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Chapter 1

THE ROTATING SUN

As the predictions of days and seasons became essential to the devel-
opment of civilization through agriculture, humanity started looking
up to the sun less as a “god” and more as an object of science. Stone
alignments at Carnac (France) are some the most ancient examples
of solar studies in western civilization. Until only recently, the study
of the sun beyond the prediction of its motion through the sky was
often considered sacrilegious. Anaxagoras, around 430 BC, was ex-
iled for suggesting (amongst other revolutionary ideas) that the sun
was just a ball of fire, and evaluating its distance to be about 4000
miles from the surface - his insightful geometric analysis being flawed
only by his belief that the earth was flat. Three hundred years later,
Hipparchus set the first lower limit on the distance of the sun to the
earth by trying to measure its parallax and failing to get an accurate
measurement. He was the first to suggest, however, that the sun may
be a very large distance away, and that its radius was correspondingly
much larger than previously thought. The next fundamental discov-
eries concerning the sun waited seventeen centuries, the invention of
the telescope and the theory of gravitation. In 1752, the French as-
tronomer Lacaille used the transit of Venus across the solar surface
as another parallax measurement and obtained the first reasonably
accurate measurement of the distance of the sun. Using the theory of
gravitation and the first measurements of the gravitational constant
G carried out by Cavendish, the mass of the earth and consequently
the mass of the sun were then determined for the first time.

Having determined the most “obvious” characteristics of the sun, sci-
entists turned to the problem of energy production. It was soon re-
alized that no chemical reaction in the solar material could provide



enough energy at the observed rate for any significant length of time.
Kelvin and Helmholz suggested that the energy released by gravita-
tional contraction could somehow be turned into heat, and provide
the observed luminosity: they calculated that such a system would
radiate for about 107 years. This timescale seemed satisfactory in
the nineteenth century, but more recent estimates of the age of the
earth and the solar system invalidated their theory. The final step
towards our modern view of the sun was taken by Eddington (1926)
who for the first time stated that the energy generation in the sun was
principally due to the nuclear burning of hydrogen into helium (and
subsequently to iron). From this point onwards, with the foundations
of solar physics clearly laid out, there remained the task to gather all
the necessary tools to construct the first global models of our sun.

1.1 A PHYSICAL VIEW OF THE SUN

The stepping-stones of the standard solar models are the following:
the sun is a self-gravitating mass of gas (whose value My, is observa-
tionally determined), which produces energy through nuclear fusion
within its core. Pressure gradient and gravitational attraction cancel
at every point in the sun. Energy is transported radiatively or con-
vectively towards the surface to yield the observed surface luminosity
and radius. In order to model this more quantitatively, to a first ap-
proximation, the effects of rotation on its hydrostatic structure are
neglected. Within this approximation, the sun can be considered to
be spherically symmetric, and the equations of stellar evolution reduce
to a simple set of evolution equations:

1. the hydrostatic structure equation:

Opy
—_— = — P 1.1
ar phv h ) ( )

where py, is the hydrostatic equilibrium pressure, and
V20, = 4nGpy, | (1.2)

where G is the gravitational constant, and py is the local mass-



density of the fluid. This equation does not assume anything
about the origin of the pressure, which can be due to gas-
pressure, or turbulent pressure (in particular in the surface lay-
ers). This equation does not have an explicit time dependence:
sound waves propagate through the sun in a few hours, and
ensure that the hydrostatic equilibrium equation is always in-
stantaneously satisfied.

. the energy transport equation:

Ly

W :Frad+Fc0nv ) (1-3)

where L is the total luminosity generated within the sphere of
radius r, and F is the energy flux through the sphere of radius
r. The heat flux depends essentially on the principal mecha-
nisms for heat transport at radius r. In a convectively stable
region, heat is transported by photons; these have a short mean
free path and are often absorbed and re-emitted by atoms in
the gas. The heat flux therefore depends strongly on the tem-
perature and density of the gas, (which determine the collision
rates) and the atomic properties of the atoms (which determine
the energy spectrum of the radiated photons). Assuming lo-
cal thermodynamic equilibrium, the radiative heat flux can be
rewritten as
0Ty

Fad =K 5" (14)

where K is the heat conductivity, and 7} the temperature.
The heat diffusivity depends on the local properties of the gas
through
160pT}
Kt - 70}3 h
3Kpn

where op is the Stefan-Bolzman constant and x is the Rosseland
mean opacity, which is obtained from atomic physics. When the
local radiative heat flux is not sufficient to transport all the
energy, a convective instability sets in which easily transports
most of the heat to larger radii. Standard models of the convec-

(1.5)



tive heat flux are usually based on mixing length theory. Again,
there is no explicit time dependence in this equation, as the heat
transport timescale is much smaller than the nuclear generation
timescale.

3. the energy generation equation

oL oS
a—h = 47'('7'2,0}1 <€ — Tha) ) (16)

r
where € is the nuclear energy generation rate and S the entropy.
Energy is principally generated by nuclear burning, which de-
pends on the local temperature, density, chemical abundances,
etc... The complex relation

Eze(ph,Th,X,Y, Z,) 5 (17)
is obtained from nuclear physics.

4. the equation of state

Dn :ph(phaThaXayaza“') ) (18)

is extremely complex, as it results both from atomic effects and
plasma effects. In particular, in the core regions relativistic ef-
fects and non-ideal gas effects (such as electron screening) come
into play. The gradual ionization of all elements in the sun must
be taken into account in the calculation of the mean molecular
weight. In the convection zone and in surface layers in particu-
lar, the contribution of turbulent motions to the pressure must
also be taken into account.

5. and finally a large number of equations of evolution for the abun-
dances of chemical elements, as they are created or destroyed by
nuclear reactions, and as they settle gravitationally with respect
to one another.

Despite the complexity in the physics involved in deriving the model
equations, the resolution of those equations is comparatively simple.



A “zero-age” main sequence model, which usually consists of a star
with uniform initial chemical composition (Xy, Yy, Zy), can be evolved
in time straightforwardly until the present age of the sun is reached,
and the model parameters (such as initial element abundances, mix-
ing length models) are varied until all observable quantities can be
reproduced (luminosity, radius, etc...). The final solution yields a full
present-day structure of a non-rotating sun-like star. Aside from the
neutrinos flux measurements, however, first models of the sun had
very little observational data with which to compare the numerical
predictions. In particular, uncertainties in the models for convection,
for instance, resulted in a large degeneracy of the possible solutions.
These problems were soon overcome, however, with the development
of a new powerful tool for observation of the interior of the sun: he-
lioseismology.

1.2 A NEW OBSERVATIONAL METHOD: HELIOSEISMOLOGY

In 1960, oscillatory motions were discovered in the upper atmosphere
by measuring the variation in the Doppler shift of the spectral line
Ba II (see Leighton et al. 1962). With a dominant period of roughly
5 minutes, the spectrum of these oscillations was subsequently found
to be discrete, leading to the conclusion that these oscillations are
trapped within a resonant cavity in the sun. These oscillations are
predominantly sound waves, p-modes, excited near the surface by the
turbulent motions of the convection zone. It was soon realized that the
observations of these oscillations, and in particular of their frequencies,
could provide information about the internal structure of the sun.

1.2.1 ELEMENTS OF HELIOSEISMOLOGY

Waves trapped in a resonant cavity have a discrete frequency spectrum
which depends essentially on the travel time between various points
on the surface of the cavity, which in turn depends on the sound speed
at all points. It is through the analysis of the wave equation that the
relation between observed frequencies and the sound speed everywhere
in the sun can be obtained. For the purpose of simply describing the



helioseismic method, it is sufficient to show a simplified derivation of
the linearized adiabatic wave equation.

The equations for hydrostatic support describe the background strat-
ification of the sun. The interaction with sound waves is described by
perturbing the stellar structure equations and introducing the equa-
tions of motion. When the amplitude of the oscillations is small these
equations can be linearized. The resulting linearized perturbation
equations, when the fluid is undergoing a displacement field &, are

Phpy = —Vp' — 'V, — pp VP, (1.9)

V20 = 4nGy (1.10)

where the quantities denoted by primes are Eulerian perturbations
(i.e. perturbations to the background value at a fixed point). The
velocity field u is related to the displacement field by

u= % : (1.11)

which implies that the linearized mass conservation equation becomes
P+ V- (pn€) =0. (1.12)

Finally, the oscillations are assumed to be adiabatic (i.e. that no heat
is gained or lost by displaced parcels of fluid during their motion),

which implies that
op =T10p = cEdp , (1.13)

where 0 denotes a Lagrangian perturbation (i.e. following the fluid),
0}21 is the hydrostatic sound-speed, and the first adiabatic exponent I'y

is given by 5
I = (8_z> : (1.14)



the derivative being taken at constant entropy s. The relation between
the Eulerian and Lagrangian perturbation of a quantity f is

0f =f"+€& V. (1.15)

Combining equations (1.9) to (1.15) yields a unique differential rela-
tion for the displacement &. Assuming that & varies as £e'! yields

—prhé = —Vp’ - p’V(I)h — pth)l . (1.16)

This equation can be solved subject to suitable boundary conditions
to obtain the eigenfrequencies w, which depend on the hydrostatic
structure of the sun through the sound-speed cy. Separability of the
displacement equations in the coordinates (r, 6, ¢) implies that scalar
quantities can be represented as

Unim = Ap(r)P™(0) cos(me¢p — wpimt) , (1.17)

where 1) o V-£ for instance.

Observations of the oscillations of the solar surface are carried out
through intensity measurements (by the VIRGO photometers on board
SOHO, for instance) or velocity measurements (Doppler shifts mea-
surements on several photospheric lines, realized by the GONG and
BiSON ground networks, or the MDI instruments on board SOHO for
example). The inversion process, which consists in using the measured
oscillation frequencies wy,,, to infer the interior characteristics of the
suns has been reviewed in detail by Gough (1985).

1.2.2 HELIOSEISMIC RESULTS DERIVED FROM SOUND-SPEED INVER-
SIONS

The principal achievements of helioseismology using the sound-speed
inversion methods described previously are the following:

1. the determination of the sound-speed (and hence the temper-
ature) profile throughout the whole interior, which allows the
calibration of the solar age, initial helium abundance (see the



review by Gough et al. (1996) for instance), and more specif-
ically the microphysics of the solar models, such as the equa-
tion of state (e.g. the review by Dippen & Nyafonov, 2000),
the opacities (Tripathy & Christensen-Dalsgaard, 1998) and the
thermonuclear reaction rates (Morel et al. 1999, for example).

2. the measurement of the depth of the convection zone (e.g. Christ-
ensen-Dalsgaard et al. (1991)), which allows a preliminary cal-
ibration of convective mixing-length models. A careful analysis
of the effect of convection dynamics on oscillation properties
enabled Houdek et al. (2001) to calibrate mixing length mod-
els further with line-width measurements of the BiSON group
(Chaplin et al. 2000).

3. the calibration of overshoot depth (Basu, 1997), which use the
effect of sharp gradients of the sound speed on the acoustic fre-
quencies.

4. an independent measurement of the solar radius, by looking at
the size of the acoustic cavity of the oscillation modes (Schou et
al, 1997).

Using all the helioseismic inversions, it is possible to build, for exam-
ple, a solar model which provides the best possible fit to the observed
sound-speed profile. The remaining discrepancy for the square of the
sound speed, between the model and the observations, is shown in Fig.
1.1. Note how the discrepancies never exceed a few parts in a thou-
sand. This extremely good fit shows that the standard solar models
satisfactorily reproduce the physics of the solar interior. However, the
error bars on the observed sound speed are much smaller than the
remaining discrepancies, which suggests that additional information
can be obtained from the sound speed inversion, and that the dis-
crepancies truly represent a failure of the models, either in the initial
assumptions, or in the micro- or macrophysics used. Failures in the
microphysics may be due to inaccurate representations of the equa-
tion of state, the nuclear burning rates, or the opacities. Failure in the
macrophysics may be due to insufficient understanding of convection,
or surface effects. Finally, as it was pointed out initially by Elliott &
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Figure 1.1: Difference between the model predictions and the ob-
servations for the square of the sound speed, as a function of ra-
dius. The vertical errorbars are derived from the errors on the data,
whereas the horizontal errorbars represent the average width of the
inversion kernels at the corresponding radius.



Gough (1999), part of the discrepancy with the observations may be
due to some of the fundamental assumptions made in the standard
solar models: the one which consists in neglecting all fluid motions in
the sun, and in particular the rotation.

1.3 THE SOLAR ROTATION

The first published measurements of the solar rotation were performed
by Carrington (1863), using the apparent motion of sunspots across
the surface of the sun (Gallileo had already noted the drift of sunspot
across the solar surface). Carrington hereby measured the inclination
of the axis of rotation of the sun with respect to the ecliptic plane.
Later, a similar technique was used to measure the variation of the
solar surface rotation rate with latitude (Newton & Nunn (1951)).
The results are usually represented in the following way:

Q(0) = Qeq(1 — ag cos?0 — ay cos*d) , (1.18)

where () is the local angular velocity, € is the colatitude and ¢q is
the equatorial angular velocity. Newton & Nunn’s results (and other
subsequent investigations) suggested that

Qeq = 2.89 x 10°° rad/s and ay =~ 0.19 , (1.19)

while a4 remained undetermined through this method. Indeed, this
coefficient can only be determined by careful observations of the ro-
tation rate near the poles, a region where few sunspots ever appear.
Measurements of the Doppler shift of photospheric emission near the
limb (Snodgrass (1984)) suggest that

Qeq = 2.83 x 10 % rad/s ,a3 = 0.1 and a4 ~ 0.18 . (1.20)

Note the difference with the coefficients measured previously. These
new measurements seem to suggest a rather faster rotation rate for
the sunspots (near the equator) than that of the photosphere; this
was attributed to a faster rotation rate at the depth from which the
sunspots originate, a result which was later confirmed by helioseismic
observations.

10



1.3.1 DEVELOPMENT OF ROTATIONAL INVERSIONS

Only helioseismology can provide information on the internal rota-
tional structure of the sun. The theory of stellar oscillations in a dif-
ferentially rotating star was developed initially by Ledoux & Pekeris
(1941), Cowling & Newing (1948) and Lynden-Bell & Ostriker (1967).
Again, the full derivation of the theory is beyond the scope of this in-
troduction, so only a simplified derivation which nonetheless captures
the essential points is presented. For a comprehensive review of the
subject, see the paper by Gough & Thompson (1991).

1.3.1.1 PERTURBATION EQUATION IN DIFFERENTIALLY ROTATING BACK-
GROUND

Assuming that the system is rotating with an angular velocity which
depends on latitude and radius Q(r, 8). The velocity perturbation due
to this azimuthal flow is now included in the perturbation, so that

u=v+(Q2xr), (1.21)

where @ = Q(r,6)é, and v’ corresponds to the velocity perturbation
due to the wave part only:

r_ D

=== 1.22
v =0 (1.22)

The operator D/Dt is now modified to take into account the advection
of the perturbation by the azimuthal motion of the flow so that, for
example:
D§ _ 0¢
— == Q . . 1.2
= (@) Ve (1.23)
Putting equations (1.21) to (1.23) together with (1.9) yields
0%¢ %3

gz 200 (R x 1) V] 2 = =V = f/'V@, — pp VO (1.24)

The displacement equations are now slightly modified with the addi-

tion of a Coriolis force term 2pp, [(Q X 7) - V] aa—t.

11



1.3.1.2 CORRECTION TO THE EIGENFREQUENCIES DUE TO THE EFFECT
OF ROTATION

Instead of recomputing the full solutions of equation as well as their

eigenfrequencies, it is easier to compute the correction to the eigenfre-

quencies deduced from (1.24) due to the rotation. In the non-rotating

case, the eigenfrequencies follow the equation

—wie=F(¢) . (1.25)
If dw is the correction due to the rotation then
—(w+ dw)’€E = F(&) +0F(¢) , (1.26)

where

OF (&) = —2iwpn [( x7r)-V]E, (1.27)

is assumed to be a small perturbation on the non-rotating system.

Since the solutions to equation (1.16) form an orthogonal basis, the

corrections to the eigenfrequencies can be obtained by projecting (1.27)

onto that basis, and using the variational principle, so that (Ledoux,

1951)

_ Jym€ (@ xr)-ViEay
[y, &€av ’

which can also be rewritten as, for the frequency splitting dwym,

ow

(1.28)

T‘@ i
Sy = / / Ko (r, 0)2(r, 0)rdrdd | (1.29)
0 0

1.3.1.3 INVERSION METHODS

There exist many currently used methods of inversion for the rota-
tional splittings, which can roughly be grouped into two categories:
the least-squares fitting methods, and the localized averaging meth-
ods.

Least square fitting methods work typically by calculating the fre-

quency splittings corresponding to a piecewise bilinear angular veloc-
ity profile in a regular grid in the (r,#) plane, and fitting them to the

12



observed splittings with a x? minimization method. The x2-algorithm
incorporates a penalty function to moderate the error in the fitting
whilst penalizing profiles with large second derivatives in radial or lat-
itudinal coordinates. This method was described in detail by Schou,
Christensen-Dalsgaard & Thompson (1994).

The principle of the optimized localized averaging methods (OLA)
is based on the fact that the frequency splittings are an average of
the true rotation profile weighted by the kernel K,;,. As a result,
a judicious choice of a linear combination of the frequency splittings
can yield a localized average of the true rotation profile provided the
same linear combination of the kernels K,,;,,, yields a localized kernel:

< Q(ro, bp) > / / K(r,79,0,60)Q(r,0)rdrdd , (1.30)

where K(r,19,0,00) is a function strongly peaked around the values
of g and 6y, such that

K(r,70,0,00) = Y _ tnimKnim(r,0) - (1.31)

nlm

If such a function is found, then

< Q(ro,0p) > Zanlm&*’nlm . (1.32)

nlm

It is beyond the scope of this introduction to discuss how the coef-
ficients a,j, are computed; for more detail the reader is referred to
Gough & Thompson (1991).

1.3.2 RESuULTS

The first attempt at determining the interior angular velocity profile
of the sun from rotational splittings was performed by Duvall et al.
(1984) using the frequency splittings measured by Duvall & Harvey
(1984). Schou et al. (1998) present recent measurements of the solar
differential rotation with good accuracy and good spatial resolution

13



down to radii of about 0.6 r¢ and up to latitudes of about 70°. These
are shown in Fig. 1.2. Four inversion methods are compared in this
plot, using essentially the two different methods described in Section
1.3.1.3. These inversions call for the following comments:

1. the least-squares minimization methods provide relatively good
spatial resolution, but are strongly affected by errors in the ob-
servational data, as well as the poor representation of the oscilla-
tions in the outer layers of the sun. There exist strong evidence
that additional features, such as the “polar jet”, could simply
be artefacts of the inversion (Howe et al. 2000a).

2. the optimized localized averages methods tend to be free of such
undesirable effects, but suffer from poorer spatial resolution than
the least-square minimization methods.

Despite their intrinsic differences, the common features of the inver-
sions which are therefore likely to be intrinsic to the true rotation
profile are the following:

1. the convection zone is observed to undergo latitudinal shear,
with little radial shear

2. the radiative zone is rotating nearly uniformly, with an angular
velocity of about 93.5 % of the equatorial angular velocity

3. a thin shear layer separates these two zones: the solar tachocline

1.4 'THE SOLAR TACHOCLINE

The solar tachocline is a very shallow shear layer located just be-
low the base of the solar convection zone, in the convectively stable
region. The convection zone imposes a latitudinal shear to the ra-
diative zone, but this shear is observed to be quenched within a very
short distance, leaving the radiative zone in a state of nearly uniform
rotation. The resulting radial shear layer is the tachocline. It was
first observed by Brown et al (1989). The terminology to describe
this shear layer was first used in its present form by Spiegel & Zahn
(1992), who constructed the word from the Greek roots Taxos tacho-

14
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(velocity) and kAiveww -cline (turn, bend). Because of its intrinsic
nature (i.e. a shear layer) and also because of its location (just below
the convection zone, in a region of transition between two radically
different backgrounds), the tachocline is the seat of some of the most
interesting and complex phenomena occurring in the sun. It is there-
fore essential to gather as much observational information as possible
concerning this region before attempting to model it.

1.4.1 THICKNESS OF THE SOLAR TACHOCLINE

The determination of the thickness of the solar tachocline, A, still
remains a controversial subject. Inversion methods yield (more or
less) local averages of the angular rotation rate over a finite area which
increases strongly with depth. In the region of the tachocline, the best
inversions yield averages over a radial width of about 4% of the solar
radius; the observations of the differential rotation can therefore not
provide any direct reliable estimate of the width of the tachocline.
Methods have been designed, in which a “profile” is guessed for the
tachocline (i.e. an ansatz for the variation of the angular velocity with
depth is chosen), and is then convoluted with the same averaging
kernels that have been used for the inversions. Comparison of the
convoluted profile with the inversions may provide a fairly reliable
estimate of the width of the tachocline. The results are the following:

A = 0.05rg £0.03r¢ (Corbard et al.(1998)
A = 0.05—0.1rg (Schou et al. (1998) . (1.33)

One can notice, however, the large error-bars on the results, which
originate from the low resolution of the observations in that region.

A new indirect method has been suggested by Elliot & Gough (1999).
Assuming the tachocline is in dynamical equilibrium, it can be shown
(cf. later) that a large-scale circulation must exist in the tachocline,
mixing chemical elements as well as angular momentum. This cir-
culation becomes vanishingly small in the radiative zone. The over-
turning timescale is much smaller than the solar evolution timescale,
so that the mixing can be assumed to be instantaneous. Elliot &
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Gough showed that the mixing in the solar tachocline locally prevents
the gravitational settling of helium, which results in a higher sound
speed beneath the convection zone than what could be expected from
standard solar models. This local discrepancy is indeed observed in
the sound-speed data shown in Fig. 1.1. Comparison between a new
model, which includes additional mixing below the convection zone
over a depth A with the observations then yields the thickness of the
mixed region, namely

A = 0.019r¢ =+ 0.001r . (1.34)

The better quality of these results compared to those obtained pre-
viously originates from the fact that sound-speed inversions have much
higher spatial resolution than the rotational splittings inversions. How-
ever, this result is highly dependent on the assumption that the tacho-
cline is spherically symmetric. If its general shape deviates from a
spherical shell whilst retaining the same thickness everywhere, the
method overestimates the thickness of the tachocline by yielding an
answer that is more related to the total deviation from a spherical
shape than the true thickness. On the other hand, if the tachocline is
more or less spherical but with large variation in thickness the method
provides an estimate of the average width of the tachocline.

1.4.2 POSITION AND SHAPE OF THE SOLAR TACHOCLINE

Recent interest has been given to the study of the position and shape
of the solar tachocline; in particular, whether there exists a latitudinal
variation of the position and width of the tachocline and whether the
tachocline penetrates into the convection zone or not. Charbonneau
et al. (1999) propose the following ansatz for the angular velocity
throughout the sun

swm::m+ﬂuﬂ%%%%@ﬂx

[Qeq(l — ay cos’0 — ay cos*0 + byr sinf) — QC] (1.35)
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where () is the interior angular velocity, A(f) is the thickness of the
tachocline, and r(6) is the location of the centre of the tachocline.
Both A and ry may vary with latitude. By convoluting this expres-
sion with the inversion kernels, and comparing the results with the
corresponding inversions, Charbonneau et al. obtain the following
results:

1. the interior angular velocity is measured to be about

Q
2—; =430 nHz , (1.36)

2. there is no statistically significant variation of the thickness of
the solar tachocline; the thickness deduced from this method is

A = 0.040r¢ +0.013 (1.37)

3. there is a statistically significant variation of the position of the
centre of the tachocline:

ri( equator ) = 0.693 £0.002r , (1.38)
re( latitude 60°) = 0.717 £ 0.003r¢ , (1.39)

which seems to imply that the tachocline may be slightly prolate.
Also, these results may suggest that part of the tachocline, in
particular near the poles, lies in the convection zone (the base
of the convection zone has been estimated to lie at a radius of
re = 0.713r¢, by Christensen-Dalsgaard et al. (1991)).

These results are consistent with earlier inference that the base of
the convection zone might be prolate (Gough & Kosovichev, 1995).
However, these results should be accepted with care: there is signifi-
cant degradation of the spatial resolution with increasing latitude and
depth. Once again, one can point out that such a method could not
possibly resolve a tachocline of thickness lower than about 0.04rq,
hence the values described above; also, the observed increase in the
radius of the centre of the tachocline with latitude may also be an
artefact of the poor resolution near the poles.
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1.4.3 VARIABILITY OF THE SOLAR TACHOCLINE

After four years of nearly continuous observations with MDI on board
SOHO, and with the GONG project, there are finally enough data to
study the temporal variations of the solar differential rotation. Dy-
namical variations near the base of the convection zone have been
studied by Howe et al. (2000b). The authors looked for temporal
variations in the residuals between the observed rotation profile and
a time average of the rotation profile over the past four years, at
two different radii (r = 0.63r; and r = 0.72rg) and three different
latitudes (0°, 30° and 60°). They observed a statistically significant
oscillation with an unexpected period of 1.3 yr, at both radii on the
equator (0°) with anti-correlated phases. This could be associated
with the presence of torsional oscillations in that region. No statis-
tically significant oscillation was detected at higher latitudes. Again,
this oscillatory feature could also be an artefact of the inversions.

1.4.4 LIGHT-ELEMENT ABUNDANCES

The convection zone (and the tachocline) thoroughly mix chemical ele-

ments on a timescale much smaller than the nuclear evolution timescale.
As a result, the abundances of chemical elements observed at the sur-

face of the sun are constant throughout the convection zone down to

the bottom of the tachocline. The observed depletion (or presence) of
certain chemical elements (such as lithium, beryllium and boron) at

the surface set strong constraints on the depth of the solar tachocline.

The ratio R, of the observed abundances at the surface of the sun

compared to the abundances observed in the rest of the solar system

are the following (Ross & Aller, 1976):

o R,(Li) = 0.0045,
e R,(Be) =0.4.

The relatively weak depletion of beryllium (which is burnt at temper-
atures greater than 3 x 10% K, corresponding to radii below 0.617¢),
compared to the nearly complete depletion of lithium (which is burnt
at temperatures greater than 2.5 x 106 K, corresponding to radii be-
low 0.68r¢) suggest that the mixing in the tachocline must be very
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efficient down to 0.68rg, but strongly quenched below 0.61rg. This
result may also be used to set constraints on models of the tachocline
(see Brun, Turck-Chieze & Zahn (1999) for example).

1.5 DYNAMICS OF THE SOLAR TACHOCLINE

The interior rotation profile of the sun, as well as the related obser-
vations presented in Section 1.3 still remains partly unexplained.

1.5.1 ROTATION IN THE CONVECTION ZONE

It is reasonable clear that the rotation profile of the convection zone
results directly from the interaction between the rotation and the
convective eddies, through anisotropic turbulent angular momentum
transport. Near the top of the convection zone, the typical turnover
timescale for the convective eddies is of order of a few minutes. This
convective motion is hardly affected by the rotation. On the other
hand, near the base of the convection zone the typical turnover time-
scale is comparable to the period of rotation of the sun, which implies
that the convective eddies are strongly influenced by rotation. In par-
ticular, eddies acquire a non-vanishing helicity which in turns implies
that the Reynolds stresses due to convective motions become strongly
anisotropic. This anisotropy is believed to be at the origin of the dif-
ferential rotation in the convection zone. Different approaches have
been suggested to study this theory.

Kitchatinov & Riidiger (1993) (and following papers by the same au-
thors) developed a semi-analytical phenomenological theory in which
they prescribe the Reynolds stresses as

uz 0 0 0 0 wnri
wu; = 0 ug i — sinf 089 0aQ Vh%—gal
0 0 ui Wra, Vhgg 0
0 0 Ay
+ Qsinf (0 0o 0], (1.40)
A, 0 0
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in which the three terms are respectively,
1. a standard isotropic term

2. an anisotropic term which results from the differential rotation,
which is based on the expression for the simple isotropic case
but with different vertical and horizontal transport coefficients
vy and vy.

3. an anisotropic term which results purely from the distortion of
the convective eddies, and is present even when the system has
no differential rotation. The coefficient A, has to be calibrated.

Although fairly successful in reproducing the qualitative features of
the rotation profile in the convection zone, this theory still fails to
provide a self-consistent model for the interaction between convection
and rotation, in particular when the nonlinear interaction of the ro-
tation with a meridional circulation are taken into account.

A more straightforward method consists in a Direct Numerical Sim-
ulation of the bulk of the convection zone, solving the full system of
compressible, non-axisymmetric equations of motion and energy trans-
port equations. Such a system has been solved by Miesch et al. (2000).
The simulations reproduce well the equatorial acceleration within the
convection zone, as well as the typical range of azimuthal velocities
attained by the system between the equator and the pole, but fails
to explain the observed independence of the latitudinal shear with
radius. This discrepancy of the simulations with the observations is
likely to be due to the low Reynolds number of the simulations, which
fails to take into account the coupling between convection and rota-
tion on small scales, and lead to a poor determination of the turbulent
Reynolds stresses.

However, these models present good qualitative (if not quantitative)
explanations of the rotation profile within the convection zone. In
particular, it is reasonable to assume that the rotation profile within
the convection zone is hardly affected by the dynamics of stably strat-
ified regions below it; and, as a result, it is also reasonable to assume
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that the differential rotation of the convection zone can be taken as a
robust boundary condition for the fluid motions within the radiative
zone.

1.5.2 MODELS FOR THE TACHOCLINE

The discovery of the tachocline raises many fundamental questions.

Why is the radiative zone rotating nearly uniformly? This striking
observational result is clearly the proof that some previously unex-
pected dynamical phenomena are in play within the radiative zone.
In Chapter 2, (and, to some extent, in Chapter 6 it will be shown
that the rotation of a self-gravitating and thermally stratified fluid
body normally drives a meridional circulation, which in turns advects
angular momentum and changes the rotation profile of the fluid away
from uniform rotation. Moreover, the convection zone is imposing a
latitudinal shear to the top of the radiative zone, which would prop-
agate all the way to the centre of the sun were only simple isotropic
viscous forces taken into account (see Section 2.2.1).

Why is the radiative zone rotating with the observed value of 93%
of the equatorial velocity in the convection zone? The simple remark
that the interior rotation rate is very close to the surface rotation rate
proves that there must be a strong dynamical connection between the
radiative zone and the convection zone, as the convection zone is grad-
ually spun down by the solar wind. Indeed, observations suggest that
young stars rotate from 10 to 100 times faster that solar type stars
(Skumanich (1972) for instance); the very fast rotation of most young
stars is related to the conservation of angular momentum as the proto-
star contracts. It is now widely accepted that magnetic braking is the
mechanism responsible for the gradual decrease in angular velocity of
a star as it evolves along the main sequence. The braking of the star is
due to the magnetic torque exerted by the stellar wind as it expands
out into the interstellar medium, and acts efficiently only when a deep
outer convection zone is present in the star. Unless the radiative zone
is dynamically connected to the convection zone, it has no mean of
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slowing down its fast initial rotation. However, helioseismic observa-
tions show that the angular velocity of the radiative zone is close to
the average angular velocity observed in the convection zone, which
confirms the necessity for a strong dynamical connection. Note that
the typical timescale for magnetic braking is about 7 x 10'° years at
the present age of the sun. Since it is expected that the dynamical
timescale in the tachocline is of order of 10° yr it is reasonable as a
first approximation to neglect the solar spin-down, and assume that
the dynamics of the tachocline and the interior are in a steady state
on that timescale.

Why is the tachocline so thin? What mechanisms maintain such a
structure? Assuming that the radiative interior is in a steady state,
the observed rotation profile is necessarily the result of a subtle bal-
ance of forces moderating the transport of angular momentum. It
will be shown that both the uniform rotation of the interior and the
qualitative and quantitative properties of the tachocline can be ex-
plained only by the presence of strongly enhanced latitudinal angular-
momentum transport just below the convection zone. The various
possibilities for angular-momentum transport in that region will be
introduced in Chapter 2. These will be systematically discussed in
Chapter 2 and Chapter 3.

Is this shear layer dynamically stable? In Chapter 2, only the purely
hydrodynamical angular-momentum transporters will be considered.
In particular, the most natural angular-momentum transporters are
turbulent Reynolds stresses, where the turbulence is assumed to be
driven by shear instability in the tachocline. This idea, which was
originally proposed by Spiegel & Zahn (1992) will be discussed, as
well as the stability of the shear in the tachocline, in order to assess
whether the tachocline may indeed support turbulent motions.

What is the influence of magnetic fields in the solar interior? In Chap-
ter 3, another class of models will be described, in which the uniform
rotation of the interior is explained by the presence of a large-scale
magnetic field through the law of isorotation of Ferraro. The ques-
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tion of the origin of magnetic fields in the radiative zone is discussed,
and lower limit estimates for primordial field are derived. Another
possible origin for magnetic fields in the interior is a dynamo field,
generally assumed to be created near the base of the convection zone
by the interaction of turbulent motions, shear and small scale mag-
netic fields. The inward diffusion of this dynamo field, and how it
may influence the tachocline and the radiative interior, will be stud-
ied. The complexity of MHD models is enormous, principally because
of the problems of advection of magnetic fields by flows within the
tachocline, and the intrinsic nonlinearity of the Lorentz forces. Previ-
ous models have failed in reproducing this complexity, either by using
oversimplifying assumptions, or, when taking into account all the rel-
evant physics of the tachocline, by failing to propose a solution to
the mathematical model. These models and their limitations will be
discussed.

Can a self-consistent model for all the observations described previ-
ously be found? In order to go beyond these previous analyses, an
intermediate model will be presented, progressively building on the
complexity of the system. This new model studies numerically the
full nonlinear interaction between a large-scale magnetic field and fluid
motions in the radiative zone of the sun when a shear is imposed from
the “surface” by the convection zone. In order to do so, preliminary
assumptions are necessary, such as incompressibility and axisymetry
of the system. The model, the assumptions upon which it is based,
and the numerical procedures adopted for studying it are presented in
detail in Chapter 4. The numerical solutions are presented in Chapter
5 and extensively tested against theory and other numerical solutions.
In particular, boundary layer analyses are presented which represent
the solution well for low viscosity and magnetic diffusivity near the
boundaries. The relevance of this new model will be discussed by com-
paring the numerical predictions with the observations. The effects
of stratification and energy transport in the tachocline are believed
to play an important role in the dynamics of the tachocline (Gough
& Mclntyre, 1998). It is therefore necessary to drop the assumption
of incompressibility; this step is taken in the final Chapter, which
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presents and discusses the modified equations and new boundary con-
ditions, before revealing the latest results on the subject of the interior
rotation profile of the sun.
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Chapter 2

HYDRODYNAMICAL MODELS OF THE
TACHOCLINE

Early models of the sun have nearly always assumed the sun to be
spherically symmetric (i.e. non-rotating and without magnetic field
or any other bulk forces that may drive large-scale motions). This
assumption was necessary, because the study of the effects of large-
scale flows (rotation, meridional circulation ...) on the hydrostatic
structure of the sun proves extremely difficult. However, the “non-
rotating hydrostatic structure of the sun” as reviewed by Christensen-
Dalsgaard et al. (1996) for instance, is observationally verified to be a
good approximation to the true hydrostatic structure, which suggests
that the effects of rotation, for instance, can indeed be assumed to
be a very small perturbation to the hydrostatic equilibrium reference
model (see Section 1.2.2). Moreover, in most cases (except that of
the Eddington-Sweet timescale) the typical dynamical timescales are
comparable with or smaller than the thermal timescale, and so as far
as those fluid motions are concerned the hydrostatic structure of the
sun can be considered to be in a steady state. These two assumptions
will be at the heart of all the following models of the solar rotation.

In order to start building models of the solar rotation, the general
equations of motion for an axisymmetric fluid in a frame of reference
rotating with angular velocity 2. will be introduced, and the relevance
of possible approximations to the problems studied will be discussed.
From these equations, it will be shown how the maintenance of the
tachocline relies on the subtle balance of angular momentum below the
convection zone. The purely hydrodynamical models of the tachocline
that have been proposed so far will then be presented and discussed.



2.1 GENERAL EQUATIONS OF HYDRODYNAMICS IN A ROTAT-
ING FRAME

In order to construct models of the solar rotation, it is essential to lay
out the fundamental equations of fluid dynamics which will be used,
as well as the basic assumptions. In the following work, the effect of
rotation are always assumed to be a small perturbation on the hydro-
static structure of the sun, so that the fluid motions are slow, and the
oblateness of the sun is neglected. The hydrostatic background quan-
tities are assumed to be in a steady state for these fluid motions. The
Boussinesq approximation is used to study the effects of compress-
ibility of the fluid, which is based on the assumption that the typical
sound travel-time within the region is much shorter than the typical
turnover time of the motions, and that the layer is shallow compared
to the density scale-height. Within these approximations, the sound
waves are “filtered out” (the time derivative of the density fluctuation
in the mass continuity equation is neglected), and the total pressure
perturbation is assumed to be much smaller than the density or tem-
perature perturbations (if a large pressure perturbation is present, it
is very quickly evened out by the sound waves - only provided that the
buoyancy cannot balance the pressure perturbation, which is why the
layer must be shallow). Within these approximations, the equations
are written as

1. the mass continuity equation
V-(phu) =0 s (2.1)

where pp, is the hydrostatic equilibrium density, and w is the
velocity.

2. the momentum equation

8 .
Ph (a—?+u-Vu+ﬂc XT+2QC XU+QC X (QC XT))
= VP — 'V + pnvVu (2:2)

where ¢ is the time, p’ is the pressure perturbation, p’ is the
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density perturbation, ® is the hydrostatic equilibrium gravita-
tional potential, v is the molecular or radiative viscosity.

. the energy equation

!/

’OhTh%_i + phThu -Vs = V'(KtVTI) N (2.3)
s’ is the specific entropy perturbation, s is the total specific en-
tropy s = sp + ', T' is the temperature perturbation, and Kj is
the thermal conductivity. The full entropy is kept in the advec-
tion term because in the region of the base of the convection zone
the hydrostatic equilibrium entropy gradient is close to 0, but
the perturbation may have a non-negligible entropy gradient.

. the equation of state: a simple perfect-gas law is sufficient for
this discussion, so that

RpT
p:—

. (2.4)

where pp, is the mean molecular weight, and R is the gas con-
stant. This becomes, in the Boussinesq approximation,
/ / Tl
P_PLi- ~o (2.5)
pn pn Th

These equations are now studied in more detail, trying to emphasize
the most important phenomena concerning the effects of rotation on
the structure of the sun.

ANGULAR MOMENTUM TRANSPORT

One of the most important equations in the case of rotating fluids is
the angular momentum conservation equation. In a spherical coordi-
nate system (r, 0, ¢), where u = (u,, up, ug), one can write u = w+u/,
where @ is the azimuthal average of u and 4’ a non-axisymmetric per-
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turbation. The angular momentum density is defined here as
L = pr? sin?0Q , (2.6)

where (2 is the angular velocity defined so that u; = r sinfQ. In
the following work, the bars above the azimuthally averaged parts are
dropped in order to simplify the notation. The primes always denote
the perturbations. Combining the mass continuity equation with the
azimuthal component of the momentum equation yields

oL
En + V. (Lu + pr sinf < u;)u' > —pr? sin?0uVQ

— rsindByB —r sind < ByB' >) =0. (2.7)

The term in brackets represents the flux of angular momentum, car-
ried respectively by the following transporters of angular momentum:
macroscopic advection, microscopic advection (Reynolds stresses), vis-
cous stresses and magnetic stresses (Lorentz stresses) (both macro-
scopic and microscopic).

Microscopic advection represents the advection of angular momen-
tum by small-scale flows, as opposed to macroscopic advection, which
represents advection by a large-scale circulation. Microscopic advec-
tion corresponds to the transport of angular momentum by Reynolds
stresses, and could be due to:

1. turbulence (or random small scale flows): although stably strati-
fied, the tachocline may be subject to several types of instability
which might lead to turbulence. These instabilities involve shear
instability (both in the radial and latitudinal direction), mag-
netic instability, or overshoot.

2. waves: strictly periodic waves (acoustic waves, gravity waves
or torsional waves) exchange no net flux of angular momentum
with their background medium. However, wave damping or ex-
citation may result in a net flux of angular momentum (Plumb
& McEwan (1978), for example).
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Molecular and radiative viscosity are extremely small in the sun. How-
ever, the associated stress may be important if no other stresses are
present, or in the case of boundary layers.

Magnetic fields redistribute angular momentum along their field lines.
This effect can be very important (provided the amplitude of the field
is large enough), and can act on very large scales. Two terms can be
identified, as in the case of advection: a macroscopic term, and a mi-
croscopic term (which may be due to magnetic instabilities or MHD
waves). These will be discussed in detail in the following chapters.

2.1.2 THE THERMAL WIND EQUATION

The thermal wind equation is derived from the curl of the momentum
equation: in the purely hydrodynamical case,

) 1
8—‘: FUX((20% +w) X u) = ——Vpx Vp+ 1V,  (28)
Ph

where w = Vxu. If the system is in a steady state, the azimuthal
component of this equation describes how vorticity is created by the
baroclinicity of the flow. This “thermal wind” term drives a circu-
lation provided the isopycnal surfaces differ from the isothermal sur-
faces. This is the case when the fluid is rotating: the centrifugal force
due to the rotation of the sun changes the hydrostatic equilibrium
by stretching the isopycnal surfaces into oblate spheroids. However,
the thermal stratification retains more easily its spherical structure
due to the heat diffusion term in the energy equation. This therefore
leads to the baroclinicity of the star; thermal gradients along isopycnal
surfaces drive a circulation in order to advect the excess heat. This
phenomenon is called the Eddington-Sweet circulation (Sweet (1950))
and occurs even when the star is rotating uniformly.

The timescale for such a circulation is

_ x1|V — Vad
)\ b

TES

(2.9)
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where Tky is the Kelvin Helmholtz timescale, X\ is the ratio of the
centrifugal to gravitational forces A\ = Qér% /GMg, and V — Vg =
pN?/pg?. Deep in the radiative interior, this timescale is extremely
long, of order of Ty = 10 y. It is therefore usually neglected as
a dynamical phenomenon, simply by omitting the Q. x Q. X r term
in the momentum equation. However, in regions where the buoyancy
frequency vanishes, a much larger velocity is needed in order to carry
the same heat flux. This phenomenon was first described by Mestel
(1953), and applies in particular to the region near the bottom of
the convection zone, where convective overshoot produces a region of
near-adiabatic stratification. Since the depth of the overshoot region
still remains undetermined, it is unclear whether this effect has a
significant influence on the dynamics of the radiative interior or not.

2.2 THE FIRST MODEL OF THE TACHOCLINE

The main characteristic of the solar differential rotation that models
will have to explain is the very sharp transition from the latitudinal
shear observed in the convection zone to the uniform rotation of the
radiative interior. Assuming that the tachocline is not merely a tem-
porary feature, it is a good approximation to consider its dynamical
and hydrostatic structure to be in a steady state. The observed differ-
ential rotation in the tachocline can therefore be regarded as the result
of a subtle dynamical equilibrium between various angular momentum
transporting processes. Amongst the transporters of angular momen-
tum described in Section 2.1.1, only three may possibly be used in
a realistic hydrodynamical model of the tachocline: advection, wave
transport and turbulence (viscous transport can straightforwardly be
neglected). These three possibilities will be considered and discussed
in this chapter, leaving the case of the magnetic stresses to the follow-
ing chapters.

The first model of the tachocline to be developed was proposed by
Spiegel & Zahn (1992). It is based on the dynamical interaction be-
tween strongly anisotropic turbulence and large-scale advection. The
main ideas and the assumptions of the model are presented in the fol-
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lowing sections, as well as the relevance of the results to observations
of the solar tachocline.

2.2.1 ANISOTROPIC TURBULENCE

Given a rotating sphere with isotropic viscosity (molecular or turbu-
lent) subject to a strong latitudinal shear at its surface, it is easy to
show that the shear would propagate all the way to the centre of the
sphere. Indeed, to a first approximation, let’s consider the sphere to
be composed of incompressible fluid, and assume that u, < ug and
ug < ug. The momentum equation then reduces to

v(Vu)y =0, (2.10)

(the approximation consists in neglecting the meridional circulation,
assumed to be much slower than the azimuthal flow), where v is the
isotropic component of the Reynolds stresses. This implies that the
latitudinal shear at the surface is indeed quenched, but on a length-
scale which corresponds only to the typical lengthscale of the applied
shear, and is in any case independent of the value of the turbulent
viscosity within the sphere.

Despite the approximations made in this example, the basic result
remains unchanged should these be dropped, and leads to the fol-
lowing conclusion: if only isotropic Reynolds stresses are taken into
account, the shear imposed at the top of the radiative zone by the
convection zone propagates all the way to the centre of the sun. This
result has been studied in more detail by Spiegel & Zahn (1992) and
Elliott (1997), who studied the propagation of a latitudinal shear into
an initially uniformly rotating, isotropically viscous radiative zone.
They showed that the thickness of the tachocline would increase with
time in the following way:

A~ (t/tgs) " re | (2.11)
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where tgg is a local Eddington-Sweet timescale (as opposed to the one
given in equation (2.9)) given by

N \? r2
tpg = | — | =% 2.12
ES (29c> K, ' (2.12)

With the values for these parameters described in Appendix A, the
tachocline would be expected to have a thickness of about 200,000
km at the present age of the sun. Spiegel & Zahn conclude that the
only way to explain the much smaller observed value of the thickness
of the tachocline is by requiring that the viscous angular momentum
transport be anisotropic, with a much larger flux in the latitudinal
direction than in the radial direction. This can be achieved by assum-
ing that the viscous transport occurs through microscopic advection
by turbulence in the tachocline.

Spiegel & Zahn argue that if the tachocline is assumed to lie mostly in
the stably stratified zone (an assumption which seems to be confirmed
by observations, see Section 1.4.2), then turbulent motion in the ra-
dial direction is strongly constrained by the buoyancy restoring force.
As a result, the turbulence is expected to be mostly two-dimensional,
on spherical shells.

Spiegel & Zahn parameterize the turbulent angular momentum trans-
port accordingly by taking the normal isotropic formula for the viscous
angular momentum transport, but assuming two different values for
the viscosity in the vertical () and in the horizontal (14,) direction:

oY, 189A> ’ (2.13)

FV = ’)"2 Sin29 (VVEBT + Vh;%eg

where F', is the viscous angular momentum flux. They also assume
that v, < 1y, in order to suppress radial angular momentum transport.

33



2.2.2 THE MODEL AND ITS RESULTS
2.2.2.1 APPROXIMATIONS

Spiegel & Zahn consider a compressible, axisymmetric, steady-state,
system. The frame of reference is rotating with the interior angular
velocity ¢, and perturbations are denoted by Q = r sinfuy. Spiegel
& Zahn neglect the oblateness of the sun (which is equivalent to drop-
ping the centrifugal force term), and linearize the momentum equa-
tion by neglecting u, and ug compared to uy, and in turn neglecting
Q compared to (as a result, only the gradients of the perturba-
tion appear in the equations). The background stratification of
the tachocline is also neglected, and average values of the hydrostatic
profiles of temperature, density, thermal conductivity etc. within the
tachocline are used (see Appendix A).

2.2.2.2 BOUNDARY CONDITIONS

All perturbed quantities should vanish when approaching the core of
the sun. The angular velocity perturbation is imposed at the edge of
the convection zone as given by

Qes(0) = Qeq(1 — az cos®0 — ay cos?d) (2.14)

where Spiegel & Zahn choose to take as = 0.14 and a4 = 0.16. The
temperature perturbation is required to be continuous through the
boundary, which in turn implies that the radial derivative of the an-
gular velocity must be continuous through the boundary too (through
the thermal wind equation). Since little radial shear is observed in the

convection zone, Spiegel & Zahn assume that % = 0 at the boundary.

2.2.2.3 RESULTS

Using these approximations and boundary conditions as well as the
previously described ansatz for turbulent angular-momentum trans-
port, Spiegel & Zahn calculate analytically the structure of the tacho-
cline. Solutions exist for which all perturbations (in temperature and
angular velocity) vanish as depth increases. The typical lengthscale
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for the decay of the shear is

1/2 1/4
A= ST (&) (ﬁ) , (2.15)
2pg \ N Vh

with pgy = 4.933. Using the values given in Appendix A for these
parameters, and an estimated thickness for the tachocline of A =
0.0197, one can derive the required amplitude of the turbulent vis-
cous transport coefficient

25t (2.16)

v, =6 x 10° cm
which is somewhat higher than what could be expected from turbulent
motions in the tachocline, but not wholly unreasonable. By requiring
that no net torque is exerted at the top of the tachocline, Spiegel &
Zahn estimate the value of the interior rotation rate to be 90% of the
value observed at the equator.

2.2.3 DISCUSSION ...

2.2.3.1 ... OF THE RESULTS

The main result obtained by Spiegel & Zahn is the prediction of the
angular velocity of the radiative interior, which they evaluate to be
90% of the equatorial value. Observations, on the other hand, suggest
that the interior rotates at roughly 93.5 % of the equatorial value
(Schou et al. (1998)). This discrepancy is more significant than it may
first appear. Indeed, assuming that there exists no net torque between
the radiative zone and the convection zone, the interior rotation rate
is necessarily a weighted average of the rotation rate of the base of
the convection zone. Reasonable models of the dynamical connection
between the radiative zone and the convection zone differ only by
the angular momentum transporters proposed; hence they all have a
different weighing function, but must necessarily predict a value for
(). that is between the angular velocity of the equator (£2¢q) and that
of the poles (~ 0.7€¢), and unless unexpected importance is given to
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the poles, it is more likely that models would yield a value like
0.850q S Qe < Qeq - (2.17)

Hence a good model should be able to predict the interior rotation rate
to a much better accuracy than that proposed by Spiegel & Zahn.

2.2.3.2 ... OF THE ASSUMPTIONS

The model presented by Spiegel & Zahn has the main advantage of
providing mostly analytical results; this is due mainly to the lineariza-
tion of the equations, which allows the separation of variables in the
solutions. This assumption proves to be partly justified only: the cir-
culation velocities are indeed very small compared with the rotational
velocities, but on the other hand, the angular velocity perturbation
Q is not necessarily small compared with the background angular ve-
locity Q.. In fact, at the bottom of the convection zone, boundary
conditions near the poles require that  ~ 0.20.

The second major assumption comes from the parameterization of the
turbulent viscosity, which is very simple but purely phenomenological.
The results are intrinsically dependent on the parameterization used;
in fact Spiegel & Zahn’s main result, namely the strong suppression
of the latitudinal shear by the turbulent viscosity, could have been ex-
pected since the parameterization of the turbulent stresses is one that
would naturally smooth out any angular-velocity gradient. It is now
well known, however, that such a parameterization cannot accurately
reproduce the effects of two-dimensional turbulence (see, for instance,
Gough & Mclntyre (1998) or studies of two-dimensional instabilities
by Garaud (2001), and also Section 2.3).

2.3 STABILITY ANALYSIS OF THE LATITUDINAL SHEAR IN THE
TACHOCLINE

The model proposed by Spiegel & Zahn concerning the turbulent
angular-momentum transport does not contain a self-consistent expla-
nation of the origin of the turbulence in the tachocline. Indeed, the
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suggestion that the latitudinal and radial shear in the tachocline may
be unstable and therefore lead to turbulence was not verified. More
recently, Charbonneau, Dikpati & Gilman (1999) (hereafter CDG99)
performed a two-dimensional linear analysis of latitudinal shear in-
stability in a spherical shell; the two-dimensional nature of the insta-
bility is particularly well justified in the convectively stable radiative
zone (and in the tachocline) by the inhibition of any radial motion
due to the strong buoyancy restoring force. Unfortunately, a linear
analysis alone cannot give any information about the development of
the instability, and in particular whether the unstable modes saturate
or continue growing and interact with each other. For this reason,
it seems important to develop the model proposed by Charbonneau,
Dikpati & Gilman further, taking into account in particular the non-
linear interaction of the modes with the background angular velocity
in the tachocline. The results of the linear analysis are first analysed
and discussed, before introducing the weakly nonlinear formalism.

2.3.1 SUMMARY OF THE LINEAR ANALYSIS RESULTS

The question of linear stability of the latitudinal shear observed in
the sun has already been addressed, first by Watson (1981) and later
by Dziembowski & Kosovichev (1987) and CDG99. Only an outline
of the linear analysis and its results is presented here. The vertical
motion of the fluid is neglected, and the instability is assumed to
take place on a spherical shell. This assumption applies well to the
solar radiative zone, where the buoyancy restoring force inhibits all
but the slowest radial motions. The perturbations are assumed to
be solenoidal, and the fluid is inviscid. The calculation is performed
in the spherical coordinate system (7,0, ¢), on a shell of unit radius.
The velocity field u is decomposed into its azimuthally averaged part
and the perturbation: u = uw + u’. The eigenvalue equation for the
perturbation is

2

Ug d
(LMZ - Cm) L hm = "/’md—lﬂ (\/ 1- /1'2u_¢>> ) (2.18)

1—
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where u = cosf, ¥, is the amplitude of the stream function for the
azimuthal mode of order m, defined as

w = Vx (&) with ¢ =Y ¢y (u)e™@=em) (2.19)

where e, is the unit vector in the radial direction, c,, is the complex
growth rate of the mode, and L,, is the linear operator defined by

2
Lot =1 (1= 52) = g 220)
The functions 1, must satisfy appropriate boundary conditions. Be-
cause of the invariance of equation (2.18) under the transformation
i — —u, the solutions can be represented as a linear combination of
symmetric and antisymmetric modes. Symmetric modes, with prop-
agation speed ¢, s are such that di,,/dp = 0 on the equator (p = 0)
and antisymmetric modes, with propagation speed ¢, , have 9, =0
on the equator. Regularity at the poles requires that ,, = 0 at
i = £1. The periodicity of the system requires that the values of m
be integers. Because of the functional form of £,,, however, the eigen-
solutions of equation (2.18) for m and —m are complex conjugates,
as are their corresponding growth rates. By convention, the growing
modes are chosen to have m > 0, whereas the decaying modes have
m < 0.

General results on this instability were derived by Watson (1981). In
particular, Watson derived a necessary condition for instability: that
the latitudinal shear can be unstable only if there exists a maximum
in the potential vorticity of the system, which is analogous to the well
known Rayleigh inflexion-point theorem (Rayleigh, 1880).

Some of the growing solutions are presented by CDG99 for m = 1
and m = 2, for symmetric and antisymmetric modes. Their results

call for the following remarks:

1. By using a three-parameter polynomial fit to the helioseismic in-
versions of the solar rotation profile in the region of the tachocline,
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and calculating its stability, CDG99 concluded that the latitu-
dinal shear in the tachocline is likely to be stable to any per-
turbation. However, the system is observed to be very close to
the marginal stability limit (where Im(c,,) — 0), so that slight
differences in the inversions lead to rather different conclusions
concerning the stability of the system. In particular, CDG99 de-
duce from their calculations that only slightly higher within the
convection zone (around 0.72r¢, instead of the assumed position
for the tachocline of 0.7137¢), the rotation profile is unstable to
linear horizontal perturbations. It is an often ignored fact that
all inversion methods yield averages of the angular velocity that
extend over a finite region, rather than the true value at a given
point. As a result, because the tachocline is not radially resolved
by the inversion method, it is likely to undergo a larger shear
than observed in the inversions, and hence could be unstable.
It is therefore more realistic to use the rotation profile observed
only slightly higher in the convection zone as a model for the
latitudinal shear in the tachocline.

The commonly used three-parameter fit to the mean zonal (az-
imuthal) velocity g is:

Uy = QeqV/1 = p2(1 = agp® — aap) (2:21)

where ()¢, is the equatorial angular velocity. For the region near
the bottom of the convection zone (at r = 0.75rq ), comparison
with the observations yields (see CDGY99)

as = aq = 0.15 and Qeq ~ 2.84 x 107571 | (2.22)

(whereas CDG99 used values of as and a4 closer to 0.1 and
0.05 respectively). In what follows, time is measured in units of
[t] = 1/Qeq = 4 days, so that Q¢ in equation (2.21) is replaced
by unity.

. Linear stability analysis of the particular rotation profile given
by the parameter values in (2.22) indicates that three modes are
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unstable, namely the m = 1 and m = 3 symmetric modes, and
the m = 2 antisymmetric mode. Their respective growth rates
are

Im(cis) = 1.68x 1072
2Im(cp,) = 1.35 x 1072 (2.23)
3Im(czs) = 1.77x1073,

)

which correspond to growth times of about 240 days, 300 days
and 6 years respectively.

. Although growing and decaying solutions are formally the only
ones that lead to a net flux of angular momentum, other so-
lutions can also be found which have a null growth rate, and
oscillate with a period of a few years. Moreover, there exist sin-
gular solutions, which are also neutrally stable; the oscillation
period of these modes varies continuously between the value of
the rotation period of the pole, and that of the equator. As
a result, there is a critical layer in the flow where the rotation
period of the background flow equals Re(c) and equation (2.18)
has a regular singularity. These singular solutions cannot usu-
ally be found by standard numerical methods; in any case, the
linear approximation formally breaks down within the critical
layer. The non-linear behaviour of waves in a critical layer has
been extensively studied in the case of linear shear flows (see
for instance the work of Killworth & McIntyre (1985), Haynes
(1989) or Andrews, Holton & Leovy (1987) for an introductory
analysis); it is usually found that waves evolve strong non-linear
spiral structures and finally break within the critical layer, lo-
cally mixing the potential vorticity.

. CDGY9 pointed out that the behaviour of the rotation profile
near the poles could have a strong influence on the stability
of the system. It was shown by Schou et al (1998) that the
actual solar rotation profile deviates significantly from the power
law expansion given by equation (2.21) near the poles in the
surface layers (around r = 0.995r¢). One might ask whether
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this property affects the stability of the system if it persists
throughout the convection zone and into the tachocline (a fact
which, unfortunately, cannot be verified yet). It is therefore
interesting to study the effect of a slowly rotating pole, under
the working assumption that it is present also in the region of
the tachocline.

2.3.2 FORMALISM AND NUMERICAL ALGORITHM FOR THE WEAKLY
NONLINEAR ANALYSIS

The weakly non-linear formalism consists mainly of neglecting the di-
rect coupling between the modes, yet keeping the non-linear coupling
of each mode with the background shear. This method is commonly
used in atmospheric dynamics, to study the interaction of waves with
the general atmospheric circulation (see Matsuno (1971) for instance).
It is justified when the amplitudes of the modes remain small through-
out their non-linear evolution, which can be verified only a posteri-
ori. However, because the tachocline is observed to be very close to
marginal stability, the linear growth rates of the modes are very small,
so that, at least initially, the amplitudes of the modes can be assumed
to remain small. The evolution of the background azimuthal velocity
experiencing the shear instability is then given by (CDG99)

6%_ 1 3
ot N ,/1—#28/1,

[(1 i) Y im (g — g, e2"ﬂm<%>t] (2.24)
m>0

where ¢, is the complex conjugate of ¢,,. Only modes that are un-
stable (i.e. for which Im(c,,) > 0) contribute to the sum in equation
(2.24), since for Im(c,,) = 0, ¥, = ¢¥F,.

Assuming that equation (2.24) appropriately describes the non-linear
evolution of the system in the case of small-amplitude perturbations
(this assumption is discussed in more detail in Section 2.3.6), the
weakly non-linear evolution of the modes and the background state
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can be obtained by iterating the following steps:

1. calculation of the unstable eigenfunctions and eigenvalues for a
given rotation profile, using equation (2.18),

2. evolution of the rotation profile in time according to equation
(2.24) using an Euler centred time-stepping scheme,

3. updating the amplitude of the perturbation using
Y (1 = 0, + 6t) = by (p = 0, )emem0t (2.25)

for the symmetric modes, and

P

(o =0,t 4 6t) = —2(pu = 0, ) memdt (2.26)
op

for the antisymmetric modes.

2.3.3 RESULTS

The results of the weakly non-linear evolution of the rotation profile
of the tachocline are presented in this section. In order to separate the
contributions of the different modes of oscillation, Sections 2.3.3.1 and
2.3.3.2 present separately the evolution of two modes of oscillation,
and their interaction with the background rotation profile. Section
2.3.4 then presents the results when the combined action of all modes
is taken into account. Section 2.3.5. presents the results of the weakly
non-linear evolution of a system that mimics the slow rotation of the
poles, as observed near the surface of the sun. These results, as well
as the validity of the weakly non-linear algorithm, are then discussed
in Section 2.3.6

The rotation profile described by equation (2.22) has three linearly
unstable modes, the m = 1 and m = 3 symmetric modes and the
m = 2 antisymmetric mode. The weakly non-linear evolution of two
of these modes is presented here for each mode separately, in order to
illustrate more clearly some of the specific features of the non-linear
interaction of the perturbation and the background flow.
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2.3.3.1 THE m =1 SYMMETRIC MODE

The results of the non-linear evolution of the m = 1 symmetric mode
and its influence on the background rotation profile are presented in
Fig. 2.1. The initial conditions for this calculation are:

e uj, = €t at the equator, with e = 1074,
e the initial rotation profile is described by equation (2.22).

It is found that for such an initial amplitude, an acceptable time-step
for the simulation is 62 = 5 x 10~3. These results call for the following
comments:

1. Fig. 2.1a represents the evolution of the real and imaginary
parts cig. Note the decay of the growth rate Im(cis) of the
mode with time, which shows the non-linear saturation process.
The calculation had to be stopped when Im(c;s) < 2 x 1073
because the mode became too nearly singular to compute. The
real part of ¢i g on the other hand remains approximately con-
stant throughout the evolution of the system. The background
state approaches marginal stability (i.e. a system with vanishing
growth rate and Reynolds stresses). Defining the time-scale for
saturation to be the typical time required for the growth rate to
drop by a factor of 2, it is observed that for an initial amplitude
of € = 107*, 7 = 135 (which corresponds to about 540 days).
The variation of the saturation time-scale with initial amplitude
is shown in Fig. 2.2

2. The Reynolds stresses, transporters of angular momentum, are
represented in Fig. 2.1b. Note how these are concentrated near
60°, which corresponds to the latitude of the maximum of po-
tential vorticity of the background flow (see Fig. 2.1d). The
Reynolds stresses are proportional to the square of the ampli-
tude of the eigenfunction, and, after a period of increase, begin
decreasing with time despite the increase in the amplitudes of
both the real and imaginary parts of the eigenfunction, as given
by equations (2.25) and (2.26). This effect is due to Im(c,,) — 0:
when Im(c) = 0, the real and imaginary part of the eigenfunc-
tions are solutions to the same equation with the same boundary
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Figure 2.1: Evolution of the m = 1 symmetric mode of the pertur-
bation and the background rotation profile with time, for the ini-
tial conditions described in Section 2.3.3.1. (a) Real and imaginary
parts of the complex growth rate. (b) Reynolds stresses (x10°) for
5 successive dimensionless times with line style coding as shown. (c)
Rotation profile: the lower box contains the actual rotation profile,
for 5 different times, but the deviation from the original rotation
profile is too small to be seen. In the top box, the actual devia-
tion (x10%) is plotted for 5 different times (same line-style coding
as before). (d) Vorticity profile: the main box contains the vortic-
ity profile for 5 different times (same line-style coding as before),
and the inset is an enlargement of the region of the maximum of
the vorticity curve. The solid line represents the initial vorticity
profile.
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conditions, so that ¢, — 1,. As a result, the Reynolds stresses
in equation (2.24) also tend to zero.

3. The evolution of the initial rotation profile due to the pertur-
bation is shown in Fig. 2.1c. The bottom curve is the actual
rotation profile at each time, but the deformation due to the in-
stability is too small to be seen. The deviation from the initial
rotation profile is shown in the top half of the panel, and takes
the form of a localized increase in the azimuthal velocity of the
flow around a latitude of about 60°; however, being very small,
this increase only results in a slight localized flattening of the
zonal velocity profile. The flattening process slows down with
time.

4. The saturation mechanism can best be understood from Fig.
2.1d. The evolution of the radial component of vorticity (which
is proportional to the potential vorticity of the flow) is shown
here; the inset shows an enlargement of the region near the
potential-vorticity maximum. Since the existence of the max-
imum has an important role to play in the excitation mecha-
nism of the instability (Rayleigh (1880), Watson (1981)) it is
not surprising that the slow erosion of the vorticity maximum
due to the instability, as observed in Fig. 2.1, acts to stabilize
the system and leads it towards a state of marginal stability.
Note that, as expected from any two-dimensional flow, the total
potential vorticity is conserved; the perturbation merely redis-
tributes it from the position of the maximum towards the pole
and the equator.

2.3.3.2 THE m = 2 ANTISYMMETRIC MODE

The results of the non-linear evolution of the m = 2 antisymmetric
mode and its influence on the background rotation profile are pre-
sented in Fig. 2.3. The initial conditions for this calculation are:

. u;) = €l at the equator, with € = 1074,

e the initial rotation profile is described by equation (2.22).
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Figure 2.3: Evolution of the m = 2 antisymmetric mode of the per-
turbation and the background rotation profile with time, for the
initial conditions described in Section 2.3.3.2. The panels are sim-
ilar to those presented in Fig. 2.1, applied to the m = 2 mode.
The various quantities have been plotted at 5 different dimension-
less times, with line style coding as shown in panel (b). Note the
change in the vertical scale in panels (b) and (c).
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The results for the m = 2 mode are similar to those presented for
the m = 1 mode. Note however the two main differences: firstly, the
growth rate for the m = 2 mode is smaller than that of the m =
1 mode (Fig. 2.3a), which leads to smaller values of the Reynolds
stresses at a given time ¢ (Fig. 2.3b). As a result, the influence of
this mode on the background rotation profile is much smaller than
for the previously shown m = 1 mode (Fig. 2.3c). Secondly, the
action on the vorticity occurs at a different latitude, creating a step-
like feature in the vorticity profile (Fig. 2.3d). However, because this
also affects the vorticity maximum, saturation still occurs (as seen
in Fig. 2.3a and 2.3b) but on a longer time-scale. In this case, the
instability is observed to evolve on a time-scale of about 7 = 580
(which corresponds to about 6.3 years) for the initial amplitude used
in this calculation. The marginally stable state eventually reached by
the system is different from the one obtained in the case where the
m = 1 mode was evolved.

2.3.4 ALL MODES

The results of the non-linear evolution of the perturbation and its
influence on the background rotation profile are presented in Fig. 2.4.
The initial conditions for this calculation are:

e the initial rotation profile is described by equation (2.22),
® uj = €ty at the equator for the symmetric modes,
° u’d) = €ty at the equator for the antisymmetric modes,

where € = 104,

In this final plot, all the modes have been taken into account. Starting
with similar amplitudes for linearly unstable m =1, m =2 and m = 3
modes, the stability of other modes to the evolved rotation profile is
checked regularly: none of these modes becomes unstable. Note that
because the growth rates of the m = 2 and m = 3 modes are much
smaller than that of the m = 1 mode, the effect of the instability on
the background rotation profile is dominated by the m = 1 mode.
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Figure 2.4: Evolution of the perturbation and the background rota-
tion profile with time, for the initial conditions described in Section
2.3.4. The diagrams are the similar to those presented in Fig. 2.1,
with the line style coding as shown in panel (b). Note that in panel
(a), triangles represent the m = 1 mode, squares the m = 2 mode
and circles the m = 3 mode.
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The instability tends to a state of marginal stability on a time-scale
of about 7 = 80; again, this marginally stable state is different from
the one obtained in Sections 2.3.3.1 and 2.3.3.2 where only one mode
(either m =1 or m = 2) was taken into account.

2.3.5 EFFECT OF A SLOWLY ROTATING POLE

It has been observed by Schou et al. (1998) that the rotation rate
near the poles deviates significantly (by more than 10%) from the
usual power law expansion described in equation (2.21), in the sur-
face layers of the sun. Unfortunately, owing to degradation of the
resolution with both depth and with latitude it is not possible yet
to check whether this slow rotation persists deeper in the convection
zone. Theories and numerical simulations have so far failed to ex-
plain this phenomenon through purely hydrodynamical effects. It is
therefore possible that this rotation profile may have a much deeper
origin, and persist throughout the convection zone and the tachocline.
Assuming this to be the case, the aim of this section is to study the
effect of a slowly rotating pole on the stability of the tachocline to
latitudinal shear instability.

The initial rotation profile studied now is based on the observations
of the solar rotation profile near the surface (at » = 0.9875r¢), and
is adapted from the results of Schou et al. (1998). A good three-
parameter fit is given by

Q3_(0) = 1.014(1 — 0.115 cos®@ — 0.178 cos'h) , (2.27)

in units of ¢, as given by equation (2.22). The residual between this
expression and the observed angular velocity as given by Schou et al.
(1998) is shown in Fig. 2.5, in the same units. The total amplitude of
the residual at the poles is not known. In order to test quantitatively
the influence of a slowly rotating pole, several fits to the residual have
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been tested; they are given by

Model 0: Q.. = 0,

Model A: Qs = 3.3 x 1072 (tanh®(1.870) — 1) ,

Model B: Qs = 4.4 x 107%(tanh®>(1.776) — 1) , (2.28)
Model C: Qe = 5.5 x 1072(tanh*(276) — 1) .

The initial rotation profiles given by Q¢ = Q3_g¢ + Qyes for the four
models are evolved using the weakly non-linear algorithm. As in the
previous section, the initial conditions for the perturbation are:

e uj = €ty at the equator for the symmetric modes,

. u;5 = €l at the equator for the antisymmetric modes,

where € = 10~%. The results are shown in Fig. 2.6. This plot shows
the deviations from the initial background rotation profiles, given by
Models 0, A, B and C at the dimensionless time ¢ = 120 (for which
the system in all cases is close to saturation). Model 0 has no dip in
the polar rotation rate, and the corresponding results are very close to
those presented in Section 3.2, despite the change of the coefficients
as and a4 used for the three parameter fit. As CDGY99 suggested,
the instability depends more on the total shear (i.e. ag + a4) than
on the respective values of these coefficients. The main effect of a
slowly rotating pole is to introduce a second increase in the azimuthal
velocity of the background flow, at a latitude of about 80°. The slower
the polar rotation, the larger the increase (above the initial value) in
angular velocity near the poles.

2.3.6 DISCUSSION

The results described above are now discussed, with relevance to ob-
servations, and the problem of angular-momentum transport in the
solar tachocline. The validity of the weakly nonlinear algorithm is
also discussed.
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Figure 2.5: Variation with latitude of the residual between the
observed rotation profile at a radius of 0.9875rg, and the three-
parameter fit given by equation (2.27), in dimensionless units. The
vertical error-bar represent the error on the rotation rate, and the
horizontal one the width of the averaging kernel (which gives insight
into the resolution of the data).
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Figure 2.6: Deviation from the background rotation profile as a
function of latitude at the dimensionless time ¢t = 120, for models
0, A, B, C and D.
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2.3.6.1 DISCUSSION OF THE EFFECTS OF THE INSTABILITY

Watson, in 1981, showed that a latitudinal shear on a spherical shell
can only be unstable to two-dimensional perturbations provided there
exists a sufficiently strong maximum in the background potential vor-
ticity. If this is the case, the growing or decaying eigenmodes of the
perturbations are traveling Rossby waves, oscillating with a frequency
mRe(c,) which takes values between the background rotation period
of the pole and that of the equator. The waves redistribute potential
vorticity down-gradient, and gradually erode the potential vorticity
maximum. This process slowly stabilizes the system, which can be
seen for instance in the decay of the growth rate with time.

The growth rate is intrinsically linked with the Reynolds stresses, and
as Im(cpy,) — 0, ¥m — 9, so that the right-hand side of equation
(2.24) tends to 0: the system is asymptotically driven towards a state
of marginal stability. The typical time-scale 7 for the saturation of the
background flow is shown as a function of the initial amplitude of the
perturbation in Fig. 2.2. It is common in astrophysics to assume that
the marginally stable state reached by a system after the saturation
of an instability is unique. This is usually the case when the stability
criterion is local, as it is in convective instability, for example. On the
other hand, when the instability criterion is global, marginally sta-
ble states are usually not unique; the results presented in this paper
illustrate this phenomenon. The marginally stable state reached by
the system depends on the initial rotation profile as well as the initial
spectrum of amplitudes of the modes, but is independent of the total
power of the perturbation for a given initial rotation profile. The sta-
ble states need not be states of monotonically increasing/decreasing
potential vorticity; in fact, there exist many rotation profiles contain-
ing a maximum in potential vorticity which are stable to latitudinal
shear instability (see Watson (1981) and CDG99). It could be argued
that the system takes an infinitely long time to reach the marginally
stable states, but this is only an artefact of the weakly non-linear ap-
proximation. As the system approaches a marginally stable state, the
perturbation eigenfunctions become more and more singular and the
linear approximation locally breaks down near the critical latitudes.
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By analogy with linear shear flow analysis (see for instance Haynes
1989), one can assume that the Rossby waves eventually break within
the critical layer due to their non-linear evolution, locally mixing po-
tential vorticity and therefore completing the saturation process.

Helioseismic inversions are usually able to obtain only the axisym-
metric, north-south symmetric rotation profile. In those cases only
the background flow %, (which is by definition axisymmetric) can
be detected. In all the cases studied, the state of marginal stability
reached by the system deviates only very slightly from the original
state, with a total deviation of no more than 0.2 % of the original
angular velocity given by the three-parameter fit. Such a small varia-
tion could not be detected by helioseismic inversions. The effect of a
slowly rotating pole has also been studied. It has been shown that the
resulting marginally stable state contains an additional enhancement
of the angular velocity at a latitude of about 80°. However, the global
stability properties of the system are hardly changed: the saturation
time-scale remains similar, and the average amplitude of the deviation
from the initial rotation profile does not exceed 0.2%. These results
suggest that the solar rotation profile might actually be in a state of
marginal stability. The adjustment of the background rotation profile
to the shear instability occurs on a time-scale no longer than that of
other angular-momentum transporting processes (such as a large-scale
meridional circulation, and possibly magnetic stresses); as a result, al-
though this instability is not dominant in the overall determination of
the final steady-state profile, it may force the system, at all times, to
remain close to a state of marginal stability.

2.3.6.2 DISCUSSION OF THE VALIDITY OF THE WEAKLY NONLINEAR AL-
GORITHM
The weakly non-linear algorithm presented here, and in particular the
equation (2.24) for the evolution of the background flow, is valid only
provided the background flow evolves on a time-scale that is much
larger than the period of oscillation of the perturbation. Since typi-
cally Re(c) is of order of unity, it is essential that 7 > 1. Comparing
this condition with the results presented in Fig. 2.2 shows that the
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weakly non-linear algorithm can be applied, roughly speaking, only to
perturbations of amplitude e smaller than 1073.

The main difficulty in studying the inviscid latitudinal shear flow
instability arises from the presence a critical layer in the flow, at a
latitude for which the phase speed of the wave is equal to the velocity
of the background flow: w; = ¢;,,/1 — p? when ¢, is real. At this
point the eigenvalue equation has a regular singularity; the critical
layer leads to the existence of a continuum of singular, neutrally sta-
ble eigenmodes. The weakly non-linear algorithm presented in this
paper is proposed as an alternative to a more rigorous weakly non-
linear theory (see, for example, Drazin & Reid, 1981, chapter 7): it
allows one to make full use of the results of linear theory and provides
a relatively easy method of calculating the weakly non-linear inter-
action of the modes with the background rotation profile, whereas
standard weakly non-linear theory can formally not be used because
of the interaction between the continuum of neutrally stable singu-
lar modes and the discrete unstable ones. The addition of viscosity
(albeit vanishingly small) would simplify the mathematical problem,
since the critical layer is then replaced by a viscous boundary layer,
and the continuum of neutral modes is replaced by a discrete spec-
trum of either growing or decaying modes. In that case, the results of
weakly non-linear theory and those provided through the algorithm
presented in this paper can be shown to be similar provided that the
system is sufficiently close to marginal stability, and that the bifur-
cation to instability is supercritical. The first condition is likely to
be fulfilled by the solar rotation profiles studied in Sections 2.3.4 and
2.3.5. The second condition would guarantee that the system remains
subcritically stable to finite-amplitude perturbations. Both these con-
ditions can be verified only by studying the full non-linear theory of
this shear flow, which is beyond the scope of this paper (one might
note that there exist subcritical instabilities in plane and cylindrical
Couette flow, which is similar but not completely analogous to the
flow considered here).
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2.3.7 CONCLUSION

Spiegel & Zahn (1992), in an attempt at explaining the rotation pro-
file in the region of the solar tachocline, suggested that the observed
latitudinal shear in that region may be unstable, and through the re-
sulting anisotropic turbulence, sustain an enhanced latitudinal flux of
angular momentum.

In order to check whether latitudinal shear instability may indeed lead
to the required angular momentum flux in the tachocline, a weakly
non-linear algorithm was constructed, which allows the study of the
evolution of a background rotation profile undergoing two-dimensional
latitudinal shear instability. The linear stability of the system depends
on the global characteristics of the shear and in particular the total
difference between the angular velocity of the equator and that of the
poles. The existence of a sufficiently pronounced maximum in the
potential vorticity is a necessary condition for instability. The linear
eigenmodes of the perturbation can be identified as Rossby waves,
and transport vorticity down-gradient. As a result, the vorticity max-
imum is “eroded” by the weakly non-linear evolution of the pertur-
bation, which slowly leads to the saturation of the instability, and
drives the system towards a state of marginal stability. There exists
a continuum of marginally stable states, and these have two impor-
tant features: they have null Reynolds stresses, which leads to no net
flux of angular momentum, and in the case of the tachocline, they in-
duce a deviation from the observed rotation profiles parameterized by
equation (2.21) which is less than 0.2 %; such a small deviation could
not be detected helioseismically. It seems likely that the tachocline is
essentially in a state of marginal stability with regard to latitudinal
shear instability.

This study suggests that the latitudinal shear instability cannot be
solely responsible for the observed rotation profile in the region of the
tachocline, and the uniform rotation of the interior: another mech-
anism must also be involved, which could be attributed to Lorentz
stresses (Gough & Mclntyre, 1998). However, most angular-momentum
transporting processes appear to act on time-scales not significantly
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shorter than the characteristic time-scale for the saturation of this
shear instability and the convergence of the background rotation pro-
file towards a marginally stable state. As a result, although probably
insignificant in the determination the overall shape and evolution of
the angular rotation profile, the Reynolds stresses due to latitudinal
shear instability could still play an important role in keeping the sys-
tem, at all times, close to a marginally stable state.

2.4 GRAVITY WAVE DAMPING MODEL

Another way of obtaining efficient angular momentum transport throu-
ghout the radiative zone without chemical mixing below r = 0.61rg
is through the propagation and damping of gravity waves (Schatzman
(1993)). This mechanism is especially important in the terrestrial at-
mosphere, where it is thought to be responsible for the Quasi-biennial
Oscillation, in a similar way as the propagation and damping of grav-
ity waves in a rotating tank result in the emergence of bands, rotating
alternatively in a prograde and retrograde fashion (Plumb & McEwan,
1978). Zahn, Talon & Matias (1997), Kumar & Quataert (1997) and
more recently Kumar, Talon & Zahn (1999) therefore suggested that
gravity waves dissipation may be a way of explaining the spin-down
of the radiative zone of the sun.

Their idea is the following: gravity waves are excited at the base
of the convection zone by large-scale convective eddies. Since these
waves are evanescent in the convection zone, they can only propagate
inwards, into the radiative zone. The angular momentum balance
implied by the propagation of the waves is simply given by:

% (pr? sin*0Q) = —V-(pr sinfugu) , (2.29)
where u is now the Lagrangian displacement velocity of the wave,
and ug its azimuthal component. In the radiative zone, the waves
are thermally damped, and gradually release their energy and angu-
lar momentum. The damping (and therefore the angular momentum
release) essentially depends on the frequency of the waves, with a
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faster damping for lower frequencies. Since the waves are excited in
a rotating frame, prograde and retrograde waves are excited with the
same amount of energy, with the same frequency but opposite propa-
gation direction. If these waves were traveling in a uniformly rotating
medium, they would release nearly the same amount of angular mo-
mentum but in opposite directions, therefore resulting in little net an-
gular momentum flux. However, if a wave propagates into a medium
which rotates with a higher angular velocity for example, the local
frequency of the wave is Doppler shifted compared to its original fre-
quency with:

O =w-—m, (2.30)

where m is the azimuthal order, w is the initial frequency of the wave,
@ is the frequency in the new frame, and Q is the local angular veloc-
ity of the background flow relative to that of point where the gravity
wave was excited. Since the Doppler shifts of prograde and retrograde
waves are different (i.e. m is positive for prograde waves, and negative
for retrograde waves), they are damped within a different scaleheight,
resulting locally in a non-zero angular momentum flux.

Zahn, Talon & Matias (1997), Kumar & Quataert (1997), and Ku-
mar, Talon & Zahn (1999) proposed that such a mechanism could
explain the global spin-down of the radiative interior following the
braking of the convection zone due to the solar wind. This might in-
deed be a possibility in a global sense, since gravity waves do provide
a strong dynamical coupling between the two zones. However, since
gravity-waves damping tend to enhance any pre-existing shear rather
than quench it, it is difficult to explain how such a mechanism could
lead to the observed uniform rotation in the radiative zone.

2.5 CONCLUSION

In this chapter, the various hydrodynamical possibilities of angular
momentum transport in the sun have been inspected, which might be
responsible for the very fast quenching with depth of the latitudinal
differential rotation imposed by the convection zone on the radiative
zone. Conservation of angular momentum, in the purely hydrody-
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namical case, necessarily results from a balance between large-scale
advection and Reynolds stresses; the Reynolds stresses originate ei-
ther from microscopic advection by turbulence or waves. Only mod-
els which may conform to the light-element abundances observations
have been given serious consideration (global circulation models were
rejected on the grounds that they would lead to the complete deple-
tion of lithium and boron, which is not observed in the sun).

The case of turbulent Reynolds stresses was studied by Spiegel & Zahn
(1992); they found that the observed thickness of the tachocline, of
about 2 % of the solar radius, immediately rules out the possibility
of isotropic Reynolds stresses. Angular momentum transport must
be far more efficient in the latitudinal direction than in the radial di-
rection, otherwise the latitudinal shear would propagate all the way
to the centre of the sun. Spiegel & Zahn therefore proposed a model
in which turbulence is essentially two-dimensional, and lead to highly
anisotropic Reynolds stresses; they suggest that latitudinal or radial
shear instability may be responsible for the maintenance of turbulence
in the tachocline. Their model however fails in two respects:

1. Two-dimensional inviscid motion is known to conserve (and there-
fore transport) potential vorticity rather than angular momen-
tum. Spiegel & Zahn however ignored this fact in their parame-
terization of the angular momentum transport in the tachocline;
their results are therefore “spurious” in the sense that two-
dimensional turbulence would not lead to the quenching of dif-
ferential rotation, as they claim, but would rather sustain it.

2. Study of the latitudinal shear instability within the tachocline
reveals that the shear is close to marginal stability; nonlinear
evolution of the instability shows that the differential rotation
quickly converges to a state of marginal stability, which sus-
tains no net angular momentum flux (Garaud, (2001), and Sec-
tion 2.3). Spiegel & Zahn’s suggestion that turbulence in the
tachocline may be sustained by latitudinal shear instability is
therefore unlikely to be true.
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The case of angular momentum transport by waves was also inspected,
and it was shown that gravity waves leads to the enhancement, rather
than the quenching, of any differential rotation beneath the convection
zone. Although this mechanism might indeed be responsible for the
dynamical connection between the radiative zone and the convection
zone as the convection zone is spun-down by the solar wind, it is hard
to see how it could explain alone the structure of the solar tachocline
or the uniform rotation of the radiative zone.

Looking at the failure of the many hydrodynamical models proposed
to explain altogether the interior rotation of the sun, the structure
of the tachocline and the observed light-element abundances leads to
the same conclusion as Gough (1997) and Gough & McIntyre (1998),
namely that there seems to be no purely hydrodynamical model ca-
pable of explaining the solar interior rotation.
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Chapter 3

MHD MODELS OF THE TACHOCLINE

3.1 INTRODUCTION TO MHD

Magnetohydrodynamics studies the dynamical interaction between
magnetic fields and fluid motions in a conducting plasma. Magnetic
fields affect fluid motions through the Lorentz force, whereas fluid
motions affect magnetic fields through the advection equation. The
MHD equations of motion in the Boussinesq approximation are there-
fore changed to the following form:

V-(phu) =0, 3.1)

ot
= —Vp' —pVo, +j x B+ powViu,

!

Ph <a—u+u-Vu+chr+Zchu+ﬂcx(chr)

~~ o~ N~

PhThaa—st + pnThu - Vs = V-(K;VT'") , 3.3)
p T p

==L 3.4
pn Th  pn (34)
0B

E:Vx(uxB)—Vx(anB) , (3.5)
V-B=0. (3.6)

It has been known for a long time that even a very small magnetic field
can have a significant influence on a rotating fluid. Owing to the large
electric conductivity in the sun (in particular in the stably stratified
regions), the timescale for ohmic decay 74 is usually much larger than
any dynamical timescale. In that case, the fluid can be considered to
be a perfect conductor, and the magnetic field lines may be assumed
to be frozen in the fluid. This has important consequences, and leads
in particular to the law of isorotation of Ferraro (1937), which states



that the angular velocity of axisymmetric, perfect MHD fluids in a
steady state must be constant along magnetic field lines, that is

(B-V)Q= 0. (3.7)

Mestel (1953) and Cowling (1957) were the first to suggest the rel-
evance of this effect in the case of the sun. Mestel & Weiss (1987)
showed that values as small as 1072 — 1072G should be capable of
suppressing any rotational shear deep in the solar interior, taking into
account various magnetic instabilities. Assuming that a large-scale
magnetic field of that intensity may indeed exist in the radiative zone,
this would provide the most natural explanation for its observed uni-
form rotation. It is therefore important to assess the question of the
possible origins and intensity of magnetic fields within the radiative
zone, before setting up an MHD model for the tachocline.

3.2 ORIGIN OF MAGNETIC FIELDS IN THE SOLAR INTERIOR

The existence of an interstellar field suggests a lower limit of 106G
for the field in the radiative zone of the sun. In order to improve on
such an estimate, two possibilities may be considered: either the field
can be regarded as primordial (more precisely, as a legacy of the pre-
main-sequence evolution of the sun), pervading the interior and slowly
diffusing into the convection zone, or else it results from the inward
diffusion of the field produced by a dynamo located in the vicinity of
the interface between the radiative and convective zones.

3.2.1 PRIMORDIAL FIELD

Assuming that the collapse of a molecular cloud into a protostar con-
serves magnetic flux, the presence of a very large poloidal field in the
core of the protostar can easily be explained. However, through the
subsequent fully convective Hayashi phase, most of this relic flux is
likely to be destroyed by turbulent convection. It is therefore diffi-
cult to predict the intensity of the magnetic field immediately after
the Hayashi phase: if the retreat of the convection zone is sufficiently
fast, a small fraction of this extremely large flux could remain in the
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radiative core. In the case of the sun, the magnetic diffusion time
out of the radiative zone is of order of the age of the sun (see Section
3.2.2) or larger, which suggests that a primordial field may still sub-
sists in that region. Recent work by Dudorov et al. (1989), following
this scenario, gives estimates of a few Gauss for the poloidal field,
and from 10* — 10°G for the toroidal field in the radiative zone. Also,
steady dynamo action during the Hayashi phase may actually keep the
magnetic flux within the star to a significantly high level throughout
the Hayashi phase.

Various estimates of the strength of the primordial field can be found
in the extensive review by Mestel & Weiss (1987); they range from a
few G to 10°G for the poloidal field in the solar core. Other recent
estimates are based on different approaches: Hinata (1986) proposes
that the propagation of Alvén waves from the convection zone to the
radiative zone implies the presence of “a few-thousand-Gauss com-
plicated magnetic field with a spectrum B(k)= const k'/3”; Boruta
(1996) suggested that observations of the asymmetry in the solar cycle
may provide more stringent limits on the intensity of a poloidal field
in the core, and derived an upper limit of about 30 G. In any case,
this review seems to suggest that it is not unreasonable to expect a
field of order of 1 G or more in the solar radiative zone.

3.2.2 DYNAMO PENETRATION

It is often believed that magnetic fields in the sun (and in particular
magnetic flux tubes) are permanently created by a dynamo process.
The dynamo action results from the interaction between small-scale
turbulence, differential rotation and large-scale magnetic fields. Small-
scale turbulence with a finite helicity (which is usually the case in a
rotating fluid, provided the Rossby number is sufficiently large) can
twist azimuthal fields into poloidal fields. Differential rotation then
stretches the poloidal field in the azimuthal direction; this whole pro-
cess might then result in exponential growth of a small seed field, until
saturation occurs. The most favourable conditions for the existence
of a dynamo occur at the base of the convection zone, which contains
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both turbulence and strong radial shear. Assuming such a dynamo
indeed exists, the question is then, how far down may the magnetic
field propagate?

The dynamo field at the base of the convection zone cannot be ob-
served directly. However, flux tubes originating from this region rise
buoyantly and appear at the surface, yielding valuable information
about the amplitude fluctuations and the spatial distribution of the
field. It is observed that the surface magnetic field undergoes an ape-
riodic cycle with a mean period of 22 years, and is also subject to
significant amplitude fluctuations. A strictly periodic field could not
propagate far into the radiative zone, since each half period would
be cancelled almost exactly by the next one, leaving a signal that is
exponentially damped within the skin depth [ = \/2n/w (where 7 is
the diffusivity of the medium and w the frequency of the cycle), which
is roughly 4 km. However, random fluctuations in amplitude or phase
do not cancel completely, and can therefore diffuse into the radiative
interior as a random walk process, as first proposed by Mestel & Weiss
(1987).

The diffusion of the random component of the field, will first be stud-
ied. This can be addressed without discussing the issue of the am-
plitude of the dynamo field since the diffusion problem is intrinsically
linear.

3.2.2.1 DIFFUSION OF RANDOM FLUCTUATIONS

The radiative zone is first assumed to have a constant magnetic diffu-
sivity ng (the value of 7y, and the relaxation of the assumption that
1o be constant, will be discussed later), and all kinds of fluid motion
are neglected. With these approximations, the magnetic induction
equation reduces to a diffusion equation:

oB
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Only the propagation of the poloidal field B, will be considered. Al-
though dynamical coupling would normally prevent the toroidal and
poloidal fields from decaying independently, this discussion will fol-
low that of Mestel & Moss (1983) in adopting the approximation of a
freely diffusing poloidal field. Then the variation of the toroidal field
will be determined by the solution for the poloidal field, by requiring
that the magnetic field should be force-free. The toroidal field will not
be considered here however, since only the poloidal field can enforce
uniform rotation. Hence one can set B = B, in equation (3.8).

The dynamo field at the base of the convection zone, which is used as
a boundary condition for the diffusion process in the radiative interior,
is presumed to have a dipolar variation, and its amplitude is By. The
case of a higher multipolar configuration is treated later; the results
are qualitatively similar. The time variation of the “boundary field”
should represent only the fluctuations of the cycle, since the periodic
component is damped within a skin depth of about 4 km. Also, for
simplicity, only the amplitude fluctuations will be taken into account,
on the grounds that treating the phase fluctuations as well would lead
to a very similar result, although the calculation is less easy to carry
out. In this simple model, the fluctuations in the field imposed at the
boundary will be modeled with a series of step-functions, of constant
amplitude and length, but of random sign:

N
> XuByO(t —né)O[s — (t —nd)] (3.9)

n=0

where =11 years, By is the average amplitude of the deviation from
sinusoidal variation, © is a Heaviside function, and the random vari-
able X,, is a Bernoulli variable which can take the values —1 or +1.
This process is comparable to a random walk process. Finally, the
field at the boundary is assumed to lie predominantly in the latitudi-
nal direction. It is not possible, since B is solenoidal, to impose both
the radial and latitudinal components of the field at the boundary.
The latitudinal direction has been chosen mostly for reasons of sim-
plicity; it is indeed mathematically easier to impose the amplitude of
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By as a boundary condition than the amplitude of B,. The restriction
has no significant influence on the final result.

The foregoing remarks and assumptions justify the following bound-
ary condition, expressed with respect to spherical polar coordinates

(r,0,¢):

By(re, i, t) = anBOG)(t —nd)O[(n+1)d —t]/1—p?, (3.10)

n=0

where By is the latitudinal component of the magnetic field, u = cos#,
re ~ 5x10'% cm is the radius of the radiative zone; the spatial variation
v/1 — u? is that appropriate to a dipole field. The radial component
of the field B, must be left unspecified.

Diffusion of a step-function field

Linearity of the problem ensures that the final solution can be ob-
tained by considering the propagation of a single step-function term,
and then adding together many such solutions with the corresponding
delays.

The boundary condition used can therefore be simplified for the mo-
ment to

By(re,p,t) = Bo®()O(5 — t)\/1 — p? (3.11)
which describes how at ¢ = 0, a latitudinal field is applied to the
boundary of the initially magnetic-free radiative zone. Using Chan-
drasekhar’s (1956) formalism for an axisymmetric system, the poloidal
field B is represented in terms of the potential P:

B = Vx(r sinfPé;) . (3.12)

Substitution into equation (3.8) then gives

0’P 40P 1—pu?\ 0°P  4udP 1 0P

r2 o2 r2opn  mo Ot
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The boundary conditions of the problem allow a separation of variables
into

P(r,p,t) = R(r, t)G(u) - (3.14)
The components of the field then depend on R and G in the following
way:
9 2
B, = _R(Ta t)% [(1 —H )G(:U‘)] ) (315)
10
By = —G(p)v1- ;ﬂ;g [rR(r,t)] , (3.16)

and equation (3.13) can be separated into the following equations for
R(r,t) and G(p):

0*G oG
(1-— ”Z)a—;ﬂ — 4M$ =-\G , (3.17)
R or_1on_x
or2 " rdr my Ot r?

Equation (3.17) is the eigenvalue equation for the Gegenbauer polyno-

(3.18)

mial C,g3/2) (1) with eigenvalue A2 = k(k+3), where k is a non-negative
integer.

The complete solution is therefore given by
o0
P(’)”, My t) = Z AkRk(T, t)Gk (ﬂ’) ) (319)
k=0

where G (p) = C,g3/2) (1) and Ry, satisfies equation (3.18). Since the
boundary condition for a dipole configuration is given by equation
(3.11), in the light of equation (3.16) it follows straightforwardly that
only Go(u) is non-zero, and that

G(,u) = Go(,u) =1 with )\0 =0. (3.20)
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Hence, for the dipole configuration, the problem is greatly simplified,
and there remains only one equation to solve, namely

R 40R 10R

o v T mar (3:21)
with boundary condition
10 .,
~ar [r°R(r,t)] = —ByO(t)O(§ —t) . (3.22)

This problem can be solved using the Laplace transform method (de-
scribed for instance by Carslaw & Jaeger (1959)). The solution must
be split into two distinct time intervals: ¢ < § and ¢t > §. For times
t smaller than the duration 0 of the step-function the solution corre-
sponds simply to the inward diffusion of constant magnetic field on
the surface of the sphere (see also Carslaw & Jaeger (1959)). However,
that solution is not relevant for this study, since only times of order
of the age of the sun are being considered. For ¢ > § the solution is:

P(r,0,t) = 2By (%)3/2

y Z 3/2(J rc)eXP( 3i7) lexp (57 2) — 1] (3.23)
=1

(72 +2)J5/2(ji) ’

where 7 = r2/nq is the diffusion timescale, and the coefficients j; are
the solutions of

Jidiy2(5i) = J32(Ji) - (3.24)

The j; can be obtained numerically, and the first five are listed in
Table 3.1.

Finally, the field in the interior is given by

B —4OOD~t re\Y (T 3.25
cosl ; z()(?) 3/2 ]zr—c ) (3.25)

69



Table 3.1: The eigenvalues j; for i < 5, given to 10~° accuracy.

Ji
2.74370
6.11676
9.31661
12.48593
15.64386

U W N =,

By o= oz [ P32Uin) g Juelin)
sinf Q;Dz(t)rc r3/2 re  ri/2 ’ (3.26)

where D;(t) is the following function of time:

D;(t) = By— T —exp | —Ji— | , 3.27
O =BG 000 - (320

for t > 0.

Diffusion time, and numerical evaluation of the solution:

The numerical evaluation of the solution requires the choice of the
diffusion timescale, through the choice of the constant diffusivity 7.
Indeed, since the damping factor is exp (— jz?t/ T), the result will de-
pend strongly on the diffusion time 7. Spitzer (1962) gives the ex-
pression for the resistivity o~! of a fully ionized plasma as o~ ! =
6.53 x 10"2InA T—3/2cm?s~", where T(r/r.) is the temperature and
InA is an electrostatic shielding factor tabulated by Spitzer, which
varies from about 2.5 in the solar core to roughly 3.5 at r = r.. The
relation n = 1/47no therefore yields

n(r/re) = 5.2 x 101 nA T3/ 2cm?s 1. (3.28)

Using the temperature and density profile given by Stix (1989), equa-
tion (3.28) yields the following range of values of the diffusivity be-
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tween the centre and the outer edge of the radiative zone:
20 cm?s™! < £ 645 cm?s! . (3.29)

This shows the danger of the constant-diffusivity approximation. A
better approximation to the more realistic case of non-constant diffu-
sivity can be obtained using the new coordinate r, defined by

r/re 1/2
T z)dz
i/ # , (3.30)

; 2

[¢ Mo

which captures the influence of the variation of 77 on the highest spatial
derivative of the field. The solution to the diffusion equation with a
constant diffusivity 7 approximates the real solution provided this
scaling is used. The value of 7 is obtained from the requirement that

ry/7Tc varies between 0 and 1. Thus,

1 2
Ny = </ 771/2($)d$> ~ 150 cm? 7! | (3.31)
0

using equation (3.28) and the temperature and density profiles given
by Stix (1989). This corresponds to

7=165x 10" s~5x 10" y. (3.32)

The well known Cowling decay time (that is, the timescale with which
a primordial large-scale magnetic field would decay) is roughly given
by ¢ = r2/noj? (although since the turbulent motions in the con-
vection zone tend to destroy the field in this region, a better estimate
would be 75 = r2/moj? = 7¢/2). With the chosen estimate for nyp,
the Cowling time is 7c ~ 4 x 10'® s ~ 1.2 x 10'" y. The discrepancy
with the timescale of 10'° years quoted by Cowling (1957) is due to
corrections in the conductivity calculations introduced by Spitzer in
1962 (which increased the diffusive timescale by a factor of 5) and the
choice of 79 as an appropriate intermediate value between the diffusiv-
ity at the centre of the sun and that at the outer edge of the radiative
zone.
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The best estimate for the decay timescale of a large scale magnetic
field in the radiative zone of the sun is therefore probably given by
ra =7/ = 12 fmit = 7x 101 .

Fig. 3.1 shows the propagation into the interior of the radial compo-
nent of the magnetic field, B;, for the chosen diffusion time 7, while
Fig. 3.2 shows the variation of B, at several fixed radii in the radiative
zone.

Random walk process:

The total magnetic field in the radiative interior Bj, is the sum of
the isolated step-function fields B. After N periods of the oscillating
boundary field, t = N§ and

N
Bin(r,0,t) = Y X, B(r,0,t — nd) . (3.33)
n=0

The expectation value of the field Bj, is 0. Since the random variables
X, are presumed to be uncorrelated, the standard deviation for the
magnitude of the field is given by

N
Bims =< B (r,0,t) >'2= | Y " B2(r,0,t — nd) , (3.34)

n=0

where By, = |Biy| and B = |B|. This expression has been evaluated
numerically using the results obtained in equation (3.23). The results
for each component of the field at the present time (t = 1.5 x 107
s) are shown in Fig. 3.3, using the diffusion time given by equation
(3.32). The results summarized in Fig. 3.3 show how the boundary
field is damped within the radiative zone. Firstly, very close to the
boundary only a very small fraction of the magnetic flux can penetrate
the radiative zone each cycle, due to the large diffusion time. Note
indeed the decrease by four orders of magnitude between the boundary
value By and the maximum value of the latitudinal field inside the
radiative zone. Also, as expected from the boundary conditions, the

72



0 1 2 3 4 567
8 T T T T T T
ol t=5x101 s ||
= 1
x|
ool | t=1.5x10"" s
O 7\ 1| ‘ | 1| ‘ 1| | ‘ | 1 /1 ‘ |

0 0.2 0.4 0.6 0.8 1
r/r

Figure 3.1: Propagation of the radial component of the magnetic
field, assuming the sun to have remained in its current state, with
a single step-function boundary condition. This plot shows the
latitudinal average of B, over a quadrant as a function of radius, at
various times including the present age of the sun (t = 1.5 x 107
s). The field at t = 108 is presented for heuristic purposes. The
lower axis presents the solution as it has been computed for the
constant-diffusivity case. In order to get a better approximation to
the variable-diffusivity case, the reader should refer to the upper
axis (from Garaud, (1999)).
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Figure 3.2: Propagation of the radial component of the magnetic
field, with a single step-function boundary condition. This plot
shows the latitudinal average of B, over a quadrant as a function of
time, as calculated for the constant-diffusivity case, at four different
radii (from Garaud, (1999)).
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Figure 3.3: Rms value of the intensity of the field as a function of
radius. For each component of the field, the latitudinal average over
a quadrant is presented. The thick lines correspond to the dipolar
case, whereas the thinner ones correspond to the quadrupolar case.
The continuous lines correspond to the latitudinal component of
the field and the dotted lines correspond to the radial component.
The lower axis presents the solution as it has been computed for the
constant-diffusivity case. In order to get a better approximation of
the variable-diffusivity case, the reader should refer to the upper
axis. As it is shown in Section 3, a reasonable value of By is 10° G;
the scaling used on the vertical axis therefore allows the result to
be read directly from this plot. The box in the upper left corner is
an expanded view of the dipolar field in the rectangular area at the
right of the plot. As expected from the chosen boundary condition,
the latitudinal component of the field quickly drops to 0 near the
outer boundary, whereas the radial component reaches a constant
value (from Garaud, (1999)).
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latitudinal field drops to 0 at the top of the radiative zone. Secondly,
this plot also shows the radial scale of variation of the magnetic field,
as the latter is reduced again by several orders of magnitude within
the outer third of the radiative zone’s radius.

Quadrupolar and higher-order multipolar configurations:

In the case where the dynamo field produces a higher-order multipolar
configuration, the equations are changed in the following way:

1. The projection of the boundary condition given by equation
(3.11) onto the latitudinal eigenstates Gy (u) yields the coeffi-
cients A in equation (3.19), provided the boundary condition
for the radial function is chosen to remain the same for each
Ry as in equation (3.22). As an example, for an axisymmetric
quadrupolar configuration where the latitudinal component of
the boundary field is proportional to sinf cosf, the only non-
vanishing term is for £ = 1, with A;=1/3 and G;(p) = 3u.

2. The solution to equation (3.13) is now

> Te\ 3/2
P(r,0,t) = 2B Y ApGr() (7)
k=0

0 Jny3/2(Ji k7o) exp (_]zk%) [exp (ﬁ,k%) B 1}

X - - (3.35)
— 2k + (& + 1)(k + 2)] Ty 372 (i k) '
where the coefficients j; ; are the solutions of
Jikkr1/2(Gik) = (B + 1) Jry32(Jik) - (3.36)

With this result, it can be shown numerically (cf Fig. 3.3) that the
higher-order components of the dynamo field create a magnetic field
that is similar in intensity to the dipolar field close to the outer bound-
ary of the radiative zone, but decreases with depth, as expected, on a
correspondingly shorter lengthscale.
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3.2.2.2 QUANTITATIVE ESTIMATES

This section focuses on using the previous result to obtain a numerical
estimate of the field in the interior, which requires the determination
of the amplitude of the boundary field, By. There exists no direct
measurement of the poloidal field at the base of the convection zone.
However, considerations about the buoyancy instability of flux tubes
in the convection zone and comparisons with the observed sunspot
rates led Schiissler et al. (1994) to estimate the mean toroidal field at
the base of the convection zone to be of order of a few times 10*G.
This estimate can be used together with some simple assumptions to
derive an order of magnitude of the amplitude of the poloidal field in
the same region.

The model considered here assumes that the poloidal field is generated
near the base of the convection zone by the action of cyclonic turbu-
lence. This field is pumped downwards by turbulent motions into the
overshoot region (around the outer edge of the tachocline) where it is
sheared into a strong toroidal field by the differential rotation, through
the advection equation:
0B
5 = Vx(ux B) +nV’B . (3.37)
In this region of very large shear the diffusion term is negligible com-
pared to the advection term, so that
0B
— =Vx(u x B) . (3.38)
ot
It is reasonable to assume that the velocity is due to the rotation only
(since the velocity of the meridional circulation is negligible):

u = 7 sinfQ(r,0)é, . (3.39)

where €4 is the unit vector in the ¢ direction. The ¢ component of
equation (3.38) is then

0By ) o0 ) o0
> =" SIHQBrE + SIHQBQ% , (3.40)
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which yields the order-of-magnitude relation

AQ) AQ) 2
< sinf > TCEBH— < sinf > BGE ~ tdw b
yn

(3.41)

where t4,,, is the period of variation of By, which would be of order
of 26 (22 years). On the other hand, the presumed axisymetry of the
system implies that the poloidal field should be divergence-free, giving
the order-of-magnitude relation

AOr.B, ~ ArBy . (3.42)

These two equations combine to give

Af 27

1
By = - B
0= 9 sinf > AQ tdyn

(3.43)

Since the magnetic activity is concentrated around the equatorial re-
gions, with a maximum latitudinal extension of 30°, it is reasonable
to chose < sinf >= 0.25 (which corresponds to a latitude of 15°, and
Af# = /6. Helioseismic measurements (Thompson et al. 1996) show
that typically AQ/27 ~ 10 85! around the equator, which finally
gives the following relation between By and By:

By ~ 0.15B, . (3.44)

Hence the order-of-magnitude estimate for the amplitude of the By
dynamo field of about 5 x 10*G gives the following order-of-magnitude
estimate for the periodical component of By:

Bper 7 x 103G . (3.45)

Magnetic activity measurements suggest that the variations of the
amplitude of the field from cycle to cycle can be significant, and are
on average of order of 10% of the signal, which would in this case
lead to By = 7 x 10®> G. Since this is only an order-of-magnitude

78



approximation, it is quite reasonable to choose for simplicity
By = 10°G . (3.46)

With this estimate for By, the intensity of the field in the interior can
be read directly from Fig. 3.3.

3.2.3 DISCUSSION

Under the assumption of uniform diffusivity, and using a rough esti-
mate of about 10* G for the value of the poloidal component of the
dynamo field as an outer boundary condition, it was shown that the
propagation of random fluctuations of the magnetic field may build
up a large-scale poloidal field in the radiative zone with an intensity
as shown in Fig. 3.3. The intensity of the field decreases from about
10~'G just below the convection zone (at roughly 0.69r4), to 1073G
at about 0.35rg. The thickness of the tachocline has been inferred to
be of order of 2% of the solar radius (Elliot & Gough (1999)). Assum-
ing that the tachocline circulation has no effect on the propagation of
the field, it can be deduced from Fig. 3.3 that a field of about 107'G
can be expected in the tachocline region (0.68rc < r < 0.7rg) as a
result of the random diffusion of the dynamo field. Deeper in the core
(below 0.35rG), this field rapidly becomes negligible compared even
to the interstellar field. These estimates have been derived using the
standard deviation of the random walk; it is impossible to predict the
polarity of the field. Since the increment in the field at each step is
extremely small compared to the overall field, the time variation of
the field is quite smooth.

The evaluation of the amplitude of a primordial field, as was reviewed
previously, is more controversial; however, most authors seem to agree
that amplitudes of order of 1 G or more can be expected deep in the
radiative zone. This value is much larger than the amplitude of the
field expected from the penetration of a dynamo field. The preceding
discussion has therefore two important consequences.

1. Mestel & Weiss (1987) showed through timescale arguments that
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diffusive and dynamical magnetic instabilities probably allow
the shear to persist in the inner core (r < 0.2rg) provided the
poloidal field does not exceed values of about 1073G. Their ar-
gument can easily be extended to the whole of the radiative
zone, and yields a similar result. The observed uniform rotation
deep in the radiative zone therefore strongly suggests the pres-
ence of a primordial field, since the contribution of the random
fluctuations of the dynamo field in this region is negligible.

2. Dynamo theory has recently suggested that the solar dynamo
should lie in the vicinity of the outer edge of the tachocline
(Parker (1993)), and maintains magnetic fields of order of 10*
G or more. The calculation presented in this paper shows that
the inward diffusion of the dynamo may lead to the presence of
magnetic fields of about 0.1 G or less near the top the tachocline,
quickly decaying with depth. This estimate can be used to dis-
cuss the importance of the effects of the dynamo field on the
dynamics of the tachocline (see, for example, Gough & McIn-
tyre (1998), and also section 3.3.2).

3.3 Previous MHD MODELS FOR THE TACHOCLINE

Having established that any large-scale magnetic field of significant
amplitude present in the radiative zone of the sun must be of pri-
mordial origin, and that such a primordial magnetic fields is indeed
likely to be present in the radiative zone with a reasonably large am-
plitude, one may now turn to the problem of studying the effect of
such a field on the solar angular velocity profile in the radiative zone
when a latitudinal shear is imposed by the convection zone. Since
the magnetic diffusion timescale is largest for the dipolar component
of the magnetic field, it will from now on be assumed that the pri-
mordial field present in the radiative zone has a dipolar structure only.

The MHD interaction of fluid flows and magnetic fields is an intrinsi-
cally nonlinear process, since both the Lorentz force in the momentum
equation, and the advection term in the advection equation are nonlin-
ear. Observations show that deep in the interior the magnetic forces
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dominate, by imposing uniform rotation, whereas in the tachocline
region the fluid motions dominate, as it can be seen through the pres-
ence of a strong shear. These two limits suggest the existence of an
intermediate region where the interaction between the magnetic field
and the fluid flows is extremely nonlinear. This simple statement
stresses the main difficulty of any study of the tachocline, namely, the
nonlinearity of the problem. Owing to this mathematical challenge,
only two MHD models of the tachocline predate my own work. These
are the works of Ridiger & Kitchatinov (1997) and Gough & Mclntyre
(1998) respectively. These two approaches are now briefly presented.

3.3.1 RUDIGER & KITCHATINOV (1997)

Riidiger & Kitchatinov (1997) proposed the first MHD model of the
differential rotation in the solar interior. The model describes the
action of a large-scale poloidal field on the angular velocity of the
radiative zone when a latitudinal shear is imposed by the convection
zone. In order to simplify the mathematical problem, they neglect the
existence of meridional motions, which would advect both the poloidal
field and angular momentum. As a result, the poloidal field is fixed,
and the system needs only be solved for the angular velocity profile
and the azimuthal field. Additionally, the system is assumed to be
axisymmetric and in a steady state, and the fluid is incompressible.
The viscosity and magnetic diffusivity within the radiative zone are
derived from

n o= 1087732 cm? s (3.47)
T4 T5/2

V = Vrad + Vmol = 2.510 P — em? s 1 4+1.210 ' — cm? s L.
Kkp P

Under these assumptions, the angular velocity and the toroidal field

are calculated according to the azimuthal component of the momen-

tum equation and the azimuthal component of the advection-diffusion
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equation, namely:

0Q0A 0A0Q ol 1 0 .
T ( ) = 17(7“)—9 [ nf 90 (By SmH)]

9 or 90 or d
0 0
o [ngesa] . ey
P(T)V(T)g 3 @ LQ 4 @
sindg 90 \ " 089 * rZor \\ prv(r) or

1 0A 0

T 472 sin®f [TE%(

. . ,0A 0
By sinf) — s1n0%5 (TB¢)] (3.49)

where the flux function A corresponding to the poloidal field is given
by

A 1 0A 1 0A
B - e = O A
p= VX (r sin96¢> (7"2 sinf 90’ 7 sinf 67") ’ (3:50)
with
- )" sine 3.51
A—B05 (1_7"_C> Sin . ( . )

The parameter B, is the value of the magnetic field at the centre, and
q parameterizes the radial profile: the larger ¢, the more concentrated
the field is around the neutral points. The angular velocity at the top
of the radiative zone is imposed by that of the convection zone, and
is given by

Qes(0) = Qeq(1 — az cos®0 — ay cos?d) (3.52)

where reasonable values for a9 and a4 are a9 = 0.15 and a4 = 0.15.
The toroidal field vanishes at the edge of the radiative zone. This
results from the assumption that the convection zone behaves as an
insulating medium. These two boundary conditions close the system
with the regularity conditions at r = 0.

Riidiger & Kitchatinov obtain the following results: as expected the
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presence of a large-scale poloidal field in the radiative zone imposes
an almost uniform rotation throughout the interior, with a magnetic
shear layer near the base of the convection zone which matches the in-
ner solution to the boundary conditions. The thickness of the bound-
ary layer varies according to the intensity and geometrical structure
of the interior field. Typically, an interior field of about 1073 G is
sufficient to reduce the thickness of the boundary layer to a few per
cent of the radiative zone, which represents the observed thickness of
the tachocline. Also, the maximum toroidal field obtained is of order
of 200 G.

The model proposed by Riidiger & Kitchatinov is fairly successful
in reproducing some of the aspects of the tachocline. In particular,
the dipolar structure of the field results in a rather thicker tachocline
at the poles than near the equator, a feature that may be suggested
by some of the observations. However, there are some very important
shortfalls to their assumptions. Firstly, the whole dynamical structure
of the system (and in particular the circulation) has been neglected.
As a result, such a system could not realistically be in a steady state.
In particular, Lorentz forces in the latitudinal direction have been ne-
glected; these would normally drive a circulation which would in turn
advect angular momentum and change the angular velocity distribu-
tion. Also the effects of compressibility and stratification below the
convection zone may be important but have not been considered in
this work. Secondly, the stability of the magnetic field structure has
not been assessed. It is however likely that such a large concentra-
tion of toroidal field in the tachocline is unstable to axisymmetric and
even non-axisymmetric perturbations (see Gilman & Fox (1997) and
subsequent papers).

3.3.2 A DYNAMICAL MODEL OF THE TACHOCLINE: GOUGH & MCIN-
TYRE (1998)

Gough & McIntyre (1998) approached the problem from a different
angle. They recognized the importance of taking the dynamical struc-
ture of the tachocline into account, including the effects of a meridional
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circulation and compressibility, and focused on laying out the foun-
dations of the best possible model rather than attempt to fully solve
it. Through a basic boundary layer analysis, they derive scaling laws
between various quantities, such as the amplitude of the interior field
and the thickness of the tachocline.

The principal assumptions of the model proposed are as follows. As
before, the system is assumed to be axisymmetric, and in a steady
state. The azimuthal and meridional fluid motions are assumed to be
slow, and the perturbations to the hydrostatic equilibrium structure
of the radiative zone are assumed to be very small. As a result, a
Boussinesq approximation of the fully compressible equation is used
(see Chapter 2), and nonlinear terms in the meridional circulation are
neglected. Finally, the effects of the oblateness of the sun and of vis-
cosity on the dynamical structure of the tachocline are also assumed
to be negligible .

Within these approximations, the MHD equations take the follow-
ing form. The mass conservation equation and axisymetry suggests
the usefulness in introducing the stream function 1 (r,#) such that

Pr = et
PRAT ) = o 75inG 99
1 o)
pn(r)ug = T b or (3.53)

The angular momentum equation yields

. By 0, . B, 0
200 (1) ( sinfu, + cosbuy) = ind 80( sinfBy) + ™ (rBg) -
(3.54)
The energy equation is rewritten as
Ty (r)N? 1 0
o (r)Thlr) V) Y _VAK(r)VT) . (3.55)

g(r) 72 sinf 00
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The thermal wind equation yields

cosf sinf 0 [ ,=\  g(r) OT 1.
T ar (T Q) 20T (r) 00 VX ,oh'7 xB . (3-56)

and finally, the poloidal component of the advection-diffusion equation
is

10 10B,
By —ugB, =n|——=—(rBy) — - .
U’?" 0 U9 r 7] (Ir ar (7« 9) r 89 > Y (3 57)
and the azimuthal component is

10 ~ 10 ~
;E(TQ sindQB, — ru,Bg) — ;%(UgBd) — r sinfQBy)

9’B
—n 37’2¢ (3.58)

Gough & MclIntyre (1998) proposed to solve this system through the
following three-zone model, represented in Fig. 3.4:

1. the radiative interior is held rigid by the presence of a large-scale
poloidal magnetic field; in this region, the meridional circulation
is negligible as well as the differential rotation.

2. within the tachocline, a meridional circulation is driven by the
baroclinicity originating from the shear.

3. near the base of the tachocline, this circulation interacts with the
large-scale poloidal field within a very thin magnetic boundary
layer; the poloidal field is kept from diffusing outwards due to
the advection by the circulation, and the circulation is kept from
burying into the convection zone by diffusion.

Dynamical balance within the tachocline provides a relation between
the differential rotation applied by the convection zone, the thick-
ness of the tachocline and the velocity of the meridional circulation.
Advection-diffusion balance within the magnetic boundary layer pro-
vides a relation between the strength of the magnetic field and the
velocity of the circulation. Combining these two results yields a rela-
tion between the amplitude of the interior magnetic field, the differ-
ential rotation and the thickness of the tachocline, which can then be

85



ODCVONDCOC,

OO0 0OV

Figure 3.4: Schematic representation of the model proposed by
Gough & MclIntyre, (1998). The primordial field (thick red lines)
imposes a solid-body rotation profile to the radiative zone (white-
purple region). The tachocline (in green; its thickness has been
largely exaggerated for clarity) is a region of large radial shear, and
therefore undergoes large-scale circulatory motions. The arrows
represent the tachocline circulation, which follows lines of constant
angular momentum. As the relic field slowly diffuses out of the
radiative zone, it deflects the circulation within a very thin layer,
the magnetic diffusion layer (blue). This interaction results in a net
redistribution of angular momentum, within a much thinner region
than what could have been expected had only viscous forces been
used (courtesy of D. O. Gough).
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compared with observations. The following scalings apply: within the
tachocline, the circulation is driven by the baroclinicity. Assuming
that the magnetic field and the viscosity are negligible, the dominant
terms in the thermal wind equations are simply

, 00 _ 6n 1 or
“or QT cosb sinf 90

(3.59)
In order to derive this scaling, it has been implicitly assumed that the

tachocline is thin. The energy equation yields

N?Tyu, Ky 9T
9n pucp Or?

(3.60)

Gough & McIntyre show that both equations are still valid within the
magnetic boundary layer (in particular, it is shown that the magnetic
term in the magnetic boundary layer is negligible compared to the
thermal wind term; in the energy equation, the magnetic pressure term
is also shown to be negligible). However, the magnetic stresses are
essential to the angular momentum balance, which can be rewritten
as

By 0, .
" siHH%( sinfBy) (3.61)

if the radial velocity and the radial component of the magnetic field
are assumed to be negligible in this region. Finally, the poloidal com-
ponent of the advection-diffusion equation suggests the scaling

2p1 2 cosbBuy =

ur ~n/d, (3.62)

where § is the thickness of the magnetic boundary layer, and the

azimuthal component of the advection diffusion equation yields
9*By
o2

9, .
BU%( sinfQ)) = (3.63)

In equations (3.61) and (3.63) the magnetic field is assumed to be
horizontal and varies little with latitude so that By ~ By.

Using the fact that V-(pu) = 0, equations (3.59) to (3.63) are re-
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duced to

dT T
where 16
20K Q2
§=|—"—"—r°¢ 3.65
(rgcpN2BgL4 oo (3.65)

and 1/L is the typical angular scale of variation defined by 3% ~ L.

This scaling argument provides the thickness of the magnetic bound-
ary layer, which in turn yields the amplitude of the radial velocity
at the base of the tachocline according to equation (3.62). Assuming
that within the tachocline % ~ /A and Q ~ af), this estimate can
now be used with equations (3.59) and (3.60) to give a relation be-
tween the thickness of the tachocline, and the value of the amplitude
of the magnetic field near the base of the tachocline, namely,

20°7 [ Ky \° [\ [Kop (A\T?
B ) (8 ()
L PCpn N Php \Tc
With the values for the parameters in the tachocline described in Table
A1, this reduces to

A -9
By ~5x 1071 (—) G, (3.67)

Tc

so that a tachocline thickness of about 3% of the radius of the convec-
tion zone (Elliott & Gough (1999)) requires the presence a magnetic
field strength of order of

By ~ 1G (3.68)

near the base of the tachocline. Also, the characteristic ventilation
time for the tachocline is found to be

T = AJuy ~ 3 x10° y. (3.69)

These results call for the following comments:

1. The amplitude of the magnetic field required to fulfill the dy-
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namical equilibrium within the tachocline is of order of 1 G,
which is roughly ten times larger than what can be expected
from the dynamo diffusion process. The study presented in Sec-
tion 3.2.2 therefore confirms that the magnetic field must be of
primordial origin, and also suggests that the contribution from
the dynamo field to the dynamics of the tachocline can be ne-
glected in a first approximation.

. The ventilation time of the tachocline circulation is sufficiently
small that the mixing of material and angular momentum can
be assumed to be instantaneous on an evolutionary timescale,
which confirms the assumptions proposed by Elliott & Gough
(1999) in their model for helium mixing within the tachocline.
Also, such a model provides a reasonable explanation for the
observed abundances of light elements at the surface: mixing
is efficient within the tachocline (above a 0.67r¢), but strongly
suppressed by the presence of a large-scale magnetic field below
the tachocline (see section 1.4.4). It also confirms the assump-
tion that the tachocline may be assumed to be in a steady state
on a solar spin-down timescale.

. One serious complication arises. Comparing the latitudinal vari-
ation of the angular velocity within the convection zone to the
results of equations (3.60) and (3.59) suggests that the merid-
ional flow must be upwelling in mid-latitudes, and downwelling
both near the equator and the poles. Although the trapping of
the magnetic field by the circulation can be assumed to be very
efficient in downwelling regions, it is not the case in upwelling
regions, and the magnetic field may be entrained into the con-
vection zone where it must necessarily reconnect. Although no
magnetic flux is lost through this process, so that the steady
state assumption may still be valid globally, the system cannot
locally be considered steady. In fact, it is likely to undergo a pe-
riodic or quasi-periodic behaviour with the gradual distortion of
field lines followed regularly by reconnection. This phenomenon
is discussed by Gough & Mclntyre, who choose to neglect it in
a first approximation. However, the scaling argument described
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above is not valid in the upwelling region.

4. The scaling law does not apply in the equatorial and polar re-
gions either. Indeed, in those cases the assumptions of neglecting
the radial component of the velocity and the magnetic field do
not apply. However, provided the flow in these regions does not
influence the flow in the main body of the tachocline, the results
described above still hold.

5. Finally, some of the most important issues about the dynamics
of the tachocline could not be solved by the scaling arguments
proposed by Gough & Mclntyre. In particular, issues such as
the prediction of the value of the angular velocity of the interior
of the sun, the exact position and width of the upwelling region,
the shape of the tachocline, etc ... could not be dealt with using
such a simplified approach, since the geometrical information
and latitudinal dependency of the system have been discarded.

3.3.3 OTHER MAGNETIC MODELS OF THE TACHOCLINE

Very few other papers have described attempts at modeling the tacho-
cline. Amongst these are the work of McGregor & Charbonneau
(1999), who (independently) reproduced the work of Riidiger & Kitcha-
tinov (1997), hereby confirming their results. More extensive is the
work proposed by Hujeirat & Yorke (1998), who solve the problem
of the nonlinear interaction of a large-scale magnetic field and fluid
motions within a spherical shell with inner radius 0.6 ro and outer
radius 0.85 rg. However, their model is a poor representation of the
true physics of the sun as they assume the background stratification
and the motions to be adiabatic, and allow no heat diffusion. Yet the
effects of stratification and heat diffusion are believed to be essential
to the dynamics of the tachocline, according to Gough & MclIntyre
(1998).
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Chapter 4

A NUMERICAL STUDY OF THE SOLAR
TACHOCLINE

Previous MHD models of the tachocline failed to yield satisfying re-
sults, either because for need of a tractable model too stringent as-
sumptions were made, or because for need of a physically realistic
model, the mathematical problem could not be solved. An interme-
diate approach is now proposed whereby a model is created which
encompasses gradually more realistic physics, and is solved numeri-
cally in order to obtain quantitative results which can be compared
directly with observations. This model essentially tries to reproduce
the observed interior rotation rate of the radiative zone by studying
the full nonlinear interaction between a magnetic field and fluid mo-
tions in that region.

Several assumptions must be made; these assumptions need not be
well justified, but are made with the sole aim of strongly reducing
the mathematical difficulties of the problem studied. The principal
assumption common to all the models is the axisymetry of the sys-
tem. This assumption is essential to the solvability of the problem,
but strongly reduces the degrees of freedom of the fluid motions. The
second assumption is the steady state assumption, which states that
the system must be able to find a dynamical equilibrium where all
forces balance. This assumption is reasonably well justified provided
all dynamical timescales are much shorter than either the stellar evo-
lution timescale or the magnetic braking timescale, which is likely to
be the case except maybe very deep in the interior (in that case, if
the circulation operates on a local Eddington-Sweet timescale, it is
much slower than the stellar evolution timescale, and has therefore no
effect at all on the hydrostatic structure), where dynamical effects are



negligible anyway.

Once these fundamental assumptions have been laid out, some sec-
ondary ones must also be presented. These are either simplifying as-
sumptions which are believed to have little effects on the fundamental
dynamics of the system, but may have some non-negligible effects in
changing the quantitative predictions of the model, or, these could
be simplifying assumptions that do have a significant impact on the
dynamics of the system but are made as a first approximation and
will be removed in later models.

In this chapter and in Chapter 5, the very first attempt at such a
numerical model is presented, which includes the two fundamental as-
sumptions, as well as the assumption of incompressibility of the fluid,
and combined with a constant hydrostatic background, which trans-
lates into constant density, viscosity and magnetic diffusivity. The
model is described in the following section, and the mathematical
equations are derived. The numerical method for the resolution of
these equations is then presented.

4.1 MHD EQUATIONS FOR A TOY MODEL

If the fluid motions are assumed to be axisymmetric and incompress-
ible, the MHD equations in a frame rotating with angular velocity €2,
are the following:

20Q. xu+Vp+pg, —jxB—-pvViu = 0,
Vx(u x B)+nV?’B = 0,
Vau = 0,

V-B = 0. (4.1)

where the nonlinear terms in the meridional circulation (u - V)u are
neglected, and g, = gné, is the gravitational attraction of the hy-
drostatic background. The density p = py = 1g cm ™2 is assumed to
be constant everywhere, as well as the viscosity v and the magnetic
diffusivity . The angular velocity Q. = 2.84 x 1075 s~! is the ob-
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served interior rotation rate of the sun. B is the magnetic field, 7 is
the electric current, and w is the circulation which has components
(ura Ug, u¢) :

Using the following new system of units:

[r] = re,
[t] = 1/, so that [u] = 7.
[B] = By, (4.2)

where By is the typical strength of the radial field in the interior, the
equations become:

2, xu = —aVp—g,+AjxB+ENVu, (4.3)
Vx(uxB) = —-E,V’B, (4.4)
with )
Po By v N
A= E,=——and B, = — 4.5
02r2’ 7 Qer? and Fu Qer2’ (45)

where all the quantities are now dimensionless and é, is the unit vec-
tor parallel to the rotation axis. The Ekman numbers £, and FE,
represent the ratio of the diffusive timescale to the rotation timescale,
and the Elsasser number A is the ratio of the typical amplitude of the
Lorentz force to that of the Coriolis force.

These equations are solved in a region located between two spheri-
cal boundaries, with impermeable and no-slip walls so that the radial
and the latitudinal components of the circulation vanish on the bound-
aries, and the azimuthal component of the circulation is given by the
rotation of the boundaries. As a result, the angular velocity pertur-
bation is Q2 = i, — € on the inner boundary, Q = Qcz(0) — Q¢ on the
outer boundary. The bounding spheres are assumed to be imperfectly
conducting and it is assumed that the core interior to r = ry, rotates
rigidly, which implies that the field outside the fluid region satisfies
V2B = 0, with conditions that B — 0 at infinity, and to a purely
poloidal dipolar structure as » — 0. This uniquely determines the
boundary conditions for the magnetic field. As a result of these con-
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ditions, when the system is not rotating, the solution for the magnetic
field is a purely poloidal dipolar structure.

u=v=0
V2B=0
B->0

u=v=0

V2B-0

B -> dipolefield

Figure 4.1: Boundary conditions.

The gap between the inner and outer boundaries is chosen to be
d = (r¢ — rin)/re = 0.65 in order to compare the results of the sim-
ulations with the work of Dormy, Cardin & Jault (1998), who solved
a very similar set of equations with slightly different boundary condi-
tions, in the same flow geometry. One of the main aims of this study
is to be able to predict the angular velocity of the interior. In order
to do so, the rotation rate of the inner core is treated as an eigenvalue
of the problem and an additional boundary condition is imposed on
the system accordingly, which is that no net torque should be applied
to the inner core (this is a necessary condition to guarantee a steady
state). This condition, which determines uniquely the value of i,
is equivalent to requiring that the integral of the angular momentum
flux through the boundary vanishes:

w/2 ) ) o0
/ pvre sin 98_ + 7 sinB, By | sinfdf =0 . (4.6)

0 T
One can notice through this expression the main justification for the
conducting boundary condition: in the insulating case, the radial com-

ponent of the current must vanish on the boundaries, which in turn
implies that the toroidal field must vanish. This, combined with the
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impermeable boundary condition implies that the angular momentum
flux through the boundaries is purely viscous. Since viscosity is nor-
mally negligible in the sun, this model would be a poor representation
of the dynamical structure of the radiative zone.

The system as given by the previous equations and boundary con-
ditions is a well posed system of partial differential equations with
one eigenvalue. The numerical method chosen for the resolution of
this system is first to write the system of equations with respect to
a spherical polar coordinate system, to respect the symmetry of the
problem, then an expansion of the latitudinal dependency of the equa-
tions onto Fourier modes, and finally the resolution of the resulting
equations in the radial direction using a Newton-Raphson relaxation
method.

4.2 EXPANSION OF THE MHD EQUATIONS INTO SPHERICAL
COORDINATES

All quantities are expressed in a spherical coordinate system (7,6, ¢)
and have components Q = (Q,,Qp, Q) in this system. In order to
avoid singularities near the poles, the following functions are intro-
duced:

= Vl_lj'2u9,

v
b = \% 1- N’ZBQ )
S = ry1—-pu?By,
L = rv1-p2u,,
W = r\/l—u2w¢:%(rv)+(l—p2)g—z ,
. 0 0B
To= oy = o)+ (-, ()
1
where 4 = cosfl. The notation is simplified by taking v = u, and

B = B,.

Projecting the equations onto a spherical coordinate system and sub-
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stituting the new variables into the system yields

boS B
2 e <
2puv +2(1 ,u)u-i—A(TZaM TS)
E, 1—p? 0L
- 2 (rr gs 4.
r < + r2 8u2> ’ (4.8)
2
_ our ol OL
r  Op
2 2
oA Zpr 2T 2 (Sa P) g
r rop 1 —p2 \r? T
1 —p? 0°Ww
= E, " 4.
(W T 3u2> ’ 9
ub—vB = En% , (4.10)
! / 2
(LB—uS)+;(uS—LB)
1/ 08 oL 21
(022 ) s I
i T(vau 8u>+r(1—u2)(vs )
1 —pu? 0?8
- -B, (S"—I— 5 a_}ﬂ) ’ (4.11)
ru':g—Z—2U,TB':g—Z—2B, (4.12)

where the primes denote differentiation with respect to r. To complete
the system, the definitions of the vorticity function W and of the
electric current function .J are needed

r' =W —wv—(1 —MZ)a—u , (4.13)
o
0B

(A S A 2\

rb=J—-b— (1 u)a’u. (4.14)
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The periodicity of the system in the latitudinal coordinate 6 suggests
the expansion of the system onto Fourier modes. This is equivalent
to an expansion of the equations in the coordinate p onto Chebyshev
polynomials, as Tj,( cosf) = cosnf where T, (1) is the Chebyshev
polynomial of order n. The following expansion is chosen for each of
the relevant quantities:

= Y Yag (T ()
n=1..N

vo= (1=4) D Ynia(r)Ton-1(n)
n=1..N

W= (1-p%) Y Yonin(r)Ton a(p)
n=1..N

W= (1=p%) Y Yania(r) T 1(n)
n=1..N

L = (1—M2) Z Yann(r)Ton—2(p) ,
n=1.N

L= (-4 ) Ysnin(r)Ton—2(p) ,
n=1.N

B = Z Y6N+n(7")T2n—1(/1')a

n=1..N

b= (1=4") Y Yinia(r)Ton—a(n) ,
n=1..N

S = (1-p) Y Yansn(r)Tona(n)
n=1..N

S = (1=p®) D Yonin(r)Ton 1(p)
n=1..N

J o= (1=p?) ) Yionin(r)Ton2(s) - (4.15)
n=1..N

The advantage in defining u that way is to guarantee mass conserva-
tion, as

m 1
/ u, sinfdf = / udp =0 . (4.16)
0 0
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The reason for the odd notation in equations 4.15 is to follow as closely
as possible the notation used in the numerical code, to facilitate the
comparison between the equations presented in this dissertation and
the program. Expanding onto Chebyshev polynomial and projecting
the resulting equations onto each Fourier mode yields the following
system. The summation convention is used for index m, and the
following notation means

N
(m = D)YansmYonsh-mt2 = O @h-mr2(m — DYinim Yonh-ms2 »
m=1

(4.17)
where, for this equation, a; =1 if 1 < j < N and a; = 0 otherwise.

The momentum equation:

E A
TVYE:NJrl = Yy -Vt 5 [(2m = 3)Y7n 1mYen+m
— 2m 4+ 1)Yinpmt1Ysn4m — Yon 41 Yan41]
A F
— 2_Y9N+mY6N+m — —=VinimAo2m—2 , (4.18)
T mr

and for k=1,..,.N — 1,

E
TVYE)INJrkJrI = YNtk + Yngwtr + (26 — DY — 2k + 1Yy
t 2 [(2m = 3)YrNth—m+2YsN+m + (2m — 3) YNt htm YsN+m

+ (2m = 3)Yonim—kYasn+m — 2m + 1)Yongk—my1YaN+m
- 2m+1)Yinthtm1Ysnem — 2m + 1) Yinem—k+1YsN+m)

A

- 3 Yontk—m+1YoN+m + YontktmYon+m + Yonym— & YoN+m]
2F

- = YinimAskom—2 - (4.19)
mr
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The vorticity equation:

/
EVY3N+k

A
5 [YontmYon+h-m+1 + Yo pm Yon-+itm—1 + Yon4m YoN-+m—k]

= — [Ysnyk + Ysnphyt + Ysni101 k]

1

— 2(k — 1)Yanyh+1 — 2kYan1k — 2Yan 4101 4]
A

+; YioNtmYeN+k—m+1 + YioN+m Yo Ntk+m—1 + YioN+m Y6 N-+m—k)
A

+§ [(m — 1)Y7nth—mt2Y1ioN+m + (M — 1)Y7n 1 htm—1Y10N+m

+(m — 1)Yonim—kYioN+m — (m — 1)Yonsk—m+1 YioN+m
— (m = 1)YrnsmakYion+m — (M — 1)Y7ntm—k+1Y10N+m)

t5,2 YsntmYon+k—mt1 + YsN4mYoNtk—m + YaN4mYoNthtm—1

+ YantmYon+m—k + Ysn4mYoN+h+m + Ysntm YoNtm—k+1]

— [(2m = 3)YaN+mYsntk—m+1 + (2m — 3)YaNtm YsN+htm—1

+27’3
+(2m — 3)Yantm Yentm—k — (2m + 1)Yan 1 Yan4h—m
+ (2m + 1)Ysnim Ysntktm + (2m + 1) Yanim Ysn+m—k+1]

2F
- ;Y2N+mA2k71,2m71 ) (4.20)
r

for k =1,.., N, where 4y, is the Kronecker symbol.

The integrated advection equation:
4F,
TYION-H = 2m =3)YnYrinim — (2m — )Yy 1 Yinym

- 2YNimYontm — Y1Yon41 s (4.21)
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and, for k =1,..,N — 1,

4F,
T"Y10N+k+1 = (2m = 3)Yenik—m+2Ym + 2m = 3)YoNtksm¥m

+ (2m - 3)Y7N+m—lcym - (2m + 1)Y7N+Ic—m+1Ym
— (2m + 1)Y7N+k+m+lym — (2m + ]-)Y7N+m—k—|—1Ym

— 2YNyk-me1Yon+m — 2Y Nk rmYo6N+m
— 2YN+m7kY2N+m . (422)

The advection equation:

!
- E77Y9N+k

1
=3 YsN+mYsnNt+k—m+1 + YsNtmYoN+h+m—1 + YsN4m YN +m—k)

1
—— YantmYon+k—m+1 + Yan4mYosn+ktm—1 + YaN+m Yo N +m—k]

—_ =3

~1 [(2m = 3) Y Yonth—m+1 + (2m — 3) Yy, Yon ym—k

+(2m - 3)YmY9N+k+m—1 - (2m + ]-)YmYQN-l—k:—m
— (2m + ]-)YmYQN-l—k:-l—m — (2m + 1)YmY9N+m—k:+1]
1

+g [(2m — 3)Y, Yank—m+1 + (2m — 3) Y5 Yan tm—k

+(2m - 3)YmY8N+k+m—1 - (2m + ]-)YmYSN-l—k:—m
- (2m + ]-)YmYSN-l—k:-l—m - (2m + 1)YmY8N+m—k+1]

1
2 [2m = DY~k Yanem + (2m = DYNikm1 Yantm

s
+(2m - 1)YN+m—kY8N+m - (2m - ]-)YN—l—k—mYSNer
- 2m = D)YNimakYsnem — (2m — D)YN i k1 YsN+m)

1
o [(m — D)Yrntk—mi2Yan+m + (m — DY7N 1k m—1YaN+m
+m = D)Yrnim kYantm — (m = D)Y7n 1k mi1 Yan+m
— (m = D)YinimkYan+m — (M = 1)Yinim—k+1YaN+m]

2F
+71_—T;7Y8N+mA2k—1,2m—1 ; (4.23)
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fork=1,..,N.

Additional equations:

e The V-u = 0 equation:

'f'YkI = YN+k - 2Yk ) (424)
fork=1,..,N.

e The V-B = 0 equation:

rYsnn = (k= )Yingpi1 — kYonie — Ying101e — 2Yon4k

(4.25)
fork=1,..,N.
e The relation between vorticity and velocity:
, 2
TYnie = Yonir — YNgr — ;YmAZkfl,mel ; (4.26)
for k=1,..,N.
e The relation between current and magnetic field:
, 1
rYini1 = Yion+1 — Yong1 — ;Y6N+mBO,2mfl ; (4.27)

and

2
!
TYrnikr1 = Yion skl — YoN kg1 — %Y6N+mBQk,2m—1 , (4.28)

for k =1,..,N — 1, where By, ,, is defined in the Appendix B.

e The relation between functions and their derivatives:

Yonir = Yantk o
Yivee = Ysntk s
Ysnir = Yonik (4.29)
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fork=1,..,N.

4.3 BOUNDARY CONDITIONS

The system has 11N equations with one eigenvalue, so 11N+1
boundary conditions are needed. The problem is limited to the
solution of the flow between two concentric spheres, the larger
one corresponding to the bottom of the convection zone.

4.3.1 IMPERMEABLE, NO-SLIP WALLS

The condition on the meridional circulation can be rewritten
simply as v = 0, v = 0, so that

— at the inner boundary:
Yk(rin) =0 and YN-l—Ic(Tin) =0 y (430)

fork=1,..,N,

— at the outer boundary
Yi(rout) = 0 and Yy 1k (rous) =0, (4.31)
for k=1,..,N.

The no-slip condition implies that the angular velocity of the
fluid on the boundary is equal to that of the boundary. The
inner boundary rotates with uniform angular velocity i, which
implies that

L(Tina N) = Ti2n(1 - :U‘2)(Qin - QC) ) (4'32)
so that

Y4N+1('r'in) = 'r'izn(Qin - Qc) s
Yinir(rin) = 0 for k = 2..N. (4.33)
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The outer boundary rotates with the shear imposed by the con-
vection zone so that

L(rout, ) = Tous (1 = #°) (Qea () = Q) (4.34)

where
Qez(p) = Qeq(1 — agp”® — G4M4) ) (4.35)

where (2eq = 1.07€)¢, so that

a 3a
Yany1(rou) = 7'(2)ut [(Qeq — Q) — Qeq (?2 + %)] )

as +a
}/4N+2(7"0ut) = _Qeq'r?)ut ( Z 9 ! )
a
Yini3(rour) = _Qeq74(2)ut§4 )
Y4N+k = 0 for k =4..N. (436)

4.3.2 NO TORQUE CONDITION FOR THE BOTTOM BOUNDARY

This condition, which determines uniquely the value of iy, is
equivalent to requiring that the integral of the angular momen-
tum flux through the boundary vanishes:

w/2 o0
/ <pl/r2 sin298— +r sinOBrB¢> sinddd =0 .  (4.37)
0 T

This can be rewritten as

1 L 2L
/ E, (a_ — —) +ASBdy=0. (4.38)
_1 or r
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Integrating this expression yields

N N
2
E, ( g Y5N+m(7din)')’2m72 - i g Y4N+m(rin)72m2>

m=1 m=1
(4.39)
A
+3 > Yanin(rin) Yontm(rin) (Yant2m—2 + Y2n—2m) = 0,
m,n=1

where v, is defined in Appendix B.

4.3.3 MAGNETIC FIELD BOUNDARY CONDITIONS AT THE BOT-
TOM BOUNDARY

The inner core is conducting, which implies that the magnetic
field satisfies
V:B= 0, (4.40)

(assuming the conductivity is uniform) everywhere within the
core. This solution is matched it to a point source as r — 0. In
order to simplify the matching condition with the fluid region,
it is assumed that the conductivity of the inner core is the same
as that of the fluid region.

Equation (4.40) is first expanded in the spherical coordinate
system as

v? (7’ s>i<n0A¢) =0,

V?(Byey) = 0, (4.41)

when the poloidal flux function y is defined as

B, :VX< X é¢> . (4.42)

7 sinf
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The set of solutions to equations (4.41) that tend to a purely
dipolar structure as r — 0 are

= APy,
S = —(1—u2 a1 En
( )T? 1: Qi
X0 dP2n 1
= —=—1-p) - T 4.4
X T( E Bur , (4.43)

where P, (u) is the Legendre Polynomial of order n. Using the
fact that
B 1lox ,_ 10x

% — 4.44
r2op’ ror’ (444)

and matching the solutions (4.43) with the numerical solutions
in the fluid region at the bottom boundary yields

Z Yo -+n(Tin) Ton—1 (1)

n=1

—2X0p () + Zﬁn 20-2(90 _1)(20) Py 1(n) ,  (4.45)

11’1

00
(1 - /1'2) Z Y7N+n(7'in)T2n—2

n=1

P
:_ﬁ(l_ﬂ)%_ml— Zﬁn 2n— 2M. (4.46)

h 7 dp
Using the identity

(1= p®P) +nn+1)P, =0, (4.47)
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and integrating equations (4.45) and (4.46) onto the basis formed
by the Legendre polynomials results in

2
%hlél,k + Brrk =22k — 1)(2k)hag

=Ysn+n(rin) Iok—12n-1 » (4.48)

2B001k + (2k)°(2k — 1)Beriy *hop—1
=Y7N+n(Tin) Dok —1,2n—2 (4.49)

for k = 1,..,N, where hy = 2/(2k + 1) (see Abramowitz &
Stegun, 1972), and I, and Dy, are defined in Appendix B;
also,
By=2X0 (4.50)
Tin
The summation convention is used for the index n, with n rang-
ing from 1 to N. Eliminating the coefficients fj yields,

Yinin(Tin)Dign—2 = 2Ysnin(rin)l1,2n—1 — 2B ,
Yintn(Tin)Dok—12n—2 = 2kYsn4n(rin)lok—1,2n-1, (4.51)
for k=2,..,N.

For the toroidal field, the same method yields successively

dP
Yasnn(Tin)Ton—1 = _anrﬁ?ﬂd_?n,
I
dP.
Yonin(rin)Ton-1 = —(2n+ 1)ayr® dZ” . (4.52)
so that
Y8N+n(rin)D2k,2nfl = Qk(Qk + l)akTiQth% )
Yon+n(rin)Dokon—1 = 2k(2k + 1) 2cprZhoy ,  (4.53)
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for k =1,.., N and, eliminating the «; coefficients

(2k 4+ 1)Ysn1n(Tin) Dok2n—1 = rinYoN4n(Tin) Dok 2n—1 , (4.54)

fork=1,..,N.

4.3.4 MAGNETIC FIELD AT THE TOP: THE VACUUM CONDI-
TION

The same method is used to obtain the matching conditions at
the top boundary. For the toroidal field,

2kY8N+n(Tou‘c)D2k,2nfl + ToutYQN—I—n('rout)DZk,anl =0, (4-55)

for all £ = 1..N, where I} ,, and Dy, are defined in Appendix
B. Again, the summation convention is used for index n with n
ranging from 1 to N. The boundary condition for the poloidal
field is

(2k — 1)Ysn1n(rout) Lok—1,2n—1 + Y7N 40 (Tout) D2k —1,20n—2 = 0 ,
(4.56)
for k=1,..,N.

4.3.5 ALGEBRAIC CONDITION

Finally, for consistency, the algebraic equations 4.21 and 4.22
must also be reproduced at one of the boundaries. The inner
boundary is chosen in order to increase the performance of the
numerical method used for the resolution of the radial ODEs.

4.4 NUMERICAL RESOLUTION OF RADIAL ODEs

The resulting system, after spectral expansion of the MHD equa-
tions and boundary conditions, is a system of 10N ODEs and
N algebraic equations in the independent variable r, varying

107



between rj, and roy. This system is solved with the Newton-
Raphson-Kantorovich (NRK) algorithm developed and imple-
mented by D. O. Gough. The NRK program has been slightly
modified in order to be capable of solving algebraic equations
simultaneously with the differential equations. The notations
introduced in the two following sections are specific to those
sections and are not used otherwise in this dissertation.

4.4.1 BRIEF OVERVIEW OF NRK
The NRK algorithm solves the system of equations

dyi

where z is the independent variable, y = (y1,y2,...yr) is the
set of dependent variables, and A = (A1, Ao, ...\ ) is the set of

eigenvalues of the problem.

This system is discretized upon a mesh (z1, z9,...xx), with

n+1 n Axn n n n+1 n+1

forn=1,..,N and
Ag" = gt — g (4.59)

The mesh is chosen to follow adequately the variations of the
solutions. This point is discussed in more detail in Section 4.4.3

Given a trial value for the solution % and A, the true solution
isy =9y + 0y and A = A + 6A for each component of index 4
and at each point of index n. To first order in §, the errors dy
and 0A satisfy

n

n+1 z
2

oy = oy = S [Fpeg o E o (L 1) o]
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_ n AZ" o1
g g - = (AT ) =0,

2
where
J Dy;
no_ Of
" N’

and the summation convention is used for subscripts,
for superscripts. To put it in a more concise form,

ALSy? + Bloyitt + CloA, + DP =0,

where
Ax™
A?j =0;5 + 5 []L ,
Az
_ +1
anj = —0i + 2 FZZL )
Az™ 1
Z;CZT( L)
Az"

— —n+1 — —
Dp == (F+T) - @ =)

form=1,..,N.

(4.61)

(4.62)

(4.63)

but not

(4.64)

(4.65)

This system is solved for the matrix composed of all §;'. The
solution to the system is then given by y + dy, and this solution
is used as a guess for the next iteration of the NRK algorithm

until the error dy is satisfyingly small.
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4.4.2 MODIFICATION OF NRK

The NRK algorithm described in the previous section is modified
in order to be capable of solving systems of the type

I

) dus
> Mij(y, A x) = = fily. Ax) (4.66)
Jj=1

In the case of algebraic equations, the matrix M;; is null. It
can be shown that this type of system can always be reduced
to the type described in the previous section, but it may occur
that such a reduction leads to very complicated expressions for
the right-hand-side of the equations, which is the case with the
MHD equations studied in this work. It is then much easier to
use the modified version of NRK presented here.

The discretization of equation 4.66 yields

I
S (g 5) (- 3) = 2 (21 .17, 07

Jj=1

where the same notation is used as in the previous section. Then,
using the same method, the system is successively reduced to

K
[M”“ + Z Sy T + Z ONUSE + M

o+ ZéA” i

fn+1 + Z 5 n+1Fn+1 + Z 5}\2+1L27_Lk+1
=1

[ n+1 + 6yn+1 —;L _ 6y;7,:|

e

: (4.68)

+fi"+z5yz" {HZ&Z ih
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where

T" M (4.69)
il = oy, .
n _OMy
ijk = I (4.70)
To first order in J, and introducing the variable
oyt =y~ (4.71)
it is easy to show that the error matrix dy;* satisfies
A6y + Byt + Cldde + D =0, (4.72)

where

n
ilj

I
Ay = MP + M+ Az Fl = oy
=1

I
By = — (M 4+ M) + Az ERT =3 T
=1

I
o= A (L + L) = Y o (Ut + UtY)
j=1

Dy =As" (Fi+ 77 - XI: o7y (M- ME)  (4T3)
j=1

for n = 1,..,N. Apart from the additional terms in these four
matrices, the NRK algorithm remains otherwise unchanged.

4.4.3 CHOICE OF THE MESH SPACING

As in all numerical algorithms for solving ODE’s, it is important
to discretize the independent variable in such as way as to follow
closely the variations of the solution, by choosing to have more
mesh points in regions where the function varies more rapidly.
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In most problems where the solution is not known a priori the
most judicious way of performing this task is through automated
mesh-point allocation, as it is proposed for example by Gough,
Spiegel & Toomre (1974).

This algorithm was initially used in the resolution of the equa-
tions presented in Section 4.2, but it was found that it had a
rather low performance for very thin boundary layers (of order
of 1075(rous — 7in) or less). This low performance is probably
due to the fact that as many modes are used, the allocation al-
gorithm cannot choose adequately according to which functions
the mesh should be stretched.

The alternative solution is to stretch the mesh manually. In
order to do this, the position and width of the boundary layers
must first be determined. The principal boundary layers, as it
will be shown in the following chapter, are located at both spher-
ical boundaries. It will also be shown that the typical width of
the thinnest boundary layer on the spheres is

— in the non-magnetic case:
§=E)V?u12 (4.74)

— in the magnetic case:

—1/2
Aloc + \/ A1200 + 4M2E%
0=

4.75
S . @)
where A, is the local Elsasser number defined as
Aloc = A on the inner boundary,
Aoe = 72 A on the outer boundary. (4.76)

The width of the boundary layer varies significantly with lati-
tude. It is important to resolve the smallest possible scale, so
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that the “assumed” boundary layer thickness for the numerical
calculations will be that corresponding to u = 1.

In order to follow correctly the development of the boundary
layers, a minimum of ten points is taken within the width ¢
near the boundary, and the same mesh-point density is kept for
ten times this width, leading to a total of a hundred points in
each of the boundary layers. Typically, another 400 points are
allocated to the interval outside the boundary layers. The prin-
cipal advantage of NRK over other numerical methods is that
the mesh spacing need not be smoothly varying, but can have
corners. This allows the choice of a very simple mesh-point allo-
cation, as follows: if Np,ik is the number of mesh points allocated
to the interval outside of the boundary layers,

-1
T, = Tinp+ nlO 0 for n = 1,100 (4.77)
— Tin — 2
tn = 1064 Tut =i =200
Niuik
for n = 101, 100 + Nbulk
— 101 — N,
Tp =  Tout — 100 + n 09 9 bulk 5

for n =101 4+ Npuk, 200 + Npuik
A typical mesh distribution is shown in Fig. 4.2 for a non-

magnetic simulation with Ekman number £, = 1075, and a
magnetic simulation with Ekman numbers £, = F, = 1074,
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Figure 4.2: Mesh spacing for non-magnetic simulation, for Ekman
number E, = 1075 (solid line) and for a magnetic simulation with
Ekman numbers E, = E,, = 10~* and A = 1/200.
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Chapter 5

DISCUSSION OF THE RESULTS

The model proposed in the previous chapter is investigated nu-
merically, and various issues are considered. In order to ver-
ify the good behaviour of the numerical analysis, and test the
performance of the program, the non-magnetic case is studied
first in Section 5.1. This corresponds to the study of a viscous
fluid flow between concentric rotating spheres, which is a prob-
lem that can be studied analytically in the limit of very small
viscosity. The numerical results are compared with the analyti-
cal predictions, as well as with another similar numerical study
performed by Dormy, Cardin & Jault (1998). The results in
the magnetic case are presented in Section 5.2. The problem
depends essentially on three parameters: the Ekman numbers
E, and E,, which represent the ratio of the diffusive timescale
to the rotation timescale, and the Elsasser number, which is
the ratio of the typical amplitude of the Lorentz force to that
of the centrifugal force. An analytical boundary layer analysis
of the regions near the poles and near the equator is presented
in Section 5.3 and compared with the simulations. The results
from the simulations are compared with other models of the
tachocline and with the observations.

5.1 NON-MAGNETIC CASE
5.1.1 NUMERICAL RESULTS

When no magnetic field is present, fluid motion is dominated by
Coriolis forces everywhere except in two boundary layers near



the spherical boundaries, and in a shear layer at the tangent
cylinder. In the bulk of the fluid, angular velocity is more-or-
less constant on cylinders: indeed, when viscosity is negligible,
the fluid dynamics equations for the incompressible fluid reduce
to

Qe xu)y =0, (5.1)

which implies that « must be parallel to the rotation axis, and
(VX(Q2e xu))y , (5.2)

which implies that the angular velocity must be independent of
z where z is the cylindrical coordinate that runs parallel to the
rotation axis. Viscous effects are necessary in the boundary lay-
ers to ensure the smooth transition between the rotation profile
in the bulk of the fluid and that imposed at the boundaries.
This structure was first studied by Proudman (1956) and Stew-
artson (1966), in the case where E), is asymptotically small. It
is possible to show that in this limit the interior angular veloc-
ity is uniquely determined by the size of the gap between the
two spheres, and its value can be predicted analytically. The
derivation of the relation between the interior angular velocity
and the gap width in the asymptotic case is carried out in the
following section.

5.1.2 ASYMPTOTIC ANALYSIS OF A FLUID FLOW BETWEEN
CONCENTRIC ROTATING SPHERES

5.1.2.1 THE MODEL

The model is represented in Fig. 5.2. The top boundary at r =
rout = T undergoes the latitudinal shear observed at the base of
the convection zone 2.,(#), given by equation (2.14), with the
parameters as = 0.15 and a4 = 0.15; the bottom boundary at
r = iy 1S rotating rigidly with angular velocity .. The flow
is assumed to be incompressible, which suggests the use of the
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Figure 5.1: Rotation profile and streamlines in the non-magnetic
case for E, = 8 x 10~%. The interior rotation rate in this simulation

is Qin = 0.750%q.

117



Figure 5.2: Schematic representation of the model implemented in
Section 5.1.2. The edge of the convection zone, at the dimension-
less radius r = 1, is rotating with angular velocity Q.,(0); the edge
of the radiative zone (at the dimensionless radius r = 1 — A) is
rotating with constant velocity Q.. The boundary with the radia-
tive zone is impermeable. Outside the boundary layer, the flow as
well as the contours of constant angular velocity are parallel to the
rotation axis. The dotted line represents the edge of the cylinder
with unit radius, outside which the flow cannot reach the radiative
zone: there can be no dynamical connection of the convection zone
to the radiative zone outside this cylinder.
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stream function ¢, defined by
1 oy 1 oy

- “and uy = — 9.3
T 2 sing 99 MM 7 sinf) Or (53)
The specific angular momentum is introduced as
X
= 5.4
R (54)

Two coordinate systems will be used: the spherical coordinate
system (r, 6, ¢), with the unit vectors (é,, &g, &,) and the cylin-
drical coordinate system (s, ¢, z), with the vertical axis aligned
with the rotation axis; the unit vector in the vertical direction
is é,. In order to find an approximate analytical solution, it is
necessary to linearize the equations; in order to do so, the merid-
ional flow is assumed to be slow, so that the nonlinear advection
term (w-V)u in the momentum equation can be neglected. This
approximation can be shown to be valid provided the angular
velocity imposed by the top boundary is not very different from
the angular velocity of the bottom boundary, which is roughly
true in the case of the solar tachocline (the average difference in
angular velocities between the convection zone and the interior

is of order of 10 %).
Within these approximations, the system is described by the

following equations (which are the angular momentum equation
and the thermal wind equation respectively):

2 (Z—X cosf — EB_X sin0> = E,D% .
r

r 00
oY 1oy . _ 2
-2 <E cosf) — =90 sm9> = E,D*x, (5.5)
where o 09 5
2O smb0o [ 1 0
b= o2 " 2 00 ( sinf 80) ' (5.6)
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This problem, namely the determination of the flow between
two concentric spheres rotating with slightly different angular
velocities, has already been studied by Proudman (1956) and
Stewartson (1966) in the case where both boundaries were ro-
tating rigidly (i.e., without latitudinal shear). The following
section develops their results in the case where the top bound-
ary is rotating differentially.

5.1.2.2 THE CALCULATION

Following the work of Proudman, the problem is first solved in
the main body of the fluid, then successively near the bottom
and top boundaries. In the main body of the tachocline, the
viscous stresses are negligible, and the system simply reduces to

(&, V)u=0, (5.7)

which suggests that u is independent of z, so that the solutions
are

Y = 1po(s) and x = xo(s) - (5.8)

In order to solve the problem near the lower boundary, Proud-
man introduces the stretched variable ¢ such that

¢ = (r—rin)E, Y2 cos/?0 . (5.9)

This is equivalent to introducing a boundary layer with thickness

§ = EY? cos™1/29. The equations (5.5) and (5.5) become, to

zeroth order in E,l/ 2

o°y 09
acs ¢
Px  Ox

Note that these approximations are not valid near the poles,
where latitudinal derivatives may become important, and near
the equator, where the thickness of the boundary layer ¢ di-
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verges. These regions will be discussed later. Rigid rotation at
the bottom boundary requires that x — 0 asr — 1, or ( — 0.
Moreover, the impermeable boundary condition requires that
1 = 0 on the boundary, as well as 9¢/d( = 0. The solution
to equations (5.10) and (5.10) which fulfills all these boundary
conditions, and which is bounded as ( — oo is

$(G0) = 1(6) (1 e (cos¢+ sin¢))
X0 = xi(0) (1—e*< cosC) , (5.11)
where 11 (6) remains to be determined, and
x1(0) = 2E51? cos'?044 (6) . (5.12)

As ¢ — oo, these functions must match onto the solution ob-
tained previously for the main body of the tachocline: it is then
easy to see that one must have

x1(0) = xo(rin sinf) and 1(0) = 1o(ri, sinb) . (5.13)

This result can be combined with equation (5.12) and yields the
matching condition

xo(rin sind) = 2E;, /2 cos'/ 204 (ri sind) . (5.14)

In order to study the boundary layer near the top boundary,
another stretched variable is introduced:

& = (rous —r)E;M? cos'/?0 . (5.15)

The scaled equations are the same as before (cf equations (5.10));
the boundary conditions for the stream function are also the
same as for the lower boundary when y — 0, but the differential
rotation must now match onto that of the convection zone, so
that

X (1 = Tout, 0) = r2y sin?0Q,(0) (5.16)
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where

Qes(0) = Qeq(1 — a cos*0 — aq cos’d) — Q. . (5.17)

The solutions to equations (5.10) which fulfill these conditions
are

$(E,0) = 42(0) (1— e (cos¢ + sing))
X(60) = x200) + 2B, '/* cos'*s(0)e ¢ cos¢ , (5.18)

with

x2(0) = 72, sin090c,(0) — 2E1/2 cos'2095(0) . (5.19)

As before, matching with the solution in the main body of the
tachocline implies that

P9(0) = o(rout sinf) and x2(0) = xo(rout sind) , (5.20)
so that

X0 (Tout sinf) = rgut SiHQOQCZ(Q) — 2El,_1/2 cosl/29¢0(rout sinf) .

(5.21)
Since g and o are functions of s only, the two matching condi-
tions given by equations (5.14) and (5.21) can also be rewritten
as

Xo(s) = 2B, (1 = (s/rin)®) " o (s)

Xo(s) = QL (s) = 2B, (1 = (s/rou)®)  w0(s) ,  (5.22)

where

QICZ(S) =g [1 - G2 (1 - (S/Tout)2) — a4 (1 - (s/rout)Z)Q] —Qc,
(5.23)
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which can now be solved uniquely as

_ i/2 52922(3)
) U () T 4 (1 (sfron )
2 (1 = (s/riy)? Y S
xo(s) = (L= (s/rin)?) " Q) (5.24)

(L= (s/ri))"* + (1 = (s/rou))/*

The flow within two spheres is now known analytically every-
where.

5.1.2.3 FAILURE OF THE BOUNDARY LAYER THEORY AT THE TAN-
GENT CYLINDER

As it can be seen from equation (5.9), the thickness of the Ekman
layer diverges near the equator, and the arguments presented
in the previous section fail. The divergence is related to the
existence of a “critical cylinder” of unit radius, beyond which
the meridional flow from the convection zone does not reach
the radiative zone (see Fig. 5.2). The problems arising near
this region are extremely complex, and several boundary layers
appear on the cylinder; Stewartson (1966) studied these effects
in detail. The main results of his analysis are as follows: there
exist several concentric cylindrical nested boundary layers with
unit radius, and respective widths Ei/ 3, E,%/ 7 and Ei/ * The
essential role of these boundary layers is to carry the return
flow, that is, to ensure that the total mass into the tachocline
from the convection zone is zero (see Fig. 5.3). This flow exerts
a negligible torque on the radiative zone. Additional boundary
layers occur near the corner where the unit cylinder meets the
equator, and where the flow from the pole reaches the radiative
zone; these can be neglected, since they are of no consequence
for the transport of mass or angular momentum.
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Figure 5.3: Stream function for the flow within the tachocline, as a
function of cylindrical radius s. Note the downward flowing region
(D), and the upward flowing region (U), separated by the dotted line
at the cylindrical radius s = 0.58. The divergence near s = 1 occurs
because of the divergence of the thickness of the boundary layer at
the equator. A more thorough study would reveal downflows within
a thin boundary layer close to s = 1 as well (represented here by
the shaded area, to ensure that (s = 1) = 0, as required. The
width of the boundary layer has been exaggerated for the purpose
of plotting.
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5.1.3 COMPARISON WITH THE NUMERICAL RESULTS

5.1.3.1 EKMAN SPIRAL

Within the tangent cylinder (i.e. for r sinf < ry,) the flow is well
approximated by the Proudman asymptotic solution described
in Section 5.1.2. The best way to compare the solution to the
numerical solution is through the Ekman spiral. Calculating
ug/r and ug/r yields

U¢ X
— = —=— 5.25
r r2 sinf) ’ (5:25)
wo_ 1 %
 r2sinf or
This can be rewritten as,
— in the inner boundary layer,
-1/2  1/2
2F 01 (0
%. 2 ZCOS_ 0¢1()(1—eccos§),
in T, S
-1/2 1/2
2F 011 (0
Lol - v o8 ¥1(0) ¢ sin( | (5.26)
7 lin i, sinf
— in the outer boundary layer,
-1/2 1/2
~ 2F 01)2(0
s sinfQ, (0) + —= COS_ Yol )(e_f cos§ — 1),
2
T lout r&y Sind
-1/2  1/2
2F 01)2(0
% = O 9¢2( ) =€ sine . (5.27)
out TSy Sin

The Ekman spiral is created by plotting u,/r against ug/r at a
fixed latitude. The following plot presents the asymptotic solu-
tions as well as the true numerical solution for # = 7/12, and two
different values of the Ekman number. For this simulation, the
angular velocity profile imposed on the outer boundary is cho-
sen to be constant with value Q = Q. + 1075, and the angular
velocity of the inner core is simply .. The no-torque condi-
tion is dropped. Note how the fit of the asymptotic analytical
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Figure 5.4: Predicted and calculated Ekman spirals for the simula-
tion described in Section 5.1.3.1. The analytical prediction in shown
as a continuous line, whereas the simulations are shown as square
points for E, = 10~ or triangular points for E, = 6.5 x 1075, The
inset shows an enlargement of the central area.
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prediction to the numerical solution is valid only provided the
Ekman number is small enough. For larger Ekman numbers,
viscosity plays a non-negligible role in the dynamics of the fluid
outside the boundary layers, invalidating the Proudman asymp-
totic analysis.

5.1.3.2 PREDICTIONS OF THE INTERIOR ROTATION RATE

Assuming that the sun is in equilibrium, the total torque ap-
plied by the tachocline on the radiative interior should be equal
to that exerted by the solar wind on the convection zone. Since
that torque is extremely small, it is assumed to be null as a first
approximation, which is equivalent to requiring that the sun be
in a steady state. This condition determines the interior rota-
tion rate €. uniquely.

In the model presented above, the torques applied by the tacho-
cline onto the radiative zone are purely viscous, since the veloc-
ity terms vanish at the boundary with the radiative zone. As a
result, the steady-state condition can be rewritten as

w/2 0
T,(r=1)= 27TV/ [7’3 sin%%—] sinfdd =0, (5.28)
0 r=1

-

where T, is the total viscous torque from the tachocline onto the
radiative zone, and Q = Q¢ + (x/r? sin?f) is the total angular
velocity at the base of the tachocline. Using the results derived
previously, this condition can be rewritten as:

Q. [T F(0)D( sin)do
Qeq S 2 F(6)de

: (5.29)

where 3 0
sin’0 cos
F(0) = — . (530)
cos!/20 + (1 — sin%‘ﬁi)

out
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and

D(s) =1—az (1 (s2/r2y)) —as (1 - (s2/r2))°  (531)

The variation of the calculated value of the interior rotation
rate as a function of the width of the gap § = rou — 7in 1S
presented in Fig 5.5. It can be seen that the simulations fit
well the analytical predictions provided the Ekman number is
small enough (i.e. below 1075). It is also interesting to note, as
an aside, that for gap width of about 3% of the radiative zone’s
radius (which corresponds to the width of the tachocline), the
interior angular velocity is 93% of the equatorial velocity, which
is very close to the observed value for the interior rotation rate.
This result, although quite striking, may be just a coincidence.

5.1.4 NUMERICAL CONVERGENCE

It is important to remember that the numerical system solved
is not necessarily an accurate representation of the fluid dynam-
ics equations, since the Fourier expansion of these equations is
truncated at large order. The previous sections show that the
numerical solutions seem to reproduce the analytical analysis
reasonably well, hence it is likely that the numerical solutions
presented actually represent a “converged” solution (i.e. a sim-
ulation for which the number of Fourier modes calculated is
sufficiently large that the truncation has little influence on the
solution). However, it is important to verify the convergence in
a manner that can also be applied later to the magnetic simula-
tions, for which there exists no analytical prediction with which
to compare the solutions. The numerical convergence of the
Fourier series can be checked be computing the typical ampli-
tude of the Fourier modes Yjn 4, for n = 1,.., N. The amplitude
is simply determined as the integral of the function Yy n(r) in
the interval [rin, rout]. Fig. 5.6 shows these amplitudes as a func-
tion of the Fourier order n for the angular momentum functions
YiN+n, and for the latitudinal velocity functions Yy, for two

128



Qin/oeq

Figure 5.5: Analytical prediction for the interior rotation rate as a
function of gap width 4, and results of simulations for § = 0.5 and
0 = 0.65 for values of the Ekman number as shown.
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Figure 5.6: Amplitude of the Fourier modes of the angular momen-
tum function Yyn4, and the latitudinal velocity function Yn i, as
a function of n, for a simulation with N = 20 and N = 40.
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Figure 5.7: Comparison between two simulations with N = 20
(above) and N = 40 (below) for E, = 107
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different total numbers of modes (N = 20 and N = 40), for
E, =107°.

This example illustrates well the problems one may encounter
by choosing to truncate the Fourier expansion at too low order.
The Fourier series for the angular momentum function Yinin,
appears to converge relatively well, with a gradual decrease of
the amplitude of the modes with n for either N = 20 or N = 40.
The two curves are hardly distinguishable. However, the same is
not true of the latitudinal velocity functions Yy, for which the
mode amplitudes flatten around n = 20 when the series is trun-
cated at low order, but keeps on decreasing when the series is
truncated at higher order, showing relatively good convergence.
This intrinsic difference between the behaviours of the velocity
function and the angular momentum function can also be seen
in the final results. Fig. 5.7 shows the results of the simulations
for both truncation orders N = 20 and N = 40. Note how the
angular velocity contour plots for N = 20 and N = 40 are in-
distinguishable, whereas the streamlines contour plot obviously
shows the lack of convergence of the Fourier expansion in the
N = 20 case.

The angular velocity series seems to converge faster than the
streamlines series; this suggests two comments. Firstly, that
in order to check on the absolute numerical convergence of the
system it is essential to use the slowest converging functions
rather than the angular momentum functions. Secondly, this
also explains why the numerical solutions in Section 5.1.3.2 for
E, ~ 1078 predict the asymptotic values of the interior rotation
rate very well despite the fact that for such low Ekman numbers,
the number of modes kept in the simulations (N = 40) is far too
low to represent a fully converged solution for the velocity func-
tions. It is however large enough to represent a fully converged
solution for the angular momentum function, and shows that
the discrepancies in the velocity field have little influence on the
angular velocity profile.
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5.2 RESULTS IN THE MAGNETIC CASE

In the magnetic case, the influence of the magnetic field on the
fluid depends essentially on two parameters: the field strength
and the magnetic diffusivity. In the following section, three
regimes are presented for varying Elsasser number. The Elsasser
will then be fixed and Section 5.2.2 studies the dependence of
the solution on the magnetic Ekman number.

5.2.1 VARYING THE FIELD STRENGTH

In these first simulations, only the Elsasser number A is varied.
Note that the definition of A defined in equation (4.5) uses the
value of the amplitude of the radial component of the magnetic
field on the inner boundary. Accordingly, it should normally be
defined using the true value of the density on the lower boundary,
which is of order of p;, = 20 g cm™3 rather than the chosen uni-
form value of 1 cm™3. As a result, in the sun, the true magnetic
field strength on inner boundary corresponding to the Elsasser
number A is

By, = V pinATCQc = \/IIOO_T:)IBO ) (532)
In any case, the quantitative predictions of the simulations should
be interpreted with care, as a rough indications rather than pre-
cise predictions. The viscous and magnetic Ekman numbers cho-
sen for these simulations are identical, with a value of 2.5x 107 4.
This value was chosen for simplicity, as a value for which it
is easy to obtain solutions for any value of the magnetic field
strength.

5.2.1.1 LOW-FIELD CASE, A =1/25

This first simulation is shown in Fig. 5.8, which presents the
result in the case of a low Elsasser number. This corresponds to
By = 0.25T and a true field strength B, = 127 at r = 0.357.
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Figure 5.8: Simulation results for A = 1/25, E, = 2.5 x 10~*, and
E,=25x10"%
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The local Elsasser number near the surface is of order of 7x1075.

The structure of the interior angular velocity is dominated by
centrifugal forces and the angular velocity profile is close to
Proudman (cylindrical) rotation, except maybe very close to
the inner core where the influence of a magnetic field can be
seen through the slight deviation in the angular velocity contour
lines. Because of the additional Lorentz forces in the momen-
tum equation, the circulation is no more limited to cylindrical
surfaces and takes a rather different pattern, with two cells that
burrow deeply into the radiative zone. The shear layer at the
tangent cylinder vanishes. Advection of the poloidal field by
the circulation is strong despite the high magnetic diffusivity
because of the strength of the circulation. In the polar regions,
for example, the field is stretched to a structure that is nearly
parallel to the rotation axis. Similarly, near the surface, the Ek-
man circulation strongly distorts the field by advecting it in a
direction parallel to the surface. The shear persists throughout
the fluid region, and as a result, leads to the winding up of the
poloidal field into a relatively strong toroidal field. Typical val-
ues of the toroidal field are of order of one tenth of the value of
the poloidal field near the core. This structure shows little re-
semblance with the observations, failing in particular to impose
uniform rotation within the core.

5.2.1.2 HIGH-FIELD CASE, A =25

The second simulation is shown in 5.9, which presents the re-
sult in the case of a high Elsasser number. This corresponds
to By = 6.57. The local Elsasser number near the surface is
typically of order of 4.5 x 1072,

In the strong-field case, (see Fig. 5.9), the system is strongly
dominated by the Lorentz forces, and, as a result, is in a state
close to Ferraro iso-rotation despite the relatively high magnetic
diffusivity. The magnetic field is hardly affected by the cir-
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Figure 5.9: Simulation results for A = 25, E, = 1.25 x 1074, and
E,=125x10"%
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culation, and keeps essentially its dipolar structure everywhere
within the fluid region. The constant angular-velocity contours
follow closely the magnetic field lines. Magnetic connection with
the inner core is strong, and a large region near the equator is
forced to rotate nearly uniformly with angular velocity €j,. On
the other hand near the poles the shear persists at all radii and
there exists a boundary layer near the inner boundary, of width

A10(: + \/ A120(; + 4M2E%
o =

2E, E, ’

(5.33)

This boundary layer is discussed in detail in Section 5.3.1. The
transition with the outer boundary is similar in the polar regions,
but as the local Elsasser number is much smaller, the width of
the boundary layer is much larger. However, in the equatorial
regions the structure of the boundary layer is intrinsically dif-
ferent as the radial component of the poloidal field vanishes,
as well as the magnetic stresses connecting that area with the
boundary. That type of boundary layer is much wider than the
Ekman-Hartman layer, with a typical width of order of

1/4
5= (EEH> , (5.34)

A10(:

A more detailed study of the equatorial regions is presented in
Section 5.3.2.

The circulation is essentially limited to equatorial regions, with
one strong principal cell and weak secondary ones. This cell ad-
vects rapidly rotating fluid from the equatorial regions, bringing
angular momentum into the radiative zone, and brings more
slowly rotating fluid from the interior out to large radii, where
conservation of angular momentum slows it down even further.
This process leads to the creation of an alternating shear struc-
ture, as it can be seen in Fig. 5.9. This type of solution contrasts
strongly with the results presented by Rudiger & Kitchatinov
(1997) who found that the stronger the field the more uniform
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the angular velocity of the interior. Their results fail to predict
this structure because their simulations do not take into account
the advection of angular momentum by the meridional flows.
This alternating shear structure is well illustrated in the simula-
tions presented by Dormy, Cardin & Jault (1998). The toroidal
field is mostly limited to regions of shear (near the poles) with
a very small amplitude in the co-rotating regions. It is worth
mentioning that in this case, because the inner regions rotate
almost uniformly, relaxing the rigidity condition within r = r,
is likely to have little effect on the solution.

5.2.1.3 INTERMEDIATE-FIELD CASE, A =1

This third simulation is shown in Fig. 5.10, which presents the
result in the case of an intermediate value of the Elsasser num-
ber. This corresponds to By = 1.37". The local Elsasser num-
ber near the surface is typically of order of 2 x 1073.  The
intermediate-field case reveals the emergence of two distinct re-
gions: in the interior the system is dominated by the magnetic
field, and is in a state close to isorotation, with a large region
rotating with angular velocity €2;,. However, closer to the outer
boundary and especially near the equator, the system follows
Proudman-column rotation.

The following phenomenon is happening. In the equatorial re-
gions near the surface, the circulation is sufficiently strong to
advect the magnetic field down, leaving a whole area below
the convection zone virtually magnetic free, and therefore dom-
inated by Coriolis forces. Flux conservation implies that the
magnetic field strength is correspondingly increased in regions
just below. This magnetic field evacuation by the circulation
can be seen better in Fig. 5.12 which shows the square of the
amplitude of the magnetic field on the equator(proportional to
the local Elsasser number) as a function of radius. The plot
shows particularly well the two regions:
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Figure 5.10: Simulation results for A = 1, E, = 2.5 x 1074, and

E, =2.5x 1074
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1. in the core, the field is hardly perturbed by the differential
rotation imposed on the top, and varies with 2 just like
the initially imposed dipolar field would (as represented by
the dotted line).

2. the advection of the field by the circulation can easily be
seen near the surface: just below the convection zone, the
amplitude of the field is much smaller than the initial dipo-
lar field, and slightly lower down the amplitude is much
higher.

Conversely, the magnetic field keeps the circulation from bur-
rowing deep into the radiative zone and confines it to a shallow
region. This confinement can be seen in Fig. 5.10 but is repre-
sented best in Fig. 5.13, which shows the latitudinal component
of the velocity as a function of radius. Note how the circulation
is heavily suppressed below r = 0.67.

5.2.2 VARYING THE MAGNETIC DIFFUSIVITY

When the magnetic diffusivity is decreased, as it is shown in
Fig. 5.11, advection of the magnetic field by the circulation
becomes more important compared to diffusion. This has several
consequences:

1. the fluid is closer to being a perfect fluid, driving the the
system closer to iso-rotation. A larger volume of fluid in
the interior is rotating nearly uniformly with the interior
angular velocity;

2. as can be seen in Fig. 5.11 and Fig. 5.12 the magnetic
evacuation in the surface equatorial regions is greater, and
occurs more abruptly as expected. The amplitude of the
magnetic field below the evacuated volumes increases more
rapidly;

3. as a result, the circulation is confined within a smaller vol-
ume by the magnetic field (see Fig. 5.13).
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Figure 5.11: Simulation results for A = 1, E, = 6.25 x 10~°, and
E, =6.25x 1075.
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B(r)/By(r,,)

N

Figure 5.12: Normalized square of the amplitude of the magnetic
field on the equator as a function of normalized radius for the sim-
ulation presented in Section 5.2.1.3 (i.e. with the parameter values
E, =25x107* E, = 25 x 107* and A = 1) (dotted line), and
Section 5.2.2 (i.e. with the parameter values E, = 6.25 x 1075,
E, =6.25 x 107® and A = 1) (solid line). The dashed line rep-
resents the same quantity for a non-rotating system, where the
magnetic field solution is a dipolar field decaying as r—3.
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Figure 5.13: Latitudinal component of the velocity as a function
of the normalized radius at colatitude § = 7/3, in units of the
azimuthal velocity r., for the simulation presented in Section
5.2.1.3 (i.e. with the parameter values E, = 2.5 x 107*, E, =
2.5 x 10~ % and A = 1) (dotted line), and in Section 5.2.2 (i.e. with
the parameter values E, = 6.25 x 107°, E, = 6.25 x 107° and
A =1) (solid line).
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5.2.3 NUMERICAL ACCURACY

The mesh-point distribution described in Section 4.4.3 follows
closely the variations of all the functions throughout the fluid
region: the radial boundary layers are fully resolved. This can
be shown best by looking for example at the variation of the lat-
itudinal velocity Yy 4, with radius for n = 1 in Fig. 5.14. The
numerical accuracy of the solution must also be checked with
respect to the convergence of the Fourier expansion. In order to
do this, the method which was presented in Section 5.1.4 for the
non-magnetic case is adopted again. Fig. 5.15 shows the varia-
tion with Fourier order n of the amplitude of the modes for the
angular momentum function Yy 4y, for the two intermediate-
field simulations presented above. Note again how the mode
amplitudes flatten around n = 20 when the series is truncated at
low order (see the comparison between the N = 20 and N = 60
simulations for the low-Ekman-number case). Comparing the
left and right panels of Fig. 5.15 reveals that the amplitude of
the modes decreases faster with n in the high-diffusivity case
than in the low-diffusivity case. Indeed, for n = 20, the ampli-
tude of the modes shown in the high-diffusivity case is an order
of magnitude lower than in the low-diffusivity case.

The numerical convergence of the solution is therefore much
harder to obtain for lower Ekman numbers. Contrary to com-
mon expectations, this is not due to the lack of resolution in
the radial boundary layers (which are very well resolved for any
Ekman number) but to the gradual flattening of the angular ve-
locity profile, which is ill represented by Fourier expansion: a
flat profile is very difficult to reproduce by a sum of oscillating
functions, and a residual oscillation always exists with latitudi-
nal order N, the order of the truncation of the Fourier series.
This oscillation is of low amplitude and cannot necessarily be
seen on the angular velocity contour plots, but affect strongly
the meridional circulation which has an intrinsically low ampli-
tude. Fig. 5.16 shows a typical example of a simulation in which
the truncation order N is too low; an oscillation appears in the
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Figure 5.14: Variation of Y41 with radius for the simulations pre-
sented in Section 5.2.1.3 (squares) (which corresponds to “high”
diffusivities) and Section 5.2.2 (triangles) (which corresponds to
low diffusivities). The panel on the left shows the global variation
between r = rj, and r = 7o, and the panels on the right show a
close up of the region near the boundaries (inner boundary for the
top panel and outer boundary for the bottom panel).
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Figure 5.15: Amplitude of the Fourier modes of the angular mo-
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panel, with N = 20 (dotted line) and N = 60 (solid line). The
vertical axis is the same for both panels.
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Figure 5.16: Typical example of a simulation with IV too low. This
simulation is for Ekman number of 6.25 x 107> as in Section 5.2.2

but with N = 20 instead of N = 60
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solution with latitudinal order N.

5.3 COMPARISON WITH ASYMPTOTIC ANALYTICAL ANAL-
YSIS

The simulations presented above represent a very good approx-
imation of the true solution to the problem of the nonlinear
interaction of a large-scale magnetic field with fluid motions in
the radiative zone. Each of these solutions, however, represents
up to several days of computer time, and the computation time
increases strongly with decreasing Ekman numbers. For this
reason, and also to compare the numerical results with theory,
it is important to try and find approximate analytical solutions
to the problem, even if it is only locally (near boundaries, or
near the poles, for instance). This section focuses on the deriva-
tion of two asymptotic solutions near the boundaries, in the case
where the magnetic field is mostly perpendicular to the bound-
ary (which occurs near the poles) and in the case where the
magnetic field is mostly parallel to the boundary (which occurs
on the outer boundary near the equator).

5.3.1 ANALYSIS OF THE BOUNDARY LAYER IN THE POLAR
REGIONS

5.3.1.1 ANALYTICAL DERIVATION OF THE BOUNDARY LAYER SOLU-
TION

When the magnetic field is mostly perpendicular to the bound-
ary, an Ekman-Hartman boundary layer develops (see the review
by Acheson & Hide (1973)). The derivation of the boundary
layer analysis in the case of a spherical boundary is outlined
in the following section. Assuming that the magnetic field is
essentially perpendicular to the boundary with constant ampli-
tude By, one can write

B = Bye, . (5.35)
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The principal motivation for this model is the observation that
in the polar regions, and near the interior boundary, the field
is essentially radial. Call z = r — riy. Then, using the new
subscripts “in” to identify the solution in the boundary layer on
the inner sphere, the system of MHD equations yields

. . 27,
. 27, 4,1,
—2;;% = rinAaa::;n +Euaa;pin
a;;“ = —En%, (5.36)

where 9 is the stream function of the fluid flow, such that

1oy 10y

=—— = ——. 5.37
ror T 2 o (5:37)
Grouping these equations yields
22 ”\*
—4p By F = (A — EZ,E,]@> P, (5.38)

925 920 9% oL )
where F represents 53, 55, 5,5 and finally %*. Looking for a

solution of the kind F' o« ¢?* yields

2
~4*E; = (A - E,Epy®)” (5.39)
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and in turn, that v = £(8 + i) where

A+ /A2 + 4B
8=

2E, E, ’

1/2
—A+ /A% + 4,u2E%
a= . (5.40)

2E, B,

The solutions, which must be bounded, can then be written out
as

Qin = Q5,777 cosax + Q5,e7P% sinax + QLz + QY , (5.41)
where @ is either of the three quantities S, b, or 1, and
Lin = LS,e7P% cosaz + L,e™P% sinax + LY, . (5.42)

The term in Q', although not exactly bounded when going out of
the boundary layer, must be kept in order to match the solution
to that of the bulk of the fluid.

5.3.1.2 COMPARISON WITH THE NUMERICAL SOLUTIONS

In order to compare rigorously the simulations to the analytical
solutions derived above, the matching of the solutions obtained
in the boundary layer to those in the bulk of the fluid should
be performed. However, the solution in the bulk of the fluid, in
particular in the polar regions, is dominated by geometric effects
(as the latitudinal derivatives near the poles are not necessarily
negligible) and diffusive effects (as the Ekman numbers used
in the simulations are not small enough to justify neglecting the
diffusive terms); as a result, it is beyond to scope of this analysis
to derive an analytical solution for the solutions in the bulk of
the fluid, and therefore attempt such a matching. However, it is
still possible to check the qualitative behaviour of the solutions
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in the boundary layer. Fig. 5.17 shows the angular momentum
function L as a function of the scaled variable £ = Sz = B(r —
Tin), for three different values of the Ekman numbers. Although
the boundary conditions and asymptotic conditions are different
for each case, this plots illustrates that the angular momentum
function L indeed behaves as €’® within the boundary layer (i.e.
for values of ¢ below unity).

5.3.2 ANALYSIS OF THE EQUATORIAL REGIONS
5.3.2.1 AN ASYMPTOTIC ANALYSIS

Near the equator, the asymptotic analysis described in Section
5.3.1 breaks down, as the magnetic field is advected by the cir-
culation into a a direction parallel to the surface. Another type
of boundary layer appears, which is analysed in this Section.

The magnetic field is mostly parallel to the surface, in a region
close to the equator so that u ~ 0. Assuming little variation in
the latitudinal direction, the magnetic field is approximated by
B ~ Bgpéy. In that case, and in the boundary layer only, the
MHD equations can be simplified to

B
A Bods E,L"

Tout aﬂ

By 0L

0= - RS, (5.43)
Tout aﬂ

where the primes denote differentiation with respect to . These
two equations entirely determine the variation of L and S near
the boundary, and can be combined into

#Q 5, E,E,9'Q

e A Sl B A 5.44
8/1'2 out ABS 6C4 ( )

where () is either L or S, and where the boundary layer co-
ordinate ( = 7oyt — 7 was introduced. On the boundary, the
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Figure 5.17: Variation with the scaled variable £ of the angular mo-
mentum function L at fixed co-latitude § = 7/12 and fixed Elsasser
number A = 1, for three different values of the Ekman numbers:
E, = E, = 1072 (solid line), B, = E, = 2.5 x 10~* (dashed line)
and E, = E,, = 6.25 x 107" (dotted line).
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latitudinal variation of L is given by the boundary conditions,
so that
L )

So finally, the governing boundary layer equation is

, E,E,d'L

—2L = TOUtA—_Bga—CAL y

(5.46)

and similarly for §. The solutions which are bounded as { — oo
are

L = L*(p)e*5¢ cos(Yeq() + L (u)e™C sin(yeq() ,  (5.47)

and similarly for S, with

ABg 1/4
= —"7— . 5.48
Tea <27'c2)utEnEu> ( )

Note that this analysis should predict the variation of the tachocline
thickness with the interior field strenght in the model proposed
by Riidiger & Kitchatinov (1997), since in their model the mag-
netic field near the boundary is essentially parallel to the surface.

5.3.2.2 COMPARISON WITH THE NUMERICAL SOLUTIONS NEAR THE
EQUATOR

The exact functional form of L and S remains unknown, as a full
matching with the solution near the poles is needed to determine
the unknown coefficients L€, L°, S and S®. However, as a
first comparison, it is easy to check whether the exponential
dependency of the solution is indeed present in the numerical
simulations. Fig. 5.18 presents the variation of (L — L¢)/(Leq —
L.) on the equator as a function of normalized radius,

1. for the numerical solution as represented by the solid line
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2. for the “analytical prediction” given by

L— L.

e eealr—Tout) 5.49
Leq—Le ¢ ’ (5.49)

as represented by the dotted line.
This simulation corresponds to the parameters F, = FE, =

6.25 x 107> and A = 1. If higher Ekman numbers are cho-
sen, the asymptotic analysis does not satisfyingly reproduce the
solution. One can see that the general shape of the solution
is well represented by the exponentially decaying solution with
boundary layer width

AB2 —1/4
og = | ——0 . .
* <27'c2)utEnEu> (5:50)

5.4 DISCUSSION OF THE RESULTS

The results of these simulations are now discussed, by comparing
them with other attempts at modeling the interaction between
a differentially rotating fluid and a large-scale magnetic field,
which were carried out by Dormy, Cardin & Jault (1998), and
Gough & MclIntyre (1998) respectively.

5.4.1 COMPARISON WITH THE WORK OF DORMY, CARDIN &
JAuLT (1998)

Dormy, Cardin & Jault (1998) studied the interaction between
a large-scale magnetic field and fluid motions confined between
two rotating rigid spherical shells, when the inner shell is rotat-
ing with a slightly faster angular velocity than the outer shell.
The problem they study is very similar to the one proposed in
this dissertation; in particular, in both cases the nonlinear ad-
vection by the meridional circulation is neglected whereas the
full nonlinearity of the Lorentz forces and magnetic advection
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Figure 5.18: Variation with normalized radius of (L — L.)/(Leq —
L.). The solid line is deduced from the numerical solution presented
in Section 5.2.2 and the dotted line is the exponential solution de-
scribed in equation (5.49)
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terms is kept. However, their numerical method of resolution
is slightly different as they evolve an initial configuration with
time (starting from a uniformly rotating fluid with no meridional
circulation and a given dipolar magnetic field) to an asymptot-
ically steady state. The boundary conditions chosen by Dormy,
Cardin & Jault for the magnetic structure are also slightly dif-
ferent as they choose to study the case of a conducting inner
core and an insulating outer sphere (whereas in the simulations
presented in this dissertation both spheres are conducting). This
difference is essential to the results since in the insulating case,
only viscous torques connect the fluid to the outer boundary,
whereas in the conducting case the connection between the fluid
and the boundary occurs principally via magnetic stresses.

Dormy, Cardin & Jault present the results of several simulations
for increasing Elsasser number (note that their definition of the
Elsasser number is different from the one used in this disserta-
tion), and viscous Ekman number of £, = 10~°; unfortunately,
they do not report on the value of the magnetic diffusivity used.
Their simulations qualitatively match my own extremely well
(see Fig. 14 of their paper for instance), assuming that they
used a rather large magnetic Ekman number. More specifically,
the following features reported in their work are worth noting:

1. As the Elsasser number is increased progressively from the
non-magnetic case to the strong-field case, the shear layer
at the tangent cylinder is progressively smoothed out and
eventually disappears completely. The flow tends to a bulk
rotation together with the inner sphere.

2. An Ekman-Hartman boundary layer develops near the outer
boundary, whereas the shear disappears completely at the
boundary with the inner sphere. No mention is made of a
boundary layer at the inner sphere.

3. They observe that in the high Elsasser number case the
angular velocity follows closely the field lines, and that an
alternating shear layer develops from the equator inwards,
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just as presented in Fig. 5.9. They argue that “this in-
ternal shear layer is associated with the recirculation of
electric currents induced in the Hartman layer as the inter-
nal Stewartson layer is associated with the recirculation of
the meridional flows generated in the Ekman layers”.

4. They also observe that the width of the sheared zone near
the equator “follows the M ~1/2 agymptotic law for bound-
ary layer attached to a wall parallel to the imposed mag-
netic field (Moreau, 1990)”, where M = Aj,./E.

5. Finally, they observe an unexpected inversion of the angu-
lar velocity profile near the inner boundary, where the local
angular velocity exceeds that of the inner shell.

Their results call for the following comments. Firstly, the shear
near the inner boundary is indeed suppressed by the presence of
the magnetic field in the equatorial regions, but not in the polar
regions. It is therefore inexact to claim that no boundary layer is
present near the inner boundary. An Ekman-Hartman boundary
layer of the type described in the asymptotic analysis in Section
5.3.1 must necessarily be present in the polar region, as shown
in Fig. 5.19. The jump across the boundary layer is reduced
when the magnetic diffusivity is reduced, or when the magnetic
field strength is increased. Secondly, Dormy, Cardin & Jault
interpret the shear layer as the recirculation of electric currents
within the radiative zone. I believe that another phenomenon
is in play: Ekman-Hartman pumping drives a circulation from
the boundary layer into the bulk of the flow. This circulation
advects angular momentum from the outer regions into the ra-
diative zone, accelerating the fluid there. However, because of
the Ferraro iso-rotation law, this accelerated region is confined
within a thin diffusive shear layer (which indeed has a thickness
of M~1/2, see Section 5.3.2). Finally, this phenomenon could
also explain the angular velocity inversion they observe, where a
portion of the fluid is rotating faster than either boundaries. In
the case where the two boundaries are rotating with only slightly
different angular velocities, it is not unlikely that the accelera-
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Figure 5.19: Variation with latitude of the angular velocity pro-
file near the poles (solid line) and near the equator (dashed line)
for the simulation described in Section 5.2.2. The inset shows an
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tion of the fluid as it is advected to smaller and smaller radii
would result in velocities higher than that of either boundaries.
However, despite the different interpretation of the results, the
qualitative and quantitative agreement of the work presented in
this dissertation with that of Dormy, Cardin & Jault is excellent.

Having shown how closely the simulations presented in Section
5.2.2 follow asymptotic analytical predictions, and also how well
they compare to the simulations carried out by Dormy, Cardin
& Jault (1998) it will from now on be assumed that the numeri-
cal solutions obtained through the method presented in Chapter
4 represent a sufficiently accurate approximation of the true so-
lution of the model studied. The results are now analysed with
respect to the observations.

5.4.2 ANALYSIS OF THE RESULTS

Section 5.2.2 showed that there exists an intermediate magnetic
field regime which holds the following properties: a large re-
gion of the fluid region is forced to rotate nearly uniformly with
the angular velocity of the inner core. In the equatorial regions
the transition to differential rotation occurs within a small shear
layer, whereas in the polar regions the transition is more gradual,
with a near-constant radial shear. The transition latitude be-
tween the “polar” regions and the “equatorial” regions seems to
correspond to the latitude below which the radial component of
the magnetic field is heavily suppressed on the outer boundary.
In the equatorial regions, the shear layer is virtually magnetic-
free, the poloidal field being pushed downwards by a large-scale
meridional circulation. On the other hand, the circulation is
confined to the shallower layers of the fluid region by the deep
magnetic field. All these phenomena (the synchronization of the
rotation with the inner core, the shallowness of the shear layer,
the magnetic expulsion near the equator and the confinement of
the circulation) are enhanced when the magnetic diffusivity is
decreased.
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This qualitative behaviour was predicted by Gough & MclIn-
tyre (1998), who first suggested that the tachocline should be
virtually magnetic-free, and undergoing large-scale mixing by a
confined circulation. The scaling argument they derive to pre-
dict the variation of the width of the tachocline with internal
field strength does not apply here, however, since their model
is based on thermal wind driving and includes advective heat
transport. As a result, the quantitative predictions they pro-
pose cannot be reproduced by the simulations presented here.
As an example, the typical timescale of the circulation in the
model proposed by Gough & Mclntyre is a local Eddington-
Sweet timescale, whereas in the simulations presented here the
circulation velocity is related to the typical Ekman velocities.

The final step of this analysis consists in comparing the nu-
merical simulations with the observations. It is essential to keep
in mind that the typical Ekman numbers of the simulations are
several orders of magnitude larger than in the sun. In the re-
gion of the tachocline, assuming that the flow is not turbulent,
the magnetic and viscous diffusion coefficients are of order of
v = 10cm?s™" and n = 2 x 103cm?s™!, which implies that

E,~10" and E, ~2x 107" . (5.51)

The main consequence of this discrepancy is that although the
principal features of the interaction between fluid motions and
large-scale fields in the sun can be studied through this method,
it cannot provide reliable quantitative estimates unless the Ek-
man numbers are sufficiently low that an asymptotic state is
reached, in which all the relevant dynamical interactions hap-
pen outside the thin boundary layers (such as it is observed in
the non-magnetic case for example).

The simulations qualitatively reproduce the observations ex-
tremely well:
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1. For sufficiently low magnetic diffusivity, a large region of
the fluid is forced to rotate uniformly with the angular ve-
locity of the core; such a uniform angular velocity profile
in the radiative interior is clearly shown by the observa-
tions. The simulations suggest that polar regions seem to
sustain some radial shear down to a latitude of about 50°
for £, = E; = 2.5 x 10~*, and down to latitudes of about
60° for £, = E, = 6.25 x 10~°: the polar shear is gradu-
ally confined to higher and higher latitudes as the Ekman
numbers are reduced. Helioseismic inversions still have too
low a resolution to provide any reliable observations of the
polar regions; this numerical model however predicts slower
rotating fluid in the polar regions deep within the radiative
zone, which is also a feature of the works of Riidiger &
Kitchatinov (1997) and Gough & McIntyre (1998). How-
ever, this prediction is principally dependent on the as-
sumption of incompressibility of the fluid, and may be in-
validated by future studies of the compressible case.

2. A thin boundary layer appears in which most of the shear
is contained, in particular in the equatorial regions. The
thickness of this shear layer is much larger than the ob-
served thickness of the tachocline, a discrepancy which is
again simply related to the high diffusivities used. Ad-
ditional simulations will be needed to confirm the varia-
tion of the thickness and centre-position of the tachocline
suggested by the simulations presented in Section 5.2.2.
Observations seem to suggest a slight prolateness of the
tachocline, which could indeed be related to these varia-
tions.

3. A meridional circulation is driven below the convection
zone by Ekman-Hartmann pumping; this circulation is con-
fined by the large scale poloidal field to shallow layers of
the radiative zone. This result validates the analysis of the
sound speed profile performed by Elliott & Gough (1999)
(see Section 1.4.1) and also relates to the upper limits in
the depth of the tachocline mixing suggested by observa-
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tions of the abundances of light elements in the convection
zone (see Section 1.4.4). Again the simulated depth of pen-
etration of the circulation is much larger than suggested by
the observations, a discrepancy which is due to the large
diffusivities used for the numerical analysis, and possibly
to the assumption of incompressibility also. Comparison
between high- and low-diffusivity cases indeed show a sig-
nificant reduction of the mixed layer depth for lower Ekman
numbers.

Quantitative estimates, however, are still to be improved. In ad-
dition to the deficiencies pointed out above, the predictions of
the value of the angular velocity of the interior do not match the
observations. Figure 5.20 shows the predicted ratio of interior to
equatorial angular velocities as a function of the Ekman number
in the intermediate-field case and high-field case. The predic-
tions fall quite short of the observed value of i, /Qeq = 0.93,
and this discrepancy seems to get worse as the diffusivities are
decreased. The main reason for the slow rotation of the inner
core is the following: the polar regions are the last to be affected
by the shear expulsion, and rotate with a low angular velocity
more or less at all radii. A slowly rotating region, connected
to the core via magnetic stresses, necessarily imposes its slow
rotation to the inner core. Once more, this discrepancy between
the observations and the simulations are likely to be principally
due to the large diffusivities used in the simulations: a lower
magnetic diffusivity increases the ability of the magnetic field to
impose isorotation, particularly in the polar regions. This effect
could yield a more rapidly rotating core, and in fact, the results
for the high field case in Fig. 5.20 seem to suggest that as the
diffusivity is decreased even further, the angular velocity of the
inner core may rise again towards the observed values.
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Chapter 6

EFFECTS OF STRATIFICATION AND
ENERGY TRANSPORT

Although the incompressible analysis presented in Chapter 5
is fairly successful in reproducing qualitatively the structure of
the tachocline, it cannot take into account the effects of the
hydrostatic stratification of the background, which is known to
hinder motions in the radial direction, or of heat transport and
thermal-wind driving. These effects are at the heart of the model
proposed by Gough & Mclntyre (1998) and are believed to play
an important role in the dynamics of the tachocline. In par-
ticular, the effects of heat diffusion and stratification strongly
reduce the typical velocities of the meridional circulation, which
in turn will reduce the advective power of the circulation on
the magnetic field. The MHD equations described in Chapter
4 are now modified to take into account these effects through a
Boussinesq approximation of the fully compressible equations.

6.1 MHD EQUATIONS IN A BOUSSINESQ APPROXIMA-
TION

The Boussinesq approximation was discussed in Chapter 2. The
assumption that the typical flow velocities are much smaller than
the local sound speed results in the filtering out of sound waves
through the following mass continuity equation:

V-(pnu) =0, (6.1)



and the conclusion that the pressure perturbations are much
smaller than the density or temperature fluctuations. In the
case where the pressure is principally due to the gas pressure p,
this approximation can be combined to the equation of state to
yield
p_r Ty, (6.2)
pn pn Th
However, when magnetic pressure is present, this equation is no
longer valid; instead, one should write
d_r, Loy, (6.3)
Pn P Th
where IT = p + B - B/8rn. This effect, which may result in the
presence of strong local density fluctuations with no compensat-
ing temperature perturbations, leads to magnetic buoyancy. It
has been neglected in this calculation as a first approximation,
and equation (6.2) is assumed to be valid.

6.1.1 THE EQUATIONS

Under the Boussinesq approximation, the MHD equations in a
compressible, axisymmetric fluid rotating with angular velocity
Q. take the following form:

V-(phu) =0, (6.4)

which is rewritten as

du  0Ov d1Inpy
TE_%_(2+ dlnr)u

(6.5)

The azimuthal component of the momentum equation is essen-
tially unaffected by the introduction of compressible effects in
the Boussinesq approximation, except by the introduction of a
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varying density profile, namely

on \r20p T
E, 1—p?0%L
= Z (L — ] . 6.6
r ( T ou? (66)

Note that the radial and latitudinal components of the momen-
tum equation are unchanged in the linearized approximation of
small perturbations.

The azimuthal component of the vorticity equation becomes

1 1
Vx((2Q: + w) X u)y = 7 (Vp x Vp), + p—Vx(j x B),
h h

+v(Viw), (6.7)

The effect of the thermal-wind driving has been discussed in
more detail in Chapter 2 and by Gough & Mclntyre (1998).
Equation (6.7) can now be rewritten as

_ 2
oL/ — ol oL
r O
A2 boJ 2 S b
+ = |fBi+2 (25 52) —aB
on LT rop 1 —p? \r? r
Gh 2, OT " 1_N282W
_ g2 e (w 6.8
na-Tan, (w0 L e

In order to derive this equation from the curl of the momentum
equation, two terms were neglected:

1. in the baroclinic term, the contribution from the latitudinal
pressure gradient,
o o
20 or '
(it is found that the inclusion of that term has little effect
on the results of the simulations)

(6.9)
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2. in the magnetic term, the contribution from the density
fluctuations:

~ L (Vex(ixB)), . (6.10)
Ph

Finally, the energy transport equation is linearized to obtain
phThu -Vs = V(KtVT) y (611)

which can be rewritten as
Ty ¢, N?
B w - Vp = VH(KVT) . (6.12)
9n

Expanding this into the spherical coordinate system, and using
the identities
0 10
8_17? ~ —pnoh , ;8_10) ~ pprQ? sinf cosf | (6.13)
(which are derived from the radial and latitudinal components
of the momentum equation respectively), the energy equation
becomes:
Thc N2
TI; (upngn — vupnrQ?) = V(K VT) , (6.14)
h

The buoyancy frequency N? is approximated to be that of the
hydrostatic background stratification. This approximation may
not be valid if the mixing in the tachocline region due to the
meridional circulation is strong enough to create a local adi-
abatic stratification (i.e. if the mixing occurs on a timescale
much shorter than the thermal diffusion timescale).

6.1.2 FOURIER EXPANSION

As previously, all the relevant quantities are expanded into series
of Chebyshev polynomials. The symmetry of the system requires
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that

N
T = ZY11N+n(T)T2n72(N’)7 (6.15)
n=1
N
T = ZY12N+n(7")T2n—2(M)- (6.16)
n=1

The conservation of mass becomes
rYy =Yy — Fi(r)Yy (6.17)
for k = 1..N, where

dIn py

Fi(r) =2+ dlnr

(6.18)

In the momentum equation, A is everywhere replaced by Fa(r)A

where )
Fy(r) = =2 — , 6.19
2( ) ,rg, oh ( )

where py, is given in cgs units. The vorticity equation (4.20) has
the following additional term in the r.h.s.:

2
_%F3(7')Y11N+mB2k71,2m72 , (6.20)

for kK = 1,.., N, where the summation convention is used for m

and
I gn

re 2 T’
where py and T}, are given in cgs units. Also, A is again ev-
erywhere replaced by Fb(r)A. Finally, the energy equation is
expanded into

Fy(r) = (6.21)

Fy(r Fy(r
Viony1r = — 42( )Y1+ 58( )(YN+1—YN+2)

1
- ;(m — )Y1intm(Bo2m—3 — Bo2m—1) {6.22)
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and

Fy(r)
Y1l2N+k+1 = 5

+F5(r) (YNfh1 + YNer — YNargo
= YNik—1— Yn410(k — 1))

2
—%(m — DY1in+m(Bok,2m—3 — Bakom—1) , (6.23)

((2k = 1)Yj41 — (25 +1)Yy)

for k =1..N — 1, where

(6.24)
where all the quantities in the fractions are given in cgs units.

The variation with r of the functions Fy, Fy, F3, Fy and Fj
is given in Fig. 6.1. These are determined using the solar model
computed by Christensen-Dalsgaard et al. (1996). Note that
the absolute value of the function Fs(r) is everywhere much
smaller than Fy(r), which implies that the latitudinal advection
of heat is negligible everywhere except very close to the bound-
aries, where u vanishes faster than v.

6.1.3 BOUNDARY CONDITIONS

The boundary conditions for the temperature fluctuations are
derived from the assumption that the material outside the fluid
region conducts heat, and has no fluid motion. In the steady-
state case, the temperature fluctuations are subject to

VT =0, (6.25)

in the inner core (r < rj,) and for r > roy. The solution to
this equation within the inner core is a linear combination of
P,(p)r™, and the resulting matching conditions with the fluid
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Figure 6.1: Variation with r of functions Fy, Fs, F3, Fy and Fj
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region through the inner boundary is

N

> Yionym (rin) Tok2m—2
1
N

= 26 rinYiunim(rin) Fok2m—2 » (6.26)
1

for kK = 1,..,N. The solution to equation (6.25) that decays
when r — oo is a linear combination of P,(u)r~"~! so that the
resulting matching condition with the fluid region on the outer
boundary is

N

Z Yion4m (Tout ) L2k 2m—2
1
N

= —(2k+1) ZToutY11N+m('rout)I2k,2mf2 , (6.27)
1

fork=1,..,N.

6.2 RESULTS IN THE NON-MAGNETIC CASE

Although it is treated here as a preliminary analysis to the mag-
netic case, the non-magnetic steady-state analysis of a stratified,
rotating self-gravitating fluid is itself an interesting problem, in
particular in the case of the sun. As mentioned in Section 2.1.2,
rotation leads to baroclinicity, which in turn drives a meridional
circulation due to the thermal wind: the Eddington-Sweet cir-
culation (Sweet, 1950). It is not the aim of the following section
to study in detail the Eddington-Sweet theory, although the nu-
merical procedure used could, in principle, be used for such a
purpose.

The principal problem in the study of the effects of compressibil-
ity and heat transport on the rotation profile of the sun is linked
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to the very delicate advection-diffusion balance of heat. This
problem soon becomes apparent when a steady-state solution
for the model presented in Section 6.1 is seeked. The numerical
method used for the resolution of the equations starts from an
initial guess and iterates the NRK algorithm (see Section 4.4)
until a solution is found with the desired accuracy. This method
is also used to progressively explore the parameter space (for
viscosity, magnetic diffusivity, etc...). When heat transport is
studied, another parameter comes into play, the heat conductiv-
ity K, or if a dimensionless parameter is preferred, the Prandtl
number o = pyc,v/K; which describes the ratio of the viscous
diffusion timescale to the heat diffusion timescale. When trying
to find solutions for progressively lower viscosity, there are two
ways of proceeding: either the heat conductivity is fixed to its
true solar value, and the viscosity alone is progressively reduced,
or the Prandtl number is fixed to its value in the tachocline oy,
for instance (in fact, the Prandtl number varies little with ra-
dius in the sun), which implies that the heat diffusivity must be
varied with the Ekman number as

_ phcpE,ﬂch

K (6.28)

00

In the first case, the simulations tend to have an abnormally
large viscous diffusion compared to heat diffusion. This im-
plies that meridional motions are strongly suppressed, since all
but the slowest motions would create large temperature fluctu-
ations. In the second case, heat diffusion dominates over vis-
cous diffusion (as it is the case in the sun), but the diffusive
timescale is abnormally small compared to the typical turnover
timescale (which implies that temperature fluctuations tend to
be smoothed out).

Both approaches have been studied, in order to choose which
method would be most suitably used in the magnetic case.
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6.2.1 FIXING THE HEAT CAPACITY

This approach should be the most natural, as only one param-
eter (the viscosity) deviates from its normal solar value. It was
chosen, for instance, by Elliott (1996). The results are shown
in Fig. 6.2 for an Ekman number E, = 10~° and solar values
for the heat conductivity K, and compare well with the results
obtained by Elliott. It is found that the system is essentially
dominated by viscous stresses and thermal-wind driving, and
the following equations apply:

(Vu), = 0, (6.29)
Vp

2Vx(Qe xu)y = Vx <7>¢ . (6.30)

As mentioned previously, the meridional circulation is heav-
ily suppressed by the stratification of the background, since
heat diffusion is weak compared to viscous diffusion. As a re-
sult, the angular velocity of the system is entirely determined
through equation (6.29), and imposes the temperature perturba-
tion through equation (6.30). The rotation rate of the inner core
is Qi = 0.957€ 4. This is exactly the value obtained when cal-
culating the interior rotation rate assuming that no other forces
but viscous forces are in play: in this case, assuming that the
viscous torques vary little with radius, the interior rotation rate
is given by the requirement that the total viscous torque at the
top boundary vanishes:

1
/ (1 = 12 (e — n)dp =0 (6.31)
0
which determines uniquely Qi = 0.957€.

Obviously, such a solution is undesirable, for the following rea-
sons:

— it is not possible to evaluate numerically the meridional cir-
culation in this approach, because typical amplitudes of the

173



latitudinal and radial velocities are of order of 10~ 167.Q,
which is close to machine-accuracy.

— the solar angular rotation profile is not dominated by vis-
cous stresses. It is therefore inappropriate to try determine
a reasonable solar rotation model starting from such an
obviously inadequate guess.

6.2.2 FIXING THE PRANDTL NUMBER

When the Prandtl number is fixed, heat diffusion is important
throughout the fluid motions, which allows the meridional cir-
culation to bury into the radiative zone despite the stratification
of the fluid. This simple fact should drastically change the dy-
namics of the system.

In order to verify this claim, the heat conductivity K is re-
placed in the simulations by the constant phcpE,,rZQC /oo where
oo = 1076, This implies that for the following simulations,

_ phcpEVTEQC

K; ~5x 10¥E, . (6.32)

0o
The Prandtl number in the sun varies little with radius, so that
taking it as a constant throughout the fluid region is a rea-
sonably good approximation. The results of the non-magnetic
simulations in this case are shown in Fig. 6.3, for an Ekman
number E, = 5 x 1075, and reveal a dynamical system intrin-
sically different from the one presented in the previous section.
Ekman pumping on the boundaries drives a meridional circu-
lation, as it was already observed in the incompressible case
(see Section 5.1). However, the temperature stratification of the
background resists the radial motions and slows down the cir-
culation compared to the incompressible case (see Fig. 6.4). As
a result, Coriolis forces do not necessarily dominate the motion
in the momentum equation — viscous forces can be of equal im-
portance. This implies in particular that the streamlines are no
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Figure 6.4: Comparison of the variation with radius of the latitudi-
nal velocities obtained in the compressible (solid line) and incom-
pressible (dotted line) simulations at the angular position (u = 0.3)
and for the same Ekman number. The oscillations observed in both
cases are well resolved radially; these could be due to lack of latitu-
dinal resolution, which affects the meridional motions in particular
(see Section 5.1.4).
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more limited to be parallel to the rotation axis. In the vortic-
ity equation, viscous forces are negligible except in the Ekman
layers near each boundary; the thermal-wind driving term bal-
ances the Coriolis stresses. The meridional circulation runs an-
ticlockwise, burying into the radiative zone near the poles and
emerging near the equator. In the downwelling regions, the flow
diverges from the pole conserving angular momentum, hence
slowing down considerably in the azimuthal direction. Near the
bottom of the radiative zone it imposes its slow rotation to the
inner core (which is found to be rotating with a value of about
a half of the surface equatorial value). As the flow emerges from
the deep interior towards the surface near the equator, it is ex-
tremely slow both in the radial and azimuthal direction. Viscous
stresses have ample time to accelerate the flow to finally match
its angular velocity to that of the surface rotation profile. The
temperature profile is as expected: the meridional circulation,
burrowing into the radiative zone, brings lighter (and therefore
hotter) fluid into it, and as it emerges near the equator, brings
heavier (and therefore cooler) fluid to higher radii.

Despite the high heat diffusivity of the simulations, this model
is more likely to represent the dynamics of a self-gravitating,
stratified, rotating fluid than the one presented in the previ-
ous section. Moreover, it is found to be easier to converge the
solutions to progressively lower Ekman numbers (and heat con-
ductivities) than when the heat conductivity is fixed to its actual
solar value. As a result of this analysis, the second method (fixed
Prandtl number) is preferred from now on to the first one (fixed
heat conductivity) for the study of the effects of heat transport
and stratification on the rotation of the sun.

6.3 RESULTS IN THE MAGNETIC CASE

As in the incompressible case, the interaction between fluid mo-
tions and a large-scale magnetic field depends essentially on the
Elsasser number A. For consistency with the previous chapters,
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the same definition is kept for the Elsasser number:

2
_ Bo
o202
TCQC

(6.33)

However, as it is clear from the MHD equation presented in Sec-
tion 6.1, the relevant quantity which describes the ratio of the
magnetic to Coriolis forces is now A, = A/p., where, for consis-
tency, p. is chosen to be the value of the hydrostatic equilibrium
density on the boundary with the inner core. As the density
of the background decreases with increasing radius between i,
and 1oy roughly as pp r~5, the local Elsasser number of the
flow A = B?/ppr2Q? typically varies as 1/r, instead of 1/r6
in the incompressible case. It is therefore difficult to compare
directly the results of the incompressible case to those obtained
in the compressible case quantitatively. Two cases will however
be analysed: A, = 1/500, A, = 1/20.

6.3.1 THE HIGH-FIELD CASE, A. = 1/20

This first simulation is shown in Fig. 6.5, which presents the
result in the case of a high Elsasser number. This corresponds
to By = 1.3 T. The local Elsasser number near the surface is of
order of 2 x 1072 (which is a factor of 10 larger than the sur-
face Elsasser number for the same interior field strength in the
incompressible case).

In the high field case, as expected, the system is dominated by
magnetic stresses and follows more or less Ferraro iso-rotation.
The magnetic field lines are slightly distorted by meridional
advection, but globally retain their dipolar structure through-
out the fluid region. As in the incompressible high-field case,
a strong equatorial circulation is driven by Ekman-Hartman
pumping, and is confined into a thin cell by the magnetic field.
This circulation advects angular momentum into the radiative
zone, leading to the alterning shear structure described in Sec-
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Figure 6.5: Simulation results for A, = 1/20, E, = 2.5 x 1074, and
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Figure 6.6: Comparison of the variation with radius of the (non-
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panel) and the high-field case (right panel).
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tion 5.2.1.2 and studied in Section 5.3.2. The dynamics of the
system are essentially the same as in the incompressible, high-
field case; the principal reason for this similar behaviour is that
throughout most of the fluid region, magnetic stresses dominate
over thermal-wind driving, and in particular near the surface
(see Fig. 6.6). The meridional circulation is not driven, as
Gough & MeclIntyre (1998) suggest, by the thermal wind but
rather by Ekman-Hartman pumping on the outer boundary.
This obvious discrepancy with the model proposed by Gough
& McIntyre stems from the high magnetic field as well as the
boundary conditions used in this simulation. The viscous, im-
permeable walls imposed on the flow and on the magnetic field
on the top boundary imply that an Ekman-Hartman layer must
develop in which the magnetic stresses largely dominate over
thermal-wind driving. In the model proposed by Gough & McIn-
tyre, on the other hand, the circulation is not confined by im-
permeable walls and can penetrate into the convection zone: in
this case, there is no boundary layer, and the principal driving
mechanism is the thermal wind.

6.3.2 THE LOW-FIELD CASE, A, = 1/500

This second simulation is shown in Fig. 6.7, which presents the
result in the case of a low Elsasser number. This corresponds
to By = 0.25 T. The local Elsasser number near the surface is
of order of 7 x 10~* (which is a factor of 10 larger than the sur-
face Elsasser number for the same interior field strength in the
incompressible case).

In this simulation, the dynamics of the system are dominated by
thermal-wind driving, which can be seen clearly in Fig. 6.6. Al-
though an Ekman-Hartman layer still subsist near each bound-
ary, thermal-wind driving is more efficient than Ekman-Hartman
pumping near the top boundary, and a wholly different struc-
ture appears. As predicted by Gough & Mclntyre (1998), the
circulation pattern driven by thermal-wind effects near the top
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Figure 6.7: Simulation results for A, = 1/500, E, = 2.5 x 1074,
and E, = 2.5 x 107*.
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Figure 6.8: Simulation results for A, = 1/500, E, = 6.25 x 1073,
and E, = 6.25 x 1075.
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of the radiative zone has two cells, with an upwelling region near
the surface at mid-latitude. As in Section 5.2.2, this circulation
advects the magnetic field away from the boundary, evacuating a
shallow region from magnetic flux in the equatorial region. The
field in the interior, however, remains strong enough to impose
(to some extend) uniform rotation, confining the shear to the
magnetic free tachocline. The typical circulation velocities are
higher than expected: near the surface, the latitudinal velocity
is of order of 107 'r... This is essentially due to the large heat
conductivity, which strongly reduces the effects of stratification
on radial motions. As before, the structure of the temperature
fluctuations can be explained simply by looking at the direction
of the meridional flow: at the poles, the downwards flow en-
trains lighter (hotter) fluid into the radiative zone, whereas at
the equator (below the tachocline), the upwelling motion brings
denser (colder) fluid from the deep interior to larger radii.

This simulation bears a strong resemblance to the model pro-
posed by Gough & Meclntyre, although, as expected from the
high diffusivities used in this simulations, the sharpness of the
features (thin tachocline, magnetic diffusion layer, upwelling re-
gion) cannot be reproduced. In order to acquire some insight as
to how the system would behave were the diffusivities reduced
to their true solar values, an additional simulation is presented
in Fig. 6.8 for E, = E, = 6.25 x 1075, The results call for the
following comments: as in the incompressible case, reducing the
magnetic diffusivity increases the connection between the fluid
and the field. This enforces a larger region of the fluid to rotate
nearly uniformly, and confines the shear to a thinner tachocline.
As described in Section 5.2.2, the circulation is confined to shal-
lower layers of the radiative zone in the low-diffusivity case than
in the high-diffusivity case. It is interesting to notice that the
position of the upwelling region moved from a latitude of about
30° when E, = 2.5 x 10~ * to about 40° when E, = 6.25 x 107°.
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6.4 DISCUSSION AND FUTURE WORK

In this Chapter, the effects of stratification, thermal-wind driv-
ing and heat transport on the dynamics of the tachocline were
studied. Two regimes can be found, which depend essentially
on the Elsasser number. When the Elsasser number is large, the
system is dominated by Lorentz forces in the momentum equa-
tion, and magnetic stresses in the vorticity equation. thermal-
wind driving is negligible (in particular close to the boundaries)
so that the energy transport equation decouples from the system
and the solutions are qualitatively similar to those obtained in
the incompressible case.

For a low Elsasser number, however, the thermal wind drives
the meridional circulation. In that case, the dynamics of the
system are qualitatively very similar to those studied by Gough
& Mclntyre (1998). However, quantitative predictions are again
strongly biased by the high diffusivities used in the simulations.
As a result, as in the incompressible case, the radiative zone still
sustains some shear in particular near the polar regions and the
tachocline is not as thin as observations suggest. The meridional
motions are much faster than expected in the tachocline region,
due to the abnormally high heat conductivity used in the sim-
ulations. Quantitative predictions for the interior rotation rate
also fall short of the observations, as can be seen in Fig. 6.9.

As the qualitative results improve, reducing the discrepancy be-
tween quantitative predictions from the simulations and observa-
tions becomes a priority for future work. The first step towards
this goal is obvious: in order to represent more accurately the in-
teraction between magnetic fields and fluid motions in the sun,
the abnormally high diffusivities used in the simulations must
be reduced. In doing so, the typical angular scale and radial
scale of variation of all the quantities in the flow is also reduced,
which implies that the numerical method of resolution must be
capable of resolving smaller and smaller scales. The difficulty
in the radial direction consists in the existence of the boundary
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Figure 6.9: Predictions for the interior rotation rate in the high
field case (squares) and in the low field case (stars) as a function of
the Ekman numbers F = F, = F, of the simulations.
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layers on the two spherical boundaries, since their width tend
to vary as 0 ~ (E,,E,])I/Q, which corresponds to § ~ 10~ 7. in
the sun. Jump conditions across these layers may need to be
used in further simulations. The principal difficulty, however,
lies in the latitudinal direction. As the angular scale of varia-
tion is decreased, a gradually larger number of Fourier modes
must be kept to avoid numerical instabilities, which increases
the memory requirements of the simulations as well as the com-
puter time (both of which tend to increase roughly as N2). A
possible method for reducing this problem would be to project
the MHD equations onto a different set of orthogonal functions,
which must be chosen carefully to follow more adequately the
latitudinal variations of the solution. Another way of improv-
ing on quantitative predictions consists in trying to determine
a more realistic set of boundary conditions for the system; in
particular, the interaction between the convection zone and the
tachocline should be carefully modeled.

188



Conclusion

The work presented in this dissertation reviews and discusses
the current state of research on the internal rotation of the sun,
focusing in particular on the region of transition between the
convection zone and the radiative zone: the tachocline.

Previous models of the solar tachocline failed to represent the
dynamical interactions which are thought to be in play in that
region of the sun. These models can be separated into two
classes: the purely hydrodynamical models, and the MHD mod-
els (see Chapters 2 and 3). In the former case, the rapid quench-
ing of the latitudinal shear below the convection zone is thought
to be due to the effect of anisotropic Reynolds stresses only (ei-
ther due to gravity waves, Kumar, Talon & Zahn (1999) or to
turbulent motions, Spiegel & Zahn, 1992). This idea stems nat-
urally from the fact that small scale motions in the radiative
zone are intrinsically anisotropic, due to the strongly stratified
temperature profile in that region. However, there are two prin-
cipal shortfalls to this idea. Firstly, it has been established that
two-dimensional motions transport not angular momentum but
potential vorticity (see the review by McIntyre, 1998). This has
a tendency to enhance rather than quench any shear. Moreover,
although it is likely that gravity waves are indeed excited by the
impact of convective motions on the top of radiative zone, it is
not yet clear whether the tachocline may or may not undergo
fully developed turbulence (Garaud, 2001). Secondly, numeri-
cal investigations (Elliott 1997, Dajka & Petrovnay, 2000) have
revealed that the typical angular momentum fluxes required to
explain the observe thickness of the tachocline are significantly



larger than what could normally be expected from turbulent mo-
tions, or gravity waves, below the convection zone. These short-
falls suggest that, although Reynolds stresses may have some ef-
fects on the dynamics of the tachocline, other mechanisms must
be in play to explain the observed rotational structure of the
sun below the convection zone.

The other class of models of the tachocline involves the MHD
interaction between fluid motions and large-scale magnetic fields
in the radiative interior. The presence of a large-scale poloidal
field in the radiative zone provides the most straightforward ex-
planation for the uniform rotation observed deep in the interior
and the quenching of the shear observed in the tachocline: Fer-
raro’s theorem states that angular velocity should be constant
on field lines in a perfectly conducting fluid, which is nearly the
case of the radiative zone. In the hydrodynamical case, the in-
teraction of small scale motions with rotation could be described
with ad-hoc models of the Reynolds stresses, which usually lead
to a linear problem (provided the non-linear advection terms are
small enough). In the MHD case however, the Lorentz force and
the advection equations are intrinsically nonlinear: numerical
analysis is then the only possible approach. Even with a nu-
merical approach, the problem remains extremely complicated,
and many authors still chose to use various degrees of approxi-
mation. Ridiger & Kitchatinov (1997) (and, subsequently, Mc-
Gregor & Charbonneau, 1999) fixed the poloidal field and ne-
glected the existence of a meridional circulation, which enabled
them to solve only the angular momentum equation and the
azimuthal component of the advection equation, for the angu-
lar velocity and the toroidal field. Their model shows that the
shear imposed by the convection zone is indeed quenched by the
magnetic field within a small lengthscale which depends essen-
tially on the strength of the magnetic field. Unfortunately, at
the heart of the problem is the interaction between the poloidal
field and the meridional circulation, which cannot be treated
through this approach. Indeed, meridional motions not only ad-
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vect the poloidal field, which can therefore not be assumed to
be fixed, but also transport angular momentum. This process
was illustrated in Chapter 5, where the full incompressible MHD
equations are solved: in Section 5.2.1.2 in particular, it is shown
how the meridional circulation driven near the base of the con-
vection zone by Ekman-Hartman pumping advects fast rotating
fluid into the radiative zone, hereby creating a shear layer at
mid-latitudes which persists throughout the radiative zone.

In Chapter 5, I showed that taking into account the interac-
tion between all fluid motions (including the circulation) and the
magnetic field leads to the emergence of three distinct regimes,
which depend on the Elsasser number (the ratio of the mag-
netic to Coriolis forces), at a fixed value of the magnetic and
viscous Ekman numbers. When the Elsasser-number is low, the
flow is dominated by the Taylor-Proudman constraint, which
enforces a rotation profile roughly constant on cylindrical sur-
faces. When the Elsasser number is high, the magnetic field
imposes uniform rotation in the interior according to the iso-
rotation law of Ferraro, and Ekman-Hartman pumping at the
top boundary drives a circulation near the equator which re-
distributes angular momentum along field lines. A shear layer
appears in mid-latitude as a result of this meridional motion.
In the intermediate-Elsasser-number case, the interior is again
rotating nearly uniformly, but the magnetic field is now weak
enough to be advected by the equatorial meridional circulation.
As a result, instead of being strongly constrained to flow along
field lines, the circulation evacuates a region near the top of the
radiative zone from magnetic field, pushing poloidal flux deeper
into the interior. This region contains most of the shear, and
can be likened to the tachocline. Conversely, the circulation is
kept from burying into the radiative zone by the accumulation
of magnetic flux below the tachocline, which explains why the
shear layer observed in the high-Elsasser-number case is now
confined to the surface regions. This complex dynamical inter-
action between the circulation, the rotation and the magnetic
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field could not have been predicted through the simplified anal-
ysis proposed by Riidiger & Kitchatinov (1997).

Gough & Mclntyre (1998) were the first to stress the impor-
tance of thermal-wind driving with respect to the tachocline dy-
namics. Differential rotation causes the baroclinicity of the flow,
which in turns drives a circulation along isopycnal lines to advect
the excess heat. They suggested that as the circulation evacu-
ates the tachocline from poloidal magnetic flux, thermal-wind
driving would dominate over Ekman-Hartman driving, leading
to a two-cell circulation pattern within the tachocline, with an
upwelling region in mid-latitudes. The extreme complexity of
the dynamics of their model precluded all but a simple bound-
ary layer analysis, which was summarized in Chapter 3. Gough
& Mclntyre found that the thickness of the tachocline can be
uniquely related to the interior field strength as A o Bg, but
failed to predict the interior angular velocity as all information
depending on the latitudinal variation of the various quanti-
ties is lost through the boundary layer approach. In Chapter
6, following their model I proposed the first numerical MHD
model of the sun in which heat transport, compressibility and
stratification effects can be studied self-consistently (Hujeirat
& Yorke (1998) also attempted to study the tachocline dynam-
ics through a similar model, but neglecting heat diffusion, they
were forced to consider an adiabatically stratified background as
well as adiabatic motions only, which is fundamentally different
from what is thought to occur in the tachocline). I have shown
that in the “compressible” case it is possible to find a parameter
regime for which the results of the simulations follow closely the
lines of the model proposed by Gough & McIntyre (1998), at
least qualitatively (see Section 6.3.2). The remaining quantita-
tive discrepancy with the observations is principally due to the
high diffusivities used in the simulations, but could also be due
to the boundary conditions chosen. In the high Elsasser num-
ber case for example, it was shown that the magnetic term in
the vorticity equation dominates clearly over the thermal wind
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term; as a result, the meridional circulation is driven by Ekman-
Hartman pumping rather than by thermal-wind driving. This
phenomenon is to some extent artificial, since it could be su-
pressed simply by allowing the walls to be permeable (in which
case the Ekman-Hartman layer disappears).

This example stresses the importance of the boundary condi-
tions used in the model. The boundary conditions studied in this
dissertation have been carefully chosen to represent a model for
which a solution is known to exist; they provide a first solution
which can be used as a basis for studying the most important
phenomena believed to take place in the radiative interior, and
also a solution which can be used as a starting point (a guess)
for further numerical investigations of more complex boundary
conditions. I do not claim that they represent an accurate repre-
sentation of the interaction between the tachocline and the con-
vection zone. In fact, it is not yet clear observationally whether
the tachocline extends into the convection zone or not (Char-
bonneau et al. 1999). In this dissertation, and for the purpose
of the following discussion, it will be assumed that no radial
shear is present in the convective zone and that the top of the
tachocline coincides with the top of the stably stratified region.
In future work, it will be necessary to study carefully the inter-
face between the tachocline and the convection zone in order to
determine more realistic boundary conditions. Several aspects
of this interface should be kept in mind.

— The convection zone, and to some extend the overshoot re-
gion below is the seat of fully developed turbulence. It does
not behave as an impermeable wall to the circulation in the
tachocline, but rather, perhaps, as a “porous media”. In
any case, a more realistic model should study the interac-
tion of the circulation with the convective motions, possibly
through an ad-hoc Reynolds stresses prescription, as it is
suggested by Dajka & Petrovnay (2000), for instance.

— Due to strong mixing by downwelling plumes, the over-
shoot region is nearly adiabatically stratified, despite being
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located in the stably stratified zone. This leads to a sin-
gularity in the energy equation, which corresponds to the
point at which the buoyancy frequency tends to zero, or in
other words, the point near which the inhibition of radial
motions due to the stratification vanishes. This singular-
ity was avoided in the simulations presented in Chapters 4
to 6, and to some extent in all other works related to the
tachocline, by placing the tachocline safely below the over-
shoot region. As the width of the overshoot region has not
yet been successfully determined observationally, it is by
default a reasonable assumption. However this assumption
needs to be studied more carefully by future analyses.

— Finally, the boundary conditions for the magnetic field need
to be carefully studied; in the simulations presented above,
it was simply assumed that the convective zone behaves
as a conducting media with the same conductivity as the
radiative zone (to avoid current sheets on the boundary).
This is clearly the simplest type of boundary condition, but
fails to represent the complexity of the interaction between
the convective motions and the magnetic field. It is for ex-
ample widely believed that the interface of the tachocline
and the convection zone is the seat of the solar dynamo,
which is a non-steady magnetic structure oscillating be-
tween two configurations of opposite polarity in a 22 years
cycle. How can this structure be matched with the assumed
steady, nearly dipolar field of the interior?

This final point also raises one of the major issues of the dynam-
ics of the tachocline: to which extent can a steady model repre-
sent the system? This question raises several issues. Firstly, how
can the interior field be represented by a steady field when part
of it diffuses, or is advected away into the convection zone? The
diffusion of the magnetic field out of the radiative zone is im-
peded by the confining action of the circulation on the poloidal
field, which supports the steady-state assumption. However,
the upwelling region discussed by Gough & Mclntyre drags the
poloidal magnetic field into the convection zone, where it oc-
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casionally reconnects. This phenomenon is intrinsically non-
steady, although possibly quasi-periodic. Secondly, the hydro-
dynamical stability of the solution to various instabilities should
be assessed. The stability of the shear flow tends to be upset by
the presence of a magnetic field, as suggested by Gilman & Fox
(1997). In a stratified fluid, the buoyancy of toroidal flux tubes
may lead to a magneto-convective instability. Finally, Alfven
waves can propagate along the magnetic field and lead to the
presence of either “localized” oscillations, or global torsional os-
cillations. Observational studies of the evolution with time of
the structure of the shear below the convection zone have re-
vealed an oscillatory pattern near the equator, with opposite
phases below and above the tachocline (Howe et al. 2000). It is
not yet clear whether this study is evidence for a true oscillation
of the solar rotational structure, or an artefact of the inversion
processes. However, the observed oscillation period is of order of
1.3 yr; the typical period of oscillation of global torsional Alfven
waves in that region being 7 = A\/p/B, where X is the typical
lengthscale of oscillation, the amplitude of the magnetic field
required to explain the presence of these waves is of order of 1
kG (Gough, 2000). The values obtained for the amplitude of
the magnetic field in the tachocline are not unreasonable and
correspond both to current estimates (Sch”ussler et al. 1994)
and to the typical values used in my simulations.

Finally the long-term evolution of the sun may also affect the
structure of the tachocline, for two principal reasons: the solar
spin-down and the decay of the interior field. It is not clear
from the simulations whether, as Gough & Mclntyre suggest,
the magnetic field is essentially well contained within the ra-
diative zone (expect, maybe in the upwelling region) and kept
from diffusing outwards, or whether magnetic flux is allowed to
escape from the “polar” regions. According to Gough & Mcln-
tyre, however, the thickness of the tachocline varies little with
the amplitude of the magnetic field, so for the sake of the fol-
lowing argument, this amplitude can be assumed to be constant.
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The solar rotation rate is proportional to ¢ /2, according to the

Skumanich law (Skumanich, 1972), which implies that the young
sun was not only rotating much faster than now, but also that
the braking timescale was much shorter than today. A faster ro-
tating sun implies on the one hand a different latitudinal shear
in the convection zone (i.e. different boundary conditions for
the tachocline), and on the other hand stronger thermal wind
driving at the top of the radiative zone. The effects of a differ-
ent latitudinal rotation profile at the top boundary are unlikely
to change the results qualitatively, but the effect of stronger
driving is to increase the thickness of the tachocline. As the
braking timescale decreases, the total magnetic torque applied
by the convection zone on the radiative zone may not be negligi-
ble any more, and the steady state analysis may be invalidated.
The effect of such braking would be to accelerate the merid-
ional circulation through Ekman pumping within the tachocline
— but this effect should remain small due to the low Ekman
numbers. As a result, MHD models (Gough & MecIntyre, 1998,
as well as the simulations presented in Chapters 4 to 6) pre-
dict a thicker tachocline for the young sun than the present sun.
This may have significant influence on light-element mixing (see
Brun, Turck-Chieze & Zahn (1999)).

To conclude, although the dynamical behaviour of the sun is
likely to be far more complex than that of the simulations pre-
sented in this dissertation, I believe that these simulations can
grasp, and explain, some of the fundamental aspects of the dy-
namics of the observed solar differential rotation. Moreover,
they lay a strong basis for future improvements of the models
along the lines described above, that I (and others, perhaps) will
strive to develop.
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Appendix A

COMMONLY USED SOLAR PARAMETERS

All quantities used in this dissertation are in cgs unis.

The following universal constants are used:

— the gravitational constant G' = 6.672 x 10~% dyne-cm? /g2,

— the Stefan-Boltzmann constant og = 5.67 x 107> erg/cm?.

The parameters most commonly used in this work are the fol-
lowing, with the corresponding values used in all calculations:

— the solar radius: 7o = 6.96 x 10'° cm,
— the solar mass: My = 1.99 x 1033 g,

— the radius of the solar convection zone (as derived by Chris-
tensen-Dalsgaard et al. (1991)): r. = 0.713rg,

— the depth of the solar tachocline (as derived by Elliott &
Gough (1999)): A =0.02rg,

— the value of the angular velocity of the radiative interior:
Q. /27w = 430 nHz.

In most of the models proposed, the dynamical structure of the
tachocline is treated as a perturbation on the background hy-
drostatic equilibrium state. For this reason, the variation with
depth of various hydrostatic equilibrium quantities needs to be
known (see Fig.A.1), as well as an average value of these quan-
tities within the tachocline (see Table A.1).
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Figure A.1: Variation of the following hydrostatic equilibrium quan-
tities with radius: the density p (in g/cm?), the temperature T (in
K), the square of the buoyancy frequency N? (in s~2), the gravi-
tational attraction g (in cm s~2), the thermal conductivity K; (in
erg s~ K=! cm™1) and the heat capacity ¢, (in erg g=' K=1). The
dashed line represents the position of the bottom of the convection
zone as calculated by Christensen-Dalsgaard et al. (1991) and the
dotted line marks the lower edge of the tachocline, using the width
of the tachocline derived by Elliott & Gough (1999).
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p 0.2
T | 2.2 x 108
N? 106
g | 5.5x10*
K, 101
¢p | 3.5 x 108

Table A.1: Average values of the following hydrostatic equilibrium
quantities with radius: the density p (in g/cm?), the temperature
T (in K), the square of the buoyancy frequency N? (in s~2), the
gravitational attraction g (in cm s~2), the thermal conductivity K
(in erg s7' K=! cm™') and the heat capacity ¢, (in erg g=' K=1).
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Appendix B

MISCELLANEOUS CHEBISCHEV

POLYNOMIALS FORMULAE

B.1 BASsIC FORMULAE

Definitions, multiplications:

Projection:
/1 T (1) T (1)
-1 11— p?
First few polynomials:

To=1,T

1—p?

Commonly used product:

= Tpn( cosf) = cos(mb) ,

T (1) by definition,
Trnan (i) + Tin(p) -

™

s
d“ = _5n,m + §5n,m5n,0 .

2

(B.4)

T @
= o

(B.7)



B.2 COMMONLY USED DIFFERENTIATION FORMULAE

oT,, n
(1 - MQ) 3# = §(Tn—1 - Tn+1) ,
0 n—2 n 4+ 2
o (1= p»T,] = 5 Tn-1 - Tnta -

B.3 USEFULL PROJECTION FORMULAE
B.3.1 CALCULATION OF C} ,

where

Crn :/ cos(kf) cos"6dé
0

for n > 0.

™ cos(kf " - N
Ck,n:/o 22 ) C% +22 cos(jO)CnTH dé

j=1
+C if k=0,
2
=C" 0 < |k <m.
2

B.3.2 CALCULATION OF By,

where
T,

1
Ty d n
By, = / ———dp .
Rewriting this using 0 yields

Vi : 9
Bjp =n / cos(k0) sin(n) 19
0

S1n
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(B.11)

(B.12)

(B.13)
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Now use

sin(nf) = sin((n — 1)@) cosf + sinf cos((n — 1))
= sin((n — 2)0) cos’6

+ sinf| cosf cos((n —2)0 + cos((n — 1)8)]
= sind Z cos((n —p)f) cos? 10| , (B.15)
p=1
so that
By, = ﬁ/ |:Z cos((n — p + k)8) cos” 16
’ 2 0
p=1
+ cos((n —p — k)0) cos” 10| do
p=1
n n
= 9 Z (Ck+nfp,p*1 + Ck+p*n,p71) : (B.16)
p=1

B.3.3 CALCULATION OF Ay,

where
1 2
Tp(n) d 2
A, = —_— - T d B.17
o= | e (1= p®) T (1)) dps (B.17)
A o [0 L) dm-2,  m+2, ]
kn  — . /—1 — 'u2 dﬂ 2 m—2 2 m+1 | Al
m — 2 m + 2
- TBk’m_l - 2 Bk,m+1 . (B18)
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B.3.4 CALCULATION OF [Ij ,

where

1
Ten= [ Pl Tu)an (B.19)

where Py () is the Legendre polynomial of order k. The follow-
ing relation holds:

Py ( cosb) =7 Z 6’2”02]€ P cos((k — 2p)f) , (B.20)
so that

k
1 ™
Ton =35 2 ) costo) sindCOEE cos((s — 20

)

2p 2k—2p
4k+1 ZC k—p

(_1)1 n+k—2p _ 1 N (_1)17n+2p7k -1
l-n+k—2p l-n+2p—k

(_1)1+n+k72p -1 (_1)1+n+2p7k -1
I+n+k—2p 1+n+2p—k

(B.21)

Of course, C¥ is only defined when n is an integer smaller than
k. Otherwise, it is null.

B.3.5 CALCULATION OF Dy,

where

1
Den= [ Pk(u)% (1= ) Ta()) s (B.22)

Using the differentiation relations it is easy to obtain

n—QI n-+2
9 kn—1 — 2

Dy, = Iy (B.23)
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B.3.6 CALCULATION OF 7,

where

1
o = / T ()(1 — )y (B.24)
-1

Using the definition of I}, ,, it is easy to get

1
Ym = 2/_1 Ton (1) (Po () = Po () dps = g(fﬂym ~Tom) . (B.25)
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