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Douglas Gough & Michael McIntyre proposed, in 1998, the first global and
self-consistent model of the solar tachocline. Their model is however far
more complex than analytical methods can deal with. In order to validate
their work and show how well it can indeed represent the tachocline dynam-
ics, I report on progress in the construction of a fully nonlinear numerical
model of the tachocline based on their idea. Two separate and complementary
approaches of this study are presented: the study of shear propagation into a
rotating stratified radiative zone, and the study of the monlinear interaction
between shear and large-scale magnetic fields in an incompressible, rotating
sphere. The combination of these two approaches provides good insight into
the dynamics of the tachocline.

9.1 Introduction

The tachocline was discovered in 1989 by Brown et al.; it is a thin shear
layer located at the interface of the uniformly rotating radiative zone and
differentially rotating convective zone of the sun. Several issues about these
observations remain unclear. Why is the radiative zone rotating uniformly
despite the latitudinal shear imposed by the convection zone, and why is the
tachocline so thin? How can the tachocline operate the dynamical transi-
tion between the magnetically spun-down convection zone and the interior?
The first model of the tachocline was presented by Spiegel & Zahn (1992).
They studied the propagation of the convection zone shear into the radia-
tive zone under various hypotheses; in particular, they showed that in the
case where angular momentum in the tachocline was transported only by
isotropic viscosity the convection zone shear would propagate deep into the
radiative zone within a local Eddington-Sweet timescale (rather than a vis-
cous timescale) contrary to what is suggested by observations (Schou et al.,
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1998). Very roughly, the mechanism for shear propagation into a stratified
region is the following: the existence of shear leads to a slight imbalance
in the hydrostatic equilibrium and thereby drives meridional flows; these
can burrow into the radiative zone, transporting and redistributing angular
momentum deeper and deeper. Spiegel & Zahn then studied ways of confin-
ing the shear to a thin tachocline through angular-momentum transport by
anisotropic Reynolds stresses; however, in a first part of this paper I would
like to look a little more in detail at the isotropic case, as it can both be
used in further investigations of the Gough & McIntyre model, as well as in
more general studies of stellar rotation and rotational mixing.

9.2 One half of the problem: shear propagation into a rotating
stratified fluid

In this first part, I will consider solar-type stars only and assume that their
radiative zone is a stable, isotropic fluid with uniform viscosity ., and that
it has little influence on the dynamics of overlying convection zone. As a
result, I will simply assume that the convection zone is imposing a given
shear to the underlying stably stratified region. Also, I will assume that the
dynamical timescale of this system is short compared to the stellar evolution
timescale and the stellar spin-down timescale, so that I can limit my study
to the steady-state case. This assumption will be dropped in future works
on this subject. The equations describing this steady system are

- 1
- Vu = —-Vp— p, VO — gV, + MVVQu + 3,uVV(V-u) ,

onThu - Vsy = V-(kVT) ,
p_p T
= + ,
P pn In
V20 = 47Gp |
V-(phu) =0, (9.1)

where p,p and T are respectively the total density, pressure and tempera-
ture, u = (uy, up, up = sinf Q) is the velocity field with respect to spherical
polar coordinates (7,0, @), ® is the gravitational potential, and k is the ther-
mal conductivity. These equations are the first-order perturbation around
the non-rotating hydrostatic background equilibrium (denoted by suffix h);
this is a good approximation, as we will see, provided the centrifugal force
is much smaller than the gravitational force. The background quantities
On, Ph, Pn and Ty, are extracted from the standard solar model calculated by
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Christensen-Dalsgaard et al. (1991). The perturbed quantities are denoted
by tildes, p, <i>, p and T. The full nonlinearity of the momentum advection
process is kept.

The boundary conditions used on the system are the following: the con-
vection zone shear (as it is observed in the sun) is imposed at the top bound-
ary and continuity of the stresses across the radiative-convective interface
imposes another two conditions (on the continuity of the radial derivatives
of the azimuthal and latitudinal velocities). A small impermeable core is
removed from the region of computation near the centre to avoid singular-
ities. This core is assumed to be rotating solidly, with a rotation rate £,
determined through the steady-state condition that the total flux of angular
momentum through the boundary is null. The regions outside the domain of
simulation are assumed to be highly conductive so that they satisfy VT = 0,
which provides the thermal boundary conditions to apply to the system.

Using the assumption of axisymmetry, I reduce the momentum equation
in (9.1) to:

u - Ve (€ sinfug) = i’jDQ (& sinfug) , (9.2)
19 oy sind (9p, 0®  10p Ey o, .
pn 0z (phu¢) - Oh ( ¢ 90 c 89) + oh D (f Sln9w¢) )

where £ = r/r. is the new radial coordinate normalized by the radius ¢
of the star, z is the normalized cylindrical coordinate that runs along the
rotation axis, ¢ is the co-latitude, E, = ,uv/rgQC is the Ekman number,
e = r2Q2(1®y, /1) 7! is the ratio of the centrifugal to gravitational forces, and
w = V X wu is the vorticity. In this expression the following normalizations
have been applied: [r] = 7o, [u] = 70, [®] = 7202, [T] = 1K, [p] =
1gem ™3, where 7 is the radius of the radiative zone and € is the typical
rotation rate of the star. The operator D? is defined as

0? sinf 0 1 0
D? = 9.3
oz T 2 o ( sin aa) (5:3)
The energy equation becomes, to first order in the thermodynamical per-
turbations
o, }? Ph 275
€T, 02 Eﬂur = Vel (9.4)

where o is the Prandtl number, Ny, is the background buoyancy frequency.
Finally, the equation of state can be combined with the radial and latitu-
dinal components of the momentum equation to provide an expression for
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Two standard approximations are often performed. The first one is the
Boussinesq approximation, commonly used in studies of the tachocline,
which is only justified when the thickness of the layer studied is much smaller
than the background density scale-height. The second approximation con-
sists in neglecting the effects of the mean centrifugal force on the system by
supposing that its main contribution is a very small (negligible) oblateness
of the hydrostatic background.

At the time of the Mons conference I presented numerical and analytical
solutions of this system of equations and boundary conditions under both
approximations. It has since appeared that both approximations were highly
unjustified in this problem (as the bulk of the radiative zone spans many
scale-heights, and as the mean centrifugal force creates a global baroclinicity
of the system that must be taken into account) and lead to erroneous results.
I now present instead the solution to the complete problem, solving the
equations presented in (9.1). These equations are solved numerically, and
the results suggest a scaling of the unknowns T, u, and uy which depends
essentially on the parameter

A =oNZ/Q% . (9.6)

9.2.1 Slow rotating case (A > 1)

In the case of slow rotation, I find by studying the numerical results that T
and the poloidal components of the velocity u, g scale the following way:

T =TT,
urg = Ep/(Apn)ure (9.7)

where the quantities with bars are the scaled quantities, of order of unity. It
is also found that ® is always of order of unity, which is expected. Note that
the scaling for the meridional motions is a local Eddington-Sweet scaling (see
Spiegel & Zahn, 1992). Applying this ansatz to the system of equations given
in (9.1), an expansion in powers of 1/X reveals that the angular-momentum
balance is dominated to zeroth order by viscous transport; thus

D?(¢ sinfugy) =0, (9.8)



Dynamics of the solar tachocline 135

1.0 7=

0.8 0.8

Q
o

o
~

0.4

Rotation rate Q/Q_

Streamlines ¥

<
NI

0.2

0.0L . . . 0.0

Fig. 9.1. Numerical solution of the system (9.1) for a solar-type star rotating 100
times slower than the sun (A ~ 10?). The quadrants show the radiative zone only
and the imposed shear at the top of the radiative zone is solar-like (i.e. Qg =
(1 — 0.15 cos®f — 0.15 cos*@). The left panel shows the angular velocity, which
is viscously dominated. The interior rotation rate is 0.957 times that imposed at
the surface at the equator. The right panel shows the streamlines (dotted lines
represent a clockwise flow, and solid lines represent an anti-clockwise flow). The
contours are logarithmically spaced. The structure is reminiscent of Holton layers.

which determines the angular velocity profile uniquely. Using this result in
the first order equations provides a relation between the temperature and
gravitational potential perturbations:

P O <Ph 2> _ <8T dlnThaé>
ug | = sinf ,

on 02 \ pn 00 d¢ 00
0 o=  4nGppre |dlnpy [ cosf , 0P oT
a0 VEE = [ de <sm9“¢ 00 | Tag| 0 OV

which can be solved independently for 7' and ®. Finally, the temperature
fluctuations lead to meridional motions through

up ~ VT . (9.10)

Figure 9.1 shows the results of the numerical solutions for the angular ve-
locity profile and the meridional motions corresponding to a slowly rotating
solar-type star (for which A ~ 10%).
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9.2.2 Fast rotating case (A < 1)

In the case of fast rotation it is found that the correct scaling is
T =\, T ,
Urg = Eu/pntrg - (9.11)

This time, I perform an asymptotic expansion in the small parameter A. In
this limit the temperature fluctuations are strongly damped by the rapid
heat diffusion (as A < 1 is equivalent to the small Prandtl number limit)
and the system reaches an equilibrium which is determined by the zeroth
order equations:

pn 0 Ph, 2 __SinadlnTh&i)
pn0z \pn ¢) ¢ 00’
0 o pp | cosh , 0D
d=4 - 12
90" € TG | sng " T o (9.12)

These equations can in principle be solved for ui and @ and provide, to the
next order in A, the meridional flow through the advection diffusion balance:

u - Ve (€ sinfug) = D? (€ sinfuy) | (9.13)
and, finally, the temperature fluctuations through
u= VT . (9.14)

The results of the numerical simulations for small lambda (A ~ 1072) are
shown in Fig. 9.2.

9.2.3 Solar rotation rate

In the solar case, the parameter A varies between 0.1 and 1 in the region
between the two boundaries. Although the solution is closer to the fast
rotating case, the asymptotic analysis does not apply and the dynamics of
the system result from a complex interaction of the momentum balance, the
thermal energy advection-diffusion balance and the Poisson equation.

9.2.4 Discussion

I have studied the nonlinear dynamics of the radiative zone of a rotating
solar-type star when a latitudinal shear is imposed by an overlying convec-
tion zone. This study is valid provided that the star is far from break-up (i.e.
that the centrifugal force is small compared to the gravitational potential).
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Fig. 9.2. Numerical solution of the system (9.1) for a solar-type star rotating 10
times faster than the sun (A ~ 1072). The left panel shows the angular velocity,
which increases with depth through angular-momentum conservation. Note how
the latitudinal variation of the angular velocity is small compared to its radial
variation. The interior rotation rate is 5.26 times that imposed at the surface at
the equator. The right panel shows the temperature fluctuations. Note that even
when the stellar oblateness is of order of 1073, the temperature fluctuations remain
of order of 1075 through efficient heat diffusion.

I found that few approximations can be safely used in this study: the
nonlinear advection terms and the effects of the centrifugal force must be
carefully included in momentum equation. However, in the limit where the
star is far from the break-up point, the perturbations to the hydrostatic
background are found to be small indeed, which justifies the linearization of
the equation of state.

Two asymptotic limits were found, which depend on the value of the pa-
rameter A = o N7 /Q2. In the case of a slowly rotating star (with A > 1) the
hydrostatic background acquires a small ellipticity and the angular velocity
profile is viscously dominated. The meridional flow velocities are of order of
the local Eddington-Sweet velocity (e.g. Spiegel & Zahn, 1992) and take the
shape of alterning dipolar cells reminiscent of the Holton layer structure. In
the case of a fast rotating star (yet far from breakup), the temperature fluc-
tuations are determined by an advection-diffusion balance which limits their
amplitude to roughly AeTy,; this value is independent of the rotation rate.
The angular velocity profile and the fluctuations in the gravitational poten-
tial can be determined independently through the momentum equation and
the Poisson equation. It is found that the angular velocity increases sharply
with depth, as expected from equation (9.2), and varies little with latitude.
Similarly, the perturbation to the gravitational potential vary little with lat-
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itude, which suggests the possibility of approximating this limit analytically
as a one-dimensional problem. This is under current investigation.

Finally, the effects of the boundary conditions on the problem (and in
particular the presence of a lower rigid boundary) remain to be carefully
analysed.

To summarize the first part of this paper, I have shown that it is possible
to study semi-analytically (in some cases) and numerically the problem of
shear propagation into the solar radiative zone in a self-consistent way, when
taking into account isotropic viscosity onlyf. The main result is the follow-
ing: as Spiegel & Zahn predicted, in this isotropic case the shear imposed by
the convection zone penetrates all the way into the solar core. The failure to
reproduce observations therefore suggests that other dynamical phenomena
must be present in the solar radiative zone.

9.3 The other half of the problem: nonlinear interaction between
a large-scale field and flows in a rotating sphere

Having studied the difficulty of hydrodynamical models to explain the struc-
ture of the solar tachocline, Gough & McIntyre (1998) suggested an alterna-
tive theory, namely that the observations could be reproduced through the
existence of a large-scale fossil field in the solar radiative zone. As McGregor
& Charbonneau (1999) showed, such a field can indeed impose a uniform ro-
tation throughout most of the radiative zone and confine the shear to a thin
tachocline provided none of the field lines are anchored into the convection
zonel: the field must be entirely confined to the radiative zone. Studies in
the non-magnetic case following the lines described in the first part of this
paper seem to suggest that shear-driven baroclinic imbalance leads to down-
welling flows near the poles and the equator, with a localized upwelling in
mid-latitudes (in regions of little shear). This phenomenon is illustrated in
Fig. 9.3. Gough & Meclntyre combined these two results and suggested that
baroclinically driven flows could indeed lead to the confinement of the field
through nonlinear advection, and proposed a new model of the tachocline
based on this idea. However, only a fully nonlinear numerical study can
verify whether this dynamical balance could indeed lead to the observed
rotation profile.

As a first step towards a complete numerical simulation of the tachocline
according to the Gough & McIntyre model, I have looked at the nonlinear

t Incidentally, it is clear that this type of analysis is not limited to the solar case, but can be
applied to other stars with a wide range of rotation rates, masses, and ages. It will be interesting
to compare the corresponding results to the asteroseismic observations of COROT.

1 The shear would otherwise propagate along field lines according to Ferraro’s isorotation law.
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Fig. 9.3. Numerical solution of the system (9.1) for a solar-type star rotating with
the observed solar angular velocity. The rigid bottom boundary was artificially
placed at r = 0.97r. to mimic the presence of a confined large-scale magnetic field.
The left panel shows the angular velocity, when the convection zone shear is imposed
at the top. The right panel shows the streamlines, with dotted lines representing
clockwise flow and solid lines representing anti-clockwise flow. Note the two-cell
structure with upwelling in mid-latitudes; note also the presence of an equatorial
boundary layer.

interaction of a dipolar magnetic field and shear-driven motions only, when
all thermal /compressibility effects are neglected. In these simulations, the
fluid is incompressible with constant density p. This allows me to determine,
through a simplified model, whether the idea of field confinement through
meridional motions of the type described by Gough & Meclntyre is indeed
possible. In order to do this, I have created a numerical model in which
meridional flows are created by the shear, not through baroclinic driving but
through Ekman pumping on the boundary. The interest of this approach
is that the geometry of the flow in this simplified problem is qualitatively
similar to that shown in Fig. 9.3: it possesses a downwelling near the poles
and the equator, and upwells in mid-latitude.

The numerical procedure is the following. I solve the following system of
equations

E
2(e. xu)y = A(jxB)g+ p” (V)

[Vx(ux B)], + E,(V’B)y = 0,
Vu = 0,
V-B = 0,

where B is the magnetic field, E, is the magnetic Ekman number and A
is the global Elsasser number defined as A = B2/pr2Q2. This system is
solved in a spherical shell, where, as in the first part of this paper, the
outer boundary corresponds to the bottom edge of the convection zone and
the inner core is removed to avoid singularities. The outer boundary is
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now assumed to be impermeable in order to create artificially an Ekman
layer at the interface with the convection zone which will drive the required
meridional flows. A point dipole is placed at r = 0 such that the radial field
at the pole at r = 7, is By. The regions outside the region of simulation
are supposed to be conductive so that the magnetic field satisfies V2B =0
in the steady state case. As in the first set of simulations, the inner core is
rotating solidly with angular velocity €2, where €2, is determined through
the steady-state requirement that the angular-momentum flux through the
inner boundary is null.

The results are now discussed for fixed diffusive parameters, when only
the Elsasser number is varied. For low Elsasser number (A < 1), the system
is dominated by the Coriolis forces and the magnetic field is mostly passive.
The shear imposed by the convection zone propagates deep into the radiative
zone along the rotation axis, thereby satisfying Proudman’s rotation law.
Two meridional circulation cells are created by Ekman pumping on the outer
boundary, with downwelling at the poles and the equator and upwelling in
mid-latitudes, as required; they burrow deep into the radiative zone. In the
limit of strong magnetic field (for A > 1) Lorentz forces rule the dynamics
of the system; the poloidal field is barely affected by the rotation or the
meridional motions and retain a dipolar structure throughout the interior.
The shear propagates into the radiative zone along the field lines which have
a footpoint in the convection zone, through Ferraro’s isorotation theorem.
Again this limit fails to reproduce the observations.

Only in the intermediate case (A ~ 1) does the system begin to show
the existence of a tachocline. Indeed, in this limit the field is still strong
enough deep in the interior to dominate the dynamics of the system, but the
meridional motions driven at the outer boundary manage to advect the field
downwards near the equator thereby confining the field into the radiative
zone in that region. At higher latitudes, however, some field lines retain
their footpoints in the convection zone. As the field is mostly confined into
the radiative zone, it imposes a state of near-uniform rotation save perhaps
in a thin diffusive boundary layer near the top of the radiative zone and
near the poles. This structure is reminiscent of the tachocline. Moreover,
the meridional motions are confined to the shallower regions of the radiative
zone by the underlying field; the consequences of the existence of this shallow
mixing layer on the light element abundances is directly observable. The
results of the simulations in the intermediate case are shown in Fig. 9.4.
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Fig. 9.4. Simulation results for A = 1, E,, = 6.25 x 107°, and E,, = 6.25 x 10~°.
Panel (a) shows the angular velocity, which is nearly uniform in the radiative zone
whereas the shear is confined to the equatorial regions near the upper boundary,
and around the poles. Panel (b) shows the meridional motions, which are confined
to the upper layers of the radiative zone by the underlying magnetic field. The flow
is downwelling at the equator and upwelling in mid-latitudes. Panel (c¢) shows the
toroidal field, which is virtually null in regions of uniform rotation. Finally, panel
(d) shows the poloidal field lines, which are confined in the radiative zone by the
meridional motions.

9.4 Conclusion

It is now time to combine the results that we have learned from these two
separate studies of the rotation profile in the radiative zone and relate them
to the tachocline dynamics.
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The model of the tachocline proposed by Gough & Mclntyre (1998) at-
tempts to solve the following problem: how can we explain that the solar
radiative zone is rotating uniformly when a study of standard stellar rotation
would normally suggest the existence of strong shear. Gough & Mclntyre
suggested that the interaction of a large-scale field and baroclinically driven
meridional motions in the tachocline could lead to the observed angular ve-
locity profile. This model hangs on two key points: the magnetic field must
be entirely confined to the radiative zone to impose uniform rotation, and
the meridional motions must be confined to the tachocline to explain both
the required two-cell structure (which can then in turn confine the field) and
the observed light element abundances (Elliott & Gough, 1999).

By studying the dynamics of a thin layer of stratified fluid representing
the tachocline I have shown that baroclinic effects do indeed lead to a two-
cell circulation with upwelling in mid-latitudes and downwelling near the
poles and the equator. I have then taken a complementary approach and
looked at the dynamical interaction between such a two-cell circulation and
a dipolar large-scale field. This allowed me to show that the meridional
motions can indeed confine this field to the radiative zone for some range of
values of the magnetic field strength. The confined field imposes a uniform
angular velocity to most of the radiative interior, save in a thin tachocline
where all the dynamical interactions described above take place.

To conclude, I believe that these preliminary analyses show that the model
proposed by Gough & Mclntyre possesses the right physical elements for the
description of the dynamics of the tachocline. There remains now only the
task of completing this work through the numerical resolution of their whole
model.
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