
Layout Randomization and Nondeterminism

Mart́ın Abadi1, Jérémy Planul2, and Gordon D. Plotkin1,3

1 Microsoft Research
2 Department of Computer Science, Stanford University
3 LFCS, School of Informatics, University of Edinburgh

Abstract. In security, layout randomization is a popular, effective at-
tack mitigation technique. Recent work has aimed to explain it rigor-
ously, focusing on deterministic systems. In this paper, we study layout
randomization in the presence of nondeterministic choice. We develop a
semantic approach based on denotational models and the induced notions
of contextual public observation, characterized by simulation relations.
This approach abstracts from language details, and helps manage the del-
icate interaction between nondeterminism and probability. In particular,
memory access probabilities are not independent, but rather depend on
a fixed probability distribution over memory layouts; we therefore model
probability using random variables rather than any notion of probabilis-
tic powerdomain.

1 Introduction

Randomization has important applications in security, ranging from prob-
abilistic cryptographic schemes [1] to the introduction of artificial diver-
sity in low-level software protection [2]. Developing rigorous models and
analyses of the systems that employ randomization can be challenging,
not only because of the intrinsic difficulty of reasoning about probabil-
ities but also because these systems typically exhibit many other inter-
esting features. Some of these features, such as assumed bounds on the
capabilities and the computational complexity of attackers, stem directly
from security considerations. Others, such as nondeterminism, need not
be specifically related to security, but arise because of the generality of the
ambient computational models, which may for example include nondeter-
ministic scheduling for concurrent programs and for network protocols.

The form of randomization that we explore in this paper is layout ran-
domization in software systems (e.g., [3–5]). Layout randomization refers
to a body of widely used techniques that place data and code randomly
in memory. In practice, these techniques effectively thwart many attacks
that assume knowledge of the location of data and code. Recent research
by the authors and others aims to develop rigorous models and proofs

for layout randomization [6–9]. The research to date has focused on de-
terministic, sequential programs. Here, we consider layout randomization
for programs that may make nondeterministic choices.

We phrase our study in terms of a high-level language in which vari-
ables are abstract (symbolic) locations, and a low-level language in which
they are mapped to random natural-number addresses in memory. Both
languages include a standard construct for nondeterministic choice. We
give models for the languages. For each language, we also define a con-
textual implementation relation. Intuitively, a context may represent an
attacker, so contextual implementation relations may serve, in particu-
lar, for expressing standard security properties. We characterize contex-
tual implementation relations in terms of semantic simulation relations
(so-called logical relations). Throughout, the low-level relations are proba-
bilistic. Via the simulation relations, we obtain a semantic correspondence
between the high-level and low-level worlds. Basically, simulation relations
in one world induce simulation relations in the other, and therefore con-
textual implementation in one world implies contextual implementation
in the other.

Thus, our approach emphasizes semantic constructions. In comparison
with prior syntactic work, arguments via models arguably lead to more
satisfying security arguments, independent of superficial details of par-
ticular languages (as layout randomization is largely language-agnostic
in practice). They also help reconcile probabilities and nondeterminism,
which have a rich but thorny interaction.

Some of the difficulties of this interaction have been noticed in the
past. For instance, in their development of a framework for the analysis
of security protocols [10, Section 2.7], Lincoln et al. observed:

our intention is to design a language of communicating processes
so that an adversary expressed by a set of processes is restricted
to probabilistic polynomial time. However, if we interpret parallel
composition in the standard nondeterministic fashion, then a pair
of processes may nondeterministically “guess” any secret informa-
tion.

They concluded:

Therefore, although nondeterminism is a useful modeling assump-
tion in studying correctness of concurrent programs, it does not
seem helpful for analyzing cryptographic protocols.

Thus, they adopted a form of probabilistic scheduling, and excluded non-
determinism. In further work, Mitchell et al. [11] refined the framework,

in particular defining protocol executions by reference to any polynomial-
time probabilistic scheduler that operates uniformly over certain kinds of
choices. The uniformity prevents collusion between the scheduler and an
attacker. Similarly, Canetti et al. [12] resolved nondeterminism by task
schedulers, which do not depend on dynamic information generated dur-
ing probabilistic executions; they thus generated sets of trace distribu-
tions, one for each task schedule.

From a semantic perspective, a nondeterministic program denotes a
function that produces a set of possible outcomes; equally, a probabilis-
tic program represents a function that produces a distribution over out-
comes. Rigorous versions of these statements can be cast in terms of
powerdomains and probabilistic powerdomains [13]. In principle, a non-
deterministic and probabilistic program may represent either a function
producing a set of distributions over outcomes or else one producing a
distribution over sets of outcomes. However it seems that only the for-
mer option, where nondeterministic choice is resolved before probabilistic
choice, leads to a satisfactory theory if, for example, one wishes to retain
all the usual laws for both forms of nondeterminism [14–16].

To illustrate these options, imagine a two-player game in which Player
I chooses a bit bI at random, Player II chooses a bit bII nondeterminis-
tically, and Player I wins if and only if bI = bII. The system composed
of the two players may be seen as producing a set of distributions or a
distribution on sets of outcomes.

– With the former view, we can say that, in each possible distribution,
Player I wins with probability 1/2.

– On the other hand, with the latter view, we can say only that, with
probability 1, Player I may win and may lose.

The former view is preferable in a variety of security applications, in
which we may wish to say that no matter what an attacker does, or how
nondeterministic choices are resolved, some expected property holds with
high probability.

However, in our work, it does not suffice to resolve nondeterminis-
tic choice before probabilistic choice, as we explain in detail below, fun-
damentally because the probabilistic choices that we treat need not be
independent. Instead, we construct a more sophisticated model that em-
ploys random variables, here maps from memory layouts to outcomes.
The memory layouts form the sample space of the random variables, and,
as usual, one works relative to a given distribution over the sample space.

Beyond the study of layout randomization, it seems plausible that an
approach analogous to ours could be helpful elsewhere in security analysis.

Our models may also be of interest on general grounds, as a contribution
to a long line of research on programming-language semantics for lan-
guages with nondeterministic and probabilistic choice. Specifically, the
models support a treatment of dependent probabilistic choice combined
with nondeterminism, which as far as we know has not been addressed
in the literature. Finally, the treatment of contextual implementation re-
lations and simulation relations belongs in a long line of research on re-
finement.

This paper is a full version of a conference paper [17] of the same
title. The main differences are that proofs are presented in full (except
in some routine or evident cases) and that an inconsistency between the
operational and denotational semantics of the low-level language has been
corrected by an alteration to its operational semantics.

Contents

In Section 2 we review some preliminary material on cpos.
In Section 3, we consider a high-level language, with abstract loca-

tions, standard imperative constructs, and nondeterminism, and describe
its denotational and operational semantics. We define a contextual im-
plementation relation with respect to contexts that represent attackers,
which we call public contexts; for this purpose, we distinguish public lo-
cations, which attackers can access directly, from private locations. We
also define a simulation relation, and prove that it coincides with the
contextual implementation relation. The main appeal of the simulation
relation, as usual, is that it does not require reasoning about all possible
contexts.

In Section 4, we similarly develop a lower-level language in which pro-
grams may use natural-number memory addresses (rather than abstract
locations). Again, we define a denotational semantics, an operational se-
mantics, a contextual implementation relation, and a simulation relation.
These definitions are considerably more delicate than those of the high-
level language, in particular because they refer to layouts, which map
abstract locations to concrete natural-number addresses, and which may
be chosen randomly (so we often make probabilistic statements).

In Section 5, we relate the high-level and the low-level languages. We
define a simple compilation function that maps from the former to the
latter. We then establish that if two high-level commands are in the con-
textual implementation relation, then their low-level counterparts are also
in the contextual implementation relation. The proof leverages simulation
relations. In semantics parlance, this result is a full-abstraction theorem;

the use of public contexts that represent attackers, however, is motivated
by security considerations, and enable us to interpret this theorem as pro-
viding a formal security guarantee for the compilation function, modulo
a suitable random choice of memory layouts.

Finally, in Section 6 we conclude by discussing some related and fur-
ther work.

2 Preliminaries on Cpos

We take a cpo to be a partial order P closed under increasing ω-sups, and
consider sets to be cpos with the discrete ordering. We write P⊥ for the
lift of P , viz. P extended by the addition of a least element, ⊥. Products
P × Q and function spaces P → Q (which we may also write as QP)
are defined as usual, with the function space consisting of all continuous
functions (those monotonic functions preserving the ω-lubs).

We use the lower, or Hoare, powerdomain H(P), which consists of the
nonempty, downwards, and ω-sup-closed subsets of P , ordered by inclu-
sion. The lower powerdomain is the simplest of the three powerdomains,
and models “may” or “angelic” nondeterminism; the others (upper and
convex) may also be worth investigating.

For any nonempty subset X of P , we write X ↓ for the downwards
closure {y | ∃x ∈ X. y ≤ x} of X. We also write X∗ for the downwards
and ω-sup closure of X (which is typically the same as X ↓ in the instances
that arise below).

Both H(−) and H(−⊥) are monads (those for lower nondeterminism,
and lower nondeterminism and nontermination, respectively). The unit
of the former is x 7→ {x} ↓ and continuous maps f : P → H(Q) have
extensions f † : H(P)→ H(Q) given by:

f †(X) = (
⋃
x∈X

f(x))∗

The unit of the latter is x 7→ {x}↓ and continuous maps f : P → H(Q⊥)
have extensions f † : H(P⊥)→ H(Q⊥) given by:

f †(X) = {⊥} ∪ (
⋃

x∈X\{⊥}
f(x))∗

3 The High-Level Language

In this section, we define our high-level language. In this language, lo-
cations are symbolic names, and we use an abstract store to link those
locations to their contents, which are natural numbers.

For simplicity, the language lacks data structures and higher-order
features. Therefore, locations cannot contain arrays or functions (cf. [9]),
except perhaps through encodings. So the language does not provide a
direct model of overflows and code-injection attacks, for instance.

There are many other respects in which our languages and their se-
mantics are not maximally expressive, realistic, and complex. They are
however convenient for our study of nondeterminism and of the semantic
approach to layout randomization.

3.1 Syntax and Informal Semantics

The syntax of the high-level language includes categories for natural-
number expressions, boolean expressions, and commands:

e ::= k |!lloc | e+ e | e ∗ e
b ::= e ≤ e | ¬b | tt | ff | b ∨ b | b ∧ b
c ::= lloc := e | if b then c else c | skip | c; c | c+ c | while b do c

where k ranges over numerals, and l over a given finite set of store lo-
cations Loc. Natural-number expressions are numerals, dereferencing of
memory locations, sums, or products. Boolean expressions are inequalities
on natural-number expressions, negations, booleans, disjunctions, or con-
junctions. Commands are assignments at a location, conditionals, skip,
sequences, nondeterministic choices, or while loops. Command contexts
C[] are commands with holes; we write C[c] for the command obtained
by filling all the holes in C[] with c. We further use trivial extensions
of this language, in particular with additional boolean and arithmetic
expressions.

We assume that the set of store locations Loc is the union of two
disjoint sets of locations PubLoc (public locations) and PriLoc (private
locations). Let c be a command or a command context. We say that c
is public if it does not contain any occurrence of lloc := v or !lloc for
l ∈ PriLoc. As in previous work [7], we model attackers by such public
commands and command contexts; thus, attackers have direct access to
public locations but not, by default, to private locations.

The distinction between public and private locations is directly analo-
gous to that between external and internal state components in automata
and other specification formalisms (e.g., [18]). It also resembles distinc-
tions in information-flow systems, which often categorize variables into
levels (e.g., [19]), and typically aim to prevent flows of information from

“high” to “low” levels. We do not impose any such information-flow con-
straint: we permit arbitrary patterns of use of public and private locations.
Nevertheless, we sometimes use h for a private location and l for a public
location, and also associate the symbols H and L with private and public
locations, respectively.

3.2 Denotational Semantics

A store s is a function from the finite set Loc of store locations to natural
numbers. When Loc consists solely of h and l, for example, we write
(h 7→ m, l 7→ n) for the store that maps h to m and l to n. A public
(private) store is a function from PubLoc (PriLoc) to natural numbers.
We write S for the set of stores, SL for the set of public stores, and SH
for the set of private stores. The following natural functions restrict the
store to its public and private locations:

SL
L←−− S H−−→ SH

We write sL for L(s) and s =L s
′ when sL = s′L, and similarly for H.

The denotational semantics

[[e]] : Store→ N [[b]] : Store→ B

of expressions are defined as usual with, in particular, [[!lloc]](s) = s(l).
The denotational semantics

[[c]] : S → H(S⊥)

of commands is given in Figure 1, where the semantics of the while loop
is the standard least-fixed point one.

[[lloc := e]](s) = η(s[l 7→ [[e]](s)]) [[skip]](s) = η(s)

[[if b then c else c′]](s) =

{
[[c]](s) ([[b]](s) = tt)

[[c′]](s) ([[b]](s) = ff)

[[c; c′]](s) = [[c′]]†([[c]](s))

[[c+ c′]](s) = [[c]](s) ∪ [[c′]](s)

[[while b do c]] = µ θ : S → H(S⊥). λs :S.

{
η(s) ([[b]](s) = ff)

θ†([[c]](s)) ([[b]](s) = tt)

Fig. 1. High-level denotational semantics

Example 1. Consider the two commands:

c0 = (h := 1; l := ¬!l)+(h := 0) c1 = (h := 1; l := 1)+(h := 0; l := 0)

According to the semantics, [[c0]] maps any store mapping l to 1 to the
set {(h 7→ 1, l 7→ 0), (h 7→ 0, l 7→ 1)} ↓, and any store where l is 0 to the
set {(h 7→ 1, l 7→ 1), (h 7→ 0, l 7→ 0)} ↓, while [[c1]] maps any store to the
set {(h 7→ 1, l 7→ 1), (h 7→ 0, l 7→ 0)}↓. In sum, we may write:

[[c0]](h 7→ , l 7→ 1) = {(h 7→ 1, l 7→ 0), (h 7→ 0, l 7→ 1)}↓
[[c0]](h 7→ , l 7→ 0) = {(h 7→ 1, l 7→ 1), (h 7→ 0, l 7→ 0)}↓
[[c1]](h 7→ , l 7→) = {(h 7→ 1, l 7→ 1), (h 7→ 0, l 7→ 0)}↓

Since the two commands act differently on stores, they do not have
the same semantics. However, when one observes only public loca-
tions, the apparent behavior of both commands is the same: they non-
deterministically write 0 or 1 to l. This similarity will be made rigorous
in Example 2. ut

3.3 Operational Semantics

The high-level language has a straightforward big-step operational seman-
tics. In this semantics, a high-level state is a pair 〈c, s〉 of a command and
a store or, marking termination, just a store s. The transition relation is
a binary relation 〈c, s〉 ⇒ s between such states. Figure 2 gives the rules
for⇒. (Note that we treat expressions denotationally; as we wish to focus
on commands, this treatment avoids some extra complexity.)

〈lloc := e, s〉 ⇒ s[l 7→ [[e]]s]
[[b]]s = tt 〈c, s〉 ⇒ s′

〈if b then c else c′, s〉 ⇒ s′

[[b]]s = ff 〈c′, s〉 ⇒ s′

〈if b then c else c′, s〉 ⇒ s′
〈skip, s〉 ⇒ s

〈c, s〉 ⇒ s′ 〈c′, s′〉 ⇒ s′′

〈c; c′, s〉 ⇒ s′′

〈c, s〉 ⇒ s′

〈c+ c′, s〉 ⇒ s′
〈c′, s〉 ⇒ s′

〈c+ c′, s〉 ⇒ s′

[[b]]s = ff

〈while b do c, s〉 ⇒ s

[[b]]s = tt 〈c, s〉 ⇒ s′ 〈while b do c, s′〉 ⇒ s′′

〈while b do c, s〉 ⇒ s′′

Fig. 2. High-level operational semantics

The following proposition links the operational and denotational se-
mantics of the high-level language.

Proposition 1 (High-level operational/denotational consis-
tency). For any high-level command c and store s, we have:

[[c]](s) = {s′|〈c, s〉 ⇒ s′} ∪ {⊥}

Proof. In one direction, using rule-induction, one shows that if 〈c, s〉 ⇒ s′

then s′ ∈ [[c]](s). In the other direction one shows, by structural induction
on loop-free commands, that if s′ ∈ [[c]](s) then 〈c, s〉 ⇒ s′. One then
establishes the result for all commands, including while loops, by consid-
ering their iterates, where loops are unwound a finite number of times.
We omit details.

3.4 Implementation Relations and Equivalences

We next define the contextual pre-order that arises from the notion of
public observation. We then give an equivalent simulation relation, with
which it is easier to work as it does not refer to contexts.

Contextual Pre-order. We introduce a contextual pre-order vL on
commands. Intuitively, c vL c′ may be interpreted as saying that c “re-
fines” (or “implements”) c′, in the sense that the publicly observable
outcomes that c can produce are a subset of those that c′ permits, in
every public context and from every initial store. Thus, let f = [[C[c]]]
and f ′ = [[C[c′]]] for an arbitrary public context C, and let s0 be a store;
then for every store s in f(s0) there is a store s′ in f ′(s0) that coincides
with s on public locations. Note that we both restrict attention to public
contexts and compare s and s′ only on public locations.

We define vL and some auxiliary relations as follows:

– For X ∈ H(S⊥), we set:

XL = {sL | s ∈ X \ {⊥}} ∪ {⊥}

– For f, f ′ : S → H(S⊥), we write that f ≤L f ′ when, for every store
s0, we have f(s0)L ≤ f ′(s0)L.

– Let c and c′ be two commands. We write that c vL c′ when, for every
public command context C, we have [[C[c]]] ≤L [[C[c′]]].

Straightforwardly, this contextual pre-order relation yields a notion of
contextual equivalence with respect to public contexts.

Simulation. We next give the simulation relation�. As in much previous
work, one might expect the simulation relation between two commands
c and c′ to be a relation on stores that respects the observable parts of
these stores, and such that if s0 is related to s1 and c can go from s0 to
s′0 then there exists s′1 such that s′0 is related to s′1 and c′ can go from
s1 to s′1. In our setting, respecting the observable parts of stores means
that related stores give the same values to public locations (much like
refinement mappings preserve externally visible state components [18],
and low-bisimulations require equivalence on low-security variables [19]).

Although this idea could lead to a sound proof technique for the con-
textual pre-order, it does not suffice for completeness. Indeed, forward
simulations, of the kind just described, are typically incomplete on their
own for nondeterministic systems. They can be complemented with tech-
niques such as backward simulation, or generalized (e.g., [18, 20, 21]).

Here we develop one such generalization. Specifically, we use rela-
tions on sets of stores. We build them from relations over H(SH⊥) as a
way of ensuring the condition that public locations have the same values,
mentioned above. We also require other standard closure conditions. Our
relations are similar to the ND measures of Klarlund and Schneider [20].
Their work takes place in an automata-theoretic setting; automata con-
sist of states (which, intuitively, are private) and of transitions between
those states, labeled by events (which, intuitively, are public). ND mea-
sures are mappings from states to sets of finite sets of states, so can be
seen as relations between states and finite sets of states. The finiteness
requirement, which we do not need, allows a fine-grained treatment of
infinite execution paths via König’s Lemma.

First, we extend relations R overH(SH⊥) to relations R+ overH(S⊥),
as follows. For any X ∈ H(S⊥) and s ∈ SL, we define Xs ∈ H(SH⊥) by:

Xs = {s′H | s′ ∈ X, s′L = s} ∪ {⊥}

and then we define R+ by:

XR+Y ≡def ∀s ∈ SL. (Xs 6= {⊥} ⇒ Ys 6= {⊥}) ∧XsRYs

If R is reflexive (respectively, is closed under increasing ω-sups; is right-
closed under ≤; is closed under binary unions) the same holds for R+.
Also, if XR+Y then XL ≤ YL.

For any f, f ′ : S⊥ → H(S⊥) and relation R over H(SH⊥) we write
that f �R f ′ when:

∀X,Y ∈ H(S⊥). XR+Y ⇒ f †(X)R+f ′†(Y)

If f �R f ′ holds then we have f ≤L f ′ (as follows from the fact that
XL ≤ YL holds if XR+Y does).

Finally, we write that f � f ′ if f �R f ′ for some reflexive R closed
under increasing ω-sups, right-closed under ≤, and closed under binary
unions.

Contextual Pre-order vs. Simulation. The contextual pre-order co-
incides with the simulation relation, as we now show. We break the proof
into two parts.

Lemma 1. Let c and c′ be two commands of the high-level language such
that [[c]] � [[c′]]. Then c vL c′ holds.

Proof. Let c0 and c1 be two commands such that [[c0]] �R [[c1]], with R
a reflexive relation over H(SH⊥) closed under increasing ω-sups, right-
closed under ≤, and closed under binary unions, and let C be a public
command context. We prove that [[C[c0]]] �R [[C[c1]]] by induction on the
size of C, considering the possible forms of C:

1. lloc := e: Suppose that XR+Y . As e is public, for every s, [[e]](s) only
depends on sL. As l is also public, [[lloc := e]](s) = {s′} ∪ {⊥}, for
every s, where s′ =H s and s′L depends only on sL. Therefore, for
every s0 ∈ SL, let S0 ⊆ S be the (possibly empty) set

{s ∈ S | ∃s′ ∈ S, [[lloc := e]](s) = {s′} ∪ {⊥} and s′L = s0}

We then have that [[lloc:=e]](X)s0 = (
⋃
s∈S0

XsL) ∪ {⊥} and also that
[[lloc:=e]](Y)s0 = (

⋃
s∈S0

YsL) ∪ {⊥}.
To see that [[lloc:=e]](X)R+[[lloc:=e]](Y), choose s0 ∈ SL, and define
S0 as above. Then, if [[lloc:=e]](X) 6= {⊥} there is an s ∈ S0 such that
XsL 6= {⊥}. But then, as XR+Y , we have that YsL 6= {⊥}, and so
[[lloc:=e]](Y) 6= {⊥}.
Finally we have to check that [[lloc :=e]](X)s0R[[lloc :=e]](Y)s0 . That
follows from the above two formulas, as XR+Y and R is closed under
countable unions and reflexive.

2. if b thenCtt elseCff : Suppose that XR+Y . Define Xtt ⊆ X to be the
set {s ∈ X|[[b]](s) = tt} ∪ {⊥} and define Ytt, Xff , and Yff similarly.
As b is public, for every s, [[b]](s) only depends on sL, and so, for any
s0 ∈ SL we have:

(Xtt)s0 =

{
Xs0 ∪ {⊥} (∃s ∈ Xtt. s0 = sL)
{⊥} (otherwise)

and similar equations hold for Ytt, Xff , and Yff . We then check that
XttR

+Ytt and XffR
+Yff much as in the previous case.

We have

[[if b thenCtt[c0] elseCff [c0]]]
†(X) = [[Ctt[c0]]]

†(Xtt) ∪ [[Cff [c0]]]
†(Xff)

and similarly for Y . By induction, [[Ctt[c0]]]
†(Xtt)R

+[[Ctt[c1]]]
†(Ytt) and

similarly for ff. As R+ is closed under binary unions, we conclude.
3. skip: The conclusion is immediate as [[skip]]† is the identity.
4. C ′;C ′′: Here we have:

[[C ′[c0];C
′′[c0]]]

† = ([[C ′′[c0]]]
†[[C ′[c0]]])

† = [[C ′′[c0]]]
†[[C ′[c0]]]

†

and the same holds for c1, and so the conclusion follows using the
induction hypothesis.

5. C ′ + C ′′: Here, as R+ is closed under binary unions, the conclusion
follows using the induction hypothesis.

6. while b doCw: Define iterates C(n) by setting:

C(0) = Ω C(n+1) = if b then skip elseCw;C(n)

where Ω is some command denoting ⊥. By induction on n, we have
C(n)[c0] �R C(n)[c1]: the case n = 0 follows as we have {⊥}R+{⊥},
and the induction step follows using the same reasoning as in the
second, third, and fourth cases of the proof.
But then, as we have

C[c0] =
∨
n≥0

C(n)[c0]

and the same holds for c1, the conclusion follows using the fact that
R+ is closed under increasing ω-sups.

7. []: We have C[c0] = c0 and C[c1] = c1, and the conclusion follows
using the hypothesis.

This concludes the proof since it follows from [[C[c0]]] �R [[C[c1]]] that
[[C[c0]]] ≤L [[C[c1]]].

We need a lemma in order to prove the converse of Lemma 1.

Lemma 2. Let Ri (i ≥ 0) be relations on H(SH⊥) such that if XRiY
holds then X 6= {⊥} implies Y 6= {⊥}. Let R be the closure of the union of
the Ri under increasing ω-sups, binary union, and right-closure under ≤.
Then R+ is the closure of the union of the relations R+

i under increasing
ω-sups, binary union, and right-closure under ≤.

Proof. As −+ is evidently monotone, R+ contains the R+
i . Next, we know

that if a relation S on H(SH⊥) is closed under any one of increasing ω-
sups, binary unions, or right-closure under ≤, then so is S+. So R+ is
closed under increasing ω-sups and binary unions, and right-closed under
≤. It is therefore included in the closure of the union of the R+

i under
increasing ω-sups, binary unions, and right-closure under ≤.

For the converse, suppose that UR+W to show that U and W are re-
lated in the closure of the union of the R+

i under increasing ω-sups, binary
unions, and right-closure under ≤. For any given s in SL, by definition of
−+, UsRWs, and so, by the definition of R, there is a set J (s) ⊆ IN, and re-

lations X
(s)
j R

i
(s)
j

Y
(s)
j such that Us =

⋃
j∈J(s) X

(s)
j and Ws ⊇

⋃
j∈J(s) Y

(s)
j .

We may assume without loss of generality that the J (s) are disjoint.
Let

J =
⋃
s∈SL J

(s)

Xj = {s′ | s′H ∈ X
(s)
j , s′L = s} ∪ {⊥} (j ∈ J (s))

Yj = {s′ | s′H ∈ Y
(s)
j , s′L = s} ∪ {⊥} (j ∈ J (s))

ij = i
(s)
j (j ∈ J (s))

We verify that (Xj)s is equal to X
(s)
j , if j is in J (s), and equal to {⊥}, oth-

erwise, and similarly for the (Yj)s. Consequently, U =
⋃
j Xj , W ⊇

⋃
j Yj ,

and for all s in SL, (Xj)sRij (Yj)s. Since, by hypothesis, if (Xj)sRij (Yj)s
holds then (Xj)s 6= {⊥} implies (Yj)s 6= {⊥}, we note that XjR

+
ij
Yj . We

conclude that U and W are related as required.

We also need some notation. Assume a fixed enumeration x1 . . . xn
of PubLoc. Then, given high-level commands ci (i = 1, . . . , n) we write
[cx | x ∈ PubLoc] for the high-level command cx1 ; . . . ; cxn . As usual, we
abbreviate if b then c else skip to if b then c. We can now show:

Lemma 3. Let c and c′ be two commands of the high-level language such
that c vL c′. Then [[c]] � [[c′]] holds.

Proof. Let c0 and c1 be two commands such that c0 vL c1. We define
relations Ri (i ≥ 0) on H(SH⊥) as follows:

– for every X ∈ H(SH⊥), we have X R0 X;
– for every X,Y ∈ H(S⊥), such that X R+

i Y , and for every s ∈ SL we
have [[c0]]

†(X)s Ri+1 [[c1]]
†(Y)s.

We first prove by induction on i that, if X R+
i Y , then, for every s ∈ X

such that s 6=⊥, there exist a public command context C and s0 ∈ S such
that s ∈ [[C[c0]]](s0) and [[C[c1]]](s0)sL ⊆ YsL .

– Suppose that X R+
0 Y . For every s, we let C be skip and s0 be s. We

have s ∈ [[skip]](s) and [[skip]](s)sL = {s,⊥}sL ⊆ XsL = YsL .

– Suppose that X R+
i+1 Y . By definition of X R+

i+1 Y , and in par-
ticular XsL Ri+1 YsL , there exist X ′ R+

i Y ′ and s′ ∈ SL such that
[[c0]]

†(X ′)s′ = XsL and [[c1]]
†(Y ′)s′ = YsL . As sH in XsL , by definition

of −†, there exist s′′ ∈ X ′ and s′′′ ∈ S such that s′′′ ∈ [[c0]](s
′′), s′′′L = s′

and s′′′H = sH (note that s′′ 6=⊥).

By induction on X ′ Ri Y
′ and s′′, there exists a public command

context C and an s0 ∈ S such that both s′′ ∈ [[C[c0]]](s0) and
[[C[c1]]](s0)s′′L ⊆ Y

′
s′′L

hold.

We consider the public command context

C ′ =def C; [if !xloc 6= s′′L(x) then Ω | x ∈ PubLoc];
[]; [x := sL(x) | x ∈ PubLoc]

We have s′′ in [[C[c0]]](s0), so s′′′ is in

[[C[c0]; [if !xloc 6= s′′L(x) then Ω | x ∈ PubLoc]; c0]](s0)

so s is in [[C ′[c0]]](s0).

Also, [[C[c1]]](s0)s′′L ⊆ Y
′
s′′L

, hence

[[C[c1]; [if !xloc 6= s′′L(x) then Ω | x ∈ PubLoc]]](s0) ⊆ Y ′

hence

[[C[c1]; [if !xloc 6= s′′L(x) then Ω | x ∈ PubLoc]; c1]](s0)s′ ⊆ YsL

and hence (we rewrite the low variables with their corresponding val-
ues in sL)

[[C ′[c1]]](s0)sL ⊆ YsL

We now prove that

∀X,Y ∈ H(SH⊥). XRiY ⇒ (X 6= {⊥} ⇒ Y 6= {⊥})

For i = 0, this follows from the definition of R0. Otherwise, i = j+1, and
by definition of (Ri), there exist X ′, Y ′, and s ∈ SL such that X ′R+

j Y
′,

X = [[c0]]
†(X ′)s, and Y = [[c1]]

†(Y ′)s. If X 6= {⊥}, by definition of −†,
there exists s′ ∈ X ′ such that [[c0]](s

′)s 6= {⊥} (note that s′ 6=⊥). As
shown above, since X ′R+

j Y
′, there exist a public command context C

and s0 ∈ S such that s′ ∈ [[C[c0]]](s0) and [[C[c1]]](s0)s′L ⊆ Y
′
s′L

.

We let C ′ = C[]; [if !xloc 6= s′L(x) then Ω|x ∈ PubLoc]; []. We
have [[c0]](s

′)s ⊆ [[C ′[c0]]](s0)s 6= {⊥}. Also, since C ′ is a public command
context, we have [[C ′[c0]]](s0) ≤L [[C ′[c1]]](s0). Hence [[C ′[c1]]](s0)s 6= {⊥},
and we conclude since [[C ′[c1]]](s0)s ⊆ [[c1]]

†(Y ′)s.

By definition of Ri+1, we have

X R+
i Y ⇒ ∀s ∈ SL, [[c0]]

†(X)s Ri+1 [[c1]]
†(Y)s

From the result above, we deduce

∀X,Y ∈ H(S⊥). XR+
i Y ⇒ [[c0]]

†(X)R+
i+1[[c1]]

†(Y) (∗)

We now let R be the closure of the union of the Ri increasing ω-
sups, right-closure under ≤ and closure under binary unions. Note that
R is reflexive as it contains R0. By Lemma 2, we then have that R+ is
the closure of the union of the R+

i under increasing ω-sups, right-closure
under ≤, and closure under binary unions. Since every [[c]]† is monotone
and distributes over these unions, and given the property (∗) above, we
conclude that [[c0]] �R [[c1]].

Lemmas 1 and 3 give us the desired equivalence:

Theorem 1. Let c and c′ be two commands of the high-level language.
Then c vL c′ holds if and only if [[c]] � [[c′]] does.

Example 2. We can verify that c0 and c1, introduced in Example 1, are
equivalent (with R the full relation). For instance, take S0 and S1 to be
{(h 7→ 0, l 7→ 1)}↓ and {(h 7→ 1, l 7→ 1)}↓. We have S0R

+S1, and:

[[c0]]
†(S0) = {(h 7→ 1, l 7→ 0), (h 7→ 0, l 7→ 1)}↓

[[c1]]
†(S1) = {(h 7→ 1, l 7→ 1), (h 7→ 0, l 7→ 0)}↓

We can then check that:

[[c0]]
†(S0)R

+[[c1]]
†(S1)

ut

Example 3. In this example, we study the two commands

c2 = ifh = 0 then l := 1 else (h := 0) + (h :=!h− 1)
c3 = ifh = 0 then l := 1 else (h := 0) + skip

which seem to share the same behavior on public variables, but that
are inherently different because of their behavior on private variables.
According to the semantics, we have:

[[c2]](h 7→ 0, l 7→) = {(h 7→ 0, l 7→ 1)}↓
[[c2]](h 7→ j + 1, l 7→ k) = {(h 7→ j, l 7→ k), (h 7→ 0, l 7→ k)}↓
[[c3]](h 7→ 0, l 7→) = {(h 7→ 0, l 7→ 1)}↓
[[c3]](h 7→ j + 1, l 7→ k) = {(h 7→ j + 1, l 7→ k), (h 7→ 0, l 7→ k)}↓

We can verify that c2 �R c3, with R defined as the smallest relation
that satisfies our conditions (reflexivity, etc.) and such that

{(h 7→ k)}R{(h 7→ k′)} for all k ≤ k′

For example, let S0 and S1 be {(h 7→ 5, l 7→ 0)}↓ and {(h 7→ 7, l 7→ 0)}↓.
Then we have S0R

+S1, and:

[[c2]]
†(S0) = {(h 7→ 4, l 7→ 0), (h 7→ 0, l 7→ 0)}↓

[[c3]]
†(S1) = {(h 7→ 7, l 7→ 0), (h 7→ 0, l 7→ 0)}↓

We can then check that:

[[c2]]
†(S0)R

+[[c3]]
†(S1)

However there is no suitable relation R such that c3 �R c2. If there
were such a relation R, it would be reflexive, so {(h 7→ 1)} R {(h 7→ 1)}.
Suppose that S0 = {(h 7→ 1, l 7→ 0)}↓ and that S1 = {(h 7→ 1, l 7→ 0)}↓.
We have S0R

+S1, and:

[[c3]]
†(S0) = {(h 7→ 1, l 7→ 0), (h 7→ 0, l 7→ 0)}↓

[[c2]]
†(S1) = {(h 7→ 0, l 7→ 0)}↓

We need

{(h 7→ 1, l 7→ 0), (h 7→ 0, l 7→ 0)}↓ R+{(h 7→ 0, l 7→ 0)}↓

hence {(h 7→ 1)}R{(h 7→ 0)}. Now take S2 = {(h 7→ 1, l 7→ 0)} ↓ and
S3 = {(h 7→ 0, l 7→ 0)}↓. We have S2R

+S3, and:

[[c3]]
†(S2) = {(h 7→ 1, l 7→ 0), (h 7→ 0, l 7→ 0)}↓

[[c2]]
†(S3) = {(h 7→ 0, l 7→ 1)}↓

Since the values of l do not match, we cannot have [[c3]]
†(S2)R

+[[c2]]
†(S3),

hence c3 6�R c2.
As predicted by Theorem 1, we also have c3 6vL c2. Indeed, for C = ;

and s0 = (h 7→ 1, l 7→ 0), we have [[C[c3]]](s0) 6≤L [[C[c2]]](s0). ut

4 The Low-Level Language

In this section, we define our low-level language. In this language, we
use concrete natural-number addresses for memory. We still use abstract
location names, but those are interpreted as natural numbers (according
to a memory layout), and can appear in arithmetic expressions.

4.1 Syntax and Informal Semantics

The syntax of the low-level language includes categories for natural-
number expressions, boolean expressions, and commands:

e ::= k | lnat |!e | e+ e | e ∗ e
b ::= e ≤ e | ¬b | tt | ff | b ∨ b | b ∧ b
c ::= e := e | if b then c else c | skip | c; c | c+ c | while b do c

where k ranges over numerals, and l over the finite set of store locations.
Boolean expressions are as in the high-level language. Natural-number
expressions and commands are also as in the high-level language, except
for the inclusion of memory locations among the natural-number expres-
sions, and for the dereferencing construct !e and assignment construct
e := e′ where e is an arbitrary natural-number expression (not necessar-
ily a location).

Importantly, memory addresses are natural numbers, and a memory
is a partial function from those addresses to contents. We assume that ac-
cessing an address at which the memory is undefined constitutes an error
that stops execution immediately. In this respect, our language relies on
the “fatal-error model” of Abadi and Plotkin [7]. With more work, it may
be viable to treat also the alternative “recoverable-error model”, which
permits attacks to continue after such accesses, and therefore requires a
bound on the number of such accesses.

4.2 Denotational Semantics

Low-Level Memories, Layouts, and Errors. We assume given a
natural number r > |Loc| that specifies the size of the memory. A memory
m is a partial function from {1, . . . , r} to the natural numbers; we write
Mem for the set of memories. A memory layout w is an injection from
Loc to {1, . . . , r}; we write ran(w) for its range. We consider only memory
layouts that extend a given public memory layout wp (an injection from
PubLoc to {1, . . . , r}), fixed in the remaining of the paper. We let W be
the set of those layouts.

The security of layout randomization depends on the randomization
itself. We let d be a probability distribution on memory layouts (that
extend wp). When ϕ is a predicate on memory layouts, we write Pd(ϕ(w))
for the probability that ϕ(w) holds with w sampled according to d.

Given a distribution d on layouts, we write δd for the minimum proba-
bility for a memory address to have no antecedent private location (much
as in [7]):

δd = min
i∈{1,...,r}\ran(wp)

Pd(i 6∈ ran(w))

We assume that δd > 0. This assumption is reasonable, as 1 − δd is the
maximum probability for an adversary to guess a private location. For
common distributions (e.g., the uniform distribution), δd approaches 1 as
r grows, indicating that adversaries fail most of the time. We assume d
fixed below, and may omit it, writing δ for δd.

The denotational semantics of the low-level language uses the “error +
nontermination” monad Pξ⊥ =def (P +{ξ})⊥, which first adds an “error”
element ξ to P and then a least element. As the monad is strong, functions
f :P1 × . . .× Pn → Qξ⊥ extend to functions f on (P1)ξ⊥ × . . .× (Pn)ξ⊥,
where f(x1, . . . , xn) is ξ or ⊥ if some xj , but no previous xi, is; we often
write f for f .

For any memory layout w and store s, we let w ·s be the memory
defined on ran(w) by:

w·s(i) = s(l) for w(l) = i

(so that w·s(w(l)) = s(l)). The notation w ·s extends to s ∈ Sξ⊥, as above,
so that w ·ξ = ξ and w ·⊥=⊥. A store projection is a function ζ :MemW

ξ⊥
of the form w 7→ w · s, for some s ∈ Sξ⊥; we use the notation −·s to write
such store projection functions.

What Should the Denotational Semantics be? A straightforward
semantics might have type:

W ×Mem→ H(Memξ⊥)

so that the meaning of a command would be a function from layouts and
memories to sets of memories (modulo the use of the “error + nonter-
mination” monad). Using a simple example we now argue that this is
unsatisfactory, and arrive at a more satisfactory alternative.

Suppose that there is a unique private location l, no public locations,
and that the memory has four addresses, {1, 2, 3, 4}. We write si for the

store (l 7→ i). The 4 possible layouts are wi = (l 7→ i), for i = 1, . . . , 4.
Assume that d is uniform. Consider the following command:

c4 = (1:=1) + (2:=1) + (3:=1) + (4:=1)

which nondeterministically guesses an address and attempts to write 1
into it. Intuitively, this command should fail to overwrite l most of the
time. However, in a straightforward semantics of the above type we would
have:

[[c4]](wj , wj ·s0) = {ξ, wj ·s1} ↓

and we cannot state any quantitative property of the command, only that
it sometimes fails and that it sometimes terminates.

One can rewrite the type of this semantics as:

Mem→ H(Memξ⊥)W

and view that as a type of functions that yield an H(Memξ⊥)-valued
random variable with sample space W (the set of memory layouts) and
distribution d. Thus, in this semantics, the nondeterministic choice is
made after the probabilistic one —the wrong way around, as indicated in
the Introduction.

It is therefore natural to reverse matters and look for a semantics of
type:

Mem→ H(MemW
ξ⊥)

now yielding a set of Memξ⊥-valued random variables—so, making the
nondeterministic choice first. Desirable as this may be, there seems to be
no good notion of composition of such functions.

Fortunately, this last problem can be overcome by changing the argu-
ment type to also be that of Memξ⊥-valued random variables:

MemW
ξ⊥ → H(MemW

ξ⊥)

It turns out that with this semantics we have:

[[c4]](ζi) = {ζ1ξ , ζ2ξ , ζ3ξ , ζ4ξ } ↓

where ζi(w) = w ·si and ζiξ(w) = wi ·s1 if w = wi and = ξ otherwise. We
can then say that, for every nondeterministic choice, the probability of
an error (or nontermination, as we are using the lower powerdomain) is
0.75.

In a further variant of the semantics, one might replace Memξ⊥-
valued random variables by the corresponding probability distributions

on Memξ⊥, via the natural map Indd : MemW
ξ⊥ −→ V(Memξ⊥) induced

by the distribution d on W (where V is the probabilistic powerdomain
monad, see [13]). Such a semantics could have the form:

Mem→ HV(Memξ⊥)

mapping memories to probability distributions on memories, where HV
is a powerdomain for mixed nondeterministic and probabilistic choice as
discussed above. However, such an approach would imply (incorrectly)
that a new layout is chosen independently for each memory operation,
rather than once and for all. In our small example with the single private
location l and four addresses, it would not capture that (1 := 1); (2 := 1)
will always fail. It would treat the two assignments in (1 := 1); (2 := 1)
as two separate guesses that may both succeed. Similarly, it would treat
the two assignments in (1 :=1); (1 :=2) as two separate guesses where the
second guess may fail to overwrite l even if the first one succeeds. With
a layout chosen once and for all, on the other hand, the behavior of the
second assignment is completely determined after the first assignment.

Denotational Semantics. The denotational semantics

[[e]] : Mem×W → Nξ⊥ [[b]] : Mem×W → Bξ⊥

of expressions are defined in a standard way. In particular, [[lnat]]
w
m = w(l),

and also [[!e]]wm = m([[e]]wm), if [[e]]wm ∈ dom(m), and = ξ, otherwise, using
an obvious notation for functional application. Note that these semantics
never have value ⊥.

As discussed above, the denotational semantics of commands has type:

[[c]] :MemW
ξ⊥ → H(MemW

ξ⊥)

(and we remark that, as W is finite, all increasing chains in MemW
ξ⊥ are

eventually constant, and so for any nonempty subset X of MemW
ξ⊥ we

have X∗ = X ↓). The denotational semantics is defined in Figure 3; it
makes use of two auxiliary definitions. We first define:

Ass :Memξ⊥ ×Nξ⊥ ×Nξ⊥ → Memξ⊥

by setting Ass(m,x, y) = m[x 7→ y] if x ∈ dom(m) and = ξ, otherwise,
for m ∈ Mem, x, y ∈ N, and then using the function extension associated
to the “error + nontermination” monad. Second, we define

Cond(p, θ, θ′) :MemW
ξ⊥ → H(MemW

ξ⊥)

for any p :Mem×W → Bξ⊥ and θ, θ′ :MemW
ξ⊥ → H(MemW

ξ⊥), by:

Cond(p, θ, θ′)(ζ) = {ζ ′ | ζ ′|Wζ,tt
∈ θ(ζ)|Wζ,tt

, ζ ′|Wζ,ff
∈ θ′(ζ)|Wζ,ff

,

ζ ′(Wζ,ξ) ⊆ {ξ}, and ζ ′(Wζ,⊥) ⊆ {⊥}} ↓

where Wζ,t =def {w | p(ζ(w), w) = t}, for t ∈ Bξ⊥, and we apply restric-
tion elementwise to sets of functions.

[[c+ c′]](ζ) = [[c]](ζ) ∪ [[c′]](ζ) [[c; c′]] = [[c′]]†◦[[c]] [[skip]] = η

[[e := e′]](ζ) = η(λw :W.Ass(ζ(w), [[e]]wζ(w), [[e
′]]wζ(w)))

[[if b then c else c′]] = Cond([[b]], [[c]], [[c′]])

[[while b do c]] = µθ :MemW
ξ⊥ → H(MemW

ξ⊥).Cond([[b]], θ†◦[[c]], η)

Fig. 3. Low-level denotational semantics

Example 4. In this example, we demonstrate our low-level denotational
semantics. Consider the command:

c5 = l′nat := lnat; (!l′nat) := 1; l′nat := 0

This command stores the address of location l at location l′, then reads the
contents of location l′ (the address of l) and writes 1 at this address, and
finally resets the memory at location l′ to 0. Because of this manipulation
of memory locations, this command is not the direct translation of a
high-level command.

Letting:

si,j = (l 7→ i, l′ 7→ j) ζi,j = −·si,j ζ ′i = −·(l 7→ i, l′ 7→ w(l))

we have:

[[l′nat := lnat]](ζi,j) = {ζ ′i}↓

Note that ζi,j is a store projection, but ζ ′i is not. We also have:

[[(!l′nat) := 1]](ζ ′i) = {ζ ′1}↓ [[l′nat := 0]](ζ ′1) = {ζ1,0}↓

In sum, we have:

[[c5]](ζi,j) = {ζ1,0}↓

ut

Looking at the type of the semantics

[[c]] :MemW
ξ⊥ → H(MemW

ξ⊥)

one may be concerned that there is no apparent relation between the
layouts used in the input to [[c]] and those in its output. However, we note
that the semantics could be made parametric. For every W ′ ⊆W , replace
W by W ′ in the definition of [[c]] to obtain:

[[c]]W ′ :MemW ′
ξ⊥ → H(MemW ′

ξ⊥)

There is then a naturality property, that the following diagram com-
mutes for all W ′′ ⊆W ′ ⊆W :

MemW ′
ξ⊥

[[c]]W ′
- H(MemW ′

ξ⊥)

MemW ′′
ξ⊥

Memι
ξ⊥

?

[[c]]W ′′

- H(MemW ′′
ξ⊥)

H(Memι
ξ⊥)

?

where ι : W ′′ ⊆ W ′ is the inclusion map. Taking W ′ = W and W ′′

a singleton yields the expected relation between input and output: the
value of a random variable in the output at a layout depends only on the
value of the input random variable at that layout. The naturality property
suggests re-working the low-level denotational semantics in the category
of presheaves over sets of layouts, and this may prove illuminating (see [22]
for relevant background).

4.3 Operational Semantics

As a counterpart to the denotational semantics, we give a big-step deter-
ministic operational semantics using oracles to make choices.

The set of oracles Π is ranged over by π and is given by the following
grammar:

π ::= ε | Lπ | Rπ | π;π | if (π, π)

A low-level state σ is:

– a pair 〈c,m〉 of a command c and a memory m,
– a memory m, or
– the error element ξ.

States of either of the last two forms are called terminal, and written τ .
Transitions relate states and terminal states. They are given relative to a
layout, and use an oracle to resolve nondeterminism. So we write:

w |= σ
π
=⇒ τ

Figure 4 gives the rules for this relation.
The rules for conditionals use different oracles for the true and false

branches in order to avoid any correlation between the choices made in
the two branches.4 The rules for two commands in sequence also use
different oracles, again avoiding correlations, now between the choices
made in executing the first command and the choices made in executing
the second. The oracles used in the rules for while loops ensure that
the operational semantics of a loop and its unrolling are the same. We
continue this discussion after Theorem 2 below.

Example 5. Consider the command c4 introduced in Section 4.2, with
added parentheses for disambiguation:

c4 = (1:=1) + ((2:=1) + ((3:=1) + ((4:=1))))

We have:

w1 |= 〈c4, w1 ·sk〉
L
=⇒ w1 ·s1 wj |= 〈c4, wj ·sk〉

L
=⇒ ξ (j 6= 1)

w2 |= 〈c4, w2 ·sk〉
RL
=⇒ w2 ·s1 wj |= 〈c4, wj ·sk〉

RL
=⇒ ξ (j 6= 2)

w3 |= 〈c4, w3 ·sk〉
RRL
===⇒ w3 ·s1 wj |= 〈c4, wj ·sk〉

RRL
===⇒ ξ (j 6= 3)

w4 |= 〈c4, w4 ·sk〉
RRR
===⇒ w4 ·s1 wj |= 〈c4, wj ·sk〉

RRR
===⇒ ξ (j 6= 4)

ut

The transition relation is deterministic: if w |= σ
π
=⇒ τ and w |= σ

π
=⇒ τ ′

then τ = τ ′. We can therefore define an evaluation function

Eval : Com×W ×Mem×Π → Memξ⊥

by:

Eval(c, w,m, π) =

{
τ (if w |= 〈c,m〉 π

=⇒ τ)
⊥ (otherwise)

4 The rules for, e.g., conditionals differ from those given in [17] which use the same
oracle for both branches. The rules in [17] are erroneous in that the resulting oper-
ational semantics is not consistent with the denotational semantics in the sense of
Theorem 2.

[[e]]wm ∈ dom(m) and [[e′]]wm 6= ξ

w |= 〈e := e′,m〉 ε
=⇒ m[[[e]]wm 7→ [[e′]]wm]

[[e]]wm 6∈ dom(m) or [[e′]]wm = ξ

w |= 〈e := e′,m〉 ε
=⇒ ξ

[[b]]wm = tt 〈c,m〉 π
=⇒ τ

w |= 〈if b then c else c′,m〉 if (π,π′)
=====⇒ τ

[[b]]wm = ff 〈c′,m〉 π
′

=⇒ τ

w |= 〈if b then c else c′,m〉 if (π,π′)
=====⇒ τ

[[b]]wm = ξ

w |= 〈if b then c else c′,m〉 if (π,π′)
=====⇒ ξ

w |= 〈skip,m〉 ε
=⇒ m

w |= 〈c,m〉 π
=⇒ m′ 〈c′,m′〉 π

′
=⇒ τ

w |= 〈c; c′,m〉 π;π
′

==⇒ τ

w |= 〈c,m〉 π
=⇒ ξ

w |= 〈c; c′,m〉 π;π
′

==⇒ ξ

w |= 〈c,m〉 π
=⇒ τ

w |= 〈c+ c′,m〉 Lπ=⇒ τ

w |= 〈c′,m〉 π
=⇒ τ

w |= 〈c+ c′,m〉 Rπ==⇒ τ

[[b]]wm = ff

w |= 〈while b do c,m〉 if (π;π′,ε)
======⇒ m

[[b]]wm = tt 〈c,m〉 π
=⇒ m′ 〈while b do c,m′〉 π

′
=⇒ τ

w |= 〈while b do c,m〉 if (π;π′,ε)
======⇒ τ

[[b]]wm = tt 〈c,m〉 π
=⇒ ξ

w |= 〈while b do c,m〉 if (π;π′,ε)
======⇒ ξ

[[b]]wm = ξ

w |= 〈while b do c,m〉 if (π;π′,ε)
======⇒ ξ

Fig. 4. Low-level operational semantics

In order to establish the consistency of the operational and denota-
tional semantics we make use of an intermediate denotational semantics

[[c]]i :W → (Mem×Π → Memξ⊥)

defined by setting for all commands, other than loops:

[[c+ c′]]i(w)(m,π) =

{
[[c]]i(w)(m,π′) (π = Lπ′)
[[c′]]i(w)(m,π′) (π = Rπ′)

[[c; c′]]i(w)(m,π;π′) = [[c′]]i(w)([[c]]i(w)(m,π), π′)
[[skip]]i(w)(m, ε) = m
[[e := e′]]i(w)(m, ε) = Ass(w, [[e]]wm, [[e

′]]wm)
[[if b then c else c′]]i(w)(m, if (π;π′)) = C([[b]]wm, [[c]]i(w)(m,π), [[c′]]i(w)(m,π′))

and taking [[c]]i(w)(m,π) to be ⊥ for all other combinations of loop-free
commands and oracles, and where we use the error plus nontermination
extension of the evident conditional function C:B× P × P → P for the
semantics of conditionals.

For while loops, [[while b do c]]i is defined to be

µθ.λw.λm, π.

{
C([[b]]wm, θ(w)([[c]]i(w)(m,π′), π′′),m) (π = if (π′;π′′, ε))
⊥ (otherwise)

The following lemma asserts the consistency of the operational seman-
tics and this intermediate denotational semantics. Its proof, which uses
rule-induction, structural induction, and consideration of iterates like that
of Proposition 1, is omitted.

Lemma 4. For any low-level command c, layout w, memory m, and or-
acle π, we have:

[[c]]i(w)(m,π) = Eval(c, w,m, π)

Lemma 5. For any low-level command c and ζ ∈ MemW
ξ⊥, we have:

[[c]](ζ) = {λw :W. [[c]]i(w)(ζ(w), π) | π ∈ Π} ↓

Proof. We first extend the language by adding a command Ω, and let it
denote the relevant least element in both denotational semantics. With
that we establish the result for commands not containing any while loops,
proceeding by structural induction:

1. skip, Ω: These two cases are immediate from the definitions of [[c]] and
[[c]]i.

2. e := e′: We calculate:

{λw :W. [[e := e′]]i(w)(ζ(w), π) | π ∈ Π} ↓
= {λw :W. [[e := e′]]i(w)(ζ(w), ε)} ↓
= {λw :W.Ass(w, [[e]]wζ(w), [[e

′]]wζ(w))} ↓
= [[e := e′]](ζ)

3. c; c′: We calculate:

[[c; c′]](ζ) =
⋃
{[[c′]](ζ ′) | ζ ′ ∈ [[c]](ζ)} ↓

=
⋃
{[[c′]](λw :W. [[c]]i(w)(ζ(w), π)) | π ∈ Π} ↓

=
⋃
{{λw :W. [[c′]]i(w)([[c]]i(w)(ζ(w), π), π′) | π′ ∈ Π ↓}
| π ∈ Π} ↓

= {λw :W. [[c′]]i(w)([[c]]i(w)(ζ(w), π), π′) | π, π′ ∈ Π} ↓
= {λw :W. [[c; c′]]i(w)(ζ(w), (π;π′)) | π, π′ ∈ Π} ↓
= {λw :W. [[c; c′]]i(w)(ζ(w), π) | π ∈ Π} ↓

4. cL + cR: We calculate:

{λw :W. [[cL + cR]]i(w)(ζ(w), π) | π ∈ Π} ↓ =

{λw :W. [[cL + cR]]i(w)(ζ(w), Lπ) | π ∈ Π} ↓
∪ {λw :W. [[cL + cR]]i(w)(ζ(w), Rπ) | π ∈ Π} ↓

=

{λw :W. [[cL]]i(w)(ζ(w), π) | π ∈ Π} ↓
∪ {λw :W. [[cR]]i(w)(ζ(w), π) | π ∈ Π} ↓

= [[cL]](ζ) ∪ [[cR]](ζ)
= [[cL + cR]](ζ)

5. if b then ctt else cff : We have to show that

[[if b then ctt else cff]](ζ) =

{λw :W. [[if b then ctt else cff]]i(w)(ζ(w), π) | π ∈ Π} ↓

Set Wζ,t =def {w | [[b]]wζ(w) = t}, for t ∈ Bξ⊥. Then note first that ζ ′ is

in the left-hand side if, and only if, there are ζ ′′ ≥ ζ ′, ζtt ∈ [[ctt]](ζ), and
ζff ∈ [[cff]](ζ) s.t.: ζ ′′|Wζ,tt

= ζtt|Wζ,tt
, ζ ′′|Wζ,ff

= ζff |Wζ,ff
, ζ ′′(Wζ,ξ) ⊆ {ξ},

and ζ ′′(Wζ,⊥) ⊆ {⊥}.
Using the induction hypothesis, we see that ζtt ∈ [[ctt]](ζ) if, and only
if, for some πtt, ζtt ≤ λw :W. [[ctt]]i(w)(ζ(w), πtt), and similarly for ζff .

We then see that the condition for ζ ′ to be in the left-hand side is
equivalent to the existence of ζ ′′ ≥ ζ ′, πtt and πff such that

ζ ′′ ≤ λw :W.C([[b]]wζ(w), [[ctt]]i(w)(ζ(w), πtt), [[cff]]i(w)(ζ(w), πff))

which is equivalent to the condition that ζ ′ is in the right-hand side.

We can now establish the desired result for general commands c (in-
cluding Ω). Define iterates c(n) by setting c(0) = Ω and defining c(n+1)

homomorphically, except for while loops, where we put:

(while b do cw)(n+1) = if b then c(n+1)
w ; (while b do cw)(n) else skip

Note that the iterates are all in the sub-language not including loops.

We have that [[c(n)]] is an increasing sequence with lub [[c]], and the
same holds for [[−]]i. As the desired result holds for commands not con-

taining while loops, but possibly containing Ω, we can then calculate:

[[c]](ζ) =
∨
n≥0[[c

(n)]](ζ)

=
∨
n≥0{λw :W. [[c(n)]]i(w)(ζ(w), π) | π ∈ Π} ↓

= {λw :W. [[c(n)]]i(w)(ζ(w), π) | π ∈ Π,n ≥ 0} ↓
= {λw :W.

∨
n≥0 [[c(n)]]i(w)(ζ(w), π) | π ∈ Π} ↓

= {λw :W.
∨
n≥0[[c

(n)]]i(w)(ζ(w), π) | π ∈ Π} ↓
= {λw :W. [[c]]i(w)(ζ(w), π) | π ∈ Π} ↓

which concludes the proof.

Lemmas 4 and 5 immediately yield the consistency of the operational
and denotational semantics:

Theorem 2 (Low-level operational/denotational consistency).
For any low-level command c and ζ ∈ MemW

ξ⊥, we have:

[[c]](ζ) = {λw :W.Eval(c, w, ζ(w), π) | π ∈ Π} ↓

The evaluation function yields operational correlates of the other pos-
sible denotational semantics discussed in Section 4.2, similarly, using im-
age or induced distribution functionals. For example, for the first of those
semantics, by currying Eval and composing, one obtains:

Com×W ×Mem
curry(Eval)−−−−−−−→ MemΠ

ξ⊥
ImMemξ⊥−−−−−−→ P(Memξ⊥)

Using such operational correlates, one can verify operational versions of
the assertions made in Section 4.2 about the inadequacies of those seman-
tics.

The operational semantics has the peculiarity that the oracles used are
independent of the layout but not of the command structure. Allowing the
oracle to depend on the layout would amount to making nondeterministic
choices after probabilistic ones. The use of the syntactic dependence in
the case of conditionals can be seen by considering the example:

if b then (lnat := 0) + (lnat := 1) else (lnat := 0) + (lnat := 1)

If the same oracle was used for both branches in the operational semantics,
then lnat would either always (i.e., for all layouts) be set to 0 or else
would always be set to 1; however, for a suitable choice of condition b,
the denotational semantics allows the possibility of setting lnat to 0 in
some layouts and to 1 in others.

In the case of sequence commands, consider the example

(if b then skip else skip); ((lnat := 0) + (lnat := 1))

If the oracle chosen for the second command depended on which branch of
the conditional was taken, then it could be possible that lnat was some-
times set to 0 and sometimes to 1, whereas to be in accord with the
denotational semantics it should either always be set to 0 or always set
to 1.

In this connection it is worth noting that the equation

(if b then ctt else cff); c = if b then ctt; c else cff ; c

which one might naturally expect to hold in the denotational semantics
in fact does not. A counterexample can be obtained by taking ctt and
cff to be skip and c to be (lnat := 0) + (lnat := 1). The left-hand side
is then the command just considered to illustrate the use of oracles for
sequence commands, and the right-hand side may sometimes set lnat to
0 and sometimes to 1.

Such subtleties, and more generally the difficulty of both operational
and denotational semantics, suggest that these semantics may be attrac-
tive subjects for further work. Fortunately, neither the operational se-
mantics nor its relation with the denotational semantics are needed for
our main results (which are also those of [17]).

4.4 Implementation Relations and Equivalences

Much as in the high-level language, we define a contextual implementation
relation and a simulation relation for the low-level language. The low-
level definitions refer to layouts, and in some cases include conditions on
induced probabilities.

Contextual Pre-order. Again, the contextual pre-order c vL c′ may be
interpreted as saying that c “refines” (or “implements”) c′, in the sense
that the publicly observable outcomes that c can produce are a subset
of those that c′ permits, in every public context. In comparison with the
definition for the high-level language, however, c and c′ are not applied to
an arbitrary initial store but rather to a function from layouts to memories
(extended with “error + nontermination”), and they produce sets of such
functions. We restrict attention to argument functions induced by stores,
in the sense that they are store projections of the form −·s. Thus, let

f = [[C[c]]] and f ′ = [[C[c′]]] for an arbitrary public context C, and let s
be a store; then (roughly) for every ζ in f(−·s) there exists ζ ′ in f ′(−·s)
such that, for any w, ζ(w) and ζ ′(w) coincide on public locations.

The treatment of error and nontermination introduces a further com-
plication. Specifically, we allow that ζ produces an error or diverges with
sufficient probability (≥ δ), and that ζ ′ produces an error with sufficient
probability (≥ δ), as an alternative to coinciding on public locations.

Therefore, we define vL and some auxiliary notation and relations:

– Set PubMem =def INran(wp). Then, for any memory m, let mL in
PubMem be the restriction of m to ran(wp), extending the notation
to Memξ⊥ as usual.

– For any ζ ∈ MemW
ξ⊥, we define ζL ∈ PubMemW

ξ⊥ by ζL(w) = ζ(w)L.

– For X,Y ∈ H(MemW
ξ⊥), we write that X ≤L Y when, for every ζ ∈ X,

there exists ζ ′ ∈ Y such that:

• ζL ≤ ζ ′L, or

• P (ζ(w) ∈ {ξ,⊥}) ≥ δ and P (ζ ′(w) = ξ) ≥ δ.
– For f, f ′ ∈ MemW

ξ⊥ → H(MemW
ξ⊥), we write f ≤L f ′ when, for all

s ∈ S, we have:

f(−·s) ≤L f ′(−·s)

– Finally, we write c vL c′ when, for every public command context C,
[[C[c]]] ≤L [[C[c′]]].

Simulation. As in the high-level language, we introduce a simulation
relation �. This relation works only on commands whose outcomes on
inputs that are store projections are themselves store projections; never-
theless, simulation remains a useful tool for proofs.

We first define some auxiliary notations:

– We define max(X), for any X ∈ H(MemW
ξ⊥), as the set of maximal

elements of X. (As W is finite, every element of X is less than a
maximal element of X, and X = max(X) ↓.)

– We write S(ζ) for the element of Sξ⊥ uniquely determined by a store
projection ζ.

– For any cpo P and ζ ∈ PWξ⊥, we define ζ/ξ by:

ζ/ξ =

{
w 7→ ξ (if P (ζ(w) = ξ) ≥ δ)
ζ (otherwise)

– For every X ∈ H(MemW
ξ⊥), we say that X is a store projection set

when {ζ/ξ | ζ ∈ max(X)} is a set of store projections. Then, we let

χ(X) = S({ζ/ξ | ζ ∈ max(X)}) ∪ {⊥}

Note that s ∈ χ(X) if, and only if, −·s ∈ X, and that ξ ∈ χ(X) if,
and only if, there exists ζ ∈ X such that P (ζ(w) = ξ) ≥ δ.

The ≤L relation restricted to store projection sets has a pleasant char-
acterization. This characterization requires some definitions. First, −L
extends from S to Sξ⊥, so that ⊥L=⊥ and ξL = ξ; with that, for any X
in H(Sξ⊥), we define XL in H(SLξ⊥) to be {sL | s ∈ X}.

Fact 3 Let X and Y be store projection sets. Then:

X ≤L Y ⇔ χ(X)L ≤ χ(Y)L

Proof. Let X and Y be store projection sets. Assume first that X ≤L Y ,
and take a non-bottom element of χ(X)L. There are two cases. In the
first the element is sL for some s ∈ Store such that ζ =def −·s ∈ X.
As X ≤L Y we have ζL ≤ ζ ′L for some ζ ′ ∈ Y . But then ζ ′ = −·s′ for
some s′ ∈ Store with s′L = sL and so sL ∈ χ(Y)L. In the second case
the element is ξ and there is a ζ ∈ X such that P (ζ(w) = ξ) ≥ δ. As
X ≤L Y it follows that there is a ζ ′ ∈ Y such that P (ζ ′(w) = ξ) ≥ δ, and
so ξ ∈ χ(Y)L.

For the converse, assume that χ(X)L ≤ χ(Y)L. The case X = {⊥}
is trivial. Otherwise take ζ ∈ X. Choose ζ ′ ∈ max(X) such that ζ ≤ ζ ′.
As X is a store projection set 6= {⊥}, there are two cases. In the first
case ζ ′ has the form −·s. As χ(X)L ≤ χ(Y)L there is a ζ ′′ ∈ Y of the
form −·s′ where s′L = sL. We therefore have ζL ≤ ζ ′L. In the second case
P (ζ ′(w) = ξ) ≥ δ and so ξ ∈ χ(X) (and P (ζ(w) ∈ {ξ,⊥}) ≥ δ). As
χ(X)L ≤ χ(Y)L it follows that ξ ∈ χ(Y), and so there is a ζ ′′ ∈ Y such
that P (ζ ′′(w) = ξ) ≥ δ, which concludes the proof.

Much as in the high-level language, we extend relations R over
H(SHξ⊥) to relations R× over H(MemW

ξ⊥). First we extend −s to H(Sξ⊥)
as follows: for X ∈ H(Sξ⊥) and s ∈ SL, we let Xs ∈ H(SHξ⊥) be
(X \ {ξ})s ∪ {ξ | ξ ∈ X}. Then, given a relation R over H(SHξ⊥), we
first extend it to a relation R+ over H(Sξ⊥) by setting

XR+Y ≡def (ξ ∈ X ⇒ ξ ∈ Y) ∧
∀s ∈ SL. ((Xs \ {ξ}) 6= {⊥} ⇒ (Ys \ {ξ}) 6= {⊥}) ∧XsRYs

for X,Y ∈ H(Sξ⊥) and then define R× by setting:

XR×Y ≡def X and Y are store projection sets ∧ χ(X)R+χ(Y)

for X,Y ∈ H(MemW
ξ⊥). (Note that if R ⊆ H(SH⊥), then the high- and

low-level definitions of R+ coincide.)

If R is closed under increasing ω-sups (respectively, is right-closed
under ≤, is closed under binary unions) the same holds for R+, and then
for R× (with ≤ restricted to store projection sets). If R is reflexive, then
R+ is and R× is reflexive on store projection sets. We also have, much as
before, that, for X,Y ∈ H(Sξ⊥), if XR+Y then XL ≤ YL. It then follows
from Fact 3 that, for X,Y ∈ H(MemW

ξ⊥), if XR×Y then X ≤L Y .

For any f, f ′ :MemW
ξ⊥ → H(MemW

ξ⊥) and relation R over H(SH⊥) we
write that f �R f ′ when:

∀X,Y ∈ H(MemW
ξ⊥). XR×Y ⇒ f †(X)R×f ′†(Y)

Finally, we write that f � f ′ if f �R f ′ for some reflexive R closed under
increasing ω-sups, right-closed under ≤, and closed under binary unions.

Contextual Pre-order vs. Simulation. The contextual pre-order co-
incides with the simulation relation, but only for commands whose se-
mantics sends store projections to store projection sets. Formally, we say
that a given function f :MemW

ξ⊥ → H(MemW
ξ⊥) preserves store projections

if, for every s ∈ S, f(−·s) is a store projection set. The coincidence re-
mains quite useful despite this restriction, which in particular is not an
impediment to our overall goal of relating the low-level language to the
high-level language.

As in Section 3 we divide the proof of the coincidence into two halves.
First, however, we need some preliminary lemmas.

Lemma 6. For any cpo P , ζ ∈ MemW
ξ⊥, layout w, expression e, boolean

expression b, command c, and x ∈ {⊥, ξ} we have:

ζ(w) = x⇒ [[e]]wζ(w) = x

ζ(w) = x⇒ [[b]]wζ(w) = x

ζ(w) = x⇒ ζ ′(w) = x (ζ ′ ∈ max([[c]](ζ)))

Proof. For expressions and boolean expressions, the proof is by definition.
The proof for commands is then straightforward by structural induction.

Lemma 7. Let f : MemW
ξ⊥ → H(MemW

ξ⊥) be a function that preserves

store projections. Let X ∈ H(MemW
ξ⊥) be a store projection set. Then

f †(X) is a store projection set.

Proof. We know that f †(X) = {f(ζ)|ζ ∈ max(X)} ↓. We need to prove
that, for all ζ ∈ max(X) and ζ ′ ∈ max(f(ζ)), we have that ζ ′/ξ is a store
projection. Since X is a store projection set, we know that ζ/ξ is a store
projection, so we have three possibilities:

– If ζ is a store projection, we conclude since f preserves store projection
sets.

– If ζ =⊥, or ζ/ξ = ξ, we conclude using Lemma 6.

Lemma 8. 1. Suppose that e is a public natural-number expression, and
that ζ ∈ MemW

ξ⊥ is such that ζ/ξ is a store projection. Then either:
– (w 7→ [[e]]wζ(w))/ξ = w 7→ ξ,

– (w 7→ [[e]]wζ(w))/ξ =⊥ and ζ/ξ =⊥, or
– there exists n ∈ N such that (w 7→ [[e]]wζ(w))/ξ = w 7→ n .

Further, (w 7→ [[e]]wζ(w))/ξ only depends on S(ζ/ξ)L.

2. Suppose that b is a public boolean expression, and that ζ ∈ MemW
ξ⊥ is

such that ζ/ξ is a store projection. Then either:
– (w 7→ [[b]]wζ(w))/ξ = w 7→ ξ,

– (w 7→ [[b]]wζ(w))/ξ =⊥ and ζ/ξ =⊥, or
– there exists t ∈ B such that (w 7→ [[b]]wζ(w))/ξ = t.

Further, (w 7→ [[b]]wζ(w))/ξ only depends on S(ζ/ξ)L.

Proof. For the first part, letting e be a public expression, and letting
ζ ∈ W → Memξ⊥ be such that ζ/ξ is a store projection, if S(ζ/ξ) = ξ or
S(ζ/ξ) =⊥, we conclude, using Lemma 6. Otherwise S(ζ/ξ) ∈ S and the
proof is by structural induction on e. Note that as S(ζ/ξ) ∈ S, [[e′]]wζ(w) 6=⊥
for any e′ and w, and so the second case cannot arise when applying the
induction hypothesis.

1. k: The conclusion is immediate.
2. lnat: Since lnat is public, and wp is fixed, [[e]]wζ(w) = wp(l) holds for

every layout w, and we conclude.
3. !e: By the induction hypothesis on e, (w 7→ [[e]]wζ(w))/ξ only depends

on S(ζ/ξ)L and either
– P ([[e]]wζ(w) = ξ) ≥ δ, in which case P ([[!e]]wζ(w) = ξ) ≥ δ and we

conclude
or

– there exists an n ∈ N such that, for every layout w, [[e]]wζ(w) = n.

If n = wp(l) for some public l, then [[!e]]wζ(w) = ζ(w)(l) = S(ζ/ξ)(l),

and we conclude. Otherwise, if n 6∈ ran(wp), then we have that
P ([[!e]]wζ(w) = ξ) = P (n 6∈ ran(w)) ≥ δ, and we conclude.

4. e+ e or e ∗ e: We conclude by the induction hypothesis.

The proof of the second part is similar; the corresponding induction
makes use of the first part in the case when b has the form e ≤ e′.

We can now prove the first half of the coincidence.

Lemma 9. Let c and c′ be two commands of the low-level language such
that [[c]] � [[c′]]. Then c vL c′ holds.

Proof. Let c0 and c1 be two commands such that [[c0]] �R [[c1]], with R
a reflexive relation closed under increasing ω-sups, right-closed under ≤,
and closed under binary unions, and let C be a public command context.

We prove by induction on the size of C that [[C[c0]]] �R [[C[c1]]], con-
sidering the possible forms of C:

1. e := e′: Suppose thatXR×Y . We first do a case study on the semantics
of e, e′, and e := e′. As e and e′ are public, for every ζ ∈ MemW

ξ⊥ such
that ζ/ξ is a store projection, we have, by Lemma 8

– (w 7→ [[e]]wζ(w))/ξ = ξ,

– (w 7→ [[e]]wζ(w))/ξ =⊥ and ζ =⊥, or

– there exists n ∈ N such that (w 7→ [[e]]wζ(w))/ξ = w 7→ n .

and similarly for e′.

In the bottom case, we have ζ =⊥. In any of the error cases, we have
P ([[e := e′]]wζ(w) = ξ) ≥ δ, hence χ([[e := e′]](ζ)) = {w 7→ ξ}↓.
Otherwise, let n and n′ be such that (w 7→ [[e]]wζ(w))/ξ = w 7→ n and

(w 7→ [[e′]]wζ(w))/ξ = w 7→ n′. By Lemma 6, and definition of ()/ξ and
store projections, there exists s ∈ S such that ζ = −·s
– If n = wp(l) for some public l, then we have:

[[e := e′]](ζ) = {−·s[l 7→ n′]}↓

We then say that ζ is normal, and write s+(ζ) for (s[l 7→ n′])L.

– Otherwise, n 6∈ ran(wp), and we have:

P ([[e := e′]](ζ)(w) = ξ) = P (n 6∈ ran(w)) ≥ δ

By Lemma 8, this analysis only depends on S(ζ/ξ)L.
We now prove that [[e := e′]](X)R×[[e := e′]](Y). From the case anal-
ysis above, we deduce that [[e := e′]](X) and [[e := e′]](Y) are store
projection sets. Also, ξ ∈ χ([[e := e′]](X)) if and only if either there
exists ζ ∈ X such that P (ζ(w) = ξ) ≥ δ or else there exists −·s ∈ X
such that ξ ∈ χ([[e:=e′]](−·s′)) if s′L = sL and similarly for Y . Since
XR×Y , this proves that ξ ∈ χ([[e:=e′]](X))⇒ ξ ∈ χ([[e:=e′]](Y)).
Further, as can be seen from our case analysis above, for every s′ ∈ SL,

χ([[e:=e′]](X))s′ =
⋃
ζ∈max(X){χ(X)S(ζ/ξ)L | ζ is normal, s′ = s+(ζ)}
∪ {ξ | ∃ζ ∈ max(X). ζ is not normal, ζ 6=⊥}
∪ {⊥}

and similarly for Y . By hypothesis, XR×Y , and so we have both
X ≤L Y (by Fact 3) and χ(X)R+χ(Y). From the latter we have, for
all s ∈ SL, that (χ(X) \ {ξ})s 6= {⊥} ⇒ (χ(Y) \ {ξ})s 6= {⊥} and
also that χ(X)sRχ(Y)s. As R is reflexive, closed under non-empty
countable unions, and right-closed under ≤, we conclude.

2. if b thenCtt elseCff : The case where X = {⊥} is straightforward,
using Lemma 6. Otherwise suppose that XR×Y . As X 6= {⊥} we
have Y 6= {⊥}. As b is public, and by Lemma 8, for every ζ 6=⊥
such that ζ/ξ is a store projection, (w 7→ [[b]]wζ(w))/ξ only depends on

S(ζ/ξ)L, and can only be a boolean t ∈ B or ξ, independent of w.
Define the store projection set Xtt to be⋃

s∈S
{ζ ∈ X|ζ = (−·s) ∧ ∀w. [[b]]ww·s = tt}↓ ∪ {⊥}

and define the store projection set Xξ to be

{ζ ∈ X | ζ/ξ = w 7→ ξ} ↓ ∪ {⊥}

and define the store projection sets Xff , Ytt, Yff , and Yξ similarly. We
have that X = Xtt ∪ Xff ∪ Xξ and that at least one of Xtt, Xff , or Xξ

is not {⊥}, and similarly for Y. We also have that

[[if b thenCtt[c0] elseCff [c0]]]
†(X) =

[[Ctt[c0]]]
†(Xtt) ∪ [[Cff [c0]]]

†(Xff) ∪ Xξ (∗)

and similarly for Y .
Similarly to the previous point, we have:

χ(Xtt)s′ =
⋃
s∈S
{χ(X)s′ | ∀w. [[b]]ww·s = tt and sL = s′}↓

and can check that XttR
×Ytt, XffR

×Yff , and XξR
×Yξ, making use of

the facts thatX ≤L Y , and thatR is reflexive, closed under non-empty
countable unions, and right-closed under ≤. We can then conclude
using (∗) and the fact that R is closed under binary unions.

3. skip, C ′;C ′′, C ′+C ′′, while b doCw, or []: In all these cases the proof is
analogous to that of the corresponding parts of the proof of Lemma 1.

This concludes the proof as [[C[c0]]] � [[C[c1]]] implies [[C[c0]]] ≤L [[C[c1]]].

We need some further lemmas before proving the second half of the
coincidence.

Lemma 10. Let c be a low-level command such that [[c]] preserves store
projection. Let C[] be a public command context. Then [[C[c]]] preserves
store projections.

Proof. The proof is an induction on public command contexts, and is
similar to, but simpler than, the proof of Lemma 9.

Let −χ be the map from relations on H(Sξ⊥) to relations on store
projection sets left anonymous in the main text. That is, for R a relation
on H(Sξ⊥):

XRχY ≡def χ(X)Rχ(Y)

We define $: Sξ⊥ → H(MemW
ξ⊥) by:

$(⊥) = {w 7→⊥}↓
$(s) = {−·s}↓
$(ξ) = {ζ|P (ζ(w) = ξ) ≥ δ}↓

Note that, for every X ∈ Sξ⊥, we have χ($(X)) = X.

Lemma 11. 1. Let Ri (i ≥ 0) be relations on H(SHξ⊥) such that if
XRiY holds, then ξ ∈ X implies that ξ ∈ Y and (X \ {ξ}) 6= {⊥}
implies that (Y \{ξ}) 6= {⊥}). Let R be the closure of the union of the
Ri under increasing ω-sups, binary union, and right-closure under
≤. Then R+ is the closure of the union of the relations R+

i under
increasing ω-sups, binary unions, and right-closure under ≤.

2. Let Ri (i ≥ 0) be relations on H(Sξ⊥) and let R be their closure under
increasing ω-sups, binary unions, and right-closure under ≤. Then Rχ
is the closure of the union of the Rχi under increasing ω-sups, binary
unions, and right-closure under ≤ (restricted to store projection sets).

Proof. 1. The proof is almost exactly the same as for Lemma 2. As −+

is evidently monotone, R+ contains the R+
i . Next, as we know, if a

relation S on H(SHξ⊥) is closed under any one of increasing ω-sups,
binary unions, or right-closure under ≤, then so is S+. So we also
have that R+ is closed under increasing ω-sups and binary unions,
and is right-closed under ≤. It is therefore included in the closure
of the union of the R+

i under increasing ω-sups, binary unions, and
right-closure under ≤.

For the converse, suppose that UR+W to show that U and W are
related in the closure of the union of the R+

i under increasing ω-sups,
binary unions, and right-closure under ≤. For any given s in SL, by
definition of −+, UsRWs, and so, by the definition of R, there is a set

J (s) ⊆ IN, and relations X
(s)
j R

i
(s)
j

Y
(s)
j such that Us =

⋃
j∈J(s) X

(s)
j and

Ws ⊇
⋃
j∈J(s) Y (s). We may assume without loss of generality that the

J (s) are disjoint.

Let

J =
⋃
s∈SL J

(s)

Xj = {s′ | s′H ∈ X
(s)
j , s′L = s} ∪ {ξ | ξ ∈ X(s)

j } ∪ {⊥} (j ∈ J (s))

Yj = {s′ | s′H ∈ Y
(s)
j , s′L = s} ∪ {ξ | ξ ∈ Y (s)

j } ∪ {⊥} (j ∈ J (s))

ij = i
(s)
j (j ∈ J (s))

We verify that (Xj)s = X
(s)
j , if j ∈ J (s), and = {⊥}, otherwise, and

similarly for the (Yj)s. Consequently, U =
⋃
j Xj , W ⊇

⋃
j Yj , and for

all s in SL, (Xj)sRij (Yj)s. Since, by hypothesis, if XRiY holds then
ξ ∈ X implies ξ ∈ Y and (X \{ξ}) 6= {⊥} implies (Y \{ξ}) 6= {⊥}, we
note that XjR

+
ij
Yj . We conclude that U and W are related as required.

2. As −χ is evidently monotone, Rχ contains the Rχi . Next one can check
that if a relation S on H(Sξ⊥) is closed under either one of increasing
ω-sups or binary unions, then so is Sχ, and that if it is right-closed
under ≤ then Sχ is right-closed under ≤ restricted to store projection
sets; to do this one uses the fact that χ is monotone and preserves
increasing ω-sups and binary unions. So we also have that Rχ is closed
under increasing ω-sups and binary unions, and right-closed under ≤
restricted to store projection sets.

For the converse, suppose that URχW to show that U and W are
related in the closure of the union of the Rχi under increasing ω-sups,
binary unions, and right-closure under≤, restricted to store projection
sets.

We have χ(U)Rχ(W). So, by the definition of R, for some nonempty
J ⊆ IN, there are relations XjRijYj such that both χ(U) =

⋃
j Xj and

χ(W) ⊇
⋃
j Yj hold. One can show that, for j ∈ J , χ(U∩$(Xj)) = Xj

and χ(W ∩$(Yj)) = Yj . So we have (U ∩$(Xj))R
χ
ij

(W ∩$(Yj)), for
j ∈ J . So, calculating that:⋃

i

(U ∩$(Xj)) = U ∩$(
⋃
i

Xj) = U ∩$(χ(U)) = U

and that:⋃
i

(W ∩$(Yj)) = W ∩$(
⋃
i

Yj) ⊆W ∩$(χ(W)) = W

we see that U and W are related as required.

We can now establish the second half of the coincidence. We will
use notations [cx | x ∈ PubLoc] and if b then c for low-level commands
analogous to those used for high-level commands in the proof of Lemma 3.

Lemma 12. Let c and c′ be two commands of the low-level language such
that c vL c′, and [[c]] and [[c′]] preserve store projections. Then [[c]] � [[c′]]
holds.

Proof. Let c0 and c1 be two commands such that c0 vL c1 and that [[c0]]
and [[c1]] preserve store projections. (The latter property, in combination
with Lemmas 10 and 7, allows us to assume that we are always dealing
with store projection sets.) We define relations Ri on SH (for i ≥ 0) as
follows:

– for every X ∈ H(SH⊥), we have X R0 X;
– for every X,Y ∈ H(MemW

ξ⊥) such that X R×i Y , we have

(χ([[c0]]
†(X)))s Ri+1 (χ([[c1]]

†(Y)))s, forall s ∈ SL.

We first prove by induction on i that, if X R×i Y , then, for every s ∈ S
such that ζ = −·s ∈ X, there exists a public command context C and an
s0 ∈ S such that ζ ∈ ([[C[c0]]](−·s0)) and χ([[C[c1]]](−·s0))sL ⊆ χ(Y)sL .

– Suppose X R×0 Y . Take C = skip and s0 = s (hence −·s0 = ζ).
Then ζ ∈ [[skip]](ζ) and χ([[skip]](ζ)) = {s,⊥} ⊆ χ(X) =χ(Y), and we
conclude by monotonicity of −sL .

– Suppose that X R×i+1 Y . By definition of X R×i+1 Y , and in particular
χ(X)sL Ri+1 χ(Y)sL , there exist X ′ R×i Y ′ and s′ ∈ SL such that,
χ([[c0]]

†(X ′))s′ = χ(X)sL and χ([[c1]]
†(Y ′))s′ = χ(Y)sL .

We have that χ([[c0]]
†(X ′)) = S({ζ ′′/ξ | ζ

′′ ∈ max([[c0]]
†(X ′))}) ↓ and

also sH ∈ χ(X)sL . Hence, using the definition of −†, there exist
a ζ ′ ∈ max(X ′) and a ζ ′′ ∈ max([[c0]](ζ

′)) such that S(ζ ′′)L = s′

and S(ζ ′′)H = sH . By Lemma 6, as ζ ′′ 6=⊥ we have ζ ′ 6=⊥, and as
P (ζ ′′(w) = ξ) = 0, we have P (ζ ′(w) = ξ) = 0.
Applying the induction hypothesis to X ′ R×i Y ′ and S(ζ ′), there is a
public command context C and an s0 ∈ S s.t. ζ ′ ∈ [[C[c0]]](−·s0) and
χ([[C[c1]]](−·s0))S(ζ′)L ⊆ χ(Y ′)S(ζ′)L .
We consider the public command context

C ′ =def C;
[if !xnat 6= S(ζ ′)L(x) then Ω | x ∈ PubLoc];
[]; [x := S(ζ)L(x) | x ∈ PubLoc]

We have ζ ′ ∈ [[C[c0]]](−·s0), so ζ ′′ is in

[[C[c0]; [if !xnat 6= S(ζ ′)L(x) then Ω | x ∈ PubLoc]; c0]](−·s0)

so ζ is in [[C ′[c0]]](−·s0).
Also, χ([[C[c1]]](−·s0))S(ζ′)L ⊆ χ(Y ′)S(ζ′)L , hence

max([[C[c1]; [if !xnat 6= S(ζ ′)L(x) then Ω | x ∈ PubLoc]]](−·s0))/ξ
⊆ max(Y ′)/ξ

hence,

χ([[C[c1]; [if !xnat 6= S(ζ ′)L(x) then Ω | x ∈ PubLoc]; c1]](−·s0))s′
⊆ χ([[c1]]

†(Y ′))s′ = χ(Y)sL

and hence (we replace the low variables by the corresponding values
in sL)

χ([[C ′[c1]]](−·s0))sL ⊆ χ(Y)sL

We now prove that:

XR×i Y ⇒ ξ ∈ χ([[c0]]
†(X))⇒ ξ ∈ χ([[c1]]

†(Y))

and that

XR×i Y ⇒ ∀s ∈ SL. ((χ([[c0]]
†(X)))s \ {ξ}) 6= {⊥}

⇒ ((χ([[c1]]
†(Y)))s \ {ξ}) 6= {⊥}

The two proofs are similar, first, for ξ. If ξ ∈ χ([[c0]]
†(X)), by definition

of −†, there exists ζ ∈ max(X) such that ξ ∈ χ([[c0]]
†(ζ)). In the case that

P (ζ(w) = ξ) ≥ δ, then the proof is by Lemma 6; otherwise ζ = −·s,
for some s ∈ S (it cannot be ⊥). We know from the above that, since
XR×i Y , there exists a public command context C and an s0 ∈ S such
that ζ ∈ [[C[c0]]](−·s0) and χ([[C[c1]]](−·s0))sL ⊆ χ(Y)sL . We let

C ′ =def C; [if !xnat 6= S(ζ)L(x) then Ω | x ∈ PubLoc]

As χ([[C[c1]]](− · s0))sL ⊆ χ(Y)sL , χ([[C ′[c1]]](− · s0)) ⊆ χ(Y), and so
χ([[C ′[c1]; c1]](−·s0) ⊆ χ([[c1]]

†(Y)).
We have ξ ∈ χ([[C ′[c0]; c0]](− · s0)). Also, as C ′; [] is a public

command context, [[C ′[c0]; c0]](− · s0) ≤L [[C ′[c1]; c1]](− · s0). Hence we
have ξ ∈ χ([[C ′[c1]; c1]](− · s0)). This concludes the proof, as we have
χ([[C ′[c1]; c1]](−·s0)) ⊆ χ([[c1]]

†(Y)).
Now, for ⊥. Suppose χ([[c0]]

†(X))s \{ξ} 6= {⊥} for some s ∈ SL. Then
there exists s′ ∈ S such that s′L = sL and −·s′ ∈ [[c0]]

†(X). By definition
of −†, there exists ζ ∈ max(X) such that −·s′ ∈ [[c0]]

†(ζ). If ζ is not a
store projection, then there is a contradiction by Lemma 6, otherwise,
ζ = −·s′′, for some s′′ ∈ S.

We know from the above that, since XR×i Y , there exists a public
command context C and an s0 ∈ S such that both ζ ∈ [[C[c0]]](−·s0) and
χ([[C[c1]]](−·s0))s′′L ⊆ χ(Y)s′′L hold. We let

C ′ =def C; [if !xnat 6= S(ζ)L(x) then Ω | x ∈ PubLoc]

As χ([[C[c1]]](−·s0))s′′L ⊆ χ(Y)s′′L , χ([[C ′[c1]]](−·s0)) ⊆ χ(Y) holds, and so

too, therefore, does χ([[C ′[c1]; c1]](−·s0) ⊆ χ([[c1]]
†(Y)).

We have −·s′ ∈ χ([[C ′[c0]; c0]](−·s0)). Also, since C ′; [] is a public
command context, we have

[[C ′[c0]; c0]](−·s0) ≤L [[C ′[c1]; c1]](−·s0)

Hence we have −·s′′′ ∈ χ([[C ′[c1]; c1]](−·s0)) for some s′′′ with s′′′L = s′L = s.
As χ([[C ′[c1]; c1]](−·s0)) ⊆ χ([[c1]]

†(Y)), this concludes the proof.
By the definition of Ri+1, we have

X R×i Y ⇒ ∀s ∈ SL. (χ([[c0]]
†(X)))sRi+1(χ([[c1]]

†(Y)))s

From both facts and the definition of Ri+1 we then deduce that

∀X,Y ∈ H(MemW
ξ⊥). XR×i Y ⇒ [[c0]]

†(X)R×i+1[[c1]]
†(Y)

We now define R as the closure under increasing ω-sups, right-closure
under ≤ and closure under binary unions of the union of the Ri. We then
conclude, using Lemma 11, that [[c0]] �R [[c1]].

Combining Lemmas 9 and 12, we obtain the desired coincidence:

Theorem 4. Let c and c′ be two commands of the low-level language
such that [[c]] and [[c′]] preserve store projections. Then c vL c′ holds if
and only if [[c]] � [[c′]] does.

Example 6. Suppose that there is only one private location, and consider
the two commands:

c4 = (1:=1) + (2:=1) + (3:=1) + (4:=1) c6 = (1:=1); (2 :=1)

As seen above, we have that [[c4]](ζi) = {ζ1ξ , ζ2ξ , ζ3ξ , ζ4ξ } ↓. We also have

that [[c6]](ζi) = {w 7→ ξ}↓. Since P (ζiξ(w) = ξ) ≥ δ, we can verify that c4
and c6 are equivalent. (Thus, a nondeterministic guess is no better than
failure.) ut

5 High and Low

In this section we investigate the relation between the high-level language
and the low-level language. Specifically, we define a simple translation
from the high-level language to the low-level language, then we study its
properties.

We define the compilation of high-level commands c (expressions e,
boolean expressions b) to low-level commands c↓ (expressions e↓ and
boolean expressions b↓) by setting:

(!lloc)
↓ = !lnat

(lloc := e)↓ = lnat := e↓

and proceeding homomorphically in all other cases, for example setting:

(e+ e′)↓ = e↓ + e′↓

Crucially, this compilation function, which is otherwise trivial, transforms
high-level memory access to low-level memory access.

We begin with two lemmas about compilation.

Lemma 13. 1. Let e be a high-level natural-number expression. Then,
for every s ∈ S, and w ∈W ,

[[e↓]]ww·s = [[e]](s)

2. Let b be a high-level boolean expression. Then, for every s ∈ S, and
w ∈W ,

[[b↓]]ww·s = [[b]](s)

3. Let c be a high-level command. Then, for every s ∈ S,

[[c↓]](−·s) = {−·s′ | s′ ∈ [[c]](s)}↓

Proof. The first two parts are straightforward structural inductions on
natural number and boolean expressions. For the third we proceed by
structural induction on commands:

1. lloc := e: The result is immediate by part 1 and the definition of the
semantics.

2. if b then ctt else cff : By part 2, we have [[b]](s) = [[b↓]]ww·s = t with
t ∈ B, hence
– [[c]](s) = [[ct]](s), and

– [[c↓]](−·s) = [[c↓t]](−·s)
The result then follows by applying the induction hypothesis to ct.

3. skip: Here η(−·s) = {−·s}↓ and η(s) = {s}↓.
4. c′; c′′: The result follows from the definition of −† and applying the

induction hypothesis to c′ and c′′.
5. c′ + c′′: The result follows by applying the induction hypothesis to c

and c′.
6. while b do cw: Define iterates c(n) of while b do cw by setting c(0) = Ω

and c(n+1) = if b then skip else cw; c(n), where Ω is some command
denoting ⊥, as does its compilation. Note that the (c(n))↓ are the
corresponding iterates of (while b do c↓w).
By induction on n, we have

[[(c(n))↓]](−·s) = {−·s′ | s′ ∈ [[c(n)]](s)}↓

as the case n = 0 follows from the fact that Ω and its compilation
denote (the relevant) ⊥, and the induction step follows using the same
reasoning as in the second, third, and fourth cases.
The conclusion follows, as we have

[[c]] =
∨
n≥0

[[c(n)]] and [[c↓]] =
∨
n≥0

[[(c(n))↓]]

the latter by the above remark on the iterates of (while b do cw)↓.

This concludes the proof.

Lemma 14. Let c be a high-level command. Then [[c↓]] preserves store
projections, and for every store projection set X we have:

χ([[c↓]]†(X)) = [[c]]†(χ(X) \ {ξ}) ∪ {ξ | ξ ∈ χ(X)}

Proof. This lemma is a straightforward consequence of Lemmas 6 and 13.

Theorem 5 relates the simulation relations of the two languages. It
states that a high-level command c simulates another high-level command
c, with respect to all public contexts of the high-level language, if and only
if the compilation of c simulates the compilation of c′, with respect to all
public contexts of the low-level language.

Theorem 5. Let c and c′ be two high-level commands. Then [[c]] � [[c′]]
holds if and only if [[c↓]] � [[c′↓]] does.

Proof. In one direction, let c and c′ be commands such that [[c]] �R0 [[c′]],
with R0 a reflexive relation closed under increasing ω-sups, right-closed
under ≤, and closed under binary unions. Let R be the closure of R0

in H(SHξ⊥) by reflexivity, increasing ω-sups, binary union, and right-
closure under ≤. That is, XRY holds if both (X \ {ξ})R0 (Y \ {ξ}) and
ξ ∈ X ⇒ ξ ∈ Y do. Note that XR+Y if (X \ {ξ})R+

0 (Y \ {ξ}) and
ξ ∈ X ⇒ ξ ∈ Y . Let X and Y in H(MemW

ξ⊥) be such that XR×Y .

We have to show that [[c↓]]†(X)R×[[c′↓]]†(Y). By Lemma 14, [[c↓]]†(X) and
[[c′↓]]†(Y) are store projection sets, and so this is equivalent to showing
that

χ([[c↓]]†(X))R+ χ([[c′↓]]†(Y))

Using Lemma 14 again, we see that this latter statement is equivalent to:

([[c]]†(χ(X)\{ξ})∪{ξ | ξ ∈ χ(X)})R+ ([[c′]]†(χ(Y)\{ξ})∪{ξ | ξ ∈ χ(Y)})

which in turn is equivalent, by a previous remark, to

[[c]]†(χ(X) \ {ξ})R+
0 [[c′]]†(χ(Y) \ {ξ}) ∧ (ξ ∈ χ(X)⇒ ξ ∈ χ(Y))

As XR×Y , we have that χ(X)R+ χ(Y). It follows first that we have that
(χ(X)\{ξ})R+

0 (χ(Y)\{ξ}), and then [[c]]†(χ(X)\{ξ})R+
0 [[c′]]†(χ(Y)\{ξ})

(as [[c]] �R0 [[c′]]); and second we have that ξ ∈ χ(X) ⇒ ξ ∈ χ(Y). The
conclusion follows.

In the other direction, let c and c′ be two commands such that
[[c↓]] �R [[c′↓]], with R0 a reflexive relation closed under increasing ω-
sups, right-closed under ≤, and closed under binary unions. We let R
be the restriction of R0 to H(SH⊥). That is, XRY if XR0Y . Note that
XR+Y if XR+

0 Y . Let X and Y in H(S⊥) be such that XR+Y . Hence
XR+

0 Y . We have $(X)R×0 $(Y), hence, by the definition of �R0 , we have
[[c↓]]†($(X))R×0 [[c′↓]]†($(Y)).

By Lemmas 6 and 13, [[c↓]]†($(X)) = $([[c]]†(X)), and simi-
larly for Y . Thus, by the definition of R×0 , [[c]]†(X)R+

0 [[c′]]†(Y), hence
[[c]]†(X)R+[[c′]]†(Y), and we conclude.

Our main theorem, Theorem 6, follows from Theorem 5, the two pre-
vious theorems, and Lemma 14. Theorem 6 is analogous to Theorem 5,
but refers to the contextual pre-orders: a high-level command c imple-
ments another high-level command c′, with respect to all public contexts
of the high-level language, if and only if the compilation of c implements
the compilation of c′, with respect to all public contexts of the low-level
language.

Theorem 6 (Main theorem). Let c and c′ be two high-level commands.
Then c vL c′ holds if and only if c↓ vL c′↓ does.

Theorem 6 follows from Theorem 5, the two previous theorems, and
the lemma. The low-level statement is defined in terms of the probability
δ that depends on the distribution on memory layouts. When δ is close to
1, the statement indicates that, from the point of view of a public context
(that is, an attacker), the compilation of c behaves like an implementation
of the compilation of c′. This implementation relation holds despite the
fact that the public context may access memory via natural-number ad-
dresses, and thereby (with some probability) read or write private data of
the commands. The public context may behave adaptively, with memory
access patterns chosen dynamically, for instance attempting to exploit
correlations in the distribution of memory layouts. The public context
may also give “unexpected” values to memory addresses, as in practical
attacks; the theorem implies that such behavior is no worse at the low
level than at the high level.

For example, for the commands c0 and c1 of Example 1, the theorem
enables us to compare how their respective compilations behave, in an
arbitrary public low-level context. Assuming that δ is close to 1, the the-
orem basically implies that a low-level attacker that may access memory
via natural-number addresses cannot distinguish those compilations. Fun-
damentally, this property holds simply because the attacker can read or
write the location h considered in the example only with low probability.

6 Conclusion

A few recent papers investigate the formal properties of layout random-
ization, like ours [6–9]. They do not consider nondeterministic choice,
and tend to reason operationally. However, the work of Jagadeesan et
al. includes some semantic elements that partly encouraged our research;
specifically, that work employs trace equivalence as a proof technique for
contextual equivalence.

In this paper we develop a semantic approach to the study of lay-
out randomization. Our work concerns nondeterministic languages, for
which this approach has proved valuable in reconciling probabilistic choice
with nondeterministic choice. However, the approach is potentially more
general. In particular, the study of concurrency with nondeterministic
scheduling would be an attractive next step. Also, extending our work to
higher-order computation presents an interesting challenge.

References

1. Goldwasser, S., Micali, S.: Probabilistic encryption. JCSS 28 (1984) 270–299
2. Forrest, S., Somayaji, A., Ackley, D.H.: Building diverse computer systems. In:

6th Workshop on Hot Topics in Operating Systems. (1997) 67–72
3. Druschel, P., Peterson, L.L.: High-performance cross-domain data transfer. Techni-

cal Report TR 92-11, Department of Computer Science, The University of Arizona
(1992)

4. PaX Project: The PaX project (2004) http://pax.grsecurity.net/.
5. Erlingsson, Ú.: Low-level software security: Attacks and defenses. In: FOSAD IV

Tutorial Lectures. Volume 4677 of LNCS., Springer (2007) 92–134
6. Pucella, R., Schneider, F.B.: Independence from obfuscation: A semantic frame-

work for diversity. Journal of Computer Security 18(5) (2010) 701–749
7. Abadi, M., Plotkin, G.D.: On protection by layout randomization. ACM Transac-

tions on Information and System Security 15(2) (2012) 8:1–8:29
8. Jagadeesan, R., Pitcher, C., Rathke, J., Riely, J.: Local memory via layout ran-

domization. In: 24th IEEE Computer Security Foundations Symposium. (2011)
161–174

9. Abadi, M., Planul, J.: On layout randomization for arrays and functions. In:
POST. Volume 7796 of LNCS., Springer (2013) 167–185

10. Lincoln, P., Mitchell, J., Mitchell, M., Scedrov, A.: A probabilistic poly-time
framework for protocol analysis. In: Proceedings of the Fifth ACM Conference
on Computer and Communications Security. (1998) 112–121

11. Mitchell, J.C., Ramanathan, A., Scedrov, A., Teague, V.: A probabilistic
polynomial-time process calculus for the analysis of cryptographic protocols. TCS
353(1-3) (2006) 118–164

12. Canetti, R., Cheung, L., Kaynar, D.K., Liskov, M., Lynch, N.A., Pereira, O.,
Segala, R.: Analyzing security protocols using time-bounded task-pioas. Discrete
Event Dynamic Systems 18(1) (2008) 111–159

13. Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M.W., Scott, D.S.:
Continuous lattices and domains. Volume 93 of Encyclopaedia of mathematics and
its applications. CUP (2003)

14. Mislove, M.W.: On combining probability and nondeterminism. ENTCS 162
(2006) 261–265

15. Tix, R., Keimel, K., Plotkin, G.D.: Semantic domains for combining probability
and non-determinism. ENTCS 222 (2009) 3–99

16. Goubault-Larrecq, J.: Prevision domains and convex powercones. In: FoSSaCS.
Volume 4962 of LNCS., Springer (2008) 318–333

17. Abadi, M., Planul, J., Plotkin, G.: Layout randomization and nondeterminism.
ENTCS 298 (2013) 29–50

18. Abadi, M., Lamport, L.: The existence of refinement mappings. TCS 82(2) (1991)
253–284

19. Sabelfeld, A., Sands, D.: Probabilistic noninterference for multi-threaded pro-
grams. In: 13th IEEE Computer Security Foundations Workshop. (2000) 200–214

20. Klarlund, N., Schneider, F.B.: Proving nondeterministically specified safety prop-
erties using progress measures. Information and Computation 107(1) (1993) 151–
170

21. de Roever, W.P., Engelhardt, K.: Data Refinement: Model-oriented Proof Theories
and their Comparison. Volume 46 of Cambridge Tracts in Theo. Comp. Sci. CUP
(1998)

22. Jackson, M.: A sheaf theoretic approach to measure theory. PhD thesis, U. Pitt.
(2006)

