one could argue that programs should never receive or send
“raw” locations, that it is too hard to make this safe, and
that exchanging functions (or objects with public methods
and private fields) provides more flexibility.

These arguments are particularly sensible in the context
of implementations where attackers have information on the
offsets between private locations (much as in [28]). For
instance, a practical implementation may well store several
private locations near one another, in a randomly placed
block of memory chosen for this purpose. Then an attacker
that learns where l1 is housed may also be able to infer that
l2 is nearby. Such dependencies can weaken security.

III. TECHNICAL PRELIMINARIES

This section presents basic technical material on which
both Sections IV and V rely. It describes high- and low-
level memory models and the common components of the
languages considered in this paper.

A. Memory models

We begin with a discussion of our memory models. We
need two: an abstract one, for the high-level language, and
a more concrete one, for the low-level language.

For the abstract model we assume two given disjoint finite
sets PubLoc and PriLoc of public and private locations; we
write Loc for their union. A store is a map:

s :Loc −→ N

sending locations to natural numbers. We write Store for
the set of stores.

For the concrete model we take the memory as having
addresses 0, . . . , c, for a given c ≥ 0, which we think of as
logical or virtual addresses rather than physical addresses;
we assume that |Loc| ≤ c+ 1. A memory is a map:

m :{0, . . . , c} −→ N + 1

where 1 is the set {∗}; m(a) = ∗ indicates that a is an
unused address. Storing natural numbers rather than words
is an idealization, as is the view of natural numbers as atomic
entities that all occupy the same space. With a little more
effort we could use an alternative model where words are
stored and arithmetic operations can be performed on them.

We use memory layouts to connect the abstract and
concrete memory models: a memory layout is a 1-1 map
w : Loc ↪→ {0, . . . , c}. We consider only those memory
layouts extending a given public layout wp : PubLoc ↪→
{0, . . . , c}. For any store s and a memory layout w, there is
a corresponding memory sw defined by:

sw(a) =

{
s(l) if w(l) = a
∗ if a /∈ Ran(w)

where Ran(w) is the range of w. Note that the map s 7→ sw
is 1-1, but not onto; we say that m has the form sw if it
equals sw for some w.

In order to make probabilistic assertions, we need a
distribution over the layouts extending wp: we take this
to be the uniform distribution. That can be generated by
fixing an ordering of Loc and then selecting, one-by-
one, a non-repeating sequence of elements randomly from
{0, . . . , c} \Ran(wp), choosing uniformly at each point
from the remaining elements. When ϕ(w) is a statement, we
write P(ϕ(w)) for the probability that it holds with respect
to this distribution.

For any A ⊆ N we define δA to be P(w#A) where we
write w#A to mean that A ∩ (Ran(w)\Ran(wp)) = ∅. As
we are using the uniform distribution, this depends only on
the cardinality of A, if A ⊆ {0, . . . , c} \Ran(wp); so we
can set δ|A| =def δA, having chosen such an A. Intuitively,
δn is the probability that n distinct probes do not hit any of
the private locations. Note that the notation δn makes sense
only when n ≤ c + 1 − |PubLoc|, and that δn > 0 if, and
only if, n ≤ c+ 1− |Loc|. Then we can give δn by:

δn = Πn−1
i=0

(
1− |PriLoc|

c+ 1− |PubLoc| − i

)
or, in closed form (in terms of binomial coefficients), by:

δn =

(
c+ 1− n− |PubLoc|

|PriLoc|

)
/

(
c+ 1− |PubLoc|
|PriLoc|

)
These two forms are equivalent, because:(

c+1−n−|PubLoc|
|PriLoc|

)
/
(
c+1−|PubLoc|
|PriLoc|

)
= (c+1−n−|PubLoc|)!|PriLoc|!(c+1−|Loc|)!

|PriLoc|!(c+1−n−|Loc|)!(c+1−|PubLoc|)!
= (c+1−n−|PubLoc|)!(c+1−|Loc|)!

(c+1−n−|Loc|)!(c+1−|PubLoc|)!

=
Πn−1

i=0 (c+1−|Loc|−i)
Πn−1

i=0 (c+1−|PubLoc|−i)

= Πn−1
i=0

c+1−|Loc|−i
c+1−|PubLoc|−i

= Πn−1
i=0

(
1− |Loc|−|PubLoc|

c+1−|PubLoc|−i

)
= Πn−1

i=0

(
1− |PriLoc|

c+1−|PubLoc|−i

)
Thus, δn tends to 1 as c increases while PriLoc and PubLoc
remain fixed. Intuitively, this fact means that, if one looks
for private locations in a large enough memory, getting n
tries, one is almost certain to miss if the memory is large
enough. In the special case n = 0, δ0 is always simply 1.

B. Languages

A number of quite similar languages are considered
in this paper. They are all versions of Moggi’s (call-by-
value) computational λ-calculus, or λc-calculus, [20, 21]
with natural number and, possibly, location types, and with
memory-access operations at natural-number or location
types. They all also have sum types, which represent disjoint
or discriminated unions [19], and recursion [15].

The types of such a language are given as follows:

σ ::= b | unit | σ × σ | σ + σ | σ → σ

where b ranges over a given set of basic types which always
includes a natural-number type nat and may also include a
location type loc. We write bool to abbreviate unit+unit.

The terms of such a language are ranged over by M
and N , and given by:

M ::= x | c | ∗ | (M,M) | fstM | sndM |
inlσ,σM | inrσ,σM |
casesM inlx :σ.M inrx :σ.M |
λx :σ.M | MM | rec(f :σ → τ, x :σ).M

where c : σ ranges over a given set of constants c of
given unique types σ. These always include the natural
numbers n ∈ N, together with a supply of constants for the
usual arithmetic operations and relations, such as addition
+:nat×nat→ nat and equality =nat:nat×nat→ bool.
They may also include constants for memory access, for
example :=nat: loc × nat → unit for assignment. The
recursion construction rec(f : σ → τ, x : σ).M should
be thought of as defining a function f : σ → τ such that
f(x) = M .

There are standard notions of free and bound variables,
of closed terms, and of the capture-avoiding substitution
M [N/x] of a term N for all free occurrences of a variable x
in a term M . There are also standard typing rules for judge-
ments Γ ` M :σ, that a term M has type σ in the context
Γ, where contexts have the form Γ = x1 : σ1, . . . , xn : σn.
Here are two examples:

Γ `M :σ

Γ ` inlσ,τ M :σ + τ

Γ, f :σ → τ, x :σ `M :τ

Γ ` rec(f :σ → τ, x :σ).M :σ → τ

We write M : σ for ` M : σ and then say that M is well-
typed (when it is necessarily closed). Unique typing holds:
a term has at most one type relative to a given environment.

We may omit type subscripts when that should not
cause confusion; for example we write inlM instead of
inlσ,τ M . We also write letx : σ beM inN for (λx :
σ.N)M , and we adopt standard infix notations, e.g., writing
M := N for := (M,N), if that improves readability.
For the booleans, we write true and false for inl ∗ and
inr ∗, respectively, and we write ifB thenM elseN for
casesB inlx : unit.M inrx : unit. N , where x occurs
free in neither M nor N . To make the usual connection
between applicative and imperative programs, we may write
com (which stands for “command”) for unit, skip for ∗,
and M ;N for letx :unit beM inN (where x is not free
in N).

Throughout this paper, we define the operational se-
mantics of such a language in the style of Felleisen and
Friedman [13], beginning by defining values V , evaluation
contexts E, and redexes R. We classify each constant as
a value or a redex; in particular the numerals and the
constants for the assumed arithmetic operations and relations

are always values. Values are terms which can be thought
of as (syntax for) completed computations; they are ranged
over by V and defined by:

V ::= x | c (if c is classified as a value) |
∗ | (V, V) | inlV | inrV | λx :σ.M

Evaluation contexts are ranged over by E and are defined
by:

E ::= [−] | (E,M) | (V,E) | fstE | sndE |
inlE | inrE |
casesE inlx :σ.M inrx :σ.M |
EM | V E

We write E[M] for the term obtained by replacing the
“hole” [−] in an evaluation context E by a term M . The
computational thought behind evaluation contexts is that, in
a term of the form E[M], the first computational step arises
within M . The redexes R include:

c (if c is classified as a redex)

fst (V, V) snd (V, V)

cases inlV inlx :σ.M inrx :σ.M

cases inrV inlx :σ.M inrx :σ.M

(λx :σ.M)V rec(f :σ → τ, x :σ).M

together with specified other redexes involving the various
constants, including evident arithmetic redexes for the as-
sumed arithmetic operations and relations, for example i+j
and i =nat j.

For every term M , one of the following two mutually
exclusive possibilities holds:
• M is a value, or
• M can be analyzed uniquely in the form E[R].

However, this has to be verified separately for each language.
The operational semantics itself involves various relations

and properties, and there is quite a bit of variation between
the different languages. In all cases, however, a relation
R −→ M between the above redexes and terms proves
useful. It is defined as follows:

fst (V, V ′) −→ V snd (V, V ′) −→ V

(λx :σ.M)V −→M [V/x]

rec(f :σ → τ, x :σ).M −→
λx :σ.M [rec(f :σ → τ, x :σ).M/f]

. . .

where the ellipses indicate evident missing arithmetic redex
transitions, such as:

i =nat i −→ true and i+ j −→ k

where k is the sum of i and j.

IV. COSTLY-ERROR MODEL

In this model, an erroneous low-level memory access
gives rise to a recoverable error, and a local recovery mech-
anism is available for handling such errors. Sections IV-A
and IV-B present the high-level language and the low-level
language, respectively. In order to mediate between these
two languages, Section IV-C defines an instrumented high-
level language. This language has facilities for memory
access at both location and natural-number types, with
an instrumented operational semantics that records natural-
number memory accesses. We have a behavior-preserving
translation to the high-level language and a translation to
the low-level language which is additionally sensitive to the
instrumentation. With these tools, we prove our main results
for the costly-error model in Sections IV-D and IV-E, to
the effect that high- and low-level attackers have essentially
equal power, modulo the translation from the high-level to
the low-level language, and that this translation preserves
and reflects suitable notions of contextual public equiva-
lence.

A. The high-level language

The high-level language employs the abstract notion of
location. The basic types are nat and loc, and the constants
are the arithmetic constants, together with constants for
accessing and updating locations:

lloc :loc (l ∈ Loc)
!loc :loc→ nat

:=loc:loc× nat→ com

All the constants are values, and as well as the redexes
specified by the general framework, there are the following
two:

!locV V :=loc V

For the semantics of the high-level language we define a
configuration to be a pair (s,M) with s a store and M a
well-typed term. The semantics then consists of a transition
relation: (s,M) −→ (s′,M ′) which is obtained from the
special case of redexes:

(s,R) −→ (s′,M ′)

(s, E[R]) −→ (s′, E[M ′])

For redexes we take the transitions to be given by:

(s, !loclloc) −→ (s, n) (s(l) = n)
(s, lloc :=loc n) −→ (s[l 7→ n], skip)

and the rule:
R −→M ′

(s,R) −→ (s,M ′)

We have a subject-reduction theorem:
Lemma 4.1: For any configuration (s,M), with M : σ,

one of the following two mutually exclusive statements
holds:

• M is a value, or
• (s,M) −→ (s′,M ′) for some uniquely determined s′

and M ′ :σ.
The operational semantics is “small-step”; one can define

a corresponding “big-step” semantics:

(s,M) =⇒ (s′, V) ⇐⇒ (s,M)→∗ (s′, V)
(s,M) ⇑ ⇐⇒ ∀n. ∃s′,M ′.

(s,M)→n (s′,M ′)

The relation and property are mutually exclusive. The big-
step subject-reduction theorem is:

Lemma 4.2: For any configuration (s,M), with M : σ,
one of the following two mutually exclusive statements
holds:
• (s,M) =⇒ (s′, V) for a unique s′ and V :σ, or
• (s,M) ⇑.

B. The low-level language

In the low-level language all memory accesses are made
via natural numbers. Consequently we take the only basic
type to be nat. (A possible variant would be to have a
separate memory-address type.) As well as the arithmetic
constants, the low-level language has memory-access con-
stants:

lnat :nat (l ∈ Loc)
!nat :nat→ nate

:=nat:nat× nat→ come

where, for any type σ, we write σe for σ+ unit. Note that
there are constants for all the locations, not just the public
ones. We take !nat and :=nat to be values, and lnat to be a
redex, for each l ∈ Loc. The redexes are those specified by
the general framework, together with:

!natV V :=nat V

Configurations in the low-level operational semantics are
pairs (m,M) of a memory m and a well-typed term M .
The semantics is defined relative to a choice of a memory
layout. It consists of two transition relations, both relative
to the memory layout chosen:

w |= (m,M) −→ (m′,M ′)

w |= (m,M)
a−→ (m′,M ′) (a ∈ N)

These are obtained from the special case of redexes in the
usual way:

w |= (m,R) −→ (m′,M ′)

w |= (m,E[R]) −→ (m′, E[M ′])

w |= (m,R)
a−→ (m′,M ′)

w |= (m,E[R])
a−→ (m′, E[M ′])

For the redexes we take the transition relations to be given
by the rule:

R −→M ′

w |= (m,R) −→ (m,M ′)

together with:

w |= (m, lnat) −→ (m,w(l)) (l ∈ Loc)

and:

w |= (m, !nata) −→ (m, inln)
(if a ∈ {0, . . . , c} and m(a) = n)

w |= (m, !nata)
a−→ (m, error)

(if a /∈ {0, . . . , c} or m(a) = ∗)

and:

w |= (m, a :=nat n) −→ (m[a 7→ n], inl skip)
(if a ∈ {0, . . . , c} and m(a) 6= ∗)

w |= (m, a :=nat n)
a−→ (m, error)

(if a /∈ {0, . . . , c} or m(a) = ∗)

where we write error for inr ∗ : nate. Notice that when
an erroneous access is made then a non-fatal error arises,
modeled using the term error.

We have the following subject-reduction theorem for the
low-level semantics:

Lemma 4.3: For any memory layout w and configuration
(m,M), with M : σ, one of the following three mutually
exclusive statements holds:
• M is a value,
• w |= (m,M) −→ (m′,M ′) for some uniquely deter-

mined m′ and M ′ : σ, and if m has the form sw, so
does m′, or

• w |= (m,M)
a−→ (m′,M ′) for some uniquely deter-

mined a, m′, and M ′ :σ, and if m has the form sw, so
does m′.

For the low-level big-step semantics one needs to keep
track of sets of erroneous accesses. Accordingly, for A ⊆ N,
define

w |= (m,M)
A−→ (m′,M ′)

to hold if either A = ∅ and w |= (m,M) −→ (m′,M ′), or
else A = {a} and w |= (m,M)

a−→ (m′,M ′). Then define

w |= (m,M)
A

=⇒ (m′,M ′)

to hold if there is a sequence:

(m,M) = (m0,M0), . . . , (mn,Mn) = (m′,M ′)

and sets Ai ⊆ N, for i = 1, n, such that

w |= (mi−1,Mi−1)
Ai−→ (mi,Mi)

for i = 1, n, and A =
⋃n
i=1Ai. Finally, define (m,M) ⇑A

to hold if there is an infinite sequence:

(m,M) = (m0,M0), . . . , (mi,Mi), . . .

and sets Ai ⊆ N, for i ≥ 1, such that

w |= (mi−1,Mi−1)
Ai−→ (mi,Mi)

for i ≥ 1, and A =
⋃∞
i=1Ai.

The big-step subject-reduction theorem is then:
Lemma 4.4: For any configuration (m,M), with M : σ,

one of the following two mutually exclusive statements
holds:

• w |= (m,M)
A

=⇒ (m′, V) for a unique m′, V :σ, and
finite A ⊆ N, and if m has the form sw, so does m′,
or

• w |= (m,M) ⇑A for a unique A ⊆ N.

C. The instrumented high-level language

In order to relate the high-level semantics uniformly to the
low-level language we instrument it by adding some con-
stants for accessing the store at type nat; in the final analy-
sis, these will be translated away. In the instrumented high-
level language, accesses to the natural-number addresses of
private locations will simply result in errors. In contrast,
these accesses may work in the low-level language. Thus,
the instrumented high-level language serves as a stepping
stone, with semantics that resembles that of the high-level
language but with a syntax that includes low-level constructs.

The instrumented high-level language has the same basic
types as the high-level language and its constants are those
of the high-level language together with:

lnat :nat (l ∈ PubLoc)
!nat :nat→ nate

:=nat:nat× nat→ come

We take lnat to be a redex (for l ∈ PubLoc), and !nat and
:=nat to be values, and classify the other constants as in
the case of the high-level language. As well as the redexes
specified by the general framework there are the following
ones:

!natV V :=nat V

!locV V :=loc V

the latter two kinds being inherited from the high-level
language.

For the operational semantics, configurations are defined
as for the high-level language, but we add an instrumented
transition relation:

(s,M)
a−→ (s′,M ′) (a ∈ N)

We then proceed as for the high-level language, adding a
rule for the instrumented transition relation:

(s,R)
a−→ (s′,M ′)

(s, E[R])
a−→ (s′, E[M ′])

together with:

(s, lnat) −→ (s, wp(l)) (l ∈ PubLoc)

l↑nat = wp(l) (l ∈ PubLoc)

!↑nat = λx :nat. Gx(λy :loc. inl (!locy))(λy :unit. error)

:=↑nat = λx :nat× nat. G(fstx)(λy :loc. inl (y :=loc sndx))(λy :unit. error)

Figure 1. Replacement of constants for translation from instrumented high-level to high-level languages.

and:
(s, !nata) −→ (s, inl s(l))

(a = wp(l), l ∈ PubLoc)
(s, a :=nat n) −→ (s[l 7→ n], inl skip)

(a = wp(l), l ∈ PubLoc)

(s, !nata)
a−→ (s, error) (a /∈ Ran(wp))

(s, a :=nat n)
a−→ (s, error) (a /∈ Ran(wp))

For the analogue to Lemma 4.1, one adds one more possi-
bility to the list of mutually exclusive possibilities:
• (s,M)

a−→ (s′,M ′) for some unique a, s′, and M ′.
For the big-step semantics one needs to keep track of

sets of non-public memory accesses. Accordingly define
(s,M)

A−→ (s′,M ′), where A ⊆ N, to hold if either
A = ∅ and (s,M) −→ (s′,M ′), or else A = {a} and
(s,M)

a−→ (s′,M ′). Then define (s,M)
A

=⇒ (s′,M ′),
where A ⊆ N, to hold if there is a sequence:

(s,M) = (s0,M0)
A1−→ . . .

An−→ (sn,Mn) = (s′,M ′)

with n ≥ 0, such that A =
⋃n
i=1Ai and define (s,M) ⇑A,

where A ⊆ N, to hold if there is an infinite sequence:

(s,M) = (s0,M0)
A1−→ . . .

Ai−→ (si,Mi)
Ai+1−→ . . .

such that A =
⋃∞
i=1Ai. The big-step subject-reduction

theorem is then:
Lemma 4.5: For any configuration (s,M), with M : σ,

one of the following two mutually exclusive statements
holds:
• (s,M)

A
=⇒ (s′, V) for a unique s′, V : σ, and finite

A ⊆ N, or
• (s,M) ⇑A for a unique A ⊆ N.
Note that the small-step semantics of the instrumented

high-level language is a conservative extension of that of
the high-level language. That is, a transition (s,M) −→
(s′,M ′) holds in the high-level language if, and only if, it
does in the instrumented high-level language. For the big-
step semantics, we have, for any terms M , M ′ of the high-
level language:

(s,M) =⇒ (s′,M ′) ⇐⇒ (s,M)
∅

=⇒ (s′,M ′)
(s,M) ⇑ ⇐⇒ (s,M) ⇑∅

1) Translating instrumented high-level to high-level:
Every term M : σ of the instrumented high-level language
can be translated to a term M↑ :σ of the high-level language.
First we need a function to convert addresses of public
locations to the locations themselves. Let l(1), . . . , l(p) be

a listing without repetitions of PubLoc, and set ai =def

wp(l
(i)), for i = 1, p. Define the high-level term

Gσ :nat→ (loc→ σ)→ (unit→ σ)→ σ

to be:
λx :nat.λf :loc→ σ.λg :unit→ σ.

if x = a1 thenf((l(1))loc)
elseif x = a2 thenf((l(2))loc)

...
elseif x = ap thenf((l(p))loc)
else g(∗)

where we make use of the enumeration of PubLoc and the
definition of the ai given above. Then replace the additional
constants as shown in Figure 1.

The translation is correct in the following sense:
Lemma 4.6: Let M be a well-typed term of the instru-

mented high-level language. Then:
1) If M is a value then so is M↑.
2) If (s,M)

A−→ (s′,M ′) then (s,M↑) −→∗ (s′,
(M ′)↑).

Proof: Part 1 follows by inspection. For part 2, one shows
first that, for any redex R, if (s,R)

A−→ (s′,M ′) then
(s,R↑) −→∗ (s′, (M ′)↑). One shows next that if E is an
evaluation context, then E↑ is too (taking [−]↑ = [−], etc.)
and that E[M]↑ = E↑[M↑]. Part 2 then follows.

In terms of big-step relations and properties we have:
Proposition 4.7: Let M be a well-typed term of the

instrumented high-level language. Then:
1) If M is a value then so is M↑.
2) If (s,M)

A
=⇒ (s′, V) then (s,M↑) =⇒ (s′, V ↑).

3) If (s,M) ⇑A then (s,M↑) ⇑.
A small variation on this translation will also prove useful.

For any a ∈ N define a translation M↑a by the following
alternative replacement of the additional constants.

(lnat)
↑
a = (lnat)

↑

(!nat)
↑
a = λx :nat. ifx = a thenΩ else !↑natx

(:=nat)
↑
a = λx :nat× nat.

if fstx = a thenΩ else :=↑nat x

Proposition 4.8: Let M be a well-typed term of the
instrumented high-level language. Then, if a /∈ Ran(wp):

1) If M is a value then so is M↑a .
2) If (s,M)

A
=⇒ (s′, V) then (s,M↑a) =⇒ (s′, V ↑a), if

a /∈ A.

3) If (s,M)
A

=⇒ (s′, V) then (s,M↑a) ⇑, if a ∈ A.
4) If (s,M) ⇑A then (s,M↑a) ⇑.
2) Translating instrumented high-level to low-level: We

can translate types σ and terms M : σ of the instrumented
high-level language to types σ↓ and terms M↓ : σ↓ of the
low-level language. We obtain the translation σ↓ of a type
σ by replacing all occurrences of loc by nat. For terms we
replace each occurrence of a type σ by one of σ↓ and we
replace the missing constants as follows:

(lloc)
↓ = lnat

(!loc)
↓ = λx :nat. cases !natx inl y. y inr z. 0

(:=loc)
↓ = λx :nat× nat.

cases :=nat x inl y. y inr z. skip

and take the translation to act as the identity on the other
constants, viz: lnat (l ∈ PubLoc), !nat and :=loc.

The translation is correct with respect to the low-level
semantics, in the sense, roughly, that M↓ simulates M .
However there is a small problem in that the translation of
a location value is not a natural-number value but, rather, is
a natural-number redex, and for that reason a translation
can make a transition to a term which is not itself a
translation. To keep track of this we define a simulation
relation M ↘w N between terms of the instrumented
high-level language and terms of the low-level language,
parameterized on a memory layout w.

We take this relation to be the least relation between terms
of the instrumented high-level language and terms of the the
low-level language which includes:

c↘w c
↓ lloc ↘w w(l)

and which is closed under the other language constructs,
meaning that, for example:
• if M1 ↘w N1 and M2 ↘w N2 then M1M2 ↘w

N1N2, and
• if M ↘w N then λx :σ.M ↘w λx :σ↓. N .

For any term M of the instrumented high-level language
we have M ↘w M↓; further, if M :σ and M ↘w N then
N :σ↓.

We can now prove a series of lemmas, leading to our main
simulation lemma. The first lemma concerns values.

Lemma 4.9: Suppose that V ↘w N for a well-typed
value V . Then for some value V ′, with
The second lemma concerns redexes.

Lemma 4.10: 1) Suppose that R ↘w N and that
(s,R) −→ (s′,M ′). Then for some N ′ with M ′ ↘w

N ′ we have w |= (sw, N) −→∗ (s′w, N
′).

2) Suppose that R ↘w N and that (s,R)
a−→ (s′,M ′)

for some a /∈ Ran(w)\Ran(wp). Then for some N ′

with M ′ ↘w N
′ we have w |= (sw, N)

a−→ (s′w, N
′).

The third lemma concerns evaluation contexts. The simu-
lation relation is extended in an evident way to evaluation
contexts, taking [−] ↘w [−], etc. One easily sees that if
E ↘w E

′ and M ↘w N then E[M]↘w E
′[N].

Lemma 4.11: Suppose that E[R]↘w N . Then N has the
form E′[N1] where E ↘w E

′ and R↘w N1.
We then have the small-step simulation lemma:
Lemma 4.12: Suppose that M ↘w N for well-typed

terms M of the instrumented high-level language and N
of the low-level language. Then:

1) If M is a value V , then there is a value V ′, with V ↘w

V ′, such that, for any memory m, w |= (m,N) −→∗
(m,V ′).

2) If (s,M) −→ (s′,M ′), then there is an N ′ with
M ′ ↘w N

′ such that w |= (sw, N) −→∗ (s′w, N
′).

3) If (s,M)
a−→ (s′,M ′) and a /∈ Ran(w)\Ran(wp),

then w |= (sw, N)
a−→ (s′w, N

′) for some N ′ such
that M ′ ↘w N

′.
The third case is particularly important as it enables one to
find the memory access largely independently of the memory
layout. In terms of big-step relations and properties we have:

Proposition 4.13: Suppose that M ↘w N for well-typed
terms M of the instrumented high-level language and N of
the low-level language. Then:

1) If (s,M)
A

=⇒ (s′, V), then, if w#(A ∩ {0, . . . , c}),
there is a V ′ with V ↘w V ′ such that w |=
(sw, N)

A
=⇒ (s′w, V

′).
2) If (s,M) ⇑A then, if w#(A ∩ {0, . . . , c}), w |=

(sw, N) ⇑A.

D. High- and low-level attackers

We are now in a position to formulate our theorems for the
costly-error case. The general idea is to show that a program
(taken to be a closed term) executed in the abstract memory
model is equally secure if executed in the concrete one. In
terms of our typed programming language we wish to show
that a high-level term M : σ is as secure as its low-level
counterpart M↓ : σ↓. We will prove that this holds if σ is
loc-free, i.e., if σ↓ = σ. (It does not hold generally—see
the discussion in Section II.)

In this section, we study the relation between high- and
low-level attackers. In Section IV-E, we consider equiva-
lences.

Say that an instrumented high-level term (low-level term)
is public if it contains no occurrence of any lloc (respectively
lnat) with l ∈ PriLoc. We would like to show that attackers
gain no advantage by attacking at low-level rather than at
high-level. They certainly lose none, as, for any public high-
level term C :σ → bool, the low-level term C↓ is of equal
attacking power:

Proposition 4.14: Let M :σ be a high-level term and let
C :σ → bool be a public high-level term. Then:

1) If (s, CM) =⇒ (s′, V) then, for any w, w |=
(sw, C

↓M↓)
∅

=⇒ (s′w, V).
2) If (s, CM) ⇑ then, for any w, w |= (sw, C

↓M↓) ⇑∅.
These exhaust all the possibilities for the big-step semantics
of CM .

Proof: This is immediate from Proposition 4.13 using the
fact that if V ↘w V ′ for any V : bool then V and V ′ are
identical.

We can restate this in terms of a convenient notion of
evaluation function. For any store s and term M : σ of the
instrumented high-level language (and so also any term of
the high-level language) define their behavior Eval(M, s)
by:

Eval(M, s) =

{
(s′, V) if (s,M)

A
=⇒ (s′, V)

Ω if (s,M) ⇑A

Here Ω is a token that indicates nontermination. Note that
we forget the A, regarding that as part of the instrumentation
rather than the actual behavior. However, it also proves
useful to define Acc(M, s) to be A ∩ {0, . . . , c} when
(s,M)

A
=⇒ (s′, V) or (s,M) ⇑A; Acc(M, s) records the

accesses made to non-public addresses.
Similarly, for any low-level term M :σ, memory m, and

layout w define their behavior Evalw(M,m) by:

Evalw(M,m) =

{
(m′, V) if w |= (m,M)

A
=⇒ (m′, V)

Ω if w |= (m,M) ⇑A

It also proves useful to define Accw(M,m) to be (A ∩
{0, . . . , c})\Ran(wp) when w |= (m,M)

A
=⇒ (m′, V) or

w |= (m,M) ⇑A; |Accw(M,m)| measures the number of
“relevant” memory accesses made by M , starting from m,
meaning those erroneous accesses within memory bounds.

We write xw to mean (sw,M) when x is (s,M) and Ω
when x is Ω.

Corollary 4.15: Let M : σ be a high-level term and let
C :σ → bool be a public high-level term. Then:

Eval(CM, s)w = Evalw(C↓M↓, sw)

for any store s and memory layout w.
For a converse, suppose now that C :σ → bool is a public

low-level term (so σ is loc-free). Then C is also a public
instrumented high-level term of the same type, and we would
like to show that the public high-level term C↑ :σ → bool is
an attacker of equal power. This will be true in a probabilistic
sense. The following theorem gives a lower bound on the
probability that high- and low-level semantics (for C↑M
and CM↓, respectively) coincide, where the layout w is
allowed to vary according to its distribution and the store
s is arbitrary. The theorem requires an assumption on the
number b of erroneous accesses: without a bound on b, an
attacker could explore all of memory. For small b, the high-
and low-level semantics coincide the most, with probability
close to 1 when c is sufficiently large.

Theorem 4.16: Let M : σ be a high-level term and let
C : σ → bool be a public low-level term. Then, for any
store s, and 0 ≤ b ≤ c− |Loc|, one of the following holds:

1) P (|Accw(CM↓, sw)| > b) ≥ δb+1, or

2) P (|Accw(CM↓, sw)| ≤ b ∧
Eval(C↑M, s)w = Evalw(CM↓, sw)) ≥ δb.

These alternatives are mutually exclusive if δb+1 > 1/2.

Proof: Fix M , C, and s. The proof is by cases on whether
or not |Acc(CM, s)| ≤ b.

Suppose first that |Acc(CM, s)| ≤ b. Take a w such that
w#Acc(CM, s). Then, as CM↘w (CM)↓ = CM↓, Propo-
sition 4.13 implies that Acc(CM, s) = Accw(CM↓, sw),
and that Eval(CM, s)w = Evalw(CM↓, sw). By Proposi-
tion 4.7 we also have that Eval(C↑M, s) = Eval(CM, s).

We therefore have:

δb ≤ P (w#Acc(CM, s))
≤ P (|Accw(CM↓, sw)| ≤ b ∧

Eval(C↑M, s)w = Evalw(CM↓, sw))

which is the second alternative.
Otherwise we have |Acc(CM, s)| > b. Then, as (s, CM)
A

=⇒ (s′,M ′) for some s′, M ′, and A with Acc(CM, s) =

A ∩ {0, . . . , c}, it follows that (s, CM)
A′

=⇒ (s′′,M ′′) for
some s′′, M ′′, and A′, where, setting A′′ = A′∩{0, . . . , c},
|A′′| = b+ 1.

Now, take a w such that w#A′′. Then, as CM↘wCM
↓,

Lemma 4.12 implies that w |= (sw, CM
↓)

A′
=⇒ (s′′w, N), for

some N , and so that Accw(CM↓, sw) ⊇ A′′ and then that
|Accw(CM↓, sw)| > b. We therefore have:

δb+1 = P (w#A′′)
≤ P (|Accw(CM↓, sw)| > b)

which is the first alternative.

We remark that, following its proof, the first of the alterna-
tives of Theorem 4.16 holds if |Acc(CM, s)| > b and the
second if |Acc(CM, s)| ≤ b.

In the special case b = 0, the theorem implies that,
for all s, either P (|Accw(CM↓, sw)| > 0) ≥ δ1 or,
for all w, |Accw(CM↓, sw)| = 0 and Eval(C↑M, s)w =
Evalw(CM↓, sw). In other words, either an erroneous ac-
cess to memory is probable, with probability at least δ1, or
there is no such access and the high- and low-level semantics
coincide.

It is natural to wonder if the probability bound δb+1 could
be improved to δb in Theorem 4.16. The reason for the
δb+1 bound is that |Accw(CM↓, sw)| counts only erroneous
accesses; what seems needed for a δb bound is a way of
counting attacker guesses, including successful ones.

E. Equivalences

There is a natural relation of (high level) public (contex-
tual) operational equivalence, refining the standard relation
of operational equivalence. It is defined by setting, for any
two high-level terms, M , N of type σ:

M ≈h,p N ⇐⇒ ∀C :σ → bool. CM ∼h,p CN

where the quantification over C ranges over public high-
level terms, and where, for high-level terms A,B :bool, we
define:

A ∼h,p B ⇐⇒ ∀s.Eval(A, s) =p Eval(B, s)

where the relation x =p y holds if, and only if, either x and
y have the forms (s, V) and (s′, V ′), and s�PubLoc = s′ �
PubLoc and V = V ′, or else x = y = Ω. (As usual, if f is
a function and S is a set then f � S is the restriction of f
to S.)

In order to define a corresponding low-level relation, we
first define a modified version of the low-level evaluation
function that yields nontermination if there are more than b
erroneous accesses. For any b ≥ 0, set:

Evalbw(M,m) =

{
Evalw(M,m) if |Accw(M,m)| ≤ b
Ω otherwise

Next, for any b such that 0 ≤ b ≤ c − |Loc| and δb+1 >
1/2 we define a relation ∼bl,p between low-level terms A,B :

bool, by taking A ∼bl,p B to hold if, and only if, for every
store s one of the following (mutually exclusive) alternatives
holds:
• for some s′ �PubLoc = s′′ �PubLoc and V ,

P(Evalbw(A, sw) = (s′w, V)) ≥ δb

and
P(Evalbw(B, sw) = (s′′w, V)) ≥ δb

or
•

P(Evalbw(A, sw) = Ω) ≥ δb+1

and
P(Evalbw(B, sw) = Ω) ≥ δb+1

Note that we quantify over memories that are layouts of
stores, not all memories. This relation is a partial equiv-
alence: symmetry is evident, and transitivity follows from
the assumption that δb+1 > 1/2, which ensures that the
two possibilities are mutually exclusive. (Reflexivity fails,
in general.) Now we define (low-level) public (contextual)
operational partial equivalence, by setting, for any two low-
level terms M , N of type σ:

M ≈bl,p N ⇐⇒ ∀C :σ → bool. CM ∼bl,p CN

where the contexts C are restricted to be public low-level
terms.

The following theorem says, roughly, that two programs
are publicly equivalent in the high-level language if, and
only if, their translations are publicly equivalent in the low-
level language, with the caveat that the low-level equivalence
is probabilistic and conditioned on a bound b on the number
of erroneous accesses.

Theorem 4.17: Let M,N : σ be high-level terms. Then,
assuming that σ is loc-free, 0 ≤ b ≤ c− |Loc|, and δb+1 >
1/2, we have:

M ≈h,p N iff M↓ ≈bl,p N↓

Proof: In one direction, we assume that M ≈h,p N , and
then consider a low-level public term C :σ → bool in order
to show that CM↓ ∼bl,p CN↓. Choose a store s. Applying
Theorem 4.16 to M and N four cases arise.

1) In the first case we have:

P (|Accw(CM↓, sw)| > b) ≥ δb+1

and
P (|Accw(CN↓, sw)| > b) ≥ δb+1

But then

P (Evalbw(CM↓, sw) = Ω) ≥ δb+1

and
P (Evalbw(CN↓, sw) = Ω) ≥ δb+1

concluding this case.
2) In the second case we have:

P

(
|Accw(CM↓, sw)| ≤ b ∧
Eval(C↑M, s)w = Evalw(CM↓, sw)

)
≥ δb

and

P

(
|Accw(CN↓, sw)| ≤ b ∧
Eval(C↑N, s)w = Evalw(CN↓, sw)

)
≥ δb

By assumption we have

Eval(C↑M, s) =p Eval(C↑N, s)

so there are two subcases.
a) In the first, there are s′, s′′, and V such that

s′ �PubLoc = s′′ �PubLoc, Eval(C↑M, s) =
(s′, V), and Eval(C↑N, s) = (s′′, V). But then
we have:

P(Evalbw(CM↓, sw) = (s′w, V)) ≥ δb

and

P(Evalbw(CN↓, sw) = (s′′w, V)) ≥ δb

concluding this subcase.
b) In the second,

Eval(C↑M, s) = Eval(C↑N, s) = Ω

and we obtain:

P (Evalbw(CM↓, sw) = Ω) ≥ δb

and
P (Evalbw(CN↓, sw) = Ω) ≥ δb

concluding this subcase.

3) In the third case we have:

P (|Accw(CM↓, sw)| > b) ≥ δb+1

and

P

(
|Accw(CN↓, sw)| ≤ b ∧
Eval(C↑N, s)w = Evalw(CN↓, sw)

)
≥ δb

There are again two subcases.
a) In the first, Eval(C↑N, s) has the form (s′, V)

for some s′ and V . So (s, CN)
A′

=⇒ (s′, V) for
some A′ with A′ ∩ {0, . . . , c} = Acc(CN, s),
as otherwise (i.e., if (s, CN)⇑A′′, for some A′′),
by Proposition 4.7 we would have a contradiction
with the form of Eval(C↑N, s).
By the remark after Theorem 4.16, and since the
alternatives there are mutually exclusive, we have

|Acc(CM, s)| > b ≥ |Acc(CN, s)|

So Acc(CM, s)\Acc(CN, s) is non-empty, and
we choose an element a of it; note that a /∈
Ran(wp).

Then, on the one hand, (s, CN)
A′

=⇒ (s′, V), so,
as (CN)↑a = C↑aN , by Proposition 4.8.2 we have
(s, C↑aN)⇒ (s′, V). On the other hand, by parts
3 and 4 of Proposition 4.8 we have (s, C↑aM) ⇑.
So we obtain a contradiction with the assumption
that M ≈h,p N .

b) In the second, Eval(C↑N, s) = Ω. But then we
have

P (Evalbw(CM↓, sw) = Ω) ≥ δb+1

and

P (Evalbw(CN↓, sw) = Ω) ≥ δb ≥ δb+1

concluding this subcase.
4) The fourth case is similar to the third.
In the other direction, assume that M↓ ≈bl,p N↓ and

then consider a high-level public term C : σ → bool in
order to show, for a given store s, that Eval(CM, s) =p

Eval(CN, s). We know that C↓M↓ ∼bl,p C↓N↓. For any w
we also know by Proposition 4.14 that Accw(C↓M↓, sw) =
∅, so, by Corollary 4.15, that

Eval(CM, s)w = Evalw(C↓M↓, sw)

= Evalbw(C↓M↓, sw)

The same holds for N .
The definition of ∼bl,p then yields two cases.
1) In the first case we have:

P(Evalw(C↓M↓, sw) = (s′w, V)) ≥ δb

and

P(Evalw(C↓N↓, sw) = (s′′w, V)) ≥ δb

for some s′�PubLoc = s′′�PubLoc and V . As δb > 0
there are w′ and w′′ such that Evalw′(C

↓M↓, sw′) =
(s′w′ , V) and Evalw′′(C

↓N↓, sw′′) = (s′′w′′ , V). So,

Eval(CM, s)w′ = Evalw′(C
↓M↓, sw′) = (s′w′ , V)

and

Eval(CN, s)w′′ = Evalw′′(C
↓N↓, sw′′) = (s′′w′′ , V)

As the map s 7→ sw is injective, it follows that
Eval(CM, s) = (s′, V) and Eval(CN, s) = (s′′, V).
Therefore, Eval(CM, s) =p Eval(CN, s), concluding
this case.

2) In the second case we have:

P(Evalw(C↓M↓, sw) = Ω) ≥ δb+1

and
P(Evalw(C↓N↓, sw) = Ω) ≥ δb+1

As δb+1 > 0 there are w′ and w′′ such that
Evalw′(C

↓M↓, sw′) = Evalw′′(C
↓N↓, sw′′) = Ω. So

Eval(CM, s) = Eval(CN, s) = Ω, concluding the
proof.

It would be interesting to look for stronger computational-
soundness results. For example, one might consider chang-
ing ∼bl,p so as not to conflate nontermination with too many
erroneous accesses.

V. THE FATAL-ERROR MODEL (SUMMARY)

In this model, an erroneous low-level memory access
gives rise to an irrecoverable error. The high- and low-level
languages consequently do not have error-recovery mecha-
nisms. Their operational semantics includes the possibility
of irrecoverable errors, and the high-level language includes
an error-raising construct to match the possibility of low-
level errors.

The study of this model resembles that of the costly-error
case. Therefore, and because of space constraints, we give
only a summary here.

A. The high-level language

The high-level language again employs the abstract no-
tion of location. The basic types are nat and loc; the
constants are the arithmetic ones, error-raising constants
raise errorσ : σ (for every σ), and memory-access con-
stants lloc : loc (for l ∈ Loc), !loc : loc → nat, and
:=loc:loc× nat→ com.

Configurations are pairs (s,M) of a store s and a well-
typed term M . Having defined small-step and then big-step
operational semantics, one defines an evaluation function
with Eval(M, s) being (s′, V), error, or Ω according to
whether the computation starting at (s,M) terminates with
the configuration (s′, V), raises an error, or diverges.

B. The low-level language

The only basic type is again nat. As well as the arithmetic
constants, there are error-raising constants raise errorσ
(for every σ) and memory-access constants lnat : nat (for
l ∈ Loc), !nat :nat→ nat, and :=nat:nat× nat→ com.

Configurations are pairs (m,M) of a memory m and a
well-typed term M . The operational semantics, including
the evaluation function, is defined relative to a choice of
memory layout, with Evalw(M,m) being one of (m′, V),
error, or Ω.

C. Translations

High-level terms M : σ can be translated to low-level
terms M↓ : σ↓ essentially by replacing every occurrence
of loc by one of nat. Public low-level terms M : σ can
be translated to public high-level terms M↑ : σ, where
a low-level (high-level) term is public if it contains no
occurrence of any lnat (respectively lloc) with l ∈ PriLoc.
The translation of a memory-access checks to see if the
access is non-public, raising an error if so. Both translations
are behavior-preserving.

D. High- and low-level attackers

We wish to show that a high-level term M :σ is as secure
as its low-level counterpart M↓ : σ↓. We prove this only if
σ is loc-free, i.e., if σ↓ = σ.

For any public high-level term C : σ → bool, the low-
level term C↓ is of equal attacking power. We write xw to
mean (sw,M) when x is (s,M) and x when x is error
or Ω.

Theorem 5.1: Let M :σ be a high-level term and let C :
σ → bool be a public high-level term. Then:

Eval(CM, s)w = Evalw(C↓M↓, sw)

for any store s and memory layout w.
For a converse, suppose now that σ is loc-free, and that

C : σ → bool is a public low-level term. We would like
to show that the public high-level term C↑ is an attacker of
equal power. This is true in a probabilistic sense:

Theorem 5.2: Suppose that M : σ is a high-level term
and C : σ → bool is a public low-level term, where σ is
loc-free. Then, for any store s, we have:

P(Eval(C↑M, s)w = Evalw(CM↓, sw)) ≥ δ1

E. Equivalences

There is a natural relation of public (contextual) high-
level operational equivalence, refining the standard relation
of operational equivalence. It is defined by setting, for any
two high-level terms, M , N of type σ:

M ≈h,p N ⇐⇒ ∀C :σ → bool. CM ∼h,p CN

where the quantification over C ranges over public high-
level terms, and where, for high-level terms A,B :bool, we
define:

A ∼h,p B ⇐⇒ ∀s.Eval(A, s) =p Eval(B, s)

where x =p y holds if, and only if, either x and y have the
forms (s, V) and (s′, V ′), and s � PubLoc = s′ � PubLoc
and V = V ′, or else x = y = error or else x = y = Ω.

At low-level, for any low-level terms A,B :bool say that
A ∼l,p B holds if, and only if, for every store s one of the
following three possibilities holds:
• ∃s′, s′′, V. ∀w.Evalw(A, sw) = (s′w, V) ∧

Evalw(B, sw) = (s′′w, V) ∧ s′ � PubLoc = s′′ �
PubLoc,

• P(Evalw(A, sw) = error) ≥ δ1 ∧
P(Evalw(B, sw) = error) ≥ δ1, or

• ∀w.Evalw(A, sw) = Evalw(B, sw) = Ω.
If δ1 > 0, these possibilities are mutually exclusive and

∼l,p is an equivalence relation. Note that we quantify over
memories that are layouts of stores, not all memories.

Now we define public (contextual) operational (low-level)
equivalence, by putting, for low-level terms M , N of type
σ: Now for low-level terms M , N of type σ set:

M ≈l,p N ⇐⇒ ∀C :σ → bool. CM ∼l,p CN

where the terms C are restricted to be public low-level terms.
Theorem 5.3: Let M,N : σ be high-level terms. Then,

if σ is loc-free and M ≈h,p N , then M↓ ≈l,p N↓. The
converse holds without restriction on σ if δ1 > 0.

VI. CONCLUSION

Given the abundance of disparate techniques for protec-
tion, it is useful to compare those techniques. Our results
relate layout randomization to the static guarantees of the
syntax of a high-level language in which the programs that
represent attackers can neither mention private locations
directly nor access them via natural-number addresses. Our
work follows that of Pucella and Schneider [27], which re-
lated obfuscation and type systems. However, their theorems
do not explicitly mention resource bounds or probabilities,
and focus on integrity properties. These theorems basically
pertain to the protection—by obfuscation or typing—of a
program from a potentially dangerous input. We consider
more general attackers, represented by arbitrary contexts,
and also treat program equivalences, capturing not only
integrity but also secrecy properties. Despite these sub-
stantial differences, we share their goal of understanding
randomization in the context of programming languages and
their implementations.

Going further, one could study layout randomization for
richer languages. Those languages may include richer type
systems, concurrency, and dynamic allocation, in particular.
For instance, they may allow the passing of locations (see

Section II), much like security protocols pass communi-
cation channels and cryptographic keys. Thus, despite the
differences mentioned in the introduction, methods currently
being developed in the study of security protocols could also
be helpful in the study of layout randomization. In another
direction, one could explore variants and extensions—for
instance, with replication (e.g., [7])— as well as other forms
of randomization. For instance, our methods seem to apply
to techniques that rename opcodes randomly.

In such further advances, it may be tempting to de-
velop and analyze sophisticated implementations that yield
the strongest possible guarantees. Again, the analogy with
security protocols may prove helpful. Nevertheless, those
implementations would be of only limited interest unless
they correspond to methods that could plausibly be used
in actual systems. For instance, in models where the at-
tacker may corrupt all shared memory (not common in
security protocols), it may be futile to consider protection
approaches that rely on frequent, extensive memory checks.
Such difficulties should however encourage the development
of programming models and constructs for which security
guarantees can be realistically obtained. A promising step in
this direction is the identification of the memory locations
that are critical to security and require protection [25].

Acknowledgments
We are grateful to Peter Druschel, Úlfar Erlingsson,

Cédric Fournet, Sergio Maffeis, Vaughan Pratt, Fred Schnei-
der, and Ben Zorn for their questions, comments, and
encouragement.

REFERENCES

[1] Martı́n Abadi. Protection in programming-language transla-
tions. In Kim G. Larsen, Sven Skyum, and Glynn Winskel,
editors, Proceedings of the 25th International Colloquium
on Automata, Languages and Programming, volume 1443 of
Lecture Notes in Computer Science, pages 868–883. Springer,
1998.

[2] Martı́n Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Lig-
atti. Control-flow integrity: principles, implementations, and
applications. ACM Transactions on Information and System
Security, 13(1):1–40, 2009.

[3] Martı́n Abadi and Phillip Rogaway. Reconciling two views
of cryptography (The computational soundness of formal
encryption). Journal of Cryptology, 15(2):103–127, 2002.

[4] Anonymous. Bypassing PaX ASLR protection. Phrack,
11(59), 2002.

[5] Michael Backes, Dennis Hofheinz, and Dominique Unruh.
Cosp: a general framework for computational soundness
proofs. In 16th ACM Conference on Computer and Com-
munications Security, pages 66–78, 2009.

[6] Elena Gabriela Barrantes, David H. Ackley, Stephanie Forrest,
and Darko Stefanović. Randomized instruction set emula-
tion. ACM Transactions on Information and System Security,
8(1):3–40, 2005.

[7] Emery D. Berger and Benjamin G. Zorn. Diehard: proba-
bilistic memory safety for unsafe languages. In 2006 ACM
SIGPLAN Conference on Programming Language Design and
Implementation, pages 158–168, 2006.

[8] Sandeep Bhatkar, Daniel C. DuVarney, and R. Sekar. Address
obfuscation: an efficient approach to combat a broad range of
memory error exploits. In 12th USENIX Security Symposium,
2003.

[9] Sandeep Bhatkar, R. Sekar, and Daniel C. DuVarney. Efficient
techniques for comprehensive protection from memory error
exploits. In 14th USENIX Security Symposium, 2005.

[10] Hubert Comon-Lundh and Véronique Cortier. Computational
soundness of observational equivalence. In 15th ACM Con-
ference on Computer and Communications Security, pages
109–118, 2008.

[11] Peter Druschel and Larry L. Peterson. High-performance
cross-domain data transfer. Technical Report TR 92-11,
Department of Computer Science, The University of Arizona,
March 1992.

[12] Úlfar Erlingsson. Low-level software security: Attacks and
defenses. In Alessandro Aldini and Roberto Gorrieri, editors,
Foundations of Security Analysis and Design IV, FOSAD
2006/2007 Tutorial Lectures, volume 4677 of Lecture Notes
in Computer Science, pages 92–134. Springer, 2007.

[13] Matthias Felleisen and Daniel P. Friedman. Control operators,
the secd-machine, and the lambda-calculus. In 3rd Working
Conference on the Formal Description of Programming Con-
cepts, pages 193–219, 1986.

[14] Stephanie Forrest, Anil Somayaji, and David H. Ackley.
Building diverse computer systems. In 6th Workshop on Hot
Topics in Operating Systems, pages 67–72, 1997.

[15] Masahito Hasegawa and Yoshihiko Kakutani. Axioms for
recursion in call-by-value. Higher-Order and Symbolic Com-
putation, 15(2-3):235–264, 2002.

[16] Michael Howard and Matt Thomlinson. Windows Vista
ISV security, April 2007. http://msdn2.microsoft.com/en-us/
library/bb430720.aspx.

[17] Gaurav S. Kc, Angelos D. Keromytis, and Vassilis Preve-
lakis. Countering code-injection attacks with instruction-set
randomization. In 10th ACM Conference on Computer and
Communications security, pages 272–280, 2003.

[18] Vladimir Kiriansky, Derek Bruening, and Saman Amaras-
inghe. Secure execution via program shepherding. In 11th
USENIX Security Symposium, pages 191–206, 2002.

[19] John Mitchell. Foundations for Programming Languages.
MIT Press, 1996.

[20] Eugenio Moggi. Computational lambda-calculus and monads.
In Fourth Annual IEEE Symposium on Logic in Computer
Science, pages 14–23, 1989.

[21] Eugenio Moggi. Notions of computation and monads. Infor-
mation and Computation, 93(1):55–92, 1991.

[22] James H. Morris, Jr. Protection in programming languages.
Communications of the ACM, 16(1):15–21, 1973.

[23] Greg Morrisett, David Walker, Karl Crary, and Neal Glew.
From System F to typed assembly language. ACM Transac-
tions on Programming Languages and Systems, 21(3):527–
568, 1999.

[24] Gene Novark, Emery D. Berger, and Benjamin G. Zorn.
Exterminator: Automatically correcting memory errors with
high probability. Communications of the ACM, 51(12):87–95,
2008.

[25] Karthik Pattabiraman, Vinod Grover, and Benjamin G. Zorn.
Samurai: protecting critical data in unsafe languages. In
EuroSys, pages 219–232, 2008.

[26] PaX Project. The PaX project, 2004. http://pax.grsecurity.net/.

[27] Riccardo Pucella and Fred B. Schneider. Independence from
obfuscation: A semantic framework for diversity. In 19th
IEEE Computer Security Foundations Workshop, pages 230–
241, 2006.

[28] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh,
Nagendra Modadugu, and Dan Boneh. On the effectiveness
of address-space randomization. In 11th ACM Conference
on Computer and Communications Security, pages 298–307,
2004.

[29] Alexander Sotirov and Mark Dowd. Bypassing browser
memory protections: Setting back browser security by 10
years. http://taossa.com/archive/bh08sotirovdowd.pdf, 2008.

[30] Anna Nora Sovarel, David Evans, and Nathanael Paul.
Where’s the FEEB? the effectiveness of instruction set ran-
domization. In 14th USENIX Security Symposium, pages 145–
160, 2005.

[31] Curtis Yarvin, Richard Bukowski, and Tom Anderson.
Anonymous RPC: Low-latency protection in a 64-bit address
space. In USENIX Summer Technical Conference, pages 175–
186, 1993.

APPENDIX

This appendix is a self-contained, longer presentation of
the material in Section V, which concerns the fatal-error
model.

In this model, an erroneous low-level memory access
gives rise to an irrecoverable error. A corresponding con-
struct to raise such errors is needed at high-level, as dis-
cussed in Section II. Section A presents the high-level
language; since it has an error-raising construction, its
operational semantics has an error predicate, as well as
the usual transition relation. Section B presents the low-
level language; its operational semantics additionally has an
error predicate which is labelled by a natural number; this
instrumentation is used in proofs and is not regarded as part
of program behavior.

To mediate between the two languages, an instrumented
high-level language, extending the high-level language, is
given in Section C. This language has facilities for memory
access at both location and natural-number types, with non-
public natural-number accesses always raising an instru-
mented error. We have a behavior-preserving translation to
the high-level language and a translation to the low-level lan-
guage which is additionally sensitive to the instrumentation.
With these tools, we prove our main results for the fatal-
error model in Sections D and E, to the effect that high- and
low-level attackers have essentially equal power, modulo the
translation from the high-level to the low-level language, and
that this translation preserves and reflects suitable notions of
contextual public equivalence.

A. The high-level language

The high-level language employs the abstract notion of
location. The basic types are nat and loc. The constants
are the arithmetic constants, together with error-raising con-
stants:

raise errorσ :σ (for every σ)

and constants for accessing and updating locations:

lloc :loc (l ∈ Loc)
!loc :loc→ nat

:=loc:loc× nat→ com

Of these, the arithmetic constants and the constants for
accesses and updating locations are values, and the error-
raising constant is a redex. As well as the redexes specified
by the general framework, there are the following two kinds:

!locV V :=loc V

For the semantics of the high-level language we define a
configuration to be a pair (s,M) with s a store and M a
well-typed term. The semantics then consists of a transition
relation and an error property:

(s,M) −→ (s′,M ′) (s,M) ↓error

The transition relation and the error property are obtained
from the special case of redexes by two rules:

(s,R) −→ (s′,M ′)

(s, E[R]) −→ (s′, E[M ′])

(s,R) ↓error

(s, E[R]) ↓error

For redexes we take the transitions to be given by:

(s, !loclloc) −→ (s, n) (s(l) = n)

(s, lloc :=loc n) −→ (s[l 7→ n], skip)

and a rule:
R −→M ′

(s,R) −→ (s,M ′)

The error property is given by:

(s, raise errorσ) ↓error

We have the following subject-reduction theorem for the
high-level semantics:

Lemma A.1: For any configuration (s,M), with M : σ,
one of the following three mutually exclusive statements
holds:
• M is a value,
• (s,M) −→ (s′,M ′) for some uniquely determined s′

and M ′ :σ, or
• (s,M) ↓error.
The operational semantics is “small-step”; one can define

a corresponding “big-step” semantics:

(s,M) =⇒ (s′, V) ⇐⇒ (s,M)→∗ (s′, V)
(s,M) ⇓error ⇐⇒ ∃s′,M ′.

(s,M)→∗ (s′,M ′) ↓error

(s,M) ⇑ ⇐⇒ ∀n.∃s′,M ′.
(s,M)→n (s′,M ′)

Note that these relations and properties are mutually exclu-
sive. There is then a big-step subject-reduction theorem:

Lemma A.2: For any configuration (s,M), with M : σ,
one of the following three mutually exclusive statements
holds:
• (s,M) =⇒ (s′, V) for a unique s′ and V :σ,
• (s,M) ⇓error, or
• (s,M) ⇑.

B. The low-level language

In the low-level language all memory accesses are made
via natural numbers. Consequently we take the only basic
type to be nat. As well as the arithmetic constants, the low-
level language has error-raising constants:

raise errorσ (for every σ)

(note that loc cannot occur in σ) and memory-access
constants:

lnat :nat (l ∈ Loc)
!nat :nat→ nat

:=nat:nat× nat→ com

Note that there are constants for all the locations, not just
the public ones; we say that a term is public if every lnat
that occurs in it has l ∈ PubLoc. We take !nat and :=nat

to be values, and raise errorσ and lnat (with l ∈ Loc) to
be redexes. The redexes are those specified by the general
framework, together with:

!natV V :=nat V

Configurations in the low-level operational semantics are
pairs (m,M) of a memory m and a well-typed term M . The
semantics is defined relative to a choice of a memory layout.
It consists of a transition relation and two error properties,
all relative to the memory layout chosen:

w |= (m,M) −→ (m′,M ′)
w |= (m,M) ↓error

w |= (m,M) ↓aerror

These are obtained from the special case of redexes much
as before:

w |= (m,R) −→ (m′,M ′)

w |= (m,E[R]) −→ (m′, E[M ′])

w |= (m,R) ↓error

w |= (m,E[R]) ↓error

w |= (m,R) ↓aerror

w |= (m,E[R]) ↓aerror

For the redexes we take the transitions and error properties
to be given by the rule:

R −→M ′

w |= (m,R) −→ (m,M ′)

together with:

w |= (m, raise errorσ) ↓error

w |= (m, lnat) −→ (m,w(l)) (l ∈ Loc)

and:

w |= (m, !nata) −→ (m,n)
(if a ∈ {0, . . . , c} and m(a) = n)

w |= (m, !nata) ↓aerror

(if a /∈ {0, . . . , c} or m(a) = ∗)
w |= (m, a :=nat n) −→ (m[a 7→ n], skip)

(if a ∈ {0, . . . , c} and m(a) 6= ∗)
w |= (m, a :=nat n) ↓aerror

(if a /∈ {0, . . . , c} or m(a) = ∗)

We have the following subject-reduction theorem for the
low-level semantics:

Lemma A.3: For any memory layout w and configuration
(m,M), with M : σ, one of the following four mutually
exclusive statements holds:
• M is a value,
• w |= (m,M) −→ (m′,M ′) for some uniquely deter-

mined m′ and M ′ : σ, and if m has the form sw, so
does m′,

• w |= (m,M) ↓error, or
• w |= (m,M) ↓aerror for some uniquely determined a.

The low-level big-step operational semantics is defined
by:

w |= (m,M) =⇒ (m′, V) ⇐⇒
w |= (m,M)→∗ (m′, V)

w |= (m,M) ⇓aerror ⇐⇒
∃m′,M ′.w |= (m,M)→∗ (m′,M ′) ↓aerror

w |= (m,M) ⇓error ⇐⇒
∃m′,M ′.w |= (m,M)→∗ (m′,M ′) ↓error

w |= (m,M) ⇑ ⇐⇒
∀n. ∃m′,M ′. w |= (m,M)→n (m′,M ′)

As is the case at the high-level, these relations and properties
are mutually exclusive. Note that if w |= (m,M) ↓aerror or
w |= (m,M) ⇓aerror, and m has the form sw, then a /∈
Ran(wp).

There is a big-step subject-reduction theorem:
Lemma A.4: For any memory layout w and configuration

(m,M), with M : σ, one of the following four mutually
exclusive statements holds:
• w |= (m,M) =⇒ (m′, V) for a unique m′ and V :σ,

and if m has the form sw, so does m′,
• w |= (m,M) ⇓error,
• w |= (m,M) ⇓aerror, for some uniquely determined a,

or
• w |= (m,M) ⇑.

C. The instrumented high-level language

In order to relate the high-level semantics uniformly to
the low-level language we instrument it by adding some
constants for accessing the store at type nat; in the final
analysis, these will be translated away. The instrumented
high-level language has the same basic types as the high-
level language and its constants are those of the high-level
language together with:

lnat :nat (l ∈ PubLoc)
!nat :nat→ nat

:=nat:nat× nat→ com

We take lnat to be a redex (for l ∈ PubLoc), and !nat and
:=nat to be values, and classify the other constants as in
the case of the high-level language. As well as the redexes
specified by the general framework there are the following
ones:

!natV V :=nat V

!locV V :=loc V

the latter two kinds being inherited from the high-level
language.

For the operational semantics, configurations are defined
as for the high-level language, but we add an instrumented
error property:

(s,M) ↓aerror (a ∈ N)

We then proceed as for the high-level language, adding a
rule for the instrumented error property:

(s,R) ↓aerror

(s, E[R]) ↓aerror

redex transitions:

(s, lnat) −→ (s, wp(l)) (l ∈ PubLoc)
(s, !nata) −→ (s, s(l)) (a = wp(l), l ∈ PubLoc)
(s, a :=nat n) −→ (s[l 7→ n], skip)

(a = wp(l), l ∈ PubLoc)

and instrumented error properties:

(s, !nata) ↓aerror (s, a :=nat n) ↓aerror (a /∈ Ran(wp))

For the analogue to Lemma A.1, one adds one more
possibility to the list of mutually exclusive possibilities:
• (s,M) ↓aerror for some uniquely determined a.

For the big-step semantics one defines one more predicate:

(s,M) ⇓aerror ⇐⇒ ∃s′,M ′.(s,M)→∗ (s′,M ′) ↓aerror

and then, for the analogue of Lemma A.2 one adds the
following possibility to the list of mutually exclusive possi-
bilities:
• (s,M) ⇓aerror for some unique a.
Note that if (s,M) ↓aerror or (s,M) ⇓aerror then a /∈

Ran(wp). Note too that the operational semantics of the
instrumented high-level language is conservative over that
of the high-level language. That is, a transition (s,M) −→
(s′,M ′) holds in the high-level language if, and only if,
it does in the instrumented high-level language, and the
same holds for a property (s,M) ↓error. Conservativity then
follows for the big-step operational semantics.

1) Translating instrumented high-level to high-level:
Every term M : σ of the instrumented high-level language
can be translated to a term M↑ :σ of the high-level language.
First we need a function to convert addresses of public loca-
tions to the locations themselves. Let l(1), . . . , l(p) be a list-
ing without repetitions of PubLoc, and set ai =def wp(l

(i)),
for i = 1, p. Define the high-level term G : nat → loc to
be:

λx :nat. if x = a1 then (l(1))loc
elseif x = a2 then (l(2))loc

...
elseif x = ap then (l(p))loc
else raise errorloc

with the evident understanding of the multiple conditional.
Then the translation is given by replacing the additional

constants of the instrumented high-level language as follows:

l↑nat = wp(l) (l ∈ PubLoc)

!↑nat = λx :nat. !locGx

:=↑nat = λx :nat× nat. G(fstx) :=loc (sndx)

Define (s,A) ↓oerror to hold if, and only if, either
(s,A) ↓error holds or (s,A) ↓aerror does, for some a. Then
the translation is correct in the following sense:

Lemma A.5: Let M be a well-typed term of the instru-
mented high-level language. Then:

1) If M is a value then so is M↑.
2) If (s,M) −→ (s′,M ′) then (s,M↑) −→∗

(s′, (M ′)↑).
3) If (s,M) ↓oerror then (s,M↑) −→∗ (s,M ′) ↓error, for

some M ′.

Proof: Part 1 follows by inspection. For part 2, one shows
first that, for any redex R, if (s,R) −→ (s′,M ′) then
(s,R↑) −→∗ (s′, (M ′)↑). One shows next that, if E is an
evaluation context, then E↑ is too (taking [−]↑ = [−], etc.)
and E[M]↑ = E↑[M↑]. Part 2 then follows. Part 3 follows
by inspection, using the previous remarks on evaluation
contexts.

Define (s,A) ⇓oerror to hold if, and only if, either
(s,A) ⇓error holds or (s,A) ⇓aerror does, for some a. Then
in terms of big-step relations and properties we have:

Proposition A.6: Let M be a well-typed term of the
instrumented high-level language. Then:

1) If (s,M) =⇒ (s′, V) then (s,M↑) =⇒ (s′, V ↑).
2) If (s,M) ⇓oerror then (s,M↑) ⇓error.
3) If (s,M) ⇑ then (s,M↑) ⇑.

2) Translating instrumented high-level to low-level: We
can translate types σ and terms M : σ of the instrumented
high-level language to types σ↓ and terms M↓ : σ↓ of the
low-level language. For types we replace all occurrences of
loc by nat. For terms we replace each occurrence of a
type σ by one of σ↓, and we replace the missing constants
as follows:

(lloc)
↓ = lnat

(!loc)
↓ = !nat

(:=loc)
↓ = :=nat

(raise errorσ)↓ = raise errorσ↓

and take the translation to act on the identity on the other
constants, viz: lnat (l ∈ PubLoc), !nat and :=loc.

The translation is correct with respect to the low-level
semantics, in the sense, roughly, that M↓ simulates M .
However there is a small problem in that the translation of
a location value is not a natural-number value but, rather, is
a natural-number redex, and for that reason a translation
can make a transition to a term which is not itself a
translation. To keep track of this we define a simulation
relation M ↘w N between terms of the instrumented high-
level language and the low-level language, parameterized on
a memory layout w.

We take this relation to be the least relation between terms
of the instrumented high-level language and the low-level

language which includes:

c↘w c
↓

raise errorσ ↘w raise errorσ↓

lloc ↘w w(l)

and which is closed under the other language constructs,
meaning that, for example:
• if M1 ↘w N1 and M2 ↘w N2 then M1M2 ↘w

N1N2, and
• if M ↘w N then λx :σ.M ↘w λx :σ↓. N .

For any term M of the instrumented high-level language
we have M ↘w M↓; further, if M :σ and M ↘w N then
N :σ↓.

We can now prove a series of lemmas, leading to our main
simulation lemma. The first lemma concerns values.

Lemma A.7: Suppose that V ↘w N for a well-typed
value V . Then for some value V ′, with V ↘w V ′,
w |= (m,N) −→∗ (m,V ′), for any memory m.
The second lemma concerns redexes.

Lemma A.8: Suppose that R ↘w N and that (s,R) −→
(s′,M ′). Then for some N ′ with M ′ ↘w N

′ we have w |=
(sw, N) −→∗ (s′w, N

′).
The third lemma concerns evaluation contexts. The simu-
lation relation is extended in an evident way to evaluation
contexts, taking, [−] ↘w [−], etc. One easily sees that if
E ↘w E

′ and M ↘w N then E[M]↘w E
′[N].

Lemma A.9: Suppose that E[R]↘w N . Then N has the
form E′[N1] where E ↘w E

′ and R↘w N1.
We can now give the anticipated simulation lemma:
Lemma A.10: Suppose that M ↘w N for a well-typed

terms M of the instrumented high-level language and N of
the low-level language. Then:

1) If M is a value V , then there is a value V ′, with V ↘w

V ′, such that for any memory m, w |= (m,N) −→∗
(m,V ′).

2) If (s,M) −→ (s′,M ′), then there is an N ′ with
M ′ ↘w N

′ such that w |= (sw, N) −→ (s′w, N
′).

3) If (s,M) ↓error then w |= (sw, N) ↓error.
4) If (s,M) ↓aerror then, if a /∈ Ran(w), w |=

(sw, N) ↓aerror.
The fourth case is particularly important as it enables one to
find the memory access largely independently of the memory
layout. In terms of big-step relations and properties we have:

Proposition A.11: Suppose that M ↘w N for well-typed
terms M of the instrumented high-level language and N of
the low-level language. Then:

1) If (s,M) =⇒ (s′, V), then there is a V ′ with V ↘w

V ′ such that w |= (sw, N) =⇒ (s′w, V
′).

2) If (s,M) ⇓error then w |= (sw, N) ⇓error.
3) If (s,M) ⇓aerror then, if a /∈ Ran(w), w |=

(sw, N) ⇓aerror.
4) If (s,M) ⇑ then, for any w, w |= (sw, N) ⇑.

D. High- and low-level attackers

We are now in a position to formulate our theorems for the
fatal-error case. The general idea is to show that a program
(taken to be a closed term) executed in the abstract memory
model is equally secure if executed in the concrete one. In
terms of our typed programming language we wish to show
that a high-level term M : σ is as secure as its low-level
counterpart M↓ : σ↓. We will prove that this holds if σ is
loc-free, i.e., if σ↓ = σ. (It does not hold generally—see
the discussion in Section II.)

In this section, we study the relation between high- and
low-level attackers. In Section E, we consider equivalences.

Say that an instrumented high-level term (low-level term)
is public if it contains no occurrence of any lloc (respectively
lnat) with l ∈ PriLoc. We would like to show that attackers
gain no advantage by attacking at low-level rather than at
high-level. They certainly lose none, as, for any public high-
level term C :σ → bool, the low-level term C↓ is of equal
attacking power:

Proposition A.12: Let M :σ be a high-level term and let
C :σ → bool be a public high-level term. Then:

1) If (s, CM) =⇒ (s′, V) then, for any w, w |=
(sw, C

↓M↓) =⇒ (s′w, V).
2) If (s, CM) ⇓error then, for any w, w |=

(sw, C
↓M↓) ⇓error.

3) If (s, CM) ⇑ then, for any w, w |= (sw, C
↓M↓) ⇑.

These exhaust all possibilities for the big-step semantics of
CM .

Proof: That these are all the possibilities is simply because
CM is a high-level term. That the statements concerning
these possibilities hold is an immediate consequence of
Proposition A.11.

We can restate this in terms of a convenient notion of
evaluation function. For any store s and term M : σ of the
instrumented high-level language, and so also of the high-
level language, define their behavior Eval(M, s) by:

Eval(M, s) =

 (s′, V) if (s,M) =⇒ (s′, V)
error if (s,M) ⇓oerror

Ω if (s,M) ⇑
Here Ω and error are tokens indicating, respectively, non-
termination and the raising of an error. Note that we do not
distinguish between ordinary and instrumented errors when
defining behavior.

Similarly, for any low-level term M :σ, memory m, and
layout w define their behavior Evalw(M,m) by:

Evalw(M,m) =

 (m′, V) if w |= (m,M) =⇒ (m′, V)
error if w |= (m,M) ⇓oerror

Ω if w |= (m,M) ⇑

where w |= (m,A) ⇓oerror is defined to hold if, and only if,
either w |= (m,A) ⇓error holds or w |= (m,A) ⇓aerror does,
for some a.

We write xw to mean (sw,M) when x is (s,M) and x
when x is error or Ω.

Corollary A.13 (Theorem 5.1): Let M :σ be a high-level
term and let C : σ → bool be a public high-level term.
Then:

Eval(CM, s)w = Evalw(C↓M↓, sw)

for any store s and memory layout w.
For a converse, suppose now that C :σ → bool is a public

low-level term (so, as before, σ is loc-free). Then C is also
a public instrumented high-level term of the same type, and
we would would like to show that the public high-level term
C↑ :σ → bool is an attacker of equal power. This will be
true in a probabilistic sense:

Theorem A.14: Suppose that M : σ is a high-level term
and C :σ → bool is a public low-level term. Then one of
the following three mutually exclusive statements holds for
any store s:
• ∃s′, V. ∀w.w |= (sw, CM

↓) =⇒ (s′w, V) ∧
(s, C↑M) =⇒ (s′, V),

• P(w |= (sw, CM
↓) ⇓oerror) ≥ δ1 ∧ (s, C↑M) ⇓error, or

• ∀w.w |= (sw, CM
↓) ⇑ ∧(s, C↑M) ⇑.

Proof: First note that (CM)↑ = C↑M (as M↑ = M) and
that (CM)↓ = CM↓ (as C↓ = C).

The proof now proceeds by considering the big-step
behavior of (s, CM). There are four mutually exclusive
possibilities: we consider each of them in turn. In the first
case we have (s, CM) =⇒ (s′, V) for some s′ and V . In
this case, we then have (s, C↑M) =⇒ (s′, V), by part 1
of Proposition A.6. We also have, for any w that w |=
(sw, C

↓M) =⇒ (s′w, V), using part 1 of Proposition A.11.
In the second case we have (s, CM) ⇓error, and so,

arguing as before but now using the second parts of
the propositions, (s, C↑M) ⇓error and, for any w, w |=
(s, C↓,M) ⇓error, and so P(w |= (sw, CM

↓) ⇓oerror) =
1 ≥ δ1.

In the third case we have (s, CM) ⇓aerror, for some
a ≥ 0 with a /∈ Ran(wp). So, again arguing as before, but
now using the second and third parts of the propositions,
respectively, we have (s, C↑M) ⇓aerror and, for any w with
a /∈ Ran(w), w |= (sw, C

↓M) ⇓error. It follows that:

P(w |= (sw, CM
↓) ⇓aerror) ≥ P(w#{a}) ≥ δ1

The fourth case is similar to the first case, but uses the third
and fourth parts of the respective propositions.

Using the evaluation function we obtain a weaker but
more memorable statement:

Corollary A.15 (Theorem 5.2): Suppose that M : σ is a
high-level term and C : σ → bool is a public low-level
term, where σ is loc-free. Then, for any store s, we have:

P(Eval(C↑M, s)w = Evalw(CM↓, sw)) ≥ δ1

E. Equivalences

There is a natural relation of public (contextual) opera-
tional (high-level) equivalence, refining the standard relation
of operational equivalence. It is defined by setting, for any
two high-level terms, M , N of type σ:

M ≈h,p N ⇐⇒ ∀C :σ → bool. CM ∼h,p CN

where the quantification over C ranges over public high-
level terms, and where, for high-level terms A,B :bool, we
define:

A ∼h,p B ⇐⇒ ∀s.Eval(A, s) =p Eval(B, s)

where x =p y holds if, and only if, either x and y have the
forms (s, V) and (s′, V ′), and s � PubLoc = s′ � PubLoc
and V = V ′, or else x = y = error or else x = y = Ω.

At low-level, for any low-level terms A,B :bool say that
A ∼l,p B holds if, and only if, for every store s one of the
following three possibilities holds:
• ∃s′, s′′, V. ∀w.w |= (sw, A) =⇒ (s′w, V) ∧ w |=

(sw, B) =⇒ (s′′w′ , V) ∧
s′ �PubLoc = s′′ �PubLoc,

• P(w |= (sw, A) ⇓oerror) ≥ δ1 ∧ P(w |= (sw, B) ⇓oerror

) ≥ δ1, or
• ∀w.w |= (sw, A) ⇑ ∧w |= (sw, B) ⇑.
This relation is a partial equivalence. (Reflexivity fails,

in general.) Note that we quantify over memories that are
layouts of stores, not all memories. Now we define public
(contextual) operational (low-level) partial equivalence, by
putting, for low-level terms M , N of type σ:

M ≈l,p N ⇐⇒ ∀C :σ → bool. CM ∼l,p CN

where the C are restricted to be public low-level terms.
Theorem A.16 (Theorem 5.3): Let M,N :σ be high-level

terms. Then, if σ is loc-free and M ≈h,p N , then M↓ ≈l,p
N↓. The converse holds without restriction on σ if δ1 > 0.

Proof: In one direction, we assume that σ is loc-free and
M ≈h,p N , and then consider a low-level public term
C :σ → bool in order to show CM↓ ∼l,p CN↓. Choose a
store s; we then obtain Eval(C↑M, s) =p Eval(C↑N, s)
from the assumption that M ≈h,p N , and three cases
arise. In the first, we have that (s, C↑M) ⇒ (s′, V),
(s, C↑N) ⇒ (s′′, V), and s′ � PubLoc = s′′ � PubLoc,
for some s′, s′′ and V . As σ is loc-free, we can apply
Theorem A.14, obtaining that w |= (sw, CM

↓) ⇒ (s′w, V)
and w |= (sw, CM

↓) ⇒ (s′′w, V), for any w, which con-
cludes this case. In the second case we have (s, C↑M) ⇓error

and (s, C↑N) ⇓error. We again apply Theorem A.14, and
obtain that P(w |= (sw, C

↑M) ⇓oerror) ≥ δ1 and that
P(w |= (sw, C

↑N) ⇓oerror) ≥ δ1. The third case is similar.
For the converse, we assume M↓ ≈l,p N↓ and con-

sider a high-level public term C : σ → bool in order
to show that Eval(CM, s) =p Eval(CN, s), for a given

store s. We know that C↓M↓ ∼l,p C↓N↓, and, by Corol-
lary 5.1, that Eval(CM, s)w = Evalw(C↓M↓, sw) and
that Eval(CN, s)w = Evalw(C↓N↓, sw), for all w. The
definition of ∼l,p then yields three cases, of which the first
and third are immediate. For the second, as δ1 > 0, there
are w1 and w2 such that w1 |= (sw1

, C↓M↓) ⇓oerror and
w2 |= (sw2

, C↓N↓) ⇓oerror, and the conclusion follows.

