
Access Control in a
Core Calculus of Dependency

Mart́ın Abadi
Computer Science Department

University of California, Santa Cruz
and

Microsoft Research, Silicon Valley

Abstract
The Dependency Core Calculus (DCC) is an extension of the
computational lambda calculus that was designed in order to
capture the notion of dependency that arises in information-
flow control, partial evaluation, and other programming-
language settings. We show that, unexpectedly, DCC can
also be used as a calculus for access control in distributed
systems. Initiating the study of DCC from this perspective,
we explore some of its appealing properties.

Categories and Subject Descriptors D.4.6 [Operating
Systems]: Security and Protection—Access controls; D.3.1
[Programming Languages]: Formal Definitions and Theory;
F.4.1 [Mathematical Logic and Formal Languages]: Mathe-
matical Logic—Lambda calculus and related systems

General Terms Languages, Security, Theory

Keywords Authorization, Types

1. Introduction
The Dependency Core Calculus (DCC) [2] is a small exten-
sion of Moggi’s computational lambda calculus [20]. DCC
was designed in order to capture the common, central notion
of dependency that arises in information-flow control, partial
evaluation, call-tracking, and other programming-language
settings. The paper that introduces DCC includes six trans-
lations from type-based dependency analyses into DCC. As
explained there, this use of the computational lambda cal-
culus in describing dependency was somewhat surprising.

Usually, the computational lambda calculus describes
languages with side effects [20], or forms the basis
of adding side effects like I/O to pure functional
languages [12]. Dependency analyses, in contrast, do
not fundamentally change the values being computed.
Nevertheless, there is one common idea underlying
both uses of the computational lambda calculus. In

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

ICFP’06 September 16–21, 2006, Portland, Oregon, USA.
Copyright c© 2006 ACM 1-59593-309-3/06/0009. . . $5.00.

the case of Haskell, there is no way to compute a
value using the I/O type constructor and pass that
value to an expression of non-I/O type. Similarly, in
information-flow systems, the test of a high-security
boolean in an “if-then-else” requires that the branches
of the conditional return high-security values. In both
cases, the type rules of the computational lambda
calculus enforce the necessary restriction.

In this paper we show that, also unexpectedly, DCC can
be used as a calculus for access control in distributed sys-
tems. In this application, the restriction that DCC imposes
implies that there is no way to take evidence that a principal
A has made a statement s and use it non-trivially in evidence
that an unrelated principal B has made a statement t.

Access control basically consists in determining whether
the principal that issues a request should be trusted on
this request. Accordingly, logics for access control enable
reasoning about principals, their requests, and other state-
ments [3, 14, 17, 8, 5]. (See [1] for further discussion of several
of those logics and additional references.) Often, the logics
include formulas such as A says s, where A represents a
principal, s represents a statement (a request, a delegation
of authority, or some other utterance), and says is an opera-
tor. The use of says abstracts from details of authentication
and authorization. One may have that A says s even when
A does not directly utter s. For example, when A is a user
and one of its programs includes s in a message, it may be
convenient and appropriate to state that A says s. In this
case, A says s means that A has caused s to be said, that s
has been said on A’s behalf, or that A supports s.

DCC can be seen as an alternative to the core of those
previous logics for access control. DCC promises some ap-
pealing features in this respect: simple rules with useful con-
sequences, a precise semantics, and good fundamental prop-
erties.

• The rules imply the “hand-off axiom” [14], which has
had an unclear status until now despite its central role
in many access control situations. This axiom basically
asserts that, for two principals A and B , if A says that B
speaks for A then B does speak for A. It was often treated
as an add-on, not as a consequence of more fundamental
rules or semantic definitions.

Secondarily, the rules also imply that if s is true then
A says s, for every principal A and statement s. This
inference may be desirable but can give rise to unex-

pected conclusions, as argued in previous work [1]. Here,
those conclusions are blocked by the use of constructive
reasoning. (Garg and Pfenning [9] found this benefit of
constructivity in the context of a different formal system;
see Section 2.)

Of course, constructivity has a price, and it can be hard
to motivate. Why would one abandon the law of the
excluded middle? is it not true, for instance, that a
principal A says “delete the file” or that it does not?
DCC addresses this difficulty, in a sense. It is not for
reasoning about classical truth, but rather serves as a
type system for evidence, and as such it should not be
too surprising that it is constructive—since one does not
always have evidence for a proposition or for its negation.

• The semantics is the sort of explanation of the calcu-
lus provided by the theory of programming languages
(in contrast with classical possible-world semantics for
modal logics [3]). The semantics does not directly ex-
plain concepts such as responsibility and authority, at
least in its present form. In the semantics, the meaning
of a statement can be seen roughly as the set of argu-
ments that can lead to concluding the statement. The
arguments might represent digital certificates and other
sorts of evidence, pieced together with logical reasoning.

• The fundamental properties include some of those tra-
ditionally proved for type systems. In particular, one
can formulate various consistency, type soundness, para-
metricity, and noninterference results.

These results sometimes take new forms and have new
applications. For instance, exploring noninterference, we
prove a theorem (Theorem 7.6) that limits the possible
influence of the statements of one principal on other
principals.

Some of the properties of DCC are already considered in
previous work [2, 24]. Although we do not attempt a full
development of the metatheory of DCC, we advance it
with some simple but important proof-theoretic results.

While these features may not all be unique to DCC, we
believe that DCC offers a rather attractive package, worth
investigating. In addition, it seems both interesting and
valuable that DCC is not an ad hoc calculus invented purely
for the purposes of reasoning about access control.

Beyond specific technical results, the main contributions
of this paper are the reconsideration of DCC as a sys-
tem for access control and, more broadly, the use of the
Curry-Howard isomorphism (“propositions-as-types, proofs-
as-programs”) in access control. The Curry-Howard isomor-
phism had not, it seems, ever been exploited in this context,
and it appears to have great potential. Throughout, we fo-
cus on the rules of DCC and their interpretation. We leave
several opportunities for further work on extensions and on
the relevant theory.

The next section (Section 2) discusses some of the sources
of this work. Section 3 revisits DCC, specifically defining a
system that we call Simply Typed DCC. This is a terminat-
ing fragment of DCC as it was previously defined, with only
superficial changes of notation. Section 4 considers how to
use Simply Typed DCC for access control. Going further,
Section 5 adds polymorphic types, in the style of Girard’s
System F [11, 6]; the result is a system that we call Poly-
morphic DCC. Section 6 shows how this extension enables a
new treatment of the “speaks for” relation and also outlines
examples. Section 7 concerns the metatheory of Polymor-

phic DCC. Section 8 concludes with a brief discussion of the
prospects for DCC.

2. Related Work
The main sources of this work include, of course, the original
papers on calculi for access control and on DCC (e.g., [1, 2]).
The other important and more immediate influences are an
insightful suggestion from Langworthy [16] and an intriguing
manuscript by Garg and Pfenning [9]. In that manuscript,
they develop a new logic for access control. That logic is an
intuitionistic variant of previous logics, with an apparently
pleasant proof theory. It is reminiscent of information-flow
type systems, and we discovered that it has similarities with
DCC (of which Garg and Pfenning were not aware). On the
other hand, unlike DCC, that logic is not defined as a type
system for a programming language. Furthermore, it lacks
a “speaks for” relation with a hand-off property.

DCC, as we use it here, is not literally as it was originally
defined. Technically, the changes are important but routine.
Specifically, we remove non-terminating programs and the
corresponding notion of “pointed types”; non-termination is
attractive in a general-purpose type system but not usually
in a proof system. On the other hand, we introduce type
quantification in the style of System F. This type quantifi-
cation enables us to model the “speaks for” relation. Finally,
we change notations, for example writing A says s instead
of T`(s), with A instead of `. Curiously, this superficial syn-
tactic change may be regarded as a more profound innova-
tion than removing non-terminating programs and adding
type quantification.

3. Simply Typed DCC
In this section we define Simply Typed DCC and indicate
how to read it in logical terms.

3.1 The Calculus

Three features distinguish Simply Typed DCC from the
standard computational lambda calculus [20]. First, Simply
Typed DCC includes sum types. Second, instead of hav-
ing one type constructor T semantically associated with a
monad, the calculus incorporates multiple type constructors
TA (here written A says . . .), one for every element A ∈ L
of a lattice L. (Wadler [25] considered this idea as well.) In
our use of this lattice, the elements of L will represent prin-
cipals, with smaller elements as more trusted principals and
greater elements as less trusted ones. Third, the monadic
operation “bind” has a special typing rule that is explained
below.

3.1.1 Types

The types of Simply Typed DCC are given by the grammar:

s ::= true | (s ∨ s) | (s ∧ s) | (s → s) | A says s

where A ranges over elements of a lattice L, equipped with
a partial order v.

Thus, we depart from the original DCC notations: we
write

• true instead of unit,

• s1 ∨ s2 instead of s1 + s2,

• s1 ∧ s2 instead of s1 × s2, and

• A says s instead of TA(s).

Table 1. Simply Typed DCC: Typing Rules.

[Var] Γ, x : s, Γ′ ` x : s [Unit] Γ ` () : true

[Lam]
Γ, x : s1 ` e : s2

Γ ` (λx : s1. e) : (s1 → s2)
[App]

Γ ` e : (s1 → s2) Γ ` e′ : s1

Γ ` (e e′) : s2

[Pair]
Γ ` e1 : s1 Γ ` e2 : s2

Γ ` 〈e1, e2〉 : (s1 ∧ s2)

[Proj 1]
Γ ` e : (s1 ∧ s2)

Γ ` (proj1 e) : s1
[Proj 2]

Γ ` e : (s1 ∧ s2)
Γ ` (proj2 e) : s2

[Inj 1]
Γ ` e : s1

Γ ` (inj1 e) : (s1 ∨ s2)
[Inj 2]

Γ ` e : s2

Γ ` (inj2 e) : (s1 ∨ s2)

[Case]
Γ ` e : (s1 ∨ s2) Γ, x : s1 ` e1 : s Γ, x : s2 ` e2 : s

Γ ` (case e of inj1(x). e1 | inj2(x). e2) : s

[UnitM]
Γ ` e : s

Γ ` (ηA e) : A says s

[BindM]
Γ ` e : A says s Γ, x : s ` e′ : t

Γ ` bind x = e in e′ : t
t is protected at level A

For each A ∈ L, the says operation induces a subset of
types called the types protected at level A:

• If A v B , then B says s is protected at level A;

• true is protected at level A;

• if s and t are protected at level A, then (s∧t) is protected
at level A;

• if t is protected at level A, then B says t is protected at
level A; and

• if t is protected at level A, then (s → t) is protected at
level A.

(Tse and Zdancewic [24] have proposed a generalization of
this definition, which may be helpful in the future. The
clause that says that true is protected at level A comes
from them.)

3.1.2 Terms

The terms and the typing rules for Simply Typed DCC
appear in Table 1.

These rules are for proving typing judgments of the form
Γ ` e : s (read “term e has type s in typing environment Γ”).
Here, a typing environment Γ denotes a list of distinct
variables with types. The rules for unit, function, product,
and sum types are all standard, as is the rule for the monadic
unit operation. The rule for the monadic bind operation is
nonstandard, using the concept of “protected at level A” for
the body of bind expressions.

3.1.3 Semantics

The paper that introduces DCC provides both an opera-
tional semantics and a denotational semantics for the Simply
Typed calculus (including constructs not considered here, in
particular term recursion).

The operational semantics is a call-by-name semantics.
The term (ηA e) reduces to e, and (bind x = e in e′) reduces
to e′[e/x], where e[e′/x] represents the result of the capture-
free substitution of e′ for x in e. The rest of the operational
semantics of Simply Typed DCC is standard.

This operational semantics is not entirely consistent with
the type system. Specifically, the term (ηA e) reduces to e
although these two terms have different types, and the term
(bind x = e in e′) reduces to e′[e/x] although e and x do
not have the same type. This discrepancy is however lim-
ited. (Reduction preserves types modulo applications of the
function (·)F of Section 7.) An alternative operational se-
mantics [24] fits more closely with the type system. In this
semantics, in addition to standard rules from the lambda
calculus, we have that bind x = (ηA e) in e′ reduces to
e′[e/x]. For our present purposes, either operational seman-
tics is satisfactory.

The denotational semantics of Simply Typed DCC is
more intricate. We omit it here. It may however be useful in
further work, in particular because it captures noninterfer-
ence properties.

3.2 Logical Reading

We restate the rules of Simply Typed DCC in logical form
in Table 2. Here, an environment Γ denotes a list of types.
We simply omit all the terms. This move from type systems
to logics is an instance of the Curry-Howard isomorphism.
We show the resulting rules in Table 2 for the sake of clarity.

According to these rules, if a type t is protected at level A,
then t and A says t are logically equivalent. Therefore, up to
logical equivalence, the types protected at level A are those
of the form A says t for some t.

We write ` s, and say that s is a theorem, when ` s is
derivable by the rules of Table 2. Equivalently, s is a theorem
when there is a term e such that ` e : s is derivable by the
rules of Table 1. In this case, we say that e inhabits s, and
e represents a proof of s.

In practice, this proof may be transmitted as evidence of
s in requests for access to a resource [27, 4]. For this purpose,
it may be useful to decorate terms with additional type in-
formation, so that proof-checking can be as straightforward
as possible. In particular, such type information may help in
applying the rule [BindM] backwards—with the rule in its
present form, we have to guess A and s in order to find the
hypotheses that yield a conclusion. We resist this and other

Table 2. Simply Typed DCC: Logical Reading.

[Var] Γ, s, Γ′ ` s [Unit] Γ ` true

[Lam]
Γ, s1 ` s2

Γ ` (s1 → s2)
[App]

Γ ` (s1 → s2) Γ ` s1

Γ ` s2

[Pair]
Γ ` s1 Γ ` s2

Γ ` (s1 ∧ s2)

[Proj 1]
Γ ` (s1 ∧ s2)

Γ ` s1
[Proj 2]

Γ ` (s1 ∧ s2)
Γ ` s2

[Inj 1]
Γ ` s1

Γ ` (s1 ∨ s2)
[Inj 2]

Γ ` s2

Γ ` (s1 ∨ s2)

[Case]
Γ ` (s1 ∨ s2) Γ, s1 ` s Γ, s2 ` s

Γ ` s

[UnitM]
Γ ` s

Γ ` A says s

[BindM]
Γ ` A says s Γ, s ` t

Γ ` t
t is protected at level A

temptations to modify the language of proofs, in order to
minimize changes to DCC and to emphasize its surprising
applicability to access control.

Simply Typed DCC has the property that every type is
inhabited, and therefore Simply Typed DCC may not be
regarded as a very useful logic. Fortunately, it is easy to
enrich Simply Typed DCC with atomic types that represent
basic propositions; those are convenient in applications, and
they provide uninhabited types. We do not introduce them
here, though, in order to minimize deviations from the
original definition of DCC and because Polymorphic DCC
includes type variables that can represent basic propositions
(see Section 5).

4. Access Control in Simply Typed DCC
Next we suggest how to use Simply Typed DCC for access
control. We start with a basic, general discussion of the use
of logics for access control, then focus on some of the features
of Simply Typed DCC.

4.1 Basics

In logical approaches to access control, the problem of de-
ciding whether an operation should be granted is formulated
in logical terms, as the problem of constructing or check-
ing a proof. For instance, a logical formula s may represent
that a particular operation o should be performed. In this
case, s may be written as a proposition of the form Do(o)
(or Ok(o) [26]). The reference monitor in charge of making
access control decisions for o may have the policy that a par-
ticular principal A is authorized to perform o. This policy
may be represented by the formula:

(A says Do(o)) → Do(o)

Similarly, a request for the operation o from a principal B
may be represented by the formula:

B says Do(o)

The reference monitor may attempt to prove that these two
formulas imply Do(o), and grant access if it succeeds. In gen-
eral, the proof may exploit relations between A and B and

other facts known to the reference monitor. Alternatively,
the reference monitor may simply check a proof presented
by B . Thus, when the proof is a DCC term, the reference
monitor may simply do type-checking.

4.2 Properties of says

In Simply Typed DCC, the operators ∨, ∧, and → obey the
standard intuitionistic propositional rules. In addition, we
have

` s → A says s

with proof term

λx : s. (ηA x)

and

` (A says (s → s′)) → ((A says s) → (A says s′))

with proof term

λx : A says (s → s′). bind x′ = x in
λy : A says s. bind y′ = y in (ηA (x′y′))

These theorems correspond to the main axioms and rules
adopted in previous calculi (despite the switch to intuition-
istic reasoning). Therefore, we have enough to perform much
of the typical, basic reasoning about access control.

In fact, the theorem ` s → A says s is even stronger
than what we usually have. Usually, we have only the neces-
sitation rule from modal logic, which says only that if ` s
then ` A says s. The necessitation rule avoids the unex-
pected consequences of ` s → A says s in a classical-logic
context [1].

The theorem ` s → A says s suggests that A says s
does not mean that A actually utters s or something that
implies it. Rather, we should see all reasoning from the point
of view of a reference monitor that is in charge of making
access control decisions. Informally, we have A says s when,
combining the statements that the reference monitor be-
lieves with those that A contributes, the reference monitor
can conclude s. Thus, the reference monitor’s participation
is left implicit.

Further, we have

` (A says A says s) → (A says s)

with proof term

λx : A says A says s. bind y = x in y

(cf. [3, Section 3.4]), and also

` (A says B says s) → (B says A says s)

with proof term

λx : A says B says s.
bind y = x in bind z = y in (ηB (ηA z))

These properties sometimes simplify reasoning about chains
of says: they imply that when

A1 says A2 . . . says An says s

the order of the principals A1, . . . , An and how often they
occur in the chain do not matter.

4.3 Using the Partial Order, and its Connection
to “Speaks for”

In our application of DCC, the least element of the lattice
of levels stands for the most trusted principal, and greater
elements represent less trusted principals, as indicated in
Section 3. The opposite ordering is typically used for obtain-
ing secrecy guarantees with information-flow type systems,
and with DCC in particular (e.g., [2]). The present order-
ing is fairly common in models for integrity. Perhaps this
coincidence should be expected, since reliable access control
requires the integrity of requests and policies.

We have the following theorem:

` (A says s) → (B says s) for A v B

Therefore, we could regard v as a representation of the
“speaks for” relation. Indeed, with that reading, we obtain
that if A speaks for B and A says s then B says s, for
every s. This property is characteristic of the “speaks for”
relation.

However, Simply Typed DCC is not a rich setting for rea-
soning about the “speaks for” relation. In particular, we can-
not use the symbolv in expressions such as A says (B v A):
this expression is not even a syntactically legal formula.
A possible solution may be to extend the syntax so that
(B v A) is a type, thus internalizing v. While this approach
may be viable, it is somewhat ad hoc. Below we develop a
more principled approach, relying on polymorphism.

4.4 Using Meets and Joins for Combining
Principals and Groups

The lattice structure also provides operators u and t, re-
spectively the meet and the join operators of the lattice L.

Since A u B v A and A u B v B , we obtain:

` (A u B says s) → (A says s) ∧ (B says s) (1)

for every s. However, the converse does not automatically
hold for every s.1 Intuitively, AuB may be more trustworthy
than A and B , even when A and B happen to agree. In

1 More precisely, the converse cannot be derived as soon as we
introduce basic propositions, for example in the form of type
variables. As long as every type is inhabited, the converse can
of course be derived, but not for interesting reasons.
Similar caveats apply to discussions of some other formulas in the
rest of Section 4.

this sense, a joint signature of a statement may carry more
weight than two separate signatures of the same statement.

Similarly, since A v A t B and B v A t B , we obtain:

` (A says s) ∨ (B says s) → (A t B says s) (2)

for every s, but not the converse. Intuitively, A tB may be
less trustworthy than each of A and B in isolation. Because
saying is closed under logical consequence, a statement by
AtB may be derived from separate statements by A and B ,
with results that neither A nor B would have produced
alone.

These properties suggest that we may interpret lattice
elements as groups, u as group intersection, t as group
union, andv as group inclusion. Thus, an individual element
of the lattice L may not (always) correspond to an atomic
subject, but rather to a group of subjects. It then seems
quite reasonable that statements by A u B may be more
trusted than statements by both A and B . For example,
a security policy may refer to two groups, “club members”
and “adults”, and require a certain authorization by an adult
club member; a statement by an adult club member cannot
be replaced with identical statements by an arbitrary club
member and an arbitrary adult.

Alternatively, the lattice L may be a lattice of abstract
security levels, of the kind that may be used in multilevel
security (e.g., [7, 10]). In such a lattice, the converses of (1)
and (2) can have strong, questionable consequences. For
example, let us consider a five-element lattice with a bottom,
a top, and three elements A, B , and C unrelated to one
another. In this lattice, AuB is the bottom element, AtB
is the top element, and hence A u B v C v A t B . If
A says s and B says s implied A uB says s, then it would
also follow that C says s. Similarly, if AtB says s implied
that A says s or B says s, then C says s would also imply
that A says s or B says s.

In many of these scenarios, and in particular when L is
a lattice of groups, the lattice L is distributive. In general,
the lattice L is not required to be distributive, but there is
no contradiction in adding that condition; the rules of DCC
apply without change.

4.5 Additional Operations

Despite important differences, the operators u and t may
be reminiscent of the operators ∧ and ∨ that have in the
past been applied to principals. We could introduce those
operators as abbreviations:

A ∧ B says s stands for (A says s) ∧ (B says s)
A ∨ B says s stands for (A says s) ∨ (B says s)

While these abbreviations are convenient, it is worth noting
that A ∧ B and A ∨ B need not behave exactly like lattice
elements. For instance, it should not be taken for granted
that

(A ∨ B says (s → s′))
→

((A ∨ B says s) → (A ∨ B says s′))

holds for every s and s′: when A says (s → s′) and B says s,
we have A ∨ B says (s → s′) and A ∨ B says s, but not
necessarily A says s′ or B says s′.

Going further, we could add other abbreviations and
other operators on the lattice, in order to represent useful
compound principals. Such extensions have been explored
in previous work (e.g., [3, 14]); we leave to further work to
revisit them.

Table 3. Polymorphic DCC: Additional Typing Rules.

[TLam]
Γ, X ` e : s

Γ ` (ΛX. e) : ∀X. s
[TApp]

Γ ` e : ∀X. s
Γ ` (et) : s[t/X]

(t well-formed in Γ)

Table 4. Polymorphic DCC: Logical Form of the Additional Typing Rules.

[TLam]
Γ ` s

Γ ` ∀X. s
(X not free in Γ) [TApp]

Γ ` ∀X. s
Γ ` s[t/X]

5. Polymorphic DCC
We extend DCC with polymorphism in the style of Sys-
tem F. We rely on System F because of its conciseness and
power; as usual, one may also consider more restricted forms
of polymorphism.

This extension addresses the shortcoming described in
Section 4.3: in Section 6 we show that we can use polymor-
phism in order to represent and reason about the “speaks
for” relation. We can also use polymorphism in other ways,
of course. In particular, we consider how to use polymor-
phism for encoding says.

A common practical criticism of polymorphic types is
that they introduce serious complications in type inference.
We note that this criticism does not apply for the present ap-
plication. Another practical criticism of polymorphic types is
that they can be hard to write and to understand. This crit-
icism does apply. We would not recommend writing security
policies with many quantifiers. In practice, security policies
could often be written in terms of a few idioms whose defi-
nitions may rely on quantifiers, but without explicit quanti-
fiers. In this direction, it is attractive to explore the devel-
opment of languages for writing security policies, perhaps in
a logic-programming style (as in SD3 [13], Binder [8], and
RT [18]).

5.1 The Calculus

The extension to Polymorphic DCC relies only on standard
rules for polymorphism, introducing universal quantification
over types. We review those rules in this section.

5.1.1 Types

With polymorphism, the types of DCC are given by the
grammar:

s ::= true | (s ∨ s) | (s ∧ s) | (s → s) | A says s | X | ∀X. s

where A ranges over elements of a lattice L, and X ranges
over a set of type variables. The variable X is bound in ∀X.s,
and subject to renaming.

Again, the says operation induces a subset of types called
the types protected at level A. We add one clause to the
definition of Section 3.1.1:

• if t is protected at level A, then ∀X. t is protected at
level A.

5.1.2 Terms

The additional forms of terms and the additional typing
rules for Polymorphic DCC appear in Table 3. These are in
addition to those of Table 1.

Here, a typing environment Γ denotes a list where each el-
ement is either a distinct type variable or a distinct variable

with a type. We require that if the type of a variable men-
tions a type variable X, then X occurs further to the left.
Thus, for example, x : X and x : X, X are not well-formed
typing environments, while X, x : X and

X, Y, x : X, y : A says (X → Y)

are well-formed typing environments.
In rule [TApp], we require that t be a well-formed type

in Γ. This condition means that any type variables in t
should be declared in Γ. Also in rule [TApp], the expression
s[t/X] represents the result of the capture-free substitution
of t for X in s.

5.2 Semantics

It is straightforward to extend the operational semantics to
Polymorphic DCC, along standard lines (e.g., [19]).

Extending the denotational semantics is somewhat more
challenging. We leave this extension for further work.

5.3 Logical Reading

The logical reading of Simply Typed DCC, outlined in
Section 3.2, generalizes to Polymorphic DCC.

The additional rules are given in logical form in Table 4.
Here, a typing environment Γ denotes a list of types; type
variables may occur free in those types. We simply omit
all the terms, as well as declarations for type variables. For
example, the typing environment

X, Y, x : Y → X, y : A says Y

yields the environment

Y → X,A says Y

and the typing judgment

X, Y, x : Y → X, y : A says Y
` bind y′ = y in (ηA (xy′)) : A says X

yields

Y → X,A says Y ` A says X

In judgments such as this one, type variables that are not
quantified can be read and used as basic propositions.

In rule [TLam] of Table 4, we make explicit that X
should not occur free in Γ. In Table 3, the corresponding
requirement is implied by the fact that Γ, X is a well-formed
typing environment.

Much as in Section 3.2, we write ` s, and say that
s is a theorem, when ` s is derivable by the rules of
Tables 2 and 4. Equivalently, s is a theorem when there
is a list of type variables X1, . . . , Xn and a term e such that
X1, . . . , Xn ` e : s is derivable by the rules of Tables 1 and 3.

5.4 Translating Access Control into Parametricity

Tse and Zdancewic [24] have shown an encoding of Simply
Typed DCC into System F. Crucially, they map a type of
the form A says s to αA → s, where αA is a distinct
type variable. The translations of other DCC constructs
are mostly straightforward. Tse and Zdancewic do not treat
non-termination and related notions, which fortunately we
do not need for our present purposes. It seems possible to
extend their encoding to Polymorphic DCC. The end result
would be an interesting representation of access control
purely in System F.

We leave the study of this representation for further work.
Theorems beyond those of Tse and Zdancewic may be re-
quired for justifying this use of their technique. In partic-
ular, although their encoding is type-preserving, typing in
System F is somewhat more liberal than in DCC, and one
would want to ensure that the flexibility of System F does
not yield unexpected results for access control.

Moreover, while encodings into System F can provide use-
ful guidance and semantics, it would be premature to replace
DCC with System F. At this point, it seems more convenient
to reason about access control in DCC than in System F.
Unlike System F, Simply Typed DCC provides a simple no-
tation and setting in which to study logical questions, to
develop examples and applications, and to experiment with
alternative concepts and rules. Although Polymorphic DCC
includes all the complexity of System F, it still shares many
of the advantages of Simply Typed DCC from our perspec-
tive, particularly since we make only a limited, disciplined
use of quantifiers in this initial exploration.

6. Access Control in Polymorphic DCC
Continuing Section 4, in this section we suggest how to use
Polymorphic DCC for access control.

6.1 “Speaks for”

We encode “speaks for” via polymorphism. In keeping with
previous papers, we write A ⇒ B for “A speaks for B”.
Here, however, we write A ⇒ B as an abbreviation for

∀X. (A says X → B says X)

We immediately obtain a fundamental property of the
“speaks for” relation:

` (A ⇒ B) → ((A says s) → (B says s))

for every s, with proof term

λx : A ⇒ B . xs

Remarkably, we also obtain the “hand-off axiom” as a the-
orem (not as an added axiom):

` (A says (B ⇒ A)) → (B ⇒ A)

This theorem can be derived because the definitions imply
that B ⇒ A is protected at level A. Its proof is the term:

λx : A says (B ⇒ A). bind y = x in y

Clearly, A v B implies A ⇒ B :

` A ⇒ B for A v B

However, the converse is not true: A ⇒ B does not imply
A v B . In fact, we can even have A ⇒ B and B ⇒ A while
A and B are different lattice levels. In this respect, the logic
keeps a certain separation between the underlying lattice
and the partial order of the “speaks for” relation. Whether

this separation is a feature or an unfortunate redundancy
may be open to debate. It does not seem to have significant
disadvantages, and it does have the advantage of allowing
us to develop the Simply Typed calculus before having a
“speaks for” relation, without deviating from DCC. It also
enables the use of the lattice operations u and t, which
would be harder to define otherwise.

Restrictions of “speaks for”, similar to ones previously
considered (e.g., [15]), can be defined and studied just as
easily. In particular, given a type C(X) with free type vari-
able X, we can write the type:

∀X. (C(X) ∧A says X → B says X)

in order to express that A speaks for B on statements X that
satisfy C(X). For instance, when C(X) is s → X for some s,
this type means that A speaks for B on consequences of s.

6.2 Examples

Using the encoding of “speaks for”, we sketch some small
examples of the use of Polymorphic DCC for access control.
For these examples, as a convenience, we assume standard
data types (such as int), as well as basic propositions
for authorization. We also speculate on more substantial
extensions to DCC.

Since DCC is a programming language, it is attractive
to consider ways of integrating traditional programming
with DCC-based access control, at the language level. The
examples are partly intended to suggest avenues for research
in this direction. Going further, it would be interesting
to consider the combination of DCC-based access control
with information-flow systems for programming languages
(e.g., [21, 22, 23]), especially since DCC can capture notions
of information flow.

6.2.1 Access with a Simple Hand-off

The first of our examples is fairly basic. It could be repro-
duced in a variety of other logics once the appropriate in-
stance of the “hand-off axiom” is assumed.

Suppose that we have the following formulas:

A says (B ⇒ A)
B says Do(o)
(A says Do(o)) → Do(o)

(3)

The first represents a hand-off from A to B . As in Sec-
tion 4.1, the second formula shows a statement Do(o) sup-
ported by B ’s authority, and the third reflects that A is
trusted on that statement.

Combining these formulas, we can derive Do(o). For-
mally, we have:

`


A says (B ⇒ A)
∧

B says Do(o)
∧

(A says Do(o)) → Do(o)

 → Do(o)

As in Section 4.1, the conclusion Do(o) is intended to mean
that operation o should be granted.

We assume the formulas (3) for the rest of Section 6, as
we build on this example.

6.2.2 Proof-Carrying Calls

Next we consider the situation in which we are defining a
security-aware interface for the operation o. This interface
should reflect o’s authorization requirements. For instance,
if o expects an integer argument and produces an integer

result, then the type of o might be:

Do(o) → (int→ int)

in which we make explicit the requirement Do(o). Thus,
when a principal C invokes o, it should pass a proof of Do(o).

For this purpose, we would expect that the caller C would
obtain and combine proofs of the formulas B says Do(o),
(A says Do(o)) → Do(o), and A says (B ⇒ A). The proofs
of A says (B ⇒ A) and of B says Do(o) may be digitally
signed statements, if we adopt the sensible principle that
a digitally signed statement that can be checked with a
principal’s public key constitutes a proof that the principal
says the statement. The proof of (A says Do(o)) → Do(o)
may be derived from a digitally signed statement from an
authority trusted on o. We leave for further work the details
of the interface between standard DCC and the world of
digital signatures.

Fundamentally, this example requires viewing a proposi-
tion as a type and viewing a proof as a language-level ex-
pression. Hence, despite its simplicity, it seems to be beyond
the scope of other logics for access control.

6.2.3 Proof Completion and Evaluation

When (A says Do(o)) → Do(o) represents the access policy
for o as specified by an authority trusted on o, the reference
monitor may be willing to assume this formula, but the caller
C may not have a proof of (A says Do(o)) → Do(o). In such
situations, a more permissive type for o may be appropriate.
The type might be:

(((A says Do(o)) → Do(o)) → Do(o)) → (int→ int)

or simply:

(A says Do(o)) → (int→ int)

According to this type, C should provide a proof of

A says Do(o)

The reference monitor can then establish Do(o) for itself, by
applying (A says Do(o)) → Do(o).

Similarly, there are situations in which the evidence for
B says Do(o) cannot be reified into a proof that the caller
C can present and combine with other proofs. For instance,
when C is actually B , the act of invoking o may include
asserting Do(o). The reference monitor may know what B
says, but the evidence in question is not a bitstring or an
expression that can be transferred. Again, a more permissive
type for o may be appropriate. The type might be:

((B says Do(o)) → Do(o)) → (int→ int)

According to this type, C should provide a proof of

(B says Do(o)) → Do(o)

The reference monitor can then try to establish Do(o) for
itself, in this case by proving B says Do(o). In particular,
the reference monitor may simply assume B says Do(o) if
it has authenticated the caller as B . For other callers, the
reference monitor may fail in its proof of B says Do(o),
at run-time. A richer type system might express that, if the
caller speaks for B , then the reference monitor is guaranteed
to grant access.

Such variations lead to the idea that, sometimes, the
caller C should be allowed to provide only an incomplete
proof of Do(o). The incomplete proof may contain com-
mands that indicate where the reference monitor is expected

to do theorem-proving, consult its local policy, or solicit ad-
ditional evidence from C or from other sources. Those com-
mands go beyond what we have studied formally in this pa-
per; they may for example include input, output, and recur-
sion. They are not guaranteed to succeed. For instance, re-
cursion may allow circular reasoning, and requests for input
may not be answered. Therefore, evidence should be eval-
uated, and the evaluation process should turn incomplete
proofs into complete proofs. The resulting system leverages
the idea that proofs are programs that can be executed, and
thus further exploits the Curry-Howard isomorphism.

7. Metatheory
In this section we start to explore the metatheory of Poly-
morphic DCC.

7.1 Basic Results

The metatheory of Polymorphic DCC ought to include tra-
ditional consistency, type soundness, and parametricity re-
sults, of the kind common in the study of System F. In
this paper, we start to consider those properties, relying on
the metatheory of System F. More broadly, we expect many
existing theorems and techniques to apply to the study of
Polymorphic DCC. In this respect, it is useful that DCC and
System F are not ad hoc formal systems defined solely for
the purposes of reasoning about access control.

Without much effort, we can obtain some basic results by
translating Polymorphic DCC into System F (specifically,
into a version of System F with unit, product, sum, and
function types, as well as universal quantification), even
with an encoding less sophisticated than the one introduced
by Tse and Zdancewic (see Section 5.4). In particular, our
encoding may simply delete all occurrences of says. Writing
(·)F for this encoding, we have that

(A says s)F = (s)F

The encoding is trivial for true, ∨, ∧, →, ∀, and type
variables.

We extend the function (·)F to environments, applying it
component by component. Note that if s is well-formed in
Γ then (s)F is well-formed in (Γ)F.

The encoding maps typed terms to typed terms:

Proposition 7.1 If Γ ` e : t in Polymorphic DCC, then
there exists e′ such that (Γ)F ` e′ : (t)F in System F.

Proof: We construct e′ by translating e, by induction on
typing derivations in Polymorphic DCC. The only non-
trivial cases correspond to the rules [UnitM] and [BindM].
For those, we set:

(ηA e)F = (e)F

(bind x = e in e′)F = ((λx : t. (e′)F)(e)F)

for an appropriate type t obtained from the typing derivation
for bind x = e in e′. Specifically, if the typing of bind x =
e in e′ is done in an environment Γ′ and relies on the
hypothesis Γ′ ` e : A says s, then t is (s)F.

It follows that Polymorphic DCC is consistent:

Proposition 7.2 In Polymorphic DCC, it is not the case
that ` ∀X. X, nor that ` A says ∀X. X.

Proof: If it were the case, we would have a list of type
variables X1, . . . , Xn and a term e such that X1, . . . , Xn `
e : ∀X. X or X1, . . . , Xn ` e : A says ∀X. X in Polymorphic
DCC. By Proposition 7.1, we would then have X1, . . . , Xn `
e′ : ∀X. X for some term e′ in System F. Since ∀X. X is not
inhabited in System F, we obtain a contradiction.

It may also be seen that the encoding maps reduction
steps to reduction steps. It follows that infinite reduction
sequences are not possible in Polymorphic DCC, since they
are not in System F.

7.2 Noninterference

The metatheory of Polymorphic DCC should also include
noninterference results in the style of previous ones for
DCC [2, 24] or those of Garg and Pfenning [9]. A typical
noninterference result would imply that if we have a proof e
of A says s and it depends on a proof x of B says t, where A
and B are unrelated levels, then, from the point of view of e,
it does not matter which actual proof we substitute for x.
Even more strongly, we should be able to obtain that e can
be constructed without x (at least under certain hypotheses
on e). We devote the rest of this section to establishing a
result in this spirit.

We state a basic proposition as a preliminary:

Proposition 7.3 In Polymorphic DCC, if t is protected at
level A and B v A, then t is protected at level B.

Proof: The argument is by induction on the proof that t
is protected at level A. The base case for a formula of the
form C says s with A v C follows from the transitivity
of v, which implies that B v C . The base case for true is
trivial. The inductive steps are straightforward applications
of the induction hypothesis.

For a type s and B ∈ L, we define (s)B as follows:

(true)B = true

(s1 ∨ s2)
B = (s1)

B ∨ (s2)
B

(s1 ∧ s2)
B = (s1)

B ∧ (s2)
B

(s1 → s2)
B = (s1)

B → (s2)
B

(A says s)B =

{
true if B v A
A says (s)B otherwise

(X)B = X

(∀X. s)B = ∀X. (s)B

Note that type variables are left unchanged by the function
(·)B . While a type variable may eventually be instantiated to
a type of the form A says s, and we cannot predict whether
B v A, we need not be concerned with those instantiations
for our purposes. The function (·)B commutes with substi-
tutions for type variables: (s[t/X])B = (s)B [(t)B/X].

Intuitively, (s)B is a variant of s that corresponds to
the situation in which B is completely untrustworthy, so
B says t is always true, independently of t. Theorem 7.6,
below, aims to show that B ’s untrustworthiness has a limited
effect on other principals.

If s is of the form B says t, then (s)B is trivially provable,
since it is true. More generally, the following proposition
shows that formulas of the form (s)B with s protected at
level B are always provable (that is, that these formulas are
always inhabited when viewed as types).

Proposition 7.4 In Polymorphic DCC, if Γ is a well-
formed typing environment, t is a well-formed type in Γ,
and t is protected at level B, then there exists e such that
Γ ` e : (t)B .

Proof: The argument is by induction on the proof that t is
protected at level B .

• If t is of the form A says s where B v A, then (t)B =
true. We take e to be ().

• If t is true, then again (t)B = true and we take e to
be ().

• If t is of the form A says s where s is protected at
level B , in this case with B 6v A, then there exists e1

such that Γ ` e1 : (s)B , by the induction hypothesis, so
Γ ` (ηA e1) : A says (s)B , that is, Γ ` (ηA e1) : (t)B .
(We can assume that B 6v A in this case, although
this condition does not appear in the definition of “pro-
tected”, because the first case applies when B v A.)

• If t is of the form (s1∧s2) where s1 and s2 are protected at
level B , then there exist e1 and e2 such that Γ ` e1 : (s1)

B

and Γ ` e2 : (s2)
B , by the induction hypothesis, so

Γ ` 〈e1, e2〉 : (t)B .
• If t is of the form s2 → s1 where s1 is protected at level B ,

then there exists e1 such that Γ, x : (s2)
B ` e1 : (s1)

B

for a fresh variable x, by the induction hypothesis, and
therefore Γ ` (λx : (s2)

B . e1) : (t)B .
• If t is of the form ∀X. s where s is protected at level B ,

then there exists e1 such that Γ, X ` e1 : (s)B (up
to renaming of X), by the induction hypothesis, and
therefore Γ ` (ΛX. e1) : (t)B .

We extend the function (·)B to environments, applying it
component by component. Note that if t is well-formed in Γ
then (t)B is well-formed in (Γ)B . In addition, we have:

Proposition 7.5 In Polymorphic DCC, if t is protected at
level A then so is (t)B .

Proof: The argument is by induction on the proof that t is
protected at level A.

• If t is of the form C says s where A v C , then (t)B

is either true or C says (s)B , depending on whether
B v C . In the former case, it is immediate that (t)B is
protected at level A; in the latter case, it follows from
A v C .

• If t is of the form C says s where s is protected at level A,
then (t)B is either true or C says (s)B , again depending
on whether B v C . In the former case, it is immediate
that (t)B is protected at level A; in the latter case, it
follows from the induction hypothesis.

• The remaining cases are straightforward applications of
the definitions and of the induction hypothesis.

We obtain the following theorem:

Theorem 7.6 In Polymorphic DCC, for every typing envi-
ronment Γ, type s, and B ∈ L, if Γ ` e : s then there exists
e′ such that (Γ)B ` e′ : (s)B .

Proof: The proof is by induction on the derivation of Γ `
e : s, with an argument by cases on the last rule applied in
this derivation.

• [Var]: e′ is the same variable as e.
• [Unit]: e′ is (), like e.
• [Lam]: If e is λx : s1. e1 then e′ is λx : (s1)

B . e′
1 where e′

1

is given by the induction hypothesis.
• [App]: If e is e1e2 then e′ is e′

1e
′
2 where e′

1 and e′
2 are

given by the induction hypothesis.
• [Pair], [Proj 1], [Proj 2], [Inj 1], [Inj 2], [Case]: All these

cases are also straightforward applications of the induc-
tion hypothesis.

• [UnitM]: If e is (ηA e1) then e′ is () if B v A, and
otherwise it is (ηA e′

1) where e′
1 is given by the induction

hypothesis.
• [BindM]: If s is protected at level B , then Proposition 7.4

yields the desired result. On the other hand, if s is not
protected at level B , then it is not protected at any
level A such that B v A, by Proposition 7.3. So, if
rule [BindM] is applied with hypotheses of the form
Γ ` e1 : A says s1 and Γ, x : s1 ` e2 : s, and the
condition that s is protected at level A, then B 6v A.
It follows that (A says s1)

B = A says (s1)
B . We can

therefore let e′ be bind x = e′
1 in e′

2, where e′
1 and e′

2

are given by the induction hypothesis. The typing of e′

can be done via rule [BindM] because of the form of
(A says s1)

B and because (s)B is protected at level A by
Proposition 7.5.

• [TLam]: If e is ΛX. e1 then e′ is ΛX. e′
1 where e′

1 is given
by the induction hypothesis.

• [TApp]: If e is e1t1 then e′ is e′
1(t1)

B where e′
1 is given by

the induction hypothesis. The typing of e′ can be done
via rule [TApp] because of the commutation of (·)B with
substitution: the type of e1 must be of the form ∀X. t,
with s = t[t1/X] and (t[t1/X])B = (t)B [(t1)

B/X].

(The statement of the theorem does not concern itself with
characterizing the behavior of e′ as a program. An analysis
of the proof could give such additional information.)

As a special case, we derive the following corollary from
the theorem:

Corollary 7.7 In Polymorphic DCC, for every type s and
B ∈ L, if ` s then ` (s)B .

For example, Corollary 7.7 says that if B 6v A, then

` (B says t) → (A says ∀X. X)

implies

` true→ (A says ∀X. X)

and therefore

` A says ∀X. X

Since this judgment is not derivable (by Proposition 7.2),
we arrive at a contradiction, inferring that

` (B says t) → (A says ∀X. X)

is not derivable either. Thus, no matter what B says, A does
not say ∀X. X.

More generally, suppose that (s)B = s. This condition
holds when s mentions no principal C such that B v C .
Corollary 7.7 says that if B 6v A then

` (B says t) → (A says s)

implies

` true→ (A says s)

and therefore

` A says s

In this case, the conclusion ` A says s may be derivable, in
particular when s is a tautology such as X → X. Thus, if A
says s when B says t, then A says s whether or not B says t.

On the other hand, suppose that (s)B = s need not hold.
Corollary 7.7 yields that if B 6v A then

` (B says t) → (A says s)

implies

` A says (s)B

We cannot expect to obtain A says s verbatim. Consider,
for instance, the case in which s is B says t. We have that

` (B says t) → (A says (B says t))

but in general we cannot derive A says (B says t) without
any hypotheses. Thus, our results limit the effect that B ’s
statements can have on A’s statements, but we cannot
expect to show that they have no effect at all: what B says
does influence what A says about B .

Corollary 7.7 applies even if B speaks for A because of a
hand-off, but in that case it does not yield interesting results.
Suppose, again, that B 6v A; then

` (A says (B ⇒ A)) → ((B says t) → (A says X))

implies

` (A says ∀Y.(true→ A says Y)) → (true→ (A says X))

and therefore

` (A says ∀Y. A says Y) → (A says X)

However, this conclusion is fairly obvious.

8. Conclusion
While the body of this paper suggests several attractive
directions for further research, the main questions on this
enterprise may concern the usefulness of the perspective on
access control that DCC suggests. Should we use DCC (or
a similar type system) as a logic for access control?

In particular, we may have doubts on the logical rules
that DCC induces. Specifically, the “hand-off axiom” em-
bodies a strong form of delegation of authority, which may
seem dangerous. On the other hand, there are safe disci-
plines for applying the “hand-off axiom”, in which it is used
for justifying only more controlled forms of delegation. For
example, principals may limit their authority by adopting
roles before delegating [14, Section 6.1].

In addition, we may wonder whether the constructive
character of DCC will not occasionally surprise and frus-
trate. On the other hand, regarding the logic of access con-
trol as a type system for evidence, perhaps this constructive
character should be embraced.

Overall, DCC satisfies several long-standing wishes as a
calculus for access control. That appears to be more than a
coincidence.

Acknowledgements

This work was done at Microsoft Research. It benefited from
conversations with Cédric Fournet, Butler Lampson, Dave
Langworthy, Greg Morrisett, and Frank Pfenning, and from
comments from anonymous reviewers.

References
[1] Mart́ın Abadi. Logic in access control. In Proceedings of the

Eighteenth Annual IEEE Symposium on Logic in Computer
Science, pages 228–233, 2003.

[2] Mart́ın Abadi, Anindya Banerjee, Nevin Heintze, and Jon G.
Riecke. A core calculus of dependency. In Proceedings of
the 26th ACM Symposium on Principles of Programming
Languages, pages 147–160, January 1999.

[3] Mart́ın Abadi, Michael Burrows, Butler Lampson, and
Gordon Plotkin. A calculus for access control in distributed
systems. ACM Transactions on Programming Languages
and Systems, 15(4):706–734, October 1993.

[4] Andrew W. Appel and Edward W. Felten. Proof-carrying
authentication. In Proceedings of the 5th ACM Conference
on Computer and Communications Security, pages 52–62,
November 1999.

[5] Lujo Bauer, Scott Garriss, and Michael K. Reiter. Distrib-
uted proving in access-control systems. In Proceedings of
the 2005 IEEE Symposium on Security and Privacy, pages
81–95, May 2005.

[6] Luca Cardelli. Type systems. In Allen B. Tucker, editor,
The Computer Science and Engineering Handbook, chapter
103, pages 2208–2236. CRC Press, Boca Raton, FL, 1997.

[7] Dorothy E. Denning. Cryptography and Data Security.
Addison-Wesley, Reading, Mass., 1982.

[8] John DeTreville. Binder, a logic-based security language. In
Proceedings of the 2002 IEEE Symposium on Security and
Privacy, pages 105–113, May 2002.

[9] Deepak Garg and Frank Pfenning. Non-interference in
constructive authorization logic. A version of this paper
will appear in the Proceedings of the 19th IEEE Computer
Security Foundations Workshop (CSFW-19). Manuscript,
February 2006.

[10] Morrie Gasser. Building a Secure Computer System. Van
Nostrand Reinhold Company Inc., New York, 1988.

[11] Jean-Yves Girard. Interprétation Fonctionnelle et Elimi-
nation des Coupures de l’Arithmétique d’Ordre Supérieur.
Thèse de doctorat d’état, Université Paris VII, June 1972.

[12] Paul Hudak, Simon Peyton Jones, Philip Wadler, Brian
Boutel, Jon Fairbairn, Joseph Fasel, Maŕıa M. Guzmán,
Kevin Hammond, John Hughes, Thomas Johnsson, Dick
Kieburtz, Rishiyur Nikhil, Will Partain, and John Peterson.
Report on the programming language Haskell: a non-strict,
purely functional language. Version 1.2. ACM SIGPLAN
Notices, 27(5):1–164, 1992.

[13] Trevor Jim. SD3: A trust management system with certified
evaluation. In Proceedings of the 2001 IEEE Symposium on
Security and Privacy, pages 106–115, May 2001.

[14] Butler Lampson, Mart́ın Abadi, Michael Burrows, and
Edward Wobber. Authentication in distributed systems:
Theory and practice. ACM Transactions on Computer
Systems, 10(4):265–310, November 1992.

[15] Butler W. Lampson. Computer security in the real
world. Available from http://www.research.microsoft.
com/lampson/.

[16] David Langworthy. Private communication. February 2006.

[17] Ninghui Li, Benjamin N. Grosof, and Feigenbaum. Dele-
gation logic: A logic-based approach to distributed autho-
rization. ACM Transactions on Information and System
Security, 6(1):128–171, February 2003.

[18] Ninghui Li and John C. Mitchell. Datalog with constraints: A
foundation for trust-management languages. In Proceedings
of the Fifth International Symposium on Practical Aspects
of Declarative Languages (PADL 2003), volume 2562 of
Lecture Notes in Computer Science, pages 58–73. Springer-
Verlag, January 2003.

[19] John C. Mitchell. Foundations for Programming Languages.
The MIT Press, Cambridge, Mass., 1996.

[20] Eugenio Moggi. Notions of computation and monads.
Information and Control, 93(1):55–92, 1991.

[21] Andrew C. Myers. JFlow: Practical mostly-static informa-
tion flow control. In Proceedings of the 26th ACM Sym-
posium on Principles of Programming Languages, pages
228–241, January 1999.

[22] François Pottier and Sylvain Conchon. Information
flow inference for free. In Proceedings of the Fifth
ACM SIGPLAN International Conference on Functional
Programming, pages 46–57, September 2000.

[23] François Pottier and Vincent Simonet. Information flow
inference for ML. ACM Transactions on Programming
Languages and Systems, 25(1):117–158, January 2003.

[24] Stephen Tse and Steve Zdancewic. Translating dependency
into parametricity. Journal of Functional Programming. To
appear.

[25] Philip Wadler. The marriage of effects and monads.
In Proceedings of the 3rd ACM SIGPLAN International
Conference on Functional Programming, pages 63–74, 1998.

[26] Dan S. Wallach, Andrew W. Appel, and Edward W.
Felten. Safkasi: A security mechanism for language-based
systems. ACM Transactions on Software Engineering and
Methodology, 9(4):341–378, 2000.

[27] Edward Wobber, Mart́ın Abadi, Michael Burrows, and
Butler Lampson. Authentication in the Taos operating
system. ACM Transactions on Computer Systems, 12(1):3–
32, February 1994.

