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Abstract

Two distinct classes of magnetic confinement models exist for the solar

tachocline. The “slow tachocline” models are associated with a large-scale

primordial field embedded in the radiative zone. The “fast tachocline” mod-

els are associated with an overlying dynamo field. I describe the results

obtained in each case, their pros and cons, and compare them with existing

solar observations. I conclude by discussing new lines of investigation that

should be pursued, as well as some means by which these models could be

unified or reconciled.

9.1 Introduction

9.1.1 Magnetic fields in the tachocline

Two distinct possible origins for solar magnetic fields in the tachocline region

can be identified. The ohmic decay timescale of a large-scale dipolar field

embedded in the radiative interior is much larger than the estimated age of

the Sun (Cowling 1945, Garaud 1999), so that a fraction of the magnetic flux

initially frozen within the accreting protostellar gas is likely to persist today

(Chapter 8). In parallel, according to the standard dynamo field theory,

magnetic fields are thought to be constantly generated by fluid motions

within the solar interior (Chapter 14). Optimal conditions for the generation

of large-scale fields require the combination of large-scale azimuthal shear

and small-scale helical motion, which are both naturally found in the region

of the tachocline (Parker 1993; Ossendrivjer 2003; Tobias 2005; Chapter 14).

The fundamental differences between these two kinds of fields have nat-

urally led to two distinct classes of tachocline confinement models: a slow

tachocline, interacting on secular timescales with an underlying large-scale
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Table 9.1. Numerical values (in cgs units) of typical values of the density

ρ, temperature T , gravity g, the buoyancy frequency N , the molecular

magnetic diffusivity η, viscosity ν, and thermal diffusivity κ and finally the

radius of the base od the convection zone rcz.

Quantity Value (in MKS) Quantity Value (in MKS)

ρ 200 η 0.043
T 2.2 ×106 ν 2× 10−4

g 530 κ 1300
N 9 × 10−4 rcz 5 × 108

primordial field and slow meridional flows (Gough & McIntyre 1998) and

a fast tachocline, interacting on dynamical timescales with an overlapping

or overlying dynamo field and small-scale turbulent flows (Forgács-Dajka &

Petrovay 2001). Historically the two types of models have remained clearly

separated, so I shall take the same path and present them independently in

Section 9.2 and 9.3. Whether the true tachocline genuinely does fall into

one category or another has been widely debated during the meeting, and

is discussed in Section 9.4 (see also Chapter 5).

9.1.2 Characteristic numbers in the tachocline

In order to compare models and observations of the tachocline, I adopt char-

acteristic values for certain quantities in that region as listed in Table 9.1,

which have been calculated by Gough (2006, this volume). For consistency,

these values are used throughout this review; in some cases, however, they

differ from those adopted by various other authors by factors up to a few.

9.2 Primordial field confinement: the slow tachocline

9.2.1 First models

With tremendous insight into today’s debate, Mestel (1953) realised early

on that even a very weak large-scale primordial field within the solar inte-

rior would have a significant impact on the solar angular velocity profile.

Indeed, Alfvén waves are possibly the most efficient transporter of angu-

lar momentum in a rotating magnetized fluid. They propagate unimpeded

along poloidal field lines with a characteristic velocity that depends on the

local field amplitude and the local fluid density. Both the field geometry and

the density stratification result in spatial inhomogeneities of the Alfvén ve-



Magnetic confinement of the solar tachocline 3

locity and the consequent phase mixing and damping of the waves. Angular

momentum is then redistributed along (and across) the field lines, leading

to a rotation profile satisfying Ferraro’s isorotation law (Ferraro 1937)

B · ∇Ω = 0 , (9.1)

or in other words, with Ω constant along magnetic field lines. It has been

argued that field amplitudes as low as 10−6T are capable of enforcing uni-

form rotation to the entire radiative interior (Mestel 1953, Cowling 1957,

Mestel & Weiss, 1987).

The first model to study quantitatively the effect of an internal primor-

dial field on the solar radiative zone rotation profile, and in particular

its potential role in confining the tachocline, was proposed by Rüdiger &

Kitchatinov (1997). Shortly afterward, MacGregor & Charbonneau (1999)

complemented their work by studying the effects of different internal field

geometries.

Both investigations evaluate the steady-state outcome of the interaction

between a primordial field and the latitudinal shear diffusing from the con-

vection zone. Meridional flows are assumed to be negligible, on the grounds

that the strong local stratification effectively reduces their amplitude to a

few centimeters per second (Miesch & Gilman 2004); given this assumption,

the poloidal component of the field decouples from the governing equations

and can be chosen arbitrarily. While Rüdiger & Kitchatinov only consider

poloidal fields entirely confined within the radiative zone, MacGregor &

Charbonneau also study various cases in which at least some field lines

overlap the convective zone. The steady-state structure of the toroidal field

Bφ and angular velocity of the fluid Ω is then obtained by solving the az-

imuthal component of the momentum equation (here, cast in the form of a

conservation equation for angular momentum) and of the induction equa-

tion.

∇ · (ρνr2 sin2 θ∇Ω) +
1

µ0
Bp · ∇(r sin θBφ) = 0 , (9.2)

r sin θBp · ∇Ω + η

(

∇2Bφ − Bφ

r2 sin2 θ

)

= 0 , (9.3)

where the poloidal component of the field, Bp, is fixed. These equations are

subject to the boundary conditions at the interface with the convective zone

Ω(rcz, θ) = Ωeq(1 − a2 cos2 θ − a4 cos4 θ) , (9.4)

Bφ(rcz, θ) = 0 , (9.5)

where Ωeq, a2 and a4 are derived from helioseismic inversions of the rotation
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profile in the convective zone; typically, Ωeq/2π = 460nHz, a2 = 0.14 and

a4 = 0.15 (Charbonneau et al. 1999). Adequate regularity conditions are

applied on the polar axis and at the centre. The boundary condition on

the toroidal field is related to the assumption that any toroidal field at the

interface with the convection zone is promptly removed through buoyancy

instabilities. An alternative boundary condition that is sometimes also used

assumes the convection zone to be an excellent insulator (with η → ∞),

and matches the interior field to a potential field. These two possibilities

result in different quantitative estimates for the confining field strength and

toroidal field amplitudes, but have otherwise qualitatively similar associated

solutions.

The numerical solutions reveal a striking difference in angular velocity

profile between the confined field and open field cases (see Figure 9.1). While

the former results in a more-or-less uniformly rotating radiative zone, with a

thin shear layer operating the smooth diffusive transition to the differentially

rotating convective zone, the latter results in a latitudinally sheared state

close to Ferraro isorotation, as field lines connected to the differentially

rotating convection zone provide a support for the inward propagation of

Alfvén waves. Helioseismic observations appear to set imperative constraints

on the geometry of an embedded primordial field.

The angular momentum equation (9.2) illustrates the balance between vis-

cous transport and magnetic transport near the outer boundary. A bound-

ary analysis provides useful quantitative estimates of the tachocline proper-

ties in both open and confined geometries: viscous effects are only important

in a thin Ekman-Hartmann boundary layer (see the review by Acheson &

Hide 1973) of width

δ‖ =

(

µ0ρνη

B2
0r2

cz

)1/4

rcz =

(

EνEη

Λ

)1/4

rcz ∼ 4 × 10−7B
−1/2
0 rcz , (9.6)

where the field of amplitude B0 is assumed to be mostly parallel to the outer

boundary (as in the case of the confined field) and is measured in Tesla. The

usual Ekman numbers are defined as

Eν =
ν

r2
czΩ0

, Eη =
η

r2
czΩ0

, (9.7)

and a new parameter Λ is defined as

Λ =
v2
A

v2
Ω

, (9.8)

where vΩ = rczΩ0 and vA is the Alfvén velocity vA = B0/
√

ρµ0. Here,

Ω0 is a mean angular velocity of the system. This result is the first of
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Fig. 9.1. Steady-state solutions obtained by MacGregor & Charbonneau (1999) for
the open and confined field configurations (top and bottom row respectively), for
increasing Reynolds numbers. For this figure, the Reynolds numbers are defined as
Rν = B0rcz/(ν

√
4πρ) and Rm = B0rcz/(η

√
4πρ), so that increasing the Reynolds

numbers can be interpreted as increasing B0 or decreasing ν and η. The left-side
quadrant shows the poloidal field lines, whereas the right-side quadrants show the
rotation profile (solid lines) and the toroidal field amplitude (dashed and dotted
lines correspond to positive and negative Bφ).

many estimates of the relation between the internal field strength and the

tachocline thickness. If the poloidal field is given by

Bp = ∇×
(

A

r sin θ
êφ

)

with A = Bin
r2

2

(

1 − r

rcz

)q

, (9.9)

where the index q controls the field concentration towards the interior, and

Bin is the amplitude of the field deep in the interior, then a field of amplitude

B0 in a tachocline of thickness ∆ corresponds to

Bin ' q

2
B0

(

rcz

∆

)q−1

. (9.10)

Combining all of the above estimates suggests that 2 × 10−10T near the

edge of the convective zone (which corresponds to an interior field of about

6 × 10−4T for q = 5) would confine the tachocline to its observed width of

0.03rcz (Elliott & Gough 1999).
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In a very interesting remark, MacGregor & Charbonneau (1999) point out

that even in a laminar tachocline, angular momentum transport between the

convective and radiative zones would not, in fact, proceed through viscous

effects only; as Spiegel & Zahn (1992) had showed, the tachocline spread is

aided by meridional flows, which approximately act as a hyperdiffusion of

the kind

∂Ω

∂t
∼ r4

cz

tES

∂4Ω

∂r4
where tES =

1

4

N2

Ω2
0

r2
cz

κ
∼ 2 × 1011yr , (9.11)

where N is the local buoyancy frequency in the solar tachocline. In that case

an equivalent boundary layer analysis reveals a different relation between the

tachocline thickness and the field strength:

δ =

(

µ0ρη

B2
0tES

)1/6

rcz =

(

Eη

ΛΩ0tES

)1/6

rcz ∼ 0.0001B
−1/3
0 rcz . (9.12)

The local poloidal field required to confine the tachocline is now of the order

of B0 ∼ 6×10−8T, and the resulting toroidal field has a typical amplitude of

the order of 10T, which (as MacGregor & Charbonneau point out) is inter-

estingly close to the estimated upper limit for field storage against magnetic

buoyancy within the tachocline (Schüssler et al. 1994).

9.2.2 Towards a self-consistent model: the governing equations

Despite the great degree of simplification inherent in the model just de-

scribed, one essential result is of profound generality: Alfvénic angular mo-

mentum transport occurs on a very rapid timescale, and does not permit

large deviations from isorotation anywhere in the radiative zone. Observed

sheared regions (such as the tachocline) must be relatively free of poloidal

field. The magnetic confinement problem takes an alternate but equivalent

meaning: there must exist some mechanisms to confine the primordial field

within the radiative zone in such a way as to be largely disjoint from the

convective zone. Little overlap between the internal field and the convec-

tive region is also required by the upper limits set from observations of the

sunspot parity throughout the cycles (Boyer & Levy 1984, Boruta 1996).

The microscopic magnetic diffusivity in the radiative zone doesn’t exceed

∼ 0.05 m2s−1. Consequently, even very slow flows have a large magnetic

Reynolds number. Radial motions in the tachocline are heavily suppressed

by the strong local stratification, the flow speed for a steady-state system

being controlled by the thermal diffusion time. Across the tachocline, the

upper limit for the radial flow velocities is ur ∼ 10−6m s−1 with a cor-

responding magnetic Reynolds number of a few hundred, which is largely
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sufficient to have significant nonlinear interactions with the poloidal field

contrary to the assumptions of the studies described in the previous section.

Gough & McIntyre (1998) realized the importance of meridional flows in

the dynamics of the tachocline. They proposed a model in which gyroscopic

pumping near the convective-radiative interface drives flows whose role is

to confine the interior field, thereby completing the missing piece of the

tachocline puzzle.

Their model consists of four radially distinct regions (see Figure 9.2). In

the convection zone (extended, if necessary, by a few tens of Mm to include

the overshoot region, and a corresponding fast tachocline), angular momen-

tum balance is achieved between anisotropic Reynolds or Maxwell stresses,

and large-scale advection by meridional flows (zone 1). The flow geometry

near the convective-radiative interface is dictated by the steady-state ther-

mal wind and thermal energy balance. The flows burrow into the stably

stratified, mostly laminar region directly underneath (zone 2) and interact

with the deeply embedded magnetic field within a thin magnetic boundary

layer (zone 3). This conveniently results in the simultaneous confinement

of the underlying field to the lower part of the radiative zone, and that of

the meridional flows within a well-ventilated but mostly magnetic free upper

part of the radiative zone. Below the magnetic boundary layer, the confined

field imposes uniform rotation to the bulk of the radiative zone (zone 4).

It is perhaps worth pointing out here that the notion of tachocline has

largely evolved in recent years. Within the well-ventilated, magnetic-free

region (zone 2) angular momentum is roughly conserved along the merid-

ional flow lines and the latitudinal shear imposed by the convective zone is

not so much suppressed as ”reshuffled”. As a result, given the strict defi-

nition of tachocline as “a strong shear layer beneath the convective region”

one could argue that the Gough & McIntyre tachocline is in fact limited

to the magnetic diffusion layer. On the other hand, a more modern in-

terpretation of the tachocline as “the region which operates the dynamical

transition between the convection zone and the radiative zone” would then

encompass both the magnetic diffusion layer and the magnetic-free region

directly above. This distinction will be useful when comparing the various

predictions for the tachocline thickness proposed in the literature. More-

over, a third meaning of tachocline confinement now emerges in relation

to the tachocline meridional flows. Observations of surface abundances of

light elements and helioseismic observation of the sound speed profile in the

tachocline suggest that the depth of the mixed layer beneath the convection

zone is of the order of a few percent of the solar radius (see Chapter 2 for

more detail; Rüdiger & Pipin, 2001; Elliott & Gough 1999). Given that
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Fig. 9.2. Schematic representation of the Gough & McIntyre model. The outer
convection zone is differentially rotating, and generates meridional flows (black
lines) through gyroscopic pumping. These confine the underlying field (thick grey
lines) to the radiative interior, while leaving the tachocline virtually magnetic free.

the upper limits on the depth of the overshoot region have been recently

estimated to be significantly smaller than the tachocline depth (Brummell,

Clune & Toomre 2002, Rogers & Glatzmaier 2005) these observations can

be related with reasonable confidence to the tachocline ventilation depth

(zone 2 and 3).

The equations governing laminar fluid motions in the radiative zone con-

sist of the momentum equation, the mass conservation equation, the ther-

mal energy conservation equation, the field advection-diffusion equation, the

equation of state and finally, a solenoidal condition for the field. When con-

sidering slow meridional flows in a slowly rotating star like the Sun, one can

linearize the equations around a uniformly rotating, spherically symmetric

background hydrostatic equilibrium and use the anelastic approximation.

The complete set of equations representing the secular laminar dynamics of

the radiative interior is then

ρ
∂u

∂t
+ 2ρΩ0 × u = −∇p̃ − ρ̃g + j×B + ∇ · π , (9.13)

∇ · (ρu) = 0 , (9.14)

ρT
∂s

∂t
+ ρTu · ∇s = ∇ · (k∇T ) , (9.15)
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p̃

p
=

ρ̃

ρ
+

T̃

T
, (9.16)

∂B

∂t
= ∇× (u×B) + ∇× (η∇×B) , (9.17)

∇ · B = 0 , (9.18)

where tildes denote perturbations from hydrostatic equilibrium, s is the

entropy, π is the viscous stress tensor, k = ρcpκ is the thermal conductivity

and all other quantities have their usual meaning. This complete system

of equations has not been solved exactly yet for realistic solar values of the

background state quantities. Numerical solutions have difficulties reaching

simultaneously the correct thermal, viscous and magnetic diffusivities, while

analytical solutions struggle to cope with the complex geometry and the

intrinsic nonlinearity of the problem. What follows describes the various

attempts at treating the problem that have been proposed so far.

9.2.3 The Gough & McIntyre boundary layer analysis

The insight of Gough & McIntyre’s seminal work (1998) is to reduce the

above system of equations to a boundary layer analysis, by considering from

the outset the thin nature of the tachocline, and retaining in each zone iden-

tified the dominant terms in the dynamical balance only.

Thermal-wind balance in the upper region of the tachocline (zone

2). In this region, Gough & McIntyre assume that the amplitude of the

confined internal magnetic field is too low to have any significant effect on

the flow dynamics. In that case, thermal-wind balance is achieved: the

azimuthal component of the vorticity equation reduces to

2Ω0r sin θ
∂Ω̃

∂z
=

g

rT

∂T̃

∂θ
, (9.19)

where the pressure fluctuations in the equation of state have been neglected

in accordance with the anelastic approximation. Maintaining the thermal-

wind balance against diffusion requires heat and momentum advection by

meridional flows; within a thin-tachocline this is equivalent to:

N2Tur

g
=

1

ρcpr2

∂

∂r

(

r2k
∂T̃

∂r

)

, (9.20)

where k is the thermal conductivity (κ = k/ρc).

Additional information on the flow geometry related to the tachocline

shear can be deduced qualitatively from equations (9.19) and (9.20). The



10 P. Garaud

observed angular velocity profile in the tachocline (as given by equation

(9.4)) corresponds to a significant latitudinal entropy perturbation, positive

near the poles and equator, and negative at mid-latitudes. In order to main-

tain this gradient against diffusion (specifically in the radial direction, since

the overlying convective zone is largely isentropic), meridional flows are re-

quired with downwelling near the poles, and upwelling in mid-latitude. This

geometry favours the internal field confinement only if the upwelling region

is sufficiently narrow.

Advection-diffusion balance in the magnetic diffusion layer (the

tachopause, zone 3). In the downwelling regions, the tachocline flow

meets the underlying field and confines it to the radiative interior. In a

steady state, the system is in equilibrium when the downward advection ex-

actly compensates the outward diffusion of the field. Within a thin diffusion

layer, the dominant terms of the advection-diffusion balance are extracted

to yield

2Ω0uθ cos θ =
B0

µ0ρr sin θ

∂

∂θ
(Bφ sin θ) , (9.21)

−B0 sin θ
∂Ω̃

∂θ
= η

∂2Bφ

∂r2
, (9.22)

from the angular momentum and the azimuthal component of the induction

equation respectively. Here, B0 is the amplitude of the latitudinal compo-

nent of the primordial field in the region of the tachocline. In addition, a

rough estimate of the radial flow velocity required to balance the diffusion

of the field in the boundary layer of thickness δ3 is

ur ∼ η

δ3
, (9.23)

which can be combined with the anelastic mass conservation equation to

obtain an estimate of the latitudinal velocity:

1

r2

∂

∂r
(r2ρur) +

1

r sin θ

∂

∂θ
(ρ sin θuθ) = 0 (9.24)

Boundary layer scaling. Boundary layer scalings are easily derived using

the approximations ∂/∂r ∼ 1/δ2 in zone 2, ∂/∂r ∼ 1/δ3 in zone 3 and

sin θ ∼ cos θ ∼ 1/
√

2 with ∂/∂θ ∼ iL, where L is a latitudinal wavenumber.

Before outlining the results obtained by Gough & McIntyre, it should be

noted that in the limit where the magnetic diffusion layer is of similar width

as the whole tachocline (in that case, there is no magnetic-free region - zone

2 and zone 3 are combined) δ2 = δ3 and the combination of equations (9.19)
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to (9.24) with ∂/∂r = 1/δ yields (as expected) exactly the estimate of the

tachocline thickness (9.12) derived by MacGregor & Charbonneau (1999).

For this scaling to hold, it is important to verify that the Lorentz force in the

vorticity equation can be neglected compared to the thermal-wind balance.

This is indeed the case for the field amplitude corresponding to the observed

tachocline width.

The Gough & McIntyre model suggests that a different force balance

can occur when the magnetic diffusion layer is significantly thinner than

the magnetic-free region. In zone 2, a unique expression relating the flow

amplitude and the thickness of the region δ2 can be derived from the thermal-

wind balance and the thermal energy equations, namely (9.19) and (9.20):

ur ∼ 2

L

(

κ

r2
czΩ0

)(

rcz

δ2

)3 (Ω0

N

)2
(

Ω̃

Ω0

)

rΩ0 . (9.25)

Note that if δ2 is fixed, this equation provides a stringent relation between

the imposed shear and the meridional flows permitted within the tachocline.

Two scenarios may then occur depending on the strength of the inter-

nal field. The Gough & McIntyre model assumes that the magnetic field

amplitude within the tachopause is sufficiently small for the thermal wind

relation to hold there as well. Thus, equations (9.19) and (9.20) complement

equations (9.21), through to (9.24) in zone 3 to yield the scaling:

δ3 ∼
(

4

L4

v2
Ω

v2
A

Ω2
0

N2

κη

r4
czΩ

2
0

)1/6

rcz . (9.26)

Note that the Gough & McIntyre tachopause is exactly the boundary layer

studied by MacGregor & Charbonneau (1999) (see equation (9.12). Match-

ing the tachopause dynamics with the overlying flow from zone 2 (by com-

bining (9.26) with (9.23) and (9.25)) yields a unique relation between δ2 and

B0:

δ2 ∼




28

L10

v2
Ω

v2
A

(

κ

η

)5 κ2

r4
czΩ

2
0

(

Ω2
0

N2

)7(
Ω̃

Ω0

)6




1/18

rcz . (9.27)

Comparing the expression for δ2 to the observed tachocline ventilation depth

as measured by Elliott & Gough (1999), Gough & McIntyre deduce that the

internal field strength (in the tachocline region) is of the order of 10−4T,

corresponding to a primordial field strength in the deep interior of the Sun

of the order of 1 T. As assumed, the thickness of the tachopause is only a few

percent of the thickness of the whole tachocline. The tachocline ventilation

time is of the order of 3 × 106 yrs; while being slow, it provides sufficient
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mixing of light elements beneath the convective zone to explain the observed

abundances of Li and Be. This ventilation timescale is yet significantly

smaller than the solar spin-down timescale, which accounts for the fact that

the interior angular velocity is close to that of the surface layers.

Given this estimate for the field amplitude in the tachopause, it appears

that neglecting the Lorentz force in the vorticity equation is only marginally

justified. In fact, Gough & McIntyre themselves acknowledge that the

thermal-wind relation may not hold in the lower regions of the magnetic

boundary layer, where the nonlinear interaction between the field and the

flow is maximal. What happens in the alternative case has not been evalu-

ated in detail yet; however, dropping equations (9.19) and (9.20) plausibly

describes the right balance, and reveals a new boundary layer scaling

δ3 ∼
(

2

L3

Ω0

Ω̃

v2
Ω

v2
A

η2

r4
czΩ

2
0

)1/4

rcz , (9.28)

which, when combined with equation (9.23) from the poloidal advection-

diffusion balance, and equation (9.25) from thermal-wind balance in zone 2

reveals yet another possible relation between the tachocline thickness, the

imposed shear and the magnetic field:

δ2 ∼




25

L7

(

κ

η

)4 η2

r4
czΩ

2
0

(

Ω2
0

N2

)4 (
Ω̃

Ω0

)3
v2
Ω

v2
A





1/12

rcz . (9.29)

The main difference between this boundary layer analysis and the one pro-

posed by Gough & McIntyre is the non-thermal nature of the boundary

layer.†
So which (if any) of the above scalings really correspond to the solar

tachocline? This question is difficult to answer without a careful quantitative

estimate of the force balance in the tachopause, which can only be done

through numerical simulations. Moreover, since the Coriolis force and the

field geometry vary strongly with latitude, the force balance and the nature

of the boundary layer is very likely to differ between the equator, mid-

latitudes and the poles.

9.2.4 Numerical solutions of the Gough & McIntyre model

To obtain a more precise view of the geometry of the tachocline dynamics,

as well as quantitative predictions for the internal rotation rate, the light

† The tachopause in the Gough & McIntyre model is also a thermal boundary layer.
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element depletion timescale and the amount of overlap between the inte-

rior field and the convective zone, one must resort to numerical simulations.

Two approaches have recently been considered. Douglas Gough and I (Ga-

raud 2002; Garaud & Gough 2006) have been interested in studying the

steady-state tachocline balance, while Brun & Zahn (2006) are looking at

its temporal evolution for a given initial poloidal field configuration. While

the former is able to bypass the various numerical problems caused by the

wide range of timescales inherent in the physics of the system, the latter

is ideally suited to the study of potential multiple equilibria, and naturally

eliminates from the force balance any processes occurring on a timescale

longer than the stellar evolution timescale.

9.2.4.1 Steady-state calculations

Axially symmetric steady-state calculations can be performed by an expan-

sion of all governing equations on a suitably selected basis of orthogonal

polynomials in the latitudinal direction, and then by solving the remain-

ing ODEs using a Newton-Raphson relaxation procedure. Note that other

methods also exist (expansion in spherical harmonics or finite differences in

all directions), but have not been implemented for the steady-state problem.

In 2002, I presented a preliminary numerical study of the nonlinear in-

teraction between the primordial field and the meridional flows, in an ideal-

ized setup where the solar tachocline and radiative zone are assumed to be

composed of an incompressible, homogeneous and isentropic fluid (Garaud

2002). This assumption largely simplifies the set of governing equations

since all thermodynamical quantities decouple from the system; however, it

also eliminates the crucial baroclinicity that is thought to drive meridional

flows. These must then be artificially replaced by Ekman flows driven by

viscous forces on a no-slip impermeable boundary. The latitudinal varia-

tion of the Coriolis force implied by the imposed shear from the convection

zone (for the Gough & McIntyre model) and in a viscous Ekman layer (in

the simplified model) provides gyroscopic pumping with a similar geometry,

but of different amplitude. This simplified model could clearly not provide

any quantitative estimates of the tachocline dynamics but the geometrical

similarities with the correct model provide an interesting complement to the

Gough & McIntyre (1998) boundary layer analysis.

In this simplified model, the equations solved are the following:

2Ω0 × u = −∇p + j×B + ν∇2u , (9.30)

∇ · u = 0 , (9.31)

∇× (u×B) = η∇× (∇×B) , (9.32)
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∇ ·B = 0 , (9.33)

with a fiducial density ρ = 1. No-slip, impermeable boundary conditions

are assumed for the meridional flows, and on the upper boundary the rota-

tion profile is given by the convection zone profile (see equation 9.4). The

lower boundary is a stress-free solid conducting core. The field is matched

onto a potential field decaying exponentially outside the radiative zone, and

matching on to a point dipole of given amplitude Bin located at the center

of the inner core.

The dynamical connection between the interior flow and the top boundary

operates through Ekman and Hartmann layers, which have typical scalings

of the order of

δν = E1/2
ν rcz , (9.34)

for a purely viscous Ekman layer, and

δ‖ =

(

EνEη

Λ

)1/4

rcz and δ⊥ =

(

EνEη

Λ

)1/2

rcz , (9.35)

for Hartmann layers when a magnetic field of amplitude B0 is respectively

parallel and perpendicular to the outer boundary. Ekman numbers of the

order of 10−5 or less are therefore required to model structures on the scale

of the tachocline.

In what follows, it is important to remember that the induction equation

is linear in the field amplitude; thus, the ability of the flow to confine the field

depends not so much on the field amplitude as on the meridional flow veloc-

ity and corresponding magnetic Reynolds number Rm = urδ/η†. Gyroscopic

pumping (of the Ekman, or Ekman-Hartmann type) on the outer boundary

implies that the latitudinal component of the flow uθ has amplitude compa-

rable to the azimuthal velocity of the outer boundary uφ, whereas the radial

component of the flow is given by ur ∼ δuθ/rcz where δ is the thickness of

the relevant boundary layer. This simple estimate has two important con-

sequences. Since δ is naturally smaller for larger field strength, the stronger

the field, the smaller the effective magnetic Reynolds number. Moreover, for

a given field strength δ‖ � δ⊥, so that the Ekman-Hartmann flow is much

stronger in the confined field case (i.e. parallel to the outer boundary) than

for the open field case (i.e. perpendicular to the outer boundary). The sys-

tem is therefore subject to a strong positive feedback effect: when and where

the field lines are confined because of an initially large flow amplitude, the

resulting field geometry permits large flow amplitudes. The converse is true

† Note that there is, in this simulation, an indirect dependence on the field strength through
Ekman-Hartmann pumping.
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for the open field case, with weak flows as a cause and consequence of the

radial field geometry on the boundary. Such dual dynamics with positive

feedback in both limits is likely to harbour multiple equilibria. Unfortu-

nately, the numerical algorithm I use is not ideally suited for the search for

co-existing steady states; this could however be the subject of an interesting

investigation.

The following results are the only steady-states found for a given set of

parameters. Varying the internal field strength (through Λ) for fixed Ekman

numbers reveals three possible dynamical structures. Note that the physical

interpretation of the numerical results given here differs from that of the

original paper (Garaud 2002), and should be preferred.

For low field strengths (Λ � 1), the internal flow is dominated by Coriolis

forces, with a more-or-less cylindrical angular velocity profile (commonly

referred to as Taylor-Proudman rotation). Meridional flows are of Ekman

type (with ur ∼ E
1/2
ν rczΩ̃), penetrate deep into the radiative zone, and

confine the field to the interior (except in the polar regions).

For very high field strengths (Λ � 1), the internal flow is dominated by

Lorentz forces, and the angular velocity is in a state of isorotation with the

field. In contrast with the previous case, the driven flows are particularly

weak (ur ∼ δ⊥Ω̃, so that Rm ∼ Eν/Λ � 1 ), and do not have significant

effects on the field which retains a mostly dipolar structure throughout the

computational domain. The field lines freely connect with the convective

zone, and the shear is propagated inwards accordingly. In this limit, it is in

fact possible to linearize the equations around a state of isorotation, which

was successfully done by Dormy, Cardin & Jault (1998) and Dormy, Jault

& Soward (2002).

For intermediate field strength, the nonlinear interaction between the in-

ternal field and the meridional flows dominates the dynamics of the interior.

Two separate regions can be identified. The essentially radial geometry of

the flow in the polar regions, as suspected by Gough & McIntyre, provides

only weak coupling with the underlying (mostly radial) field. Polar field

lines are connected to the convection zone, which results in slowly rotating,

strongly sheared polar regions. On the other hand, the downwelling flow near

the equator is able to confine the internal field over a broad range of latitudes,

which results in a uniform rotation profile below. In this region, a Hartmann

layer is observed with flow amplitudes scaling as ur ∼ δ‖Ω̃ and correspond-

ing to a magnetic Reynolds number Rm ∼ (Eν/Eη)
1/2Λ−1 = P

1/2
m /Λ (where

Pm = ν/η is the magnetic Prandtl number). The meridional flows them-

selves are deflected by the underlying field and the resulting radial mixing is
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strongly suppressed. There is a marginal hint for the type of nested bound-

ary layer structure predicted by Gough & McIntyre (1998), with a largely

magnetic-free region overlying a thin diffusion layer. However, this result

needs to be confirmed with lower diffusivity simulations.

The intermediate field strength case appears to approach qualitatively

the dynamical structure that we may expect to see in the solar tachocline.

However, the incompressible and isentropic nature of the fluid is an intrinsic

flaw of this preliminary work which needs to be addressed. New results ob-

tained by Douglas Gough and I on the steady-state structure of the Gough

& McIntyre tachocline including stratification and thermal diffusion were

presented at the Isaac Newton meeting. This time, the complete set of

equations (9.13) to (9.18) are solved for a steady-state solution. The bound-

ary conditions are similar to the ones used in the incompressible case for

the magnetic field, but the assumption of “impermeability” of the base of

the convection zone to flows was dropped in favour of one which assumes

the continuity of Reynolds stresses across the boundary. Several Reynolds

stress prescriptions in the convection zone are currently being explored, and

the preliminary results presented in Figure 9.3 correspond to a simplistic

stress-free assumption. The main consequence of this new set of boundary

conditions is to eliminate spurious Ekman flows and let the force balance

within the tachocline dictate the flow amplitude and geometry.

The background state used was derived from a realistic solar model (Chris-

tensen-Dalsgaard, Gough & Thompson 1991) where, for numerical purposes,

the thermal conductivity, viscosity and magnetic diffusivity are artificially

increased by the factors fk, fν and fη respectively; this is necessary, since

viscous and magnetic diffusion layers on the artificial outer boundary are

otherwise too thin to be resolved. Typical values of f achieved in preliminary

simulations are of the order of 107, with corresponding Ekman numbers of

the order of 10−6; when fν = fη = fκ the solar values of the magnetic and

thermal Prandtl numbers are respected.

In the absence of strong magnetic fields the amplitude and geometry of the

meridional flow satisfy the expectations from the Gough & McIntyre model:

the steady-state solutions appear to depend on the thermal conductivity

only, confirming that the weak flows that may be driven by the artifial

stresses on the outer boundary are negligible compared to the baroclinic

flows. These numerical results do therefore provide a good insight into the

slow tachocline dynamics.

A thorough quantitative study of the numerical solutions is currently be-

ing performed, but preliminary qualitative results are found to be very sensi-

tive to the thermal and magnetic diffusion parameters fk and fη. According
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to the scalings obtained in Section 9.2.3, the magnetic Reynolds number

corresponding to the tachocline ventilation flow is

Rm ∼ κ

η

Ω2
0

N2

r2
cz

∆2

Ω̃

Ω0
∼ 0.01

r2
cz

∆2
, (9.36)

for solar values of the diffusion and rotation parameters. Hence provided

there exists a confining mechanism for the tachocline and ∆ � r then Rm �
1, confirming the nonlinear interaction between the field and the flow; on

the other hand, Rm � 1 if the tachocline is not confined. Again, this dual

structure suggests either a very strong sensitivity of the equilibrium solution

to the input parameters, or even the existence of multiple equilibria.

For most parameter values (in the low-diffusivity limit) numerical simu-

lations show that the internal field retains a mainly dipolar structure with

field lines connecting to the convective region. The interior rotation profile

is close to a state of isorotation, and no tachocline is observed in this limit.

For carefully chosen parameters, however, it is possible to obtain solutions

that are encouragingly close to what may be expected from a slow tachocline

(see Figure 9.3). Meridional flows burrow into the radiative zone and confine

the field to the interior except within the upwelling region. The width of

the upwelling region is always of the order of the depth of the tachocline,

and the flow direction within the upwelling region is roughly parallel to the

rotation axis. Contrary to the incompressible simulations, field confinement

also occurs in the polar regions. Interestingly, a thermal boundary layer

appears to be present in the polar regions, but not in the equatorial regions.

9.2.4.2 Time-dependent calculations

The first numerical time-dependent simulations of a slow solar tachocline

following the idea of Gough & McIntyre were presented by Sacha Brun &

Jean-Paul Zahn at this meeting. The numerical algorithm used is the ASH

code (Glatzmaier 1984; Clune et al. 1999, Miesch et al. 2000; Brun et

al. 2004), which performs a spectral decomposition of the governing MHD

anelastic equations on spherical harmonics and Chebishev polynomials in

the horizontal and vertical directions respectively. The massively parallel

numerical algorithm achieves significant resolution in all three directions. It

is ideally suited for studying the radiative-convective interface.

Brun & Zahn (2006) study numerically the dynamical evolution of the

radiative zone when subject to shearing from the overlying convective re-

gion, and in the presence of a large-scale embedded primordial field. Their

computational domain includes the radiative zone only, and they model

the radiative-convective interface as an impermeable, electrically and ther-
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Fig. 9.3. Numerical results of equations (9.13) to (9.18) in a steady-state calculation
for fν = fκ = 5 × 108 and fη = 5 × 106. Each quadrant shows the solution in the
radiative zone only, and the dotted line represents the edge of the convection zone.
The rotation rate contours (from darker to lighter colors) range from 0.6Ωeq to Ωeq.
The streamlines are shown with dotted lines for clockwise flows and solid lines for
anti-clockwise flows. The temperature perturbations range from 0K to +50K.

mally conducting, sheared boundary. Various initial magnetic field con-

figurations are studied, ranging from deeply embedded fields to open field

configurations. As an added bonus, the assumption of axial symmetry is

dropped which enables them to study the emergence of all the possible

non-axisymmetric MHD and baroclinic instabilities that have recently been

discussed (Chapter 10 and 11, this volume), as well as the angular momen-

tum transport from the associated Reynolds and turbulent Maxwell stresses

(see Section 9.2.5.1).

The numerical values of the viscous, thermal and magnetic transport co-

efficients (ν, η and κ) used in the ASH code are far greater than the micro-

scopic solar values; however, by respecting their hierarchy (i.e. by respect-
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ing the hierarchy of all expected boundary layer widths and all dynamical

timescales), Brun & Zahn attempt to capture the essential dynamical bal-

ance in the tachocline, if not quantitatively at least qualitatively.

Their main result could reshape our view of the slow tachocline: none of

the simulations appear to reach the steady-state balance suggested by the

Gough & McIntyre model. Instead, the system is observed to evolve in time

following the diffusion of the magnetic field out of the radiative zone. In

consequence, the dynamical evolution of the interior depends crucially on

the initial magnetic configuration.

For initially open field lines, isorotation is rapidly achieved, as suspected

from the results of MacGregor & Charbonneau (1999). The meridional

flows are strongly suppressed by the Lorentz force exerted by the mostly

radial field lines, and fail to confine the field (the magnetic Reynolds number

associated with their flows is of order of unity). After a rapid transient period

(roughly, one Alfvén time), the system continues evolving as a result of the

slow global field dissipation, whilst remaining in a Ferraro state. There is

no evidence for the presence of a tachocline in this case.

When the field is initially in a configuration close to what one may expect

from the Gough & McIntyre steady state (corresponding to the marginally

confined field configuration of Rüdiger & Kitchatinov, 1997), one could ex-

pect that the meridional flows, not being hindered by the field, would act

in such a way as to confine it (see the incompressible analogue discussed

in the Section 9.2.4.1). However, Brun & Zahn find that in this case also,

the field lines quickly diffuse across the initially existing tachocline, connect

to the convection zone and from there ensues Ferraro isorotation within a

short Alfvénic timescale. It appears that although meridional flows of the

kind predicted by Gough & McIntyre are indeed observed in the simulation,

they do not have enough time to achieve dynamical balance in the magnetic

diffusion layer before the field diffuses and connects with the convective zone.

Only for a deeply confined initial field does the outward diffusion occur

slowly enough to allow for the formation of the tachopause. In that case,

magnetic field lines are indeed seen to be confined to the radiative interior

by the meridional flows, except in the polar regions which retain a mod-

est amount of latitudinal shear. This simulation appears to reproduce the

Gough & McIntyre view of the slow tachocline, save for a very important

difference: the Ohmic diffusion of the internal field is only partially reduced

by the tachocline dynamics, so that the field amplitude steadily decreases

on a magnetic diffusion timescale. As this happens, the position and width

of the tachocline and tachopause slowly change (the tachopause rises, and

the tachocline becomes correspondingly thinner).
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The absence of a stable steady-state implies a direct relationship between

the observed tachocline structure and the initial field configuration. This

result, should it be confirmed, has important implications for dynamo ac-

tion during the pre-main-sequence phase of solar evolution. A primordial

centrally condensed magnetic field configuration can presumably only be

achieved by a timely switch from a steady-state or largely irregular dynamo

to a cyclic dynamo, which must happen before the convection zone has en-

tirely retreated to its present radius. This idea is plausible given that the

timescale for the evolution of the convective-radiative interface (∼ 107 yr) is

much shorter than the magnetic diffusion timescale (∼ 1010 yr). In addition,

the Mount Wilson Ca II program has found strong observational evidence

for a transition from irregular dynamo action in very young stars to periodic

dynamos for older stars (Saar et al. 1994). This trend has been associated

with the transition between very rapid young rotators and slower older ro-

tators, and interestingly, the timescale for magnetic braking of very young

stars is also of the order of 107yrs. Schüssler (1975), Parker (1981) and

Mestel & Weiss (1987) studied the typical magnetic fields that are likely to

remain from dynamo action during the pre-main-sequence stage; perhaps it

is time to revisit their results in the light of Brun & Zahn’s simulations us-

ing modern dynamo models, numerical algorithms and recent observations.

Note that Chapter 8 reviews other recent ideas concerning the origin and

stability of magnetic fields in the Sun.

However, the numerical results obtained by Brun & Zahn pose another

important problem. In all simulations, even for the most centrally con-

densed initial field configurations, the tachopause eventually reaches the

outer boundary and, as field lines connect with the convective region, the

system switches to the usual Ferraro state of isorotation. Using a rough

scaling argument to compensate for the large diffusivities used in the simu-

lations, Brun & Zahn estimate that this state is likely to be achieved before

the present solar age regardless of the initial conditions. This striking result

is difficult to reconcile with helioseismic observations; if confirmed, it could

shed serious doubts on the relevance of the current slow tachocline model to

the solar radiative zone. However, I discuss in Section 9.2.5.3 how a better

understanding of the outer boundary conditions to be applied to the slow

tachocline model may rescue the situation.

9.2.5 Discussion and prospects for slow tachocline models.

In recent years, slow tachocline models have come under increased scrutiny

and criticisms. By nature, they ignore phenomena occurring on rapid time-
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scales, concentrating instead on the secular dynamical interaction between

slow meridional flows and the internal field. As such, they neglect three

important effects that are likely to have significant impact on the fragile

balance described above: the potential axisymmetric and non-axisymmetric

instabilities of the calculated equilibria, the combined effects of all possi-

ble rapid-timescale angular-momentum transporters known to exist in the

tachocline, and the effect of an overlying dynamo field. In addition, the

typical boundary conditions used to model the interface with the convective

zone are highly idealized and may distort our view of the tachocline. I shall

now discuss briefly the consequences of these effects on our understanding

of the tachocline dynamics.

9.2.5.1 Stability of the slow tachocline models

Slow tachocline models may be subject to a wide variety of instabilities,

including purely hydrodynamical shear and baroclinic instabilities, MHD

instabilities of the large-scale primordial field, magnetic buoyancy instabil-

ities, magneto-rotational instabilities and magneto-shear instabilities. De-

tailed investigations in the context of the slow tachocline model are only

just beginning.

Linear and quasi-linear stability analyses of an idealized purely hydro-

dynamical tachocline shear flow in the non-diffusive limit have been per-

formed by Watson (1981), Charbonneau, Dikpati & Gilman (1999), Dik-

pati & Gilman (2001) and myself (Garaud 2001). The tachocline latitudi-

nal shear is found to be close to marginal stability. The observed radial

shear is stabilized by the very strong stratification (the typical Richard-

son number is of the order of a thousand). However, as Schatzman, Zahn

& Morel (2000) point out, the standard Richardson criterion for stratified

shear instability must be corrected for thermal diffusion in the tachocline; in

that case, the radial shear is again close to marginal stability. In addition,

Petrovay (2003) suggests that independent shellular fluid motions create

much stronger small-scale radial shear layers, which could lead to secondary

shear instabilities in the tachocline. This interesting proposal has not been

confirmed numerically yet, but would correspond to a scenario close to the

one proposed by Spiegel & Zahn (1992), and have important consequences

for all slow and fast tachocline models alike.

In any case, the addition of magnetic fields changes the nature and stabil-

ity of non-axisymmetric perturbations (Gilman & Fox 1997, 1999a, 1999b;

Dikpati & Gilman 1999; Gilman & Dikpati 2000; Cally, Dikpati & Gilman

2003 and other publications by the same authors; Tobias & Hughes 2004).

A review of the stability of tachocline flows in the presence of strong fields is
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given in Chapters 10 and 11. However, the focus of most studies has largely

been the stability of a dynamo-related magnetic field to shear and buoyancy

instabilities. As such, the fields studied have idealised geometries (mostly

toroidal) and high amplitudes (> 1T) that do not resemble those typically

encountered in slow tachocline models; their results are not directly applica-

ble here. The magneto-rotational instability could operate in regions of the

Sun where angular velocity decreases outward from the rotation axis (as it

does in the polar regions). Balbus & Hawley (1994) showed that the strong

local stratification of the tachocline limits displacements to horizontal sur-

faces, as expected; this could provide a source of unaccounted for latitudinal

momentum mixing in the polar regions.

Even more problematic for slow tachocline models are the well-known

non-axisymmetric field instabilities of a mostly dipolar field in stellar interi-

ors. Early works by Wright (1973), Markey & Tayler (1973, 1974) and Pitts

& Tayler (1985) already suggested that a purely dipolar structure deep in

the interior (as assumed in the above slow tachocline models) was subject

to adiabatic perturbations near its neutral points (any confined field struc-

ture necessarily has such points). These are known to be stabilized by the

presence of toroidal fields, but the current slow tachocline field structures

are indeed found to be unstable (Brun & Zahn 2006). A new method for

finding possible stable field structures in stellar interiors was developed by

Braithwaite & Spruit (2004) and is outlined in Chapter 8. It would be in-

teresting to see how the slow tachocline models may be modified by the

additional constraint that the underlying primordial field should be in a

stable configuration.

Self-consistent studies of the model and of its stability have tentatively

been performed. The Newton-Raphson relaxation algorithm I have used

to calculate steady-state solutions of the slow tachocline equations can-

not find unstable equilibria. Therefore the solutions found for the range

of diffusion parameters studied are known to be stable to all axisymmetric

perturbations. However, it provides no information on the evolution of non-

axisymmetric perturbations. The numerical algorithm used by Brun & Zahn

(2006), on the other hand, is ideally suited for the study of 3D instabilities

of all kind. They observe the growth of non-axisymmetric instabilities asso-

ciated with the primordial dipolar field, but do not detect any other intrinsic

instabilities in the tachocline region. This result is interesting in the light

of the local and global analyses mentioned above, but could be consistent

with instabilities that only develop at high Reynolds and magnetic Reynolds

numbers.

In conclusion, there are clear signs that the slow tachocline model might
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be unstable to a variety of non-axisymmetric instabilities. These could play

an important role in redistributing chemical species, angular momentum

and thermal energy within the tachocline, and must therefore be analyzed.

Various clues to the relative lack of mixing below the tachocline also suggest

that any derived model should be constructed in such a way as to maximize

stability below the tachocline; this constrains the geometry of the assumed

primordial field.

9.2.5.2 Gravity waves as angular momentum transporters

The tachocline is known to host a wide spectrum of gravity waves, excited

by overshooting convective plumes pounding on the stably stratified interior.

These waves transport and deposit angular momentum further down in the

radiative zone; the differential damping between prograde and retrograde

waves is known to accentuate shearing flows and can be likened to some

kind of anti-diffusion mechanism (McIntyre 2003, and Chapters 4 and 5;

Kumar, Talon & Zahn 1999; Kim & MacGregor 2001, 2003; Talon & Char-

bonnel 2005). Quantitative estimates for the amplitude of the gravity waves

thus generated, as well as their damping rate as a result of nonlinear in-

teractions (mode-mode interaction or critical layer interaction) are difficult

to obtain, although numerical simulations provide a new promising route

for resolving this problem (Rogers & Glatzmaier 2006). To complicate mat-

ters, dynamical interactions between the gravity waves and magnetic fields

in the tachocline transfer energy into a wider spectrum of Alfvén waves,

with correspondingly different propagation and damping mechanisms (Kim

& MacGregor 2003). The global action of gravity and Alfvén waves on the

background fluid generates large-scale dynamical structures which can have

a radial extent much larger than the overshoot layer. Moreover, although

the total flux of angular momentum transported is small, it is nonetheless

important on the secular timescales considered for the slow tachocline mod-

els. Thus in this case again, significant modifications to the existing slow

tachocline models could be required.

9.2.5.3 Boundary conditions

One of the most difficult problems faced by all tachocline models (including

the fast tachocline, see Section 9.3) is the choice of boundary conditions used

to describe the convective-radiative interface. The problem is exacerbated in

the case of the slow tachocline, where meridional flows play an important role

in redistributing angular momentum, preserving the thermal-wind balance

and confining the internal field. Indeed, artificial flows generated on the
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boundary of the computational domain are an inevitable consequence of

any attempt to impose stresses locally. Two situations may arise.

If the boundary is assumed to be impermeable, Ekman and Ekman-

Hartmann layers form (the layer structure is modified for stress-free bound-

aries, but does not disappear); numerical models must monitor the ampli-

tude of these boundary layer flows and ensure that they are only a small

perturbation to the baroclinic flows of interest. This constraint places up-

per limits on the values of the Prandtl (ν/κ) and inverse Roberts (η/κ)

numbers. However, even in a limit where Ekman flows can be neglected,

the presence of an impermeable outer boundary constrains the geometrical

structure of the meridional flow cells by limiting their upper radial extent,

and by mass conservation, their latitudinal geometry. This numerical arte-

fact is inevitable in the case of impermeable boundaries, and will affect the

latitudinal force balance within the tachocline.

Another option is to relax the condition of impermeability. In that case,

continuity of radial stresses replaces the condition of impermeability, but the

problem is then merely transposed into a Reynolds stress modelling prob-

lem for turbulent convection. In addition, associated with the thought that

it is possible to approximate the radiative-convective interface with simple

“boundary conditions” is the underlying assumption that the structure and

dynamics of the convective region are independent of the tachocline dynam-

ics. However, the recent work of Miesch (2003) and Rempel (2005) refute this

hypothesis. The differential rotation near the convective-radiative interface

is related to the differential rotation in the convective region, which results

from the angular momentum balance between Reynolds stresses and large-

scale meridional flows; these flows burrow into the tachocline and advect

entropy to create a latitudinal entropy gradient which strongly constrains

differential rotation through the thermal-wind balance. Thus the radiative-

convective system is inseparably coupled. It is to be hoped that in the next

few years, models will pay particular attention to modelling the convective

zone and the tachocline simultaneously.

The role of the convection zone as a boundary condition on the magnetic

field is even more ambiguous. Even while leaving aside the possible pres-

ence of a dynamo field in the outer layers of the tachocline (see Section 9.3

for a review of the effect of the dynamo field on the tachocline dynamics),

currently used boundary conditions could be warping our conclusions on

the slow tachocline dynamics. All models thus far assume the convective

zone to be nearly perfectly insulating (η → ∞) and match a potential field

to the internal field. By assumption, field lines are smoothly anchored to

the convective zone (i.e. to the outer boundary). However, we know that
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this is very far from the true situation: overshooting plumes interact with

the magnetic field lines, stirring and shaking them, advecting them into

large horizontal excursions, promoting reconnection as well as regeneration

(the dynamo effect). In fact, it is more likely that the combined effect of

convection is to confine the interior field (at least, its long-term averaged

component) somewhat below the overshoot region. Indeed, flux expulsion

and magnetic pumping by the convective plumes (Tobias et al. 2001; Dorch

& Nordlund 2001) is sometimes thought of as being the principal reason for

the lack of overlap between the internal primordial field and the dynamo

field (as discussed by Boruta 1996). By contrast, the underlying assump-

tion that field lines can be smoothly anchored into the convective zone leads

to the ubiquitous emergence of a Ferraro state of isorotation in most nu-

merical simulations of the slow tachocline. It will be interesting to know

whether this conclusion holds should a more realistic model of the effect of

the overshooting plumes on the primordial field be used.

In any case, the presence of a dynamo field may entirely change our view of

the solar tachocline; the next section reviews recent models which explicitly

involve the solar dynamo in the tachocline dynamics.

9.3 Dynamo field confinement: the fast tachocline

The solar dynamo field is observed through the regular emergence of strong

flux concentrations at the solar surface, which appear in the form of ac-

tive regions composed of dark sunspots and bright faculae. Chapter 14 re-

views current observational knowledge of the solar dynamo and the potential

role of the tachocline in its generation. Some important models favour the

radiative-convective interface as the optimal location for the solar dynamo

(Parker 1993): field stretching by the strong shear in the azimuthal flow

can generate large-scale toroidal fields, accumulating in the tachocline un-

til buoyancy instabilities trigger their rise into the convective region. From

there, part of the flux emerges coherently through the surface, while the rest

is promptly distorted into small-scale fields in all directions. Non-zero mean

flow helicity results in non-zero mean poloidal flux generation, which is then

pumped back down into the tachocline by convective overshooting. Many

alternative models of the solar dynamo exist (Ossendrijver 2003), some in

which dynamo action is independent of the tachocline shear and relies only

on turbulent and large-scale motions within the convective zone (Glatzmaier

1984; Brun, Miesch & Toomre 2004; Brandenburg 2005). In these models

too, however, magnetic flux is necessarily pumped into the tachocline by

overshooting convective plumes (Tobias et al. 2001).
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The inevitable presence of strong dynamo-generated magnetic fields in the

tachocline naturally raises many questions: what are the consequences for

the tachocline dynamics? how far down into the tachocline does the dynamo

field penetrate? could the dynamo field be entirely, or part-responsible for

the observed rotation profile below the convective zone?

Contrary to the primordial field confinement models described above, the

dynamics arising from the interaction of the tachocline shear with the dy-

namo field occur on much shorter timescales. The intrinsic field variability

is of the order of 11 years, with a much larger amplitude than the assumed

primordial field (and a correspondingly much shorter Alfvén time). Shear

and magneto-shear instabilities operate on timescales typical of the rotation

rate and Alfvén timescales (Chapter 10). Finally, where overshoot is im-

plied, the flow turnover timescale is of the order of a month. For obvious

reasons, this new view of the tachocline was loosely called the fast tachocline

(Gilman 2000).

9.3.1 Fast tachocline diffusion models

How deep is the fast tachocline? A quick answer associates the thickness of

the fast tachocline with the dynamo field penetration depth. The dynamo

field is pumped into the overshoot layer by downward penetrating plumes

(Tobias et al. 2001) and diffuses downward into the radiative zone. However,

the regular field polarity reversal plays an important role in limiting the field

diffusion, since each cycle nearly cancels out the previous one (Mestel &

Weiss 1987); as a result the field is strongly suppressed within a skin-depth

δSD ∼ (τD/τη)
1/2rcz (assuming the dynamo is exactly periodic with a period

τD and where τη = r2
cz/η is the Ohmic diffusion timescale). For a laminar

tachocline with microscopic diffusivity η ∼ 0.04m2s−1 the skin depth is less

than a few kilometers. This figure can be increased to a few Mm should

one consider eddy diffusion in a turbulent tachocline (with ηt ∼ 106m2s−1)

(Forgács-Dajka & Petrovay 2001). Whether turbulence in the tachocline

does indeed act as an “eddy diffusivity” should be kept in mind throughout

the following section, and is discussed in more detail in Section 9.3.2 and in

Chapter 13.

A promising way of confining the tachocline was first suggested and later

developed by Forgács-Dajka & Petrovay (2001) (Forgács-Dajka & Petrovay

2002; Forgács-Dajka 2004). They consider the structure of a turbulent

tachocline pervaded by an oscillatory dynamo field. The field diffuses down-

ward into the radiative zone and interacts with the tachocline shear. By con-

struction, within the dynamo skin-depth the magnetic diffusion timescale is
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of the order of the dynamo period. The Alfvén crossing time, on the other

hand, depends on the imposed field amplitude and can be assumed to be

much smaller than the dynamo period for fields of the order of 1T or larger.

Ferraro isorotation along the poloidal field lines is therefore rapidly achieved.

In their first paper on the dynamics of the fast tachocline, Forgács-Dajka

& Petrovay assume a given poloidal field structure within the dynamo skin-

depth and impose a sheared angular velocity profile at the interface with the

convective zone (see equation 9.4). These are equivalent to the assumption

that all meridional motions are negligible within the tachocline; indeed,

in that case the equations governing the poloidal and toroidal components

of the field decouple. The poloidal component satisfies a simple diffusion

equation with periodic forcing, which has a spatially damped oscillatory

solution. Here for simplicity the poloidal field Bp is assumed to have the

functional form

Bp(r, θ, t) = Bp(r, θ) cos(ωDt) , (9.37)

where 2π/ωD = τD = 22 yr. Under those conditions, the azimuthal compo-

nent of the momentum and induction equations can be integrated to obtain

the angular velocity profile and toroidal field profile as a function of time.

An approximate analytical solution to the governing equations can be

derived in the limit of large poloidal field strength (i.e. in the limit where

there is a clear separation between the Alfvén time and the dynamo period),

and thin tachocline. Let vA be the typical Alfvén velocity of the imposed

poloidal field; then by assumption ε = rωD/vA � 1. Following Forgács-

Dajka & Petrovay (2001), the equations are for simplicity written in a local

Cartesian system (with θ ↔ x and r ↔ z). In units of the Alfvén timescale

and the radius of the convective zone the non-dimensional governing equa-

tions are

∂tuφ = cos(2πεt)∂xBφ +
τA

τν
∇2uφ , (9.38)

∂tBφ = cos(2πεt)∂xuφ +
τA

τη
∇2Bφ . (9.39)

In the limit ε � 1 it is possible to perform a two-timescale analysis and seek

solutions on the slow timescale τ = εt (which evolves on the timescale of the

cyclic dynamo field). The slow solutions satisfy the reduced equation

cos(2πτ)∂xBφ = −τA

τν
∇2uφ , (9.40)

cos(2πτ)∂xuφ = −τA

τν
∇2Bφ , (9.41)

and, should one assume that ∂z � ∂x, can be found analytically; they display
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an oscillatory temporal structure with the timescale of the imposed field τD,

and an oscillatory spatially damped structure below the convective-radiative

interface on a typical lengthscale δD where

δD

r
=

(

4τ2
A

τντη cos2(2πτ)L2

)1/4

, (9.42)

and L is the latitudinal wavenumber of the imposed poloidal field. Not

surprisingly, this estimate is equivalent to the depth of a Hartmann layer

for an imposed field with field lines parallel to the boundary and ampli-

tude B0 cos(2πt/τD). This fast tachocline model therefore predicts the same

tachocline thickness scalings as a function of the imposed field as had been

obtained by Rüdiger & Kitchatinov (1997)†. By extension, there is a natural

generalization of the result should the imposed dynamo field have a strong

radial component.

For the model assumptions to be consistent, it is important to verify that

δSD � δD. This places lower limits on the imposed field strength for a given

turbulent diffusivity. In addition, if the field is much weaker than about

0.1 T, the simple two-timescale analysis fails and interactions between the

dynamo forcing and the Alfvén waves could lead to the excitation of modes

with new frequencies. This has not been investigated yet.

Numerical solutions have been computed by Forgács-Dajka & Petrovay

(2001) for a dipolar poloidal field of varying amplitude. They show a clear

confinement of the imposed latitudinal shear for large enough field strength

(typically, |Bp| ∼ 0.2T for ηt ∼ 106m2s−1). The latitudinal variation of the

field amplitude leads to a significant latitudinal variation of the tachocline

depth, which is consistent with the above estimates. Observations however

reveal only a weak latitudinal variation of the tachocline position and width

(Charbonneau et al. 1999) which could in principle set strong constraints

on the poloidal field geometry diffusing from the overlying dynamo. As

expected also from the analytical analysis, there is a significant temporal

variability of the depth and aspect of the tachocline on an 11-yr period

(the differential rotation is independent of the field polarity). Both results

confirm and quantify common expectations that there must exist some vari-

ability in the tachocline angular velocity profile on the dynamo timescale.

However, precise helioseismic observations by MDI/SOI on board SoHO

have only been available for slightly less than one solar cycle, and so far,

little to no tachocline variability on the dynamo timescale has been detected

† Forgács-Dajka & Petrovay (2001) derive other scaling laws between the confining field strength
and the tachocline thickness in the limit where the dynamo frequency is higher (which could
be applicable for other stars than the Sun).
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(Corbard et al. 2001). Definite answers on this topic are impatiently ex-

pected. Interestingly, 1.3yr torsional oscillations are detected instead (Howe

et al. 2000).

In following works, Forgács-Dajka & Petrovay (2002) and Forgács-Dajka

(2004) study various improvements to the model, including the effects of

a large-scale (imposed) meridional flow, of a radially varying magnetic dif-

fusivity and varying magnetic Prandtl number. The background state is

derived from the solar model of Guenther et al. (1992). They also calcu-

late the poloidal component of the dynamo field self-consistently from the

poloidal component of the advection-diffusion equation: in these new sim-

ulations, the poloidal field is advected by the imposed meridional flows in

addition to diffusion. Finally, they impose a realistic description of latitu-

dinal and temporal variation of the migrating dynamo field as a boundary

condition, which is derived from the observations of Stenflo (1994). The

modeled meridional flows are poleward near the solar surface with a ve-

locity of about 10-20m s−1, in accordance with direct observations of the

motion of small magnetic features (e.g. Komm, Howard & Harvey 1993)

or inferences from local helioseismology (Giles et al. 1997). Two geome-

tries are studied: a single-cell structure with an equatorward return flow

in the tachocline, and a double-cell structure with a poleward return flow

in the tachocline and a null node at about r = 0.85r�. Note that numer-

ical simulations of turbulent convection do not appear to favour the view

of stable long-lived circulation cells deep in the convective zone; meridional

flows are instead very intermittent, with strongly variable geometries (Brun

& Toomre 2002).

The results, illustrated in Figure 9.4, can be summarized as follows. The

role of the meridional flows as transporters of angular momentum naturally

aids the tachocline confinement process in the case of the modelled two-

cell circulation pattern (by transporting angular momentum poleward) and

hinders it in the case of the single-cell circulation pattern. The numerical

simulations confirm these expectations, and suggest that flows as slow as

a few cm s−1 in the tachocline have a significant impact on the observed

differential rotation profile.

A strong decrease in turbulent magnetic diffusivity with depth beneath

the tachocline is expected from the steep increase in the background strat-

ification. Note that the decrease in turbulent mixing below the tachocline

is clearly constrained by independent observations of the light element de-

pletion fraction (see Chapter 2). In that case again, the imposed convec-

tion zone shear is still easily quenched by the fast tachocline fields. How-

ever, across the turbulent/laminar transition the dynamo field penetration
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Fig. 9.4. Numerical solutions for the fast tachocline model of Forgács-Dajka &
Petrovay. This simulation includes a realistic representation of the poloidal field
extracted from the Butterfly diagram, but neglects meridional motions. Upper
panels: Resulting differential rotation spreading into the radiative interior in two
cases. In the left-hand panel η = ν = 106m2/s throughout the domain (in which
case Pm = ν/η = 1). In the right-hand panel Pm is varied with depth between
0.024 and 0.1. In this case the variations of η and ν are: log10 η = 3.5 − 6 and
log10 ν = 2−5. Bottom panels: Corresponding latitudinal variation (left-hand side)
and temporal variation (right-hand side) of the tachocline thickness.

is abruptly suppressed and would therefore not be able to reduce any deep-

seated residual shear related to solar spin-down; this is an intrinsic problem

of all fast tachocline models. One possible solution stems from the fact that

the solar dynamo cycle is not exactly periodic. Mestel & Weiss (1987) sug-

gested that the (apparently) random component of the dynamo field could

diffuse much deeper into the radiative zone than its periodic counterpart.

I investigated this possibility in detail (Garaud, 1999), and found that an
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internal field with an rms value of about 10−4B0 (where B0 is the amplitude

of the poloidal component of the dynamo field) could build up deeper in the

interior.

9.3.2 Discussions and prospect for the dynamo confinement

model

In comparison with slow tachocline models, the idea proposed by Forgács-

Dajka & Petrovay has the advantage of being based on a robust balance

of forces, which holds even in the presence of instabilities (it does in fact

rely on the presence of instabilities), and can be tuned to compensate any

additional angular momentum transport from convective plumes, gravity

waves or meridional flows. The spatial variation of the tachocline depth

observed in the numerical simulations can be reconciled with observations for

specific poloidal field structures, and the strong temporal variation observed

could still be consistent with observations should the tachocline be in fact

a little bit shallower than current estimates (this statement is mostly based

on the resolution of helioseismic inversions).

One must nonetheless bear in mind the three assumptions inherent in

the model: the tachocline is turbulent, the turbulence leads to an eddy

diffusivity greater than 105m2s−1 in the tachocline, and finally, the dynamo

generation mechanism does not rely on the detailed tachocline structure.

If we assume that the tachocline has a width ∼ 0.02r�, then turbulent

motions at the level required by the fast tachocline model cannot result from

overshooting plumes only. The stability of the tachocline to hydrodynamical

and magneto-hydrodynamical instabilities was discussed in Section 9.2.5.1

and is reviewed in Chapters 10 and 11; magneto-shear instabilities offer a

promising route for the maintenance of turbulent motions. In fact, these

instabilities are so ubiquitous that the maintenance of large-scale fields in

the tachocline appears to be the more relevant problem. Nonetheless, the

first of the three governing assumptions is not much under dispute.

However, the role of turbulent motions in “diffusing” large-scale fields

is a far more difficult issue. Although very commonly used in astrophysi-

cal MHD models, the physical basis for turbulent diffusivity, as well as its

parameterization, are still ambiguous. The concept of turbulent diffusion

is derived from heuristic arguments on the vectorial form of the averaged

electromotive force due to small-scale fields and flows (see Chapter 14):

(u× b)i = αijBj − βijk∂jBk . . . (9.43)

This expression naturally emphasizes the tensorial nature of the turbulent
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diffusivity β; assuming that β ∼ ηt is a scalar is a largely unjustified (but

commonly used) simplification.

The turbulent diffusivity is known to be quenched when the magnetic

fields start having a strong effect on the turbulent flow (near energy equipar-

tition); at the largest scales in the tachocline, this effect is relevant for fields

upward of a few thousand Gauss, which already has implications for fast

tachocline models. But the situation may in fact be much worse. In the

tachocline, the magnetic Prandtl number is of the order of ν/η ∼ 10−2;

if a small-scale dynamo indeed operates at these values of the magnetic

Prandtl number (Boldyrev & Cattaneo 2004) magnetic energy accumulates

somewhere on the turbulent inertial range and reaches equipartition well

before the larger scale field does. This process could quench the turbulent

magnetic diffusivity for much lower field strengths (Cattaneo & Vainshtein

1991). Catastrophic η−quenching is shown to occur in 2D flows through

numerical simulations (Cattaneo 1994) and quasi-linear closure (Gruzinov

& Diamond 1995). The situation is still unclear in the case of 3D flows. The

η−quenching process could pose serious threats to the fast tachocline mod-

els: using the scalings proposed by Cattaneo & Vainshtein (1991), large-scale

fields as low as few Gauss would suffice to quench the turbulent diffusivity of

the fast tachocline by several orders of magnitude. This creates an intrinsic

contradiction within the model.

In any case, the current fast tachocline model neglects all effects of the

turbulent motions except for their role in enhancing the magnetic diffusiv-

ity. However, other macroscopic effects are known to occur and are likely to

play an important role in the tachocline dynamics. Turbulent flux expulsion

has been observed in a wide variety of systems where turbulent and laminar

regions coexist (Tao, Proctor & Weiss 1998; Tobias et al. 2001). Small-

scale field generation by turbulent motions, the α−effect, has also been pre-

dicted by turbulence closure models (Krause & Rädler 1980) and observed

in numerical simulations (Brandenburg et al. 1990). Finally, non-isotropic

Reynolds stresses and turbulent Maxwell stresses may be as important as the

large-scale Lorentz forces in reducing the imposed shear. In other words, a

consistent model for the fast tachocline will require a consistent description

of the effects of turbulent motions on the large-scale flows and fields.

Building on this idea, another natural step in the study of fast tachocline

confinement models is to calculate self-consistently the temporal evolution

of the field and the flow, using for instance a mean-field dynamo model.

Indeed, current mean-field models calculate the field evolution assuming a

given angular velocity profile in the tachocline, whereas current tachocline

confinement models study the effect of an assumed dynamo field on the
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shear. In an integrated model, can dynamo action be sustained if the radial

shear is quenched by the dynamo itself? This could indeed happen should

dynamo action rely more on the latitudinal shear than the radial shear, or if

the solar dynamo is more of an α2 dynamo than an αΩ-dynamo. Reproduc-

ing simultaneously the tachocline profile and the solar cycle is an interesting

challenge which could provide much insight into the correct parameteriza-

tion of the α− and β-effects.

9.4 Discussion and Prospects

We have now reached a stage in the process of studying the tachocline dy-

namics where there exist a large enough variety of studies, models and ob-

servations to support critical discussions. What are the next steps in the

study of the tachocline magnetohydrodynamics? The few points that I be-

lieve will have significant impact on our understanding of the tachocline in

the next few years are the following.

Coexisting “fast” and “slow” tachoclines? In the light of the discus-

sions outlined in Sections 9.2 and 9.3, is it still possible to consider the idea

of coexisting “fast” and “slow” tachoclines? The only way to do this would

be to construct a complex layered structure starting from the bottom of the

convective zone with a turbulent, magnetic overshoot region, which grad-

ually quietens downward to give way to a more laminar region where the

large-scale (dynamo) fields are pumped, stored and stretched. Slightly fur-

ther down, the very low magnetic diffusivity forbids the oscillating field from

penetrating very far down and thus appear successively the well-ventilated,

magnetic free region of the Gough & McIntyre tachocline, the magnetic dif-

fusion layer and finally the magnetically constrained interior. And most of

the above must be packed, according to observations, within a total width

spanning no more than 2-4% of the solar radius. This scenario can only work

if fluid motions in the tachocline are to a very large degree two-dimensional.

However, there are doubts that this may be the case at all times despite

the strong stratification. Magnetic buoyancy instabilities (Tobias & Hughes

2004) are intrinsically three-dimensional, and numerical simulations suggest

there are occasional very strong overshooting events with large radial ex-

tent. Can the slow tachocline balance survive these mixing events? More

precisely if, as suspected, the Gough & McIntyre model indeed harbours

multiple equilibria, mixing events extending between the interior and the

overshoot region could dredge out interior field lines and drag them into the

convective region, triggering the transition from a confined interior field to
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the open field configuration. Should this happen, there is no simple mech-

anism capable of reverting the system to the confined field configuration of

the Gough & McIntyre model within the typical timescale of occurence of

the mixing events.

The role of the interaction between overshooting plumes and an

internal primordial field. As discussed in Section 9.5.2.3, this interaction

is likely to play a dominant role in the tachocline dynamics. Tamara Rogers

and I have begun studying this phenomenon to determine whether this may

indeed be a sufficient, self-consistent way of confining an internal field while

bypassing the need for baroclinic meridional flows. We hope to show for

instance that the ubiquitous emergence of Ferraro rotation in laminar models

is in fact an artefact of the simplified interface conditions; in fact, we believe

that the interaction between overshoot and an internal field may form the

basis for a minimalist model of the tachocline and the radiative interior.

The role of gravity waves. Talon & Charbonnel (2005) have recently

claimed that the continuous adjustment of the angular velocity of the radia-

tive core to that of the convection zone could in fact be entirely attributed to

gravity wave mixing. This would supress the need for an internal primordial

field. An important task for the near future is to test the Talon & Charbon-

nel model for angular momentum transport against direct numerical simu-

lations of gravity waves in the solar interior (Rogers & Glatzmaier 2006),

and to investigate ways in which observations (combining asteroseismology,

surface light-element abundances and magnetic activity measurements) may

help distinguish between the magnetic and non-magnetic scenarios.

Consequences of recent solar abundance revisions for all tachocline

models. The recent announcements of revised solar abundances of carbon,

nitrogen and oxygen (Allende Prieto et al. 2001; Asplund et al. 2005)

could entirely re-shape our view of the solar interior. Revised solar models

with similar total mass, luminosity and age predict a significantly shallower

convection zone than previous estimates (Bahcall et al. 2004), which are

in serious disagreement with helioseismic inversions (Christensen-Dalsgaard

et al. 1991). What are the consequences of these findings for tachocline

models? If indeed the solution is related to opacity calculations – see Chap-

ter 2 (which is quite plausible, Bahcall et al. 2005; Drake & Testa 2005)

then the tachocline models will, on the whole, be unchanged. However, if

the position of the critical radius for convective stability is indeed raised to

r = 0.726r�, then most existing tachocline models are affected. To begin
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with, the standard solar model will have to be revised to explain the serious

sound speed discrepancy between models and observations. Perhaps the ad-

dition of an extended nearly-adiabatic region matching smoothly on to the

strongly stratified interior near r = 0.713r� will suffice, but can overshoot

models explain the subsistance of such a large region throughout the solar

lifetime as well as the heat fluxes required to operate a smooth matching†?
If so, will this be more likely to accomodate both fast and slow tachoclines?

Is there indeed a relation between the tentatively observed variation with

latitude of the tachocline depth (with a thicker tachocline near the poles,

Basu & Antia 2003) and that of the overshoot region (likewise, Brummell,

Clune & Toomre 2002)?

The early evolution of the Sun and its relation to the internal pri-

mordial field. Given its likely dominant role in the interior dynamics, it is

perhaps surprising that we know so little about the interior field. How much

of the collapsing cloud magnetic flux survives the fully convective phase of

stellar evolution? What happens to this flux as the convective zone finally

retreats (see Chapter 8)? The Mount Wilson observations of the magnetic

activity of very young solar type stars now permit a more comprehensive

study of the correlation between dynamo action, rotation and internal struc-

ture: can we construct a model of the early solar magnetism that would

include this new data and enable us to predict the current internal field

strength and geometry?

Self-consistent mean-field hydrodynamics and dynamo models. Cur-

rent mean-field dynamo models assume a given differential rotation profile,

while current fast tachocline models assume a given magnetic field profile.

Rempel (2005) showed that it is now possible to use mean-field hydrody-

namics to model simultaneously the tachocline and the convection zone; the

extension of this work to include magnetic stresses as well as mean-field

dynamo action would provide the first self-consistent model of rotation and

dynamo action in the Sun. This would be a tremendous advance in the field,

since the self-consistent determination of rotation (which can be measured

by helioseismology) and meridional flows (which appear to constrain the

equatorward sunspot drift throughout the cycle in many types of dynamos)

may help distinguish between various competing dynamo models. Compari-

son with the rotation profile and magnetic activities of other stars would also

help refine our understanding of this exceedingly complex system. In fact,

† A large discontinuity in N2 at the base of the convection zone is precluded by helioseismology
(Basu 1997).
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such an approach may be the only route towards a better understanding of

interior dynamics: it is becoming increasingly clear that we have very little

hope of reaching the asymptotic values of the Reynolds and Rayleigh num-

bers in 3D simulations of the whole Sun that would permit a trustworthy

study of the convection zone and the tachocline. However, numerical simu-

lations in a local box are on the other hand much closer to solar values, and

may help constrain the parameterizations to be used in mean-field models.

Acknoledgements

I thank all of the Isaac Newton Meeting participants for enlightening and

stimulating discussions about this fabulous subject. The completion of this

manuscript would not have been possible without the help and support of

Nic Brummell and Douglas Gough. I also thank Fausto Cattaneo, Gary

Glatzmaier, Chris Jones, Michael McIntyre, Bob Rosner, Steve Tobias and

Nigel Weiss for clarifying many of the complex scientific issues discussed

here.

References

Acheson, D. J. & Hide, R. (1973). Rep. Prog. Phys., 36, 159.
Balbus, S.A. & Hawley, J.F. (1994). Astrophys. J. 266, 769.
Basu, S. (1997). Mon. Not. Roy. Astron. Soc. 588, 572.
Boldyrev, S. & Cattaneo, F. (2004). Phys. Rev. Lett. 92
Boruta, N. (1996). Astrophys. J. 458, 832.
Boyer, D.W. & Levy, E.H. (1984). Astrophys. J. 277, 848.
Braithwaite, J. & Spruit, H.C. (2004). Nature 431, 819.
Brandenburg, A. (2005). Astrophys. J. 625, 539.
Brummell, N.H., Clune, T.L., & Toomre, J. (2002). Astrophys. J. 570, 825.
Brun, A.S. & Toomre, J. (2002). Astrophys. J. 570, 865.
Brun, A.S., Miesch, M.S. & Toomre, J. (2004). Astrophys. J. 614, 1073.
Brun, A.S. & Zahn, J.-P. (2006). Astron. Astrophys. submitted
Cally, P.S., Dikpati M. & Gilman (2003). Astrophys. J. 582, 1190.
Cattaneo, F. & Vainshtein S.I. (1991). Astrophys. J. 376, L21.
Cattaneo, F. (1994). Astrophys. J. 434, 200.
Charbonneau, P., Dikpati, M. & Gilman, P.A. (1999). Astrophys. J. 528, 523.
Charbonneau, P. et al. (1999). Astrophys. J. 527, 445.
Christensen-Dalsgaard, J., Gough D.O. & Thompson, M.J. (1991). Astrophys. J.

378, 413.
Clune T.L. et al. (1999). Parallel Comp. 25, 361.
Corbard, T. et al. (2001). in Proceedings of the SOHO 10/GONG 2000 Workshop:

Helio- and astero-seismology at the dawn of the millennium. ed A. Wilson (ESA
Publications), p. 265.

Cowling, T.G. (1945). Mon. Not. Roy. Astron. Soc. 105, 166.
Cowling, T.G. (1957). in Magnetohydrodynamics, Interscience, New York.



Magnetic confinement of the solar tachocline 37

Dikpati, M. & Gilman, P.A. (2001). Astrophys. J. 551, 536.
Dormy, E., Cardin, P., & Jault, D. (2001). Earth Planet. Sci. Let. 160, 15.
Dormy, E., Jault, D. & Soward, A.M. (2002). J. Fluid Mech. 462, 263.
Elliott, J.R. & Gough, D.O. (1999). Astrophys. J. 516, 475.
Ferraro, V.C.A. (1937). Mon. Not. Roy. Astron. Soc. 97, 458.
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