Computer-Assisted Verification of
a Protocol for Certified Email*

Martin Abadi
Computer Science Department
University of California, Santa Cruz
abadi@cs.ucsc.edu

Bruno Blanchet

CNRS, Ecole Normale Supérieure, Paris
and
Max-Planck-Institut fiir Informatik, Saarbriicken
Bruno.Blanchet@ens.fr

May 21, 2005

Abstract

We present the formalization and verification of a recent cryptographic
protocol for certified email. Relying on a tool for automatic protocol
analysis, we establish the key security properties of the protocol. This case
study explores the use of general correspondence assertions in automatic
proofs, and aims to demonstrate the considerable power of the tool and
its applicability to non-trivial, interesting protocols.

1 Introduction

A great deal of effort has been invested in the development of techniques for
specifying and verifying security protocols in recent years. This effort is justified,
in particular, by the seriousness of security flaws and the relative simplicity
of security protocols. It has produced a number of interesting methods and
effective tools. These range from mathematical frameworks for manual proofs
to fully automatic model-checkers. The former are fundamentally constrained
by the unreliability and time-scarcity of human provers. The latter tend to be
limited to basic properties of small systems, such as the secrecy of session keys
in finite-state simplifications of protocols; they may be viewed as useful but

*This paper reports on work that was originally presented at the 10th International Static
Analysis Symposium (2003). It is a revision and extension of a paper that appears in the
Symposium’s proceedings [2].

ultimately limited automatic testers. The development of automatic or semi-
automatic tools that overcome these limitations is an important problem and
the subject of active research.

In previous work, we have developed a protocol checker [1,8,9] that can
establish secrecy and authenticity properties of protocols represented directly as
programs in a minimal programming notation (an extension of the pi calculus).
The protocols need not be finite-state; the tool can deal with an unbounded
number of protocol sessions, even executed in parallel. Nevertheless, the proofs
are fully automatic and often fast.

This paper reports on a fairly ambitious application of this tool in the ver-
ification of a recently published protocol for certified email [3]. The protocol
allows a sender to send an email message to a receiver, in such a way that the
receiver gets the message if and only if the sender obtains an unforgeable re-
ceipt for the message. The protocol is non-trivial, partly because of a number
of real-world constraints. The verification yields assurance about the soundness
of the protocol. It also suggests a promising method for reasoning about other,
related protocols.

This case study aims to demonstrate the considerable power of the tool and
its applicability to interesting protocols. It has also served in guiding certain
improvements to the tool. Specifically, formalizing the main properties of the
protocol has lead us to a generalization of the tool to handle a large class of
correspondence assertions [19]. The bulk of the proofs remains fully automatic;
for the code presented in this paper, the automatic proofs take only 4 s on an
Intel Xeon 1.7 GHz processor. Easy manual arguments show that the corre-
spondence assertions capture the expected security guarantees for the protocol.
Because the protocol is expressed directly in a programming notation, without
limitation to finite-state instances, the need for additional arguments to justify
the protocol representation is, if not eliminated, drastically reduced.

Outline We review the description of the certified email protocol in Section 2.
We also review our verification technique, in Section 3, and show how to extend
it so as to handle the correspondence assertions on which we rely here. We
explain our formal specification of the protocol in Section 4, then prove its
security properties in Section 5. We conclude in Section 6, mentioning our work
on the analysis of more elaborate variants of the protocol.

Related work It is fairly common to reason informally about security pro-
tocols, with various degrees of thoroughness and rigor. For instance, Krawczyk
gave some informal arguments about the properties of the Skeme protocol (a
variant of the core of IPsec) when he introduced Skeme [13]. Similarly, the
presentation of the protocol that we treat in this paper included informal proof
sketches for some of its central properties [3]. Generally, such proofs are infor-
mative, but far from complete and fully reliable.

It has been widely argued that formal proofs are particularly important for
security protocols, because of the seriousness of security flaws. Nevertheless,

formal proofs for substantial, practical protocols remain relatively rare. Next
we mention what seem to be the most relevant results in this area.

The theorem prover Isabelle has been used for verifying (fragments of) sev-
eral significant protocols with an inductive method, in particular Kerberos [6, 7],
TLS (a descendant of SSL 3.0) [16], and the e-commerce protocol SET [5]. Fol-
lowing the same general approach, Bella, Longo, and Paulson have recently
verified the certified email protocol that we treat in this paper [4]. They use
this protocol as an example of a “second-level” protocol, that is, a protocol that
depends on the security of an underlying protocol for achieving its goals. Specif-
ically, in the certified email protocol, the receiver and a trusted third party use
a secure channel that can be established with SSH, SSL, or some other proto-
col. While we consider three particular implementations of this channel, Bella
et al. reason with assumptions about the security of the channel, independently
of any particular implementation. Moreover, Bella et al. point out a limitation
of the certified email protocol: the protocol does not provide authentication for
the sender, so anybody can simulate (spoof) the sending of a message. In this
case, the receiver gets the message while the sender gets a receipt for a message
that it did not send. Although this scenario does not contradict the security
properties that we prove, it is unexpected, and it could be prevented.

The suggested implementation of the certified email protocol uses a Java
applet for the protocol code of the receiver. Blanchet and Aziz have recently
modeled this setup in a calculus for security and mobility [10]. Their model
exhibits an attack which had been previously suggested and that occurs when
a malicious applet is given to the receiver. The attack falls outside the scope of
the model developed in this paper; here, the code of each participant is fixed.

The finite-state model checker Murphi has served for the verification of SSL
3.0 [15] and of contract-signing protocols [18]. Somewhat similarly, Mocha
has been used for the verification of contract-signing protocols within a game
model [14]. (Contract-signing protocols have some high-level similarities to pro-
tocols for certified email.) Largely because of tool characteristics, the proofs
in Murphi and Mocha require non-trivial encodings and simplifications of the
protocols under consideration, and of their properties.

Schneider has studied a non-repudiation protocol in a CSP-based model,
with manual proofs [17]. That protocol, which is due to Zhou and Gollmann,
has commonalities with protocols for certified email.

Gordon and Jeffrey have been developing attractive type-based techniques
for proving correspondence assertions of protocols [11,12]. To date, they have
had to support only limited forms of correspondence assertions, and they have
included a limited repertoire of cryptographic primitives. In these respects, their
system 1is insufficient for the protocol that we treat in this paper, and weaker
than the tool that we use. On the other hand, those limitations are probably
not intrinsic.

2 The Protocol

This section recalls the description of the protocol for certified email. This
section is self-contained, but we refer the reader to the original description [3]
for additional details and context.

Protocols for certified email aim to allow a sender, S, to send an email
message to a receiver, R, so that R gets the message if and only if S gets a
corresponding return receipt. Some protocols additionally aim to ensure the
confidentiality of the message.

This protocol, like several others, relies on an on-line trusted third party,
TTP. For simplicity, the channels between TTP and the other parties are as-
sumed to guarantee reliable message delivery. Furthermore, the channel between
R and TTP should provide secrecy and authentication of TTP to R. (These prop-
erties are needed when R gives a password or some other secret to TTP in order
to prove its identity.) In practice such a channel might be an SSL connection
or, more generally, a channel protected with symmetric keys established via a
suitable protocol.

The protocol supports several options for authenticating R. For each email,
S picks one of the options; the choice is denoted by authoption. There are
four authentication options, named BothAuth, TTPAuth, SAuth, and NoAuth.
As these names suggest, the options vary in whether TTP, S, both, or neither
authenticate R. When the authentication option requires it, the authentication
is done as follows:

e TTP authenticates R using a shared secret RPwd—a password that iden-
tifies R to TTP.

e S authenticates R using a query/response mechanism. R is given a query
q by the receiver software and r is the response that S expects R to give.

The protocol relies on a number of cryptographic primitives. The corre-
sponding notation is as follows. E(k, m) is an encryption of m using key k under
some symmetric encryption algorithm. H(m) is the hash of m in some collision-
resistant hashing scheme. A(k, m) is an encryption of m using key k under some
public-key encryption algorithm. S(k, m) is a signature of m using key k under a
public-key signature algorithm. Finally mq | --- | m,, denotes the unambiguous
concatenation of the m;s.

TTP has a public key TTPEncKey that S can use for encrypting messages
for TTP, and a corresponding secret key TTPDecKey. TTP also has a secret key
TTPSigKey that it can use for signing messages and a public key TTPVerKey
that S can use for verifying these signatures.

In the first step of the protocol, S encrypts its message under a freshly gen-
erated symmetric key, encrypts this key under TTPEncKey, and mails this and
the encrypted message to R. Then R forwards the encrypted key to TTP. After
authenticating R appropriately, TTP releases the key to R (so R can decrypt
and read the message) and sends a receipt to S. In more detail, the exchange

em = E(k,m)
hs = H(cleartext | q | r|em)
S2TTP = A(TTPEncKey,S | authoption | “give k to R for hs”)

3. “try k for hg”
4. S(TTPSigKey, “I have released ry K 1or hs

the key for S2TTP”...”)

2. S2TTP | “owner of RPwd
wants key for hg”

1. TTP | em | authoption | cleartext | q | S2TTP
Figure 1: Protocol sketch

of messages goes as follows. (Figure 1, adapted from [3], shows some of this
detail.)
Step 1: When S wishes to send a message m to R:

1.1. S generates a key k. S also picks authoption. If authoption is BothAuth or
SAuth, then S knows or generates a query q to which R should respond r.
If authoption is TTPAuth or NoAuth, then q and r are null.

1.2. S encrypts m with k, letting em = E(k, m).

1.3. S then computes hs = H(cleartext | q | r | em). This hash will both identify
the message to TTP and serve for authenticating R. The part cleartext is
simply a header.

1.4. S computes S2TTP = A(TTPEncKey, S | authoption | “give k to R for hs”).

1.5. S sends Message 1:
MESSACGE 1, S to R: TTP | em | authoption | cleartext | q | S2TTP

Step 2: When R receives a message of the form: TTP | em’ | authoption’ |
cleartext’ | g’ | S2TTP”:

2.1.

2.2,

2.3.

R reads cleartext’ and decides whether it wants to read the message with
the assistance of TTP. Assuming that R decides to proceed, R constructs
a response ' to query q’ if authoption” is SAuth or BothAuth; R simply
uses null for ' if authoption’ is TTPAuth or NoAuth. Similarly, R recalls its
password RPwd for TTP if authoption’ is TTPAuth or BothAuth; R simply
uses null for RPwd if authoption’ is SAuth or NoAuth.

R computes hg = H(cleartext’ | g’ | r' | em’).
R sends Message 2:

MESSAGE 2, R to TTP: S2TTP’ | “owner of RPwd wants key for hr”

This message and the next one are transmitted on the secure channel that
links R and TTP.

Steps 3 and 4: When TTP receives of a message of the form S2TTP” | “owner
of RPwd’ wants key for hjy”:

3.1.

3.2.

3.3.

4.1.

4.2.

TTP tries to decrypt S2TTP” using TTPDecKey. The cleartext should be

I

of the form S | authoption” | “give k' to R’ for ht” with h§ equal to hg.

TTP checks that authoption” is SAuth or NoAuth or that RPwd’ is the
password for R’. If TTP’s check succeeds, it proceeds with Messages 3
and 4.

TTP sends Message 3:
MESSAGE 3, TTP to R: “try k’ for hi”

Upon receipt of such a message R uses k’ to decrypt em’, obtaining m.

TTP sends Message 4. If authoption” is BothAuth or TTPAuth, it sends:

MESSAGE 4, TTP to S:
S(TTPSigKey, “T have released the key for S2TTP” to R'”)

Otherwise, it sends:

MESSAGE 4, TTP to S:
S(TTPSigKey, “I have released the key for S2TTP"”)

When S receives Message 4, it checks this receipt. Later on, if the au-
thentication option was BothAuth or TTPAuth and S wants to prove to a
judge that R has received m, S can provide this message, em, k, cleartext,
g, and r, and the judge should check that these values and TTP’s public
key match.

3 The Verification Tool

In this section we review the verification tool that we employ for our analysis
(see [1,8,9] for further information). We also explain how we extend this tool.

The tool requires expressing protocols in a formal language, which we de-
scribe below. The semantics of this language is the point of reference for our
proofs. The tool is sound, with respect to this semantics. (So proofs with
the tool can guarantee the absence of attacks captured in this semantics, but
not necessarily of other attacks.) On the other hand, the tool is not complete;
however, it is successful in substantial proofs, as we demonstrate.

3.1 The Input Language

The verifier takes as input the description of a protocol in a little programming
language, an extension of the pi calculus. This calculus represents messages
by terms M, N, ..., and programs by processes P, @, Identifiers are
partitioned into names, variables, constructors, and destructors. We often use
a, b, and ¢ for names, z for a variable, f for a constructor, and g for a destructor.

Constructors are functions that serve for building terms. Thus, the terms
are variables, names, and constructor applications of the form f(My,..., M,).
A constructor f of arity n is introduced with the declaration fun f/n. On the
other hand, destructors do not appear in terms, but only manipulate terms in
processes. They are partial functions on terms that processes can apply. The
process let x = g(My, ..., M,) in P else Q tries to evaluate g(My,..., M,); if
this succeeds, then x is bound to the result and P is run, else @ is run. More
precisely, a destructor g of arity n is described with a set of reduction rules
of the form g(M,...,M,) — M where My,..., M,, M are terms without free
names. These reduction rules are specified in a reduc declaration. We extend
these rules by g(M7,...,M/}) — M’ if and only if there exists a substitution
o and a reduction rule g(Mj,..., M,) — M in the declaration of g such that
M! = oM, for all i € {1,...,n}, and M’ = oM. Pairing and encryption are
typical constructors; projections and decryption are typical destructors. More
generally, we can represent data structures and cryptographic operations using
constructors and destructors, as can be seen below in our coding of the protocol
for certified email.

The process calculus includes auxiliary events that are useful in specifying
security properties. The process begin(M).P executes the event begin(M),
then P. The process end(M).P executes the event end(M), then P. We prove
security properties of the form “if a certain end event has been executed, then
certain begin events have been executed”.

Most other constructs of the language come from the pi calculus. The in-
put process in(M, z); P inputs a message on channel M, then runs P with the
variable bound to the input message. The output process out(M, N); P out-
puts the message N on the channel M, then runs P. The nil process 0 does
nothing. The process P | Q) is the parallel composition of P and Q. The
replication ! P represents an unbounded number of copies of P in parallel. The

restriction new a; P creates a new name a, then executes P. The let definition
let x = M in P runs P with z bound to M, and if M = N then P else
runs P when M equals N, otherwise it runs (. As usual, we may omit an else
clause when it consists of 0.

The name a is bound in the process new a; P. The variable x is bound
in P in the processes in(M,x); P, let x = g(My,...,M,) in P else @, and
let = M in P. We write fn(P) and fv(P) for the sets of names and variables
free in P, respectively. A process is closed if it has no free variables; it may have
free names. Processes that represent complete protocols are always closed.

The formal semantics of this language can be defined by a reduction relation
on configurations, as explained in the appendix. (This semantics, as well as the
proof method, have evolved in minor ways since previous publications [9].) A
reduction trace is a finite sequence of reduction steps.

We generally assume that processes execute in the presence of an adversary,
which is itself a process in the same calculus. The adversary need not be pro-
grammed explicitly; we usually establish results with respect to all adversaries.
We need only constrain the initial knowledge of the adversary, which we rep-
resent with a set of names Init, and restrict the adversary not to use auxiliary
events:

Definition 1 Let Init be a finite set of names. The closed process @ is an
Init-adversary if and only if fn(Q) C Init and @Q does not contain begin or end
events.

3.2 The Internal Representation and the Proof Engine

Given a protocol expressed as a process in the input language, the verifier first
translates it, automatically, into a set of Horn clauses (logic programming rules).

In the rules, messages are represented by patterns, which are expressions
similar to terms except that names a are replaced with functions al...]. A free
name a is replaced with the function without parameter al] (or simply @), while
a bound name is replaced with a function of inputs above the restriction that
creates the name. The rules are written in terms of four kinds of facts:

e attacker(p) means that the adversary may have the message p;

e mess(p,p’) means that the message p’ may be sent on channel p;

begin(p) means that the event begin(p) may have been executed;
e end(p) means that the event end(p) may have been executed.

The verifier uses a resolution-based solving algorithm in order to determine
properties of the protocol. Specifically, it implements a function solvep, it (F)
that takes as parameters the protocol P, the initial knowledge of the adversary
Init, and a fact F', and returns a set of Horn clauses. This function first trans-
lates the protocol into a set of Horn clauses C, then saturates this set using a

resolution-based algorithm [9, Sections 4.2 and 4.3]. Finally, this function de-
termines what is derivable. More precisely, let F’ be an instance of F'. Let Cp, be
any set of closed facts begin(p). We can show that the fact F” is derivable from
CUC, if and only if there exist a clause Fi A...AF,, — Fy in solvep s (F') and a
substitution o such that F/ = cFy and oF1,...,oF, are derivable from C U Cp.
In particular, when solvep rit(F) = @}, no instance of F is derivable. Other
values of solvep it (F') give information on which instances of F' are derivable,
and under which conditions. In particular, the begin facts in the hypotheses of
the clauses in solve p 1 (F') indicate which begin facts must be in Cp in order to
prove F, that is, which begin events must be executed.

3.3 Secrecy

In the input language, we define secrecy in terms of the communications of a
process that executes in parallel with an arbitrary attacker. This treatment of
secrecy is a fairly direct adaptation of our earlier one [1], with a generalization
from free names to terms.

Definition 2 (Secrecy) Let P be a closed process and M a term such that
(M) C fn(P). The process P preserves the secrecy of all instances of M
from Init if and only if for any Init-adversary @, any ¢ € fn(Q), and any
substitution o, no reduction trace of P | Q executes out(c,cM).

The following result provides a method for proving secrecy properties:

Theorem 1 (Secrecy) Let P be a closed process. Let M be a term such that
fn(M) C fn(P). Let p be the pattern obtained by replacing names a with patterns
al] in the term M. Assume that solve p it (attacker(p)) = 0. Then P preserves
the secrecy of all instances of M from Init.

Basically, this result says that if the fact attacker(p) is not derivable then the
adversary cannot obtain the term M that corresponds to p.

3.4 Correspondence Assertions

As shown in [9], the verifier can serve for establishing correspondence asser-
tions [19] of the restricted form “if end(M) has been executed, then begin(M)
must have been executed”. Here, we extend this technique so as to prove
specifications of the more general form “if end(/N) has been executed, then
begin(M;), ..., begin(M;) must have been executed”, and even more generally
“if end (V) has been executed, then there exists some ¢ such that begin(M;),
..., begin(M;;,) must have been executed”. Deemphasizing technical differ-
ences with Woo’s and Lam’s definitions, we refer to these specifications as cor-
respondence assertions. Below, we use correspondence assertions for establishing
that R gets S’s message if and only if S gets a corresponding receipt.
We define the meaning of these specifications as follows:

Definition 3 (Correspondence) Let P be a closed process and N, M;; for
ie{l,....,n}and j € {1,...,1;} be terms whose free names are among the free
names of P. The process P satisfies the correspondence assertion

end(N) ~ \/ begin(M;1),...,begin(M;,)

i=1

with respect to Init-adversaries if and only if, for any Init-adversary @, for any
o defined on the variables of N, if end(ocN) is executed in some reduction trace
of P | @, then there exists ¢ € {1,...,n} such that we can extend o so that for
ke{l,...,l;}, begin(ocM;;) is executed in this trace as well.

Analogously to Theorem 1, the next theorem provides a method for proving
these correspondence assertions with our verifier.

Theorem 2 (Correspondence) Let P be a closed process and N, M;; for i €
{1,...,n} and j € {1,...,1;} be terms whose free names are among the free
names of P. Let p, pij be the patterns obtained by replacing each name a with
the corresponding pattern a[] in the terms N, M;; respectively. Assume that,
for all rules R in solvep mi(end(p)), there existi € {1,...,n}, o', and H such
that R = H A begin(c'pi1) A ... A begin(o'py,) — end(c’p). Then P satisfies the
correspondence assertion

n
end(N) ~ \/ begin(M;1), ..., begin(M;,)

i=1
with respect to Init-adversaries.

Intuitively, the condition on R means that, for the fact end(c’p) to be derivable,
begin(c'pi1), - .., begin(c'p;,) must be derivable for some 7. The conclusion of
the theorem is the corresponding statement on events: if end(cN) has been
executed, then begin(cM;1), ..., begin(cM;;,) must have been executed as
well for some 3.

4 Formalizing the Protocol

In order to analyze the protocol for certified email, we program it in the verifier’s
input language, following the informal specification rather closely. In the code
below, comments such as “Step 1.1” refer to corresponding steps of the informal
specification.

The code represents the situation in which all principals proceed honestly.
In Section 5, when we consider situations in which S or R are adversarial and
may therefore not execute this code, we simplify the specification accordingly.
In addition, in order to specify and prove security properties, we add events (at
the program points marked Event S, Event R, Event TTP, and Event TTP’).

10

(* Public-key cryptography *)
fun pk/1.

fun A/2.

reduc decA(y, A(pk(y),z)) = x.

(* Signatures *)

fun S/2.

fun Spk/1.

reduc checkS(Spk(y),S(y, z)) = .
reduc getS(S(y, z)) = x.

(* Shared-key cryptography *)
fun E/2.
reduc decE(y, E(y,x)) = «.

(* Hash function *)
fun H/1.

(* Constants to identify messages *)
fun Give/0. fun Wants/0. fun Try/0. fun Released/0.

(* Constant authentication modes *)
fun Auth/0. fun NoAuth/0.

(* Null constant *)
fun null/0.

(* Function used to handle the various authentication modes *)
reduc getAuth(g, NoAuth) = null;
getAuth(g, Auth) = g¢.

(* Function from R’s password to R’s name *)
fun PasswdTable/1.

(* It is assumed that an attacker cannot relate q and r = Reply(h, q) except for
the hosts h it creates itself *)

private fun Reply/2.

reduc ReplyOwnHost(z, ¢) = Reply(PasswdTable(x), q).

(* Build a message *)
private fun Message/3.

(* Secrecy assumptions *)
not TTPDecKey.
not TTPSigKey.

(* Free names (public and private constants) *)
free c, cleartext, Sname, TTPname.
private free TTPDecKey, TTPSigKey, RPwd.

11

let processS =
(* The attacker chooses possible recipients of the message *)
in(c, recipient);

(* The attacker chooses the authentication mode *)
in(c, (sauth, ttpauth));

(* Build the message to send *)
new msgid;let m = Message(recipient, msgid, (sauth, ttpauth)) in

(* Step 1.1 *)

new k;

new gtmp;

let ¢ = getAuth(gtmp, sauth) in

let r = getAuth(Reply(recipient, gtmp), sauth) in

(* Step 1.2 %)

let em = E(k, m) in

(* Step 1.3 *)

let hs = H((cleartext, ¢, r, em)) in

(* Step 1.4 %)

let S2TTP = A(TTPEncKey, (Sname, (sauth, ttpauth),
(Give, k, recipient, hs))) in

(* Event S [to be added later] *)

(* Step 1.5 *)

out(recipient, (TTPname, em, (sauth, ttpauth), cleartext, ¢, S2TTP)));

(* Step 4.2 %)
|

in(Sname, mess4);
if ttpauth = Auth then

(
let (= Released,= S2TTP, = recipient) = checkS(TTPVerKey, mess/) in
(*S knows that the recipient has read the message *)
end(SthinksRhas(m))
else out(Sname, mess/)
) else (
let (= Released,= S2TTP) = checkS(TTPVerKey, mess/) in
(*S knows that somebody has read the message *)
end(SthinksRhas(m))
else out(Sname, mess/)
).

let processR =
(* Step 2 %)
in(Rname, (= TTPname, em?2, (sauth, ttpauth), cleartext2, q2, S2TTP2));
(* Step 2.1 %)
let r2 = getAuth(Reply(Rname, ¢2), sauth) in

12

(* Step 2.2 *)

let hr = H((cleartext2, ¢2,12, em?2)) in

(* Establish the secure channel R-TTP *)
new secchannel;

out(ChannelToTTP, Rname);
out(ChannelToTTP, secchannel);

let outchannel = (TTPname, secchannel) in
let inchannel = (Rname, secchannel) in

(* Event R [to be added later] *)

(* Step 2.3 %)

out(outchannel, (S2TTP2, (Wants, getAuth(RPwd, ttpauth), hr)));

(* Step 3.3 %)
|

in(inchannel, (= Try, k3, = hr));

let m3 = decE(k3, em2) in

(* R has obtained the message m3 = m *)
end(Rreceived(m3)).

let processTTP =
(* Establish the secure channel R-TTP *)
in(ChannelToTTP, receivername);
in(ChannelToTTP, secchannel);
let inchannel = (TTPname, secchannel) in
let outchannel = (receivername, secchannel) in

(* Step 3 *)
in(inchannel, (S2TTPS3, (= Wants, RPwd3, hr3)));
(* Step 3.1 %)
let (Sname3, (sauth3, ttpauth3), (= Give, k3, R3,= hr3)) =
decA(TTPDecKey, S2TTP3) in
(* Step 3.2 *)
if R3 = receivername then
(
if (ttpauths, R3) = (Auth, PasswdTable(RPwd3)) then
(* Event TTP [to be added later] *)
(* Step 3.3 *)
out(outchannel, (Try, k3, hr3));

(* Step 4.1 %)

out(Sname3, S(TTPSigKey, (Released, S2TTP3, R3)))
else if ttpauthd = NoAuth then

(* Event TTP’ [to be added later] *)

(* Step 3.3 *)

out(outchannel, (Try, k3, hr3));

(* Step 4.1 *)

13

out(Sname3, S(TTPSigKey, (Released, S2TTP3)))

process
let TTPEncKey = pk(TTPDecKey) in out(c, TTPEncKey);
let TTPVerKey = Spk(TTPSigKey) in out(c, TTPVerKey);
let Rname = PasswdTable(RPwd) in out(c, Rname);
new ChannelToTTP;
((YprocessS) | (\processR) | (processTTP)
| (Yin(c, m); out(ChannelToTTP, m)))

This code first declares cryptographic primitives. For instance, the construc-
tor A is the public-key encryption function, which takes two parameters, a public
key and a cleartext, and returns a ciphertext. The constructor pk computes a
public key from a secret key. The destructor decA is the corresponding decryp-
tion function. From a ciphertext A(pk(y),) and the corresponding secret key v,
it returns the cleartext z. Hence we give the rule decA(y, A(pk(y),x)) = x. We
assume perfect cryptography, so the cleartext can be obtained from the cipher-
text only when one has the decryption key. We define signatures, shared-key
encryption, and a hash function analogously. Note that the constructor Spk
that builds a public key for signatures from a secret key is different from the
constructor pk that builds a public key for encryptions. The destructor checkS
checks the signature, while getS returns the cleartext message without checking
the signature. (In particular, the adversary may use getS in order to obtain
message contents from signed messages.) Concatenation is represented by tu-
ples, which are pre-declared by default. We also declare a number of constants
that appear in messages.

The four authentication modes are encoded as pairs built from the two con-
stants Auth and NoAuth. The first component of a pair indicates whether S
authenticates R, while the second one indicates whether TTP authenticates R.
Thus, BothAuth is encoded as (Auth, Auth), SAuth as (Auth, NoAuth), TTPAuth
as (NoAuth, Auth), and NoAuth as (NoAuth, NoAuth). This encoding makes it
easier to tell whether S or TTP should authenticate R. In the protocol, sev-
eral message components are null when no authentication is done, while they
take another value when some authentication is required. The function getAuth
serves for handling such situations: it takes as arguments the value g when
authentication is required and the authentication status NoAuth or Auth, and
returns the value to use, either null or gq.

The constructor PasswdTable computes the name of a receiver from its pass-
word, and represents the password table (host name, host password). Since all
host names are public but some passwords are secret, the adversary must
not be able to compute the appropriate password from a host name, so we
define a function that maps passwords to host names but not the converse:
host name = PasswdTable(host password). One advantage of this encoding is
that we can compactly model systems with an unbounded number of hosts.

The challenge-response authentication of R by S goes as follows. S creates an

14

arbitrary query ¢, and the reply r to this query is computed by the constructor
Reply, so 7 = Reply(h,q) where h is the recipient host name. Both S and R
can use the constructor Reply. However, this constructor is declared private,
that is, the adversary cannot apply it. (Otherwise, it could impersonate R.)
The adversary must be able to compute replies for hosts that it creates, that is,
when it has the password of the host. Therefore, we define a public destructor
ReplyOwnHost that computes a reply from the query and the password of the
host.

The constructor Message builds the messages that S sends to R. We assume
that these messages are initially secret, so we make the constructor private. We
also assume that S sends different messages when the recipient or the authenti-
cation option differ, so let a message be a function of the recipient, of a message
identifier, and of the authentication mode.

Secrecy assumptions correspond to an optimization of our verifier. The
declaration not M indicates to the verifier that M is secret. The verifier can
then use this information in order to speed up the solving process. At the end of
solving, the verifier checks that the secrecy assumption is actually true, so that
a wrong secrecy assumption leads to an error message but not to an incorrect
result.

The declaration free declares public free names. c¢ is a public channel,
cleartext is the header of the messages sent by S, and Sname and TTPname are
the names of S and TTP, respectively. R’s name is Rname = PasswdTable(RPwd)
so it not a free name. (It is declared at the end of the protocol.) The decla-
ration private free declares private free names (not known by the adversary);
TTPDecKey and TTPSigKey are TTP’s secret keys, and RPwd is R’s password.

The processes processS, processR, and processTTP represent S, R, and TTP,
respectively. These processes are composed in the last part of the protocol spec-
ification. This part computes TTP’s public encryption key from its secret key by
the constructor pk: TTPEncKey = pk(TTPDecKey). The public key TTPEncKey
is output on the public channel ¢ so that the adversary can have TTPEncKey. We
proceed similarly for the key pair (TTPSigKey, TTPVerKey). At last, we com-
pute R’s name from its password: Rname = PasswdTable(RPwd). This name is
public, so we send it on channel ¢, so that the adversary can have it. In the
following, we use Rname as an abbreviation for the term PasswdTable(RPwd).
The role of ChannelToTTP and of the last element of the parallel composition
is explained below in the description of processR.

The process processS first receives the name of the host to which S is going to
send its message, on the public channel c. Thus, the adversary can choose that
host. This conservative assumption implies that S can send its message to any
host. Similarly, processS receives the authentication mode to be used for this
message. Then S builds the message: it creates a new message id msgid, and
builds the message m by calling the constructor Message. Then it executes the
steps of the protocol description. For instance, in step 1.1, it creates a new key
k by new k and a new query gtmp by new qtmp. It computes ¢ by setting it to
gtmp when S authenticates R and to null otherwise, using the function getAuth.
Similarly, it computes the corresponding reply, and sets r either to the value of

15

this reply or to null using the function getAuth. In step 1.4, the sentence “give k
to recipient for hs” is represented by a tuple containing the constant Give and the
parameters k, recipient, and hs. Other sentences are represented analogously.
Note that, at step 1.5, we send the message to the recipient on channel recipient.
In our coding of the protocol, the channel always indicates the destination of
the message. This indication makes it easier to define the meaning of “a mes-
sage reaches its destination”, but it is only an indication: when the channel is
public, the adversary may still obtain the message or send its own messages
on the channel. In the destructor application of step 4.2, we use a pattern-
matching construct: let (= Released, = S2TTP,= recipient) = ... in ... A
pattern (p1,...,p,) matches a tuple of arity n, when p1, ..., p, match the com-
ponents of the tuple. A pattern x matches any term, and binds x to this term.
A pattern = M matches only the term M. So the destructor application of step
4.2 succeeds if and only if mess/ = S(TTPSigKey, (Released, S2TTP, recipient)).
The same pattern-matching construct is used for message input. When the check
of mess4 fails, the incoming message mess4 is returned on the channel Sname
(by the else clause of the destructor application), so that another session of S
can get it. We assume that the execution is fair, so that all sessions of S get
a chance to have the receipt mess4. Moreover, because of the replication at
the beginning of step 4.2, S still waits for a receipt from TTP even after receiv-
ing a wrong receipt. In an actual implementation, S would store a set of the
messages it has sent recently and for which it has not yet obtained a receipt.
When obtaining a receipt, it would look for the corresponding message in this
set. Our coding represents this lookup by returning the receipt on Sname until
it is consumed by the right session of S. When the receipt has been success-
fully checked, S executes the event end(SthinksRhas(m)). This event, which is
used below in the proofs, indicates that somebody has read the message; the
guarantees on who has read the message depend on the authentication mode.
The process processR first executes steps 2.1 and 2.2, then it establishes a
secure connection with TTP. The informal specification does not spell out the
details related to this connection, so we need to pick them. Several reasonable
choices are available; we explore one here and mention others in Section 6. In
order to establish the connection with TTP, R employs an asymmetric channel
ChannelToTTP (created at the end of the protocol description) on which any-
body can write but only TTP can read. For starting a connection with TTP,
one sends its own name receivername (here Rname) and a new name secchannel
on ChannelToTTP. Further exchanges between R and TTP are then done on
channels (TTPname, secchannel) from R to TTP and (receivername, secchannel)
from TTP to R. We use pairs for channels so as to mention explicitly the des-
tination host in the channel name. One might see some similarity with TCP
connections, in which packets contain destination addresses. Since the name
secchannel created by R is secret, only R and TTP will be able to send or
receive messages on (TTPname, secchannel) and (receivername, secchannel), so
the channel between R and TTP is indeed secure. This channel provides au-
thentication of TTP, since only TTP can read on ChannelToTTP. Any host can
send messages on ChannelToTTP, and thus start a connection with TTP. So the

16

authentication of R is not provided by the channel but by the password check
that TTP performs (in step 3.2). R writes on that channel, TTP reads on it. In
order to allow the adversary to write on that channel, we use a relay process
(lin(c, m); out(ChannelToTTP, m)) (last line of the protocol description) that
gets a message on ¢ and resends it on ChannelToTTP. Thus, by sending a mes-
sage on c, the adversary can send it on ChannelToTTP. After establishing the
connection with TTP, R continues the execution of steps 2.3 and 3.3. In the
end, R executes the event Rreceived(m3), to note that R has correctly received
the message m3. Below, this event is useful in the security proofs.

The process processTTP first establishes a secure channel with a message
recipient, as explained above. Then it executes step 3. Note that, at the begin-
ning of step 3.2, it checks that its interlocutor in the connection, receivername,
actually corresponds to the expected receiver of the message, R3. This check
ensures that the message on outchannel goes to the expected receiver of the
message. Finally, TTP sends the key k3 to the receiver of the message (step
3.3) and the receipt to the sender (step 4.1).

5 Results

In this section we present the proofs of the main security properties of the
protocol. We heavily rely on the verifier for these proofs.

5.1 Secrecy

Let Py be the process that represents the protocol. The verifier can prove
automatically that this process preserves the secrecy of the message m sent by
S to R when R is authenticated by at least one party, S or TTP.

Proposition 1 Let Init = {Sname, TTPname, c, cleartext}. The process Py pre-
serves the secrecy of all instances of Message(Rname, i, a) from Init, when a is
(Auth, 2) or (z,Auth).

Automatic proof: We give the appropriate queries attacker (Message(Rname,
i, (Auth, 2))) and attacker(Message(Rname, i, (z, Auth))). For each of these two
queries F, the tool computes solvep, mi(F) = (. Hence, by Theorem 1, the
process Py preserves the secrecy of Message(Rname, i, a) from Init, when a is
(Auth, 2) or (z, Auth). O

When R is not authenticated, on the other hand, an attacker may imperson-
ate R in order to obtain the message, so secrecy does not hold.

5.2 Receipt

The main correctness property of the protocol is the following: when TTP
authenticates R, R receives the message m if and only if S gets a proof that R

17

has received the message. This proof should be such that, if S goes to a judge
with it, the judge can definitely say that R has received the message.

This property holds only when the delivery of messages is guaranteed on the
channels from TTP to R, from TTP to S, and from S to the judge, hence the
following definition.

Definition 4 We say that a message m sent on channel ¢ reaches its destination
if and only if it is eventually received by an input on channel ¢ in the initial
process Py or a process derived from Fy. If the adversary receives the message,
it reemits the message on channel c.

Furthermore, we use the following fairness hypotheses:

e If infinitely often a reduction step can be executed, then it will eventually
be executed.

e If a message m is sent on channel ¢, and some inputs on channel ¢ reemit
it, that is, they execute in(c,m)...out(c,m), and some do not reemit m
on ¢, then m will eventually be received by an input that does not reemit
it.

Although this definition and these hypotheses are stated somewhat informally,
they can be made precise in terms of the semantics of the language. Several
variants are possible.

The fact that messages reach their destination and the fairness hypotheses
cannot be taken into account by our verifier, so it cannot prove the required
properties in a fully automatic way. Still, the verifier can prove a correspondence
assertion that constitutes the most important part of the proof. Indeed, we
have to show properties of the form: if some event e; has been executed, then
some event ey has or will be executed. The verifier shows automatically the
correspondence assertion: if e; has been executed then some events e}, have been
executed before e;. We show manually that if the events e/, have been executed,
then es will be executed after e}. Thus the correspondence assertion captures
the desired security property. The manual proof just consists in following the
execution steps of the process after e5. It is much simpler than the first part,
which should go backward through all possible execution histories leading to e;.
Fortunately, the first part is fully automatic.

We use the following process to represent the judge to which the informal
specification of the protocol alludes:

fun Received/0.
free Judgename.

let processJudge =
(*S must send TTP’s certificate plus other information *)
in(Judgename, (certif , Snames, k5, cleartexts, ¢5, 15, em5));
let (= Released, S2T'TP5, Rname5) = checkS(TTPVerKey, certif) in
let m5 = decE(k5, em5) in

18

let hs5 = H((cleartext5, ¢5,75, em5)) in

let give5 = (Give, k5, Rname5, hs5) in

if S2TTP5 = A(TTPEncKey, (Snamed, (Auth, Auth), give5))

or S2TTP5 = A(TTPEncKey, (Snames, (NoAuth, Auth), give5)) then
(* The judge says that Rnamed has received mbd *)
end(JudgeSays(Received, Rnames, m5)).

According to this process definition, the judge receives a certificate from S,
tries to check it, and if it succeeds, says that the receiver has received the
message; the judge says something only when the authentication option is of
the form (_, Auth), that is, when TTP authenticates R. This process is executed
in parallel with processR, processTTP, and processS. At the end of processsS,
after executing end(SthinksRhas(m)) when ttpauth = Auth, the sender S sends
to the judge:

out(Judgename, (mess/,Sname, k, cleartext, ¢, r, em))

The result to prove decomposes into two propositions, Propositions 2 and 3.

Proposition 2 Assume that the messages from TTP sent on Sname8 and from
S sent on Judgename reach their destinations. If TTP authenticates R and R
has received m, then the judge says that R has received m.

In this proof, R is included in the adversary: R tries to get a message without
S having the corresponding receipt. So we need not constrain R to follow the
protocol. The process for R becomes:

out(c, ChannelToTTP); out(c, RPwd) | in(c, m); end(Rreceived(m))

This process reveals all the information that R has. When the adversary obtains
some message m, it can send it on ¢, thus execute the event end(Rreceived(m)).
Since R is included in the adversary, the adversary can compute the constructor
Reply, so its declaration becomes: fun Reply/2. Writing Py for the resulting
process that represents the whole system, the proposition becomes, more for-
mally:

Proposition 2’ Assume that the messages from TTP sent on Sname3
and from S sent on Judgename reach their destinations. Let Init =
{Sname, TTPname, Judgename, c, cleartext}. For any Init-adversary Q, if
the event end(Rreceived(Message(M,, M;, (M, Auth)))) is executed in a re-
duction trace of Py | Q for some terms M,, M,;, and M,, then
end(JudgeSays(Received, M, Message(M, M;, (M., Auth)))) is executed in all
continuations of this trace.

At point Fvent TTP, we introduce the event begin(TTP_send(Snames3,
S(TTPSigKey, (Released, S2TTP3, R3)))), to note that TTP sends the receipt
S(TTPSigKey, (Released, S2TTP3, R3)) to S. At point Fvent S, we introduce
the event begin(S_has(Sname, k, cleartext, ¢, 7, m)), to note that S has all pa-
rameters needed to obtain the answer from the judge (except TTP’s receipt).

19

Automatic part of the proof: We invoke our tool with the query
end(Rreceived(Message(z, i, (z, Auth)))), to determine under which conditions
an instance of the corresponding event may be executed. The tool then computes
the set of clauses solve p,, it (end(Rreceived(Message(z, i, (z, Auth))))) and re-
turns two clauses, both of the form:

begin(TTP_send(Sname, S(TTPSigKey, (Released, A(TTPEncKey,
(Sname, (p., Auth), (Give, pi, pz, H((cleartext, pg, Dy,

E(pk, Message(p, pi, (P2, Auth)))))))), pz))))A
begin(S_has(Sname, p, cleartext, py, pr, Message(py, pi, (2, Auth))))A

H — end(Rreceived(Message(pg, pi, (pz, Auth))))

for some patterns py, pi, Pq, Pr, Pi, P2, and some hypothesis H. (These clauses
concern p, = NoAuth and p, = Auth respectively.)

So, by Theorem 2, if end(Rreceived(Message(M,,, M;, (M, Auth)))) is exe-
cuted in a trace of Py | @, then the events

begin(TTP_send(Sname, certificate))
begin(S_has(Sname, My, cleartext, My, M,., Message(M, M;, (M, Auth))))

are executed in this trace for some terms My, M,, and M,, with certificate =
S(TTPSigKey, (Released, A(TTPEncKey, (Sname, (M., Auth), (Give, My, M,,
H((cleartext, My, M,, E(M}, Message(M,, M;, (M, Auth)))))))), My)).

Manual part of the proof: Since TTP executes begin(TTP_send(Sname,
certificate)) as proved above, it is then going to execute out(Sname, certificate).
Since this message reaches its destination, it will then be received by an input
on Sname from Py, that is, by the last input of processS. Moreover, the session
that has executed begin(S_has(Sname, My, cleartext, My, M,., Message(M,,, M;,
(M, Auth)))) does not reemit this message, so by the fairness hypothesis, this
message will be received by a session of S that does not reemit it. Such a
session successfully checks the certificate and sends it to the judge on the channel
Judgename. Since this message reaches its destination, it will be received by the
input on Judgename in processJudge. Then the judge also checks successfully
the certificate (the check always succeeds when S’s check succeeds), so the judge
executes end(JudgeSays(Received, M, , Message(M,, M;, (M, Auth)))). O

The verifier proves the required correspondence assertion in a fully automatic
way. It is then only a few lines of proof to obtain the desired security property.
Moreover, we need not even know in advance the exact correspondence assertion
to consider: the verifier tells us which correspondence assertion holds for the
given end event.

Turning to the guarantees for R, we establish:

Proposition 3 Assume that the message from TTP sent on outchannel reaches
its destination. If the judge says that R has received m, then R has received m.

20

In this proof, S is included in the adversary: S may try to fool the judge into
saying that R has received a message it does not have. Therefore, we need not
be specific on how S behaves, so the process for S is simply 0. The adversary can
compute the constructor Reply, so its declaration becomes: fun Reply/2. Writ-
ing Py for the resulting process that represents the whole system, the proposition
becomes, more formally:

Proposition 3’ Assume that the message from TTP sent on outchannel
reaches its destination. Let Init = {Sname, TTPname, Judgename, c, cleartext}.
For any Init-adversary Q, if end(JudgeSays(Received, Rname, M,,)) is exe-
cuted in a reduction trace of Py | @ for some term M,,, then the event
end(Rreceived(M,,)) is executed in all continuations of this trace.

At point Event R, we introduce the event begin(R_has(secchannel, em?2,
hr)), to note that R has received the encrypted message. At point Event TTP,
we introduce the event begin(TTP_send(outchannel, (Try, k3, hr3))) to note
that TTP sends the key k3 to R.

Automatic part of the proof: We invoke our verifier with the query
end(JudgeSays(Received, Rname, m)). The tool then computes the set of clauses
solve py, init (end(JudgeSays(Received, Rname, m))) and returns four clauses (one
for each authentication option), all of the form:

begin(TTP _send((Rname, psecchannet), (Tty, &, Drr)))A

begm(R_haS (psecchannel; E(ka m)vphr))/\
H — end(JudgeSays(Received, Rname, m))

for some patterns pp, and Psecchannel, and some hypothesis H. So, by Theorem 2,
if the event end(JudgeSays(Received, Rname, M,,,)) is executed in a reduction
trace of Py | @ for some term M,,, then the events

begin(R_has(Msecchannel; E(Mkv M’m)v Mh?“))
begin(TTP_send((Rname, Msecchannet), (Try, My, Mp,)))

are executed in this trace for some terms My, Msecchannel, and Mp,..
Manual part of the proof: Since TTP executes

begin(TTP_send((Rname, Msecchannet), (Try, My, Mp,)))

it will execute out((Rname, Mccehannet), (Try, My, Mp,)). This message reaches
its destination, so it will be received by an input derived from FPy. The only
input that can receive on (Rname, ...) is the last input of R. Since the value of
M ecchannel must correspond, the session of R that receives this message is also
the one that executed begin(R_has(Msecchannel, E(My, M), Mp,)). Then this
session of R is going to execute begin(Rreceived(M,,)), as expected.

Note that the replication in R ensures that the input is always possi-
ble, even if the adversary managed to send some “garbage” on the channel
(Rname, Mgecchanner)- In fact, the adversary does not have Mgecchanner SO it

21

cannot send on the channel (Rname, Msccchanner); by proving this fact we could
remove the replication. On the other hand, the replication is needed in certain
implementations of the secure channel between R and TTP, so we have included
it in our coding of the protocol. O

When TTP does not authenticate R, a dishonest S could impersonate R in
order to obtain the receipt. Thus, the above results cannot be extended to this
case. However, we can still prove weaker properties. The first one states that if
somebody has received a message sent by S (and S is honest), then S is going
to receive a receipt that it can check but which is not necessarily convincing for
a judge that does not trust S.

Proposition 4 Assume that the message from TTP sent on Sname3 reaches
its destination. If R has received m, then S receives a corresponding receipt.

As in the proof of Proposition 2, R is included in the adversary, so the process
for R becomes:

out(c, ChannelToTTP); out(c, RPwd) | in(c, m); end(Rreceived (m))

and Reply is declared by fun Reply/2. Writing Py for the resulting process, the
proposition becomes, more formally:

Proposition 4’ Assume that the message from TTP sent on Sname3 reaches
its destination. Let Init = {Sname, TTPname, Judgename, c, cleartext}. For any
Init-adversary Q, if the event end(Rreceived(Message(M,, M;, M,))) is exe-
cuted in a reduction trace of Py | Q for some terms M,, M;, and M,, then
end(SthinksRhas(Message(M,, M;, M,))) is executed in all continuations of this
trace.

We introduce the following events: at point Fvent TTP, we add the event
begin(TTP_send(Sname3,S(TTPSigKey, (Released, S2TTP3, R3)))), at point
Event TTP’, begin(TTP_send(Sname3,S(TTPSigKey, (Released, S2TTP3)))),
and at point FEvent S, begin(S_has(Sname, k, cleartext, ¢, 7, m)).

Automatic part of the proof: We invoke our tool with the query
end(Rreceived(Message(z, i, 2))). The tool then computes the set of clauses
solve p, mit(end(Rreceived (Message(z, 7, z)))) and returns four clauses (one for
each authentication option). Two clauses are of the form:

begin(TTP_send(Sname, S(TTPSigKey, (Released, A(TTPEncKey,
(Sname, (p’,, Auth), (Give, p, p., H((cleartext, py, pr,

E(px, Message(pz, pi, (P}, Auth)))))))), pz)))) A
begin(S_has(Sname, py, cleartext, py, p,, Message(pz, pi, (p),, Auth))))A

H — end(Rreceived (Message(pa, pi, (p),, Auth))))

22

and two are of the form

begin(TTP_send(Sname, S(TTPSigKey, (Released, A(TTPEncKey,
(Sname, (p’,, NoAuth), (Give, py, ps, H((cleartext, py, pr,

E(p, Message(p., pi, (p’,, NoAuth))))))))))))A
begin(S_has(Sname, py, cleartext, py, p,, Message(pa, pi, (p,, NoAuth))))A

H — end(Rreceived(Message(p, pi, (p,, NoAuth))))

for some patterns pg, pi, Pq, Pr, Di, Ps, and some hypothesis H.
So, by Theorem 2, if end(Rreceived(Message(M,, M;, M,))) is executed in
a trace of Py | @, then the events

begin(TTP_send(Sname, certificate))
begin(S_has(Sname, My, cleartext, My, M,., Message(M, M;, M,)))

are executed in this trace for some terms My, M,, and M,, with
S2TTP = A(TTPEncKey, (Sname, M, (Give, My, M, H((cleartext, My, M,,
E(My, Message(M,, M;,M,))))))) and either certificate = S(TTPSigKey,
(Released, S2TTP,M,)) and M, = (_,Auth), or certificate = S(TTPSigKey,
(Released, S2TTP)) and M, = (_, NoAuth).

Manual part of the proof: The manual proof is quite similar to the be-
ginning of the proof of Proposition 2’. Much as in that proof, we have that
TTP executes out(Sname, certificate). Since this message reaches its desti-
nation, it will be received by the last input of processS. Moreover, the ses-
sion that executes begin(S_has(Sname, My, cleartext, My, M,., Message(M,,, M,,
M.))) does not reemit this message (in both cases mentioned above), so by the
fairness hypothesis, this message will be received by a session of S that does
not reemit it. Such a session successfully checks the certificate and executes
end(SthinksRhas(Message(M,, M;, M,))). O

A further property says that if S authenticates R, and S receives a correct
receipt, then R has received the message (assuming that S and R are honest).

Proposition 5 Assume that the message from TTP sent on outchannel reaches
its destination. IfS authenticates R, and S receives a correct receipt for m, then
R has received m.

Writing Py for the process that represents the protocol, the proposition becomes,
more formally:

Proposition 5° Assume that the message from TTP sent on outchannel
reaches its destination. Let Init = {Sname, TTPname,c,cleartext}. For any
Init-adversary @, if end(SthinksRhas(Message(Rname, M;, (Auth, M.)))) is ex-
ecuted in a reduction trace of Py | @ for some terms M; and M,, then the
event end(Rreceived(Message(Rname, M;, (Auth, M)))) is executed in all con-
tinuations of this trace.

23

We introduce the following events: at point Event R, we add the event
begin(R_has(secchannel, em2, hr)); at points Event TTP and Event TTP’, we
add the event begin(TTP_send(outchannel, (Try, k3, hr3))).

Automatic part of the proof: We invoke our verifier with the query
end(SthinksRhas(Message(Rname, i, (Auth, 2)))). The tool then computes the
set of clauses solve p,, mit (end(SthinksRhas(Message(Rname, 4, (Auth, z))))) and
returns three clauses, all of the form:

begz'n(TTP_send((Rname, psecchannel); (TrY7 Pk, phT’)))/\
begin(R_has (psecchannel; E(pka Message(Rnamevpia (AUthvpz)))vphr))/\
H — end(SthinksRhas(Message(Rname, p;, (Auth,p.))))

for some patterns px, Prr, Dsecchannels Pi> Pz, and some hypothesis H. So, by
Theorem 2, if the event end(SthinksRhas(Message(Rname, M, (Auth, M.)))) is
executed in a reduction trace of Py | @ for some terms M; and M, then the
events

begin(R_has(Msecchannel, E(My, Message(Rname, M, (Auth, M.))), Mp,))
begin(TTP_send((Rname, Msecchannel), (Try, My, Mp,)))

are executed in this trace for some terms My, Msecchannel, and Mp,..
Manual part of the proof: We show that R executes

end(Rreceived(Message(Rname, M;, (Auth, M.))))

exactly as in the proof of Proposition 3’. (I

6 Conclusion

This paper reports on the formal specification of a non-trivial, practical protocol
for certified email, and on the verification of its main security properties. Most
of the verification work is done with an automatic protocol verifier, which we
adapted for the present purposes. The use of this tool significantly reduces the
proof burden. It also reduces the risk of human error in proofs. Although the
tool itself has not been verified, we believe that its use is quite advantageous.

We have also specified and verified more elaborate variants of the protocol,
through similar methods. Specifically, we have treated three ways of establishing
the secure channel between R and TTP: the one explained here, one based on
a small public-key protocol, and one based on a simplified version of the SSH
protocol with a Diffie-Hellman key agreement (challenging in its own right). For
these three versions, the automatic parts of the proofs take 2 min 20 s on an
Intel Xeon 1.7 Ghz. The manual parts are as simple as the ones shown above.
Writing the specifications was more delicate and interesting than constructing
the corresponding proofs.

24

Acknowledgments

Martin Abadi’s research was partly supported by faculty research funds granted
by the University of California, Santa Cruz, and by the National Science Foun-
dation under Grants CCR-0204162 and CCR-0208800.

References

[1]

M. Abadi and B. Blanchet. Analyzing security protocols with secrecy types
and logic programs. In 29th Annual ACM SIGPLAN - SIGACT Sympo-
sium on Principles of Programming Languages (POPL’02), pages 3344,
Portland, OR, Jan. 2002. ACM Press.

M. Abadi and B. Blanchet. Computer-assisted verification of a protocol for
certified email. In R. Cousot, editor, Static Analysis, 10th International
Symposium (SAS’03), volume 2694 of Lecture Notes in Computer Science,
pages 316-335, San Diego, California, June 2003. Springer Verlag.

M. Abadi, N. Glew, B. Horne, and B. Pinkas. Certified email with a light on-
line trusted third party: Design and implementation. In 17th International
World Wide Web Conference (WWW’02), Honolulu, Hawaii, USA, May
2002. ACM Press.

G. Bella, C. Longo, and L. C. Paulson. Verifying second-level security
protocols. In D. Basin and B. Wolff, editors, Theorem Proving in Higher
Order Logics (TPHOLs03), volume 2758 of Lecture Notes in Computer
Science, pages 352-366, Roma, Italy, Sept. 2003. Springer Verlag.

G. Bella, F. Massacci, and L. C. Paulson. The verification of an industrial
payment protocol: The SET purchase phase. In V. Atluri, editor, 9th ACM
Conference on Computer and Communications Security (CCS’02), pages
12-20, Washington, DC, Nov. 2002. ACM Press.

G. Bella and L. C. Paulson. Using Isabelle to prove properties of the
Kerberos authentication system. In DIMACS Workshop on Design and
Formal Verification of Security Protocols, Piscataway, NJ, Sept. 1997.

G. Bella and L. C. Paulson. Kerberos version IV: inductive analysis of
the secrecy goals. In J.-J. Quisquater et al., editors, Computer Security -
ESORICS 98, volume 1485 of Lecture Notes in Computer Science, pages
361-375, Louvain-la-Neuve, Belgium, Sept. 1998. Springer Verlag.

B. Blanchet. An efficient cryptographic protocol verifier based on Prolog
rules. In 14th IEEE Computer Security Foundations Workshop (CSFW-
14), pages 82-96, Cape Breton, Nova Scotia, Canada, June 2001. IEEE
Computer Society.

25

[9]

[12]

[16]

[17]

[18]

[19]

B. Blanchet. From secrecy to authenticity in security protocols. In
M. Hermenegildo and G. Puebla, editors, 9th International Static Analysis
Symposium (SAS’02), volume 2477 of Lecture Notes in Computer Science,
pages 342-359, Madrid, Spain, Sept. 2002. Springer Verlag.

B. Blanchet and B. Aziz. A calculus for secure mobility. In V. Saraswat,
editor, Eighth Asian Computing Science Conference (ASIAN’03), volume
2896 of Lecture Notes in Computer Science, pages 188—204, Mumbai, India,
Dec. 2003. Springer Verlag.

A. Gordon and A. Jeffrey. Authenticity by typing for security protocols. In
14th IEEE Computer Security Foundations Workshop (CSFW-14), pages
145-159, Cape Breton, Nova Scotia, Canada, June 2001. IEEE Computer
Society.

A. Gordon and A. Jeffrey. Types and effects for asymmetric crypto-
graphic protocols. In 15th IEEE Computer Security Foundations Workshop
(CSFW-15), pages 77-91, Cape Breton, Nova Scotia, Canada, June 2002.
IEEE Computer Society.

H. Krawczyk. SKEME: A versatile secure key exchange mechanism for
internet. In Proceedings of the Internet Society Symposium on Network
and Distributed Systems Security (NDSS’96), San Diego, CA, Feb. 1996.
Available at http://bilbo.isu.edu/sndss/sndss96.html.

S. Kremer and J.-F. Raskin. Game analysis of abuse-free contract sign-
ing. In 15th IEEE Computer Security Foundations Workshop (CSEFW-15),
pages 206222, Cape Breton, Nova Scotia, Canada, June 2002. IEEE Com-
puter Society.

J. C. Mitchell, V. Shmatikov, and U. Stern. Finite-state analysis of SSL
3.0. In 7th USENIX Security Symposium, pages 201-216, San Antonio, TX,
Jan. 1998.

L. C. Paulson. Inductive analysis of the Internet protocol TLS. ACM Trans-
actions on Information and System Security, 2(3):332-351, Aug. 1999.

S. Schneider. Formal analysis of a non-repudiation protocol. In 11th IEEE
Computer Security Foundations Workshop (CSFW-11), pages 54—65, Rock-
port, Massachusetts, June 1998. IEEE Computer Society.

V. Shmatikov and J. C. Mitchell. Finite-state analysis of two contract sign-
ing protocols. Theoretical Computer Science, 283(2):419-450, June 2002.

T.Y.C. Wooand S. S. Lam. A semantic model for authentication protocols.
In 1993 IEEFE Symposium on Research on Security and Privacy, pages 178—
194, Oakland, CA, 1993. IEEE Computer Society.

26

Appendix: Semantics

A semantic configuration is a pair E,P where the environment F is a finite
set of names and P is a finite multiset of closed processes. The environment
FE must contain at least all free names of processes in P. The configuration
{a1,...,an},{P1,..., Py} corresponds to the process new ai;...new a,; (P |
... | P,). The semantics of the calculus is defined by a reduction relation — on
semantic configurations as follows:

E,PU{0} = E,P (Red Nil)
E,PUu{!P} - E,PU{PIP} (Red Repl)
EPU{P|Q}— E,PU{PQ} (Red Par)
E,PU{new a;P} — EU{d},PU{P{d/a}} (Red Res)
where o’ ¢ E.
E,PU{out(N,M).Q,in(N,z).P} - E,PU{Q,P{M/x}} (Red 1/0)
E,Pu{letxz=g(M,...,M,)in Pelse Q} — E,PU{P{M'/z}}
if g(My,...,M,) — M’ (Red Destr 1)

E,PU{letz=g(M;,...,M,)inPelse Q} — E,PU{Q} (Red Destr 2)
if there exists no M’ such that g(My,..., M,) — M’

E,PU{let x =M in P} — E,PU{P{M/x}} (Red Let)

E,PU{if M =M then Pelse Q} - E,PU{P} (Red Cond 1)

E,PU{if M =N then Pelse Q} - E,PU{Q} (Red Cond 2)
it M #N

E,PU{begin(M).P} — E,PU{P} (Red Begin)

E,PU{end(M).P}— E,PU{P} (Red End)

A reduction trace 7 of a closed process P is a finite sequence of reductions
n(P),{P}—...— E P.

The output out(M, N) is executed in a trace T if and only if this trace con-
tains a reduction E,P U {out(N,M).Q,in(N,z).P} — E,PU{Q,P{M/z}}
for some E, P, z, P, Q.

The event begin(M) is executed in a trace T if and only if this trace contains
a reduction F,P U {begin(M).P} — E,PU{ P} for some E, P, P.

The event end(M) is executed in a trace T if and only if this trace contains
a reduction F,PU{end(M).P} — E,PU{ P} for some E, P, P.

27

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

