
A Fortran 77 parallel implementation of the

Newton-Raphson-Kantorovich method for two-point boundary

value problem:

User Guide

Luis Acevedo-Arreguin1, Pascale Garaud1 & Jean-Didier Garaud2,
1 Applied Mathematics and Statistics, Baskin School of Engineering, UC Santa Cruz

2 ONERA, Paris

March 2, 2010

1 Description of the package

NRK ParaSol is a parallel implementation of the commonly-used Newton-Raphson-Kantorovich
(NRK) algorithm ([2],[3]) originally developed by Gough & Moore, which solves systems of
I first order, nonlinear, coupled, ordinary differential equations (ODEs) in the two-point
boundary value problem expressed as

I
∑

j=1

Mij(x,y)
dyj

dx
= fi(x,y) , where i = {1, 2, . . . I} , (1)

with boundary conditions

gk(xA,y) = 0 , where k = {1, 2, . . . kA} ,

gk(xB ,y) = 0 , where k = {kA + 1, . . . I} , (2)

for the vector of dependent variables y = {y1(x), y2(x), . . . yI(x)} on a discretized interval
[xA, xB] = {x1, x2, . . . xN}. Here, xA = x1 and xB = xN , kA is the number of conditions
set at the boundary located at xA, whereas kB = I − kA is the number of conditions set
at the boundary located at xB . The code implementation requires that (1) the mesh be
either monotonically increasing or monotonically decreasing, and (2) the number of boundary
conditions at the first meshpoint be greater than or equal to that at the second meshpoint1:
kA ≥ kB . Note that this version of the algorithm is second-order accurate in the spatial
discretization.

1.1 Installation

To install the package, untar the file NRK ParaSol.tar. This creates a directory struc-
ture with seven directories: five of them containing the examples provided in this guide, a
/templates directory, and the directory /docs with the documentation.

1Note that if kB > kA, the user simply needs to reverse the mesh.

1

Each example contains the software organized in two folders: /src and /workdir.

• The folder /src contains the subroutines organized in two sub-folders: the solver rou-
tines /src solver routines, which should not be modified, and the user routines
/src user routines, which can be tailored at will.

• The folder /workdir contains the initialization .h file, and a sample Makefile and PBS

file. This folder also contains all the output files organized in various directories (see
below).

The directory /templates is organized in the same way as the example directories, but the
subroutines in /src user routines should be completed by the user as explained in Section
1.3.

1.2 Directory Workdir

The directory /workdir is where the code is executed. It contains both input and output files
and directories as described below. The Makefile provided is generic and should be modified
to include the user’s version of Fortran (FORTRAN). A pp.pbs file is provided if necessary (for
users on the Pleiades supercomputer at Santa Cruz for example), though the code can be
run directly using the standard mpirun command. Note that the user should verify that the
number of processors used in the mpirun command matches that of the init simu.h file.

1.2.1 Input files

The main input parameters are entered into the init simu.h file:

• ii, the number of ordinary differential equations,

• ka, the number of conditions at the boundary xA,

• kb, the number of conditions at the boundary xB ,

• linearlhs, an optimization flag which is set to 1 if the coefficients of the left-hand-side
matrix Mij are all independent of y.

• nn, the number of meshpoints,

• xa, the coordinate of the first boundary,

• xb, the coordinate of the second boundary,

• nprev, an indicator for the use of previous results as initial guess,

• niter, the maximum number of iterations to be attempted, and

• nproc, the number of processors.

The file init simu.h can be modified to include any user-defined parameter if needed
(see Example 4). All other input files/data should be stored for clarity in the directory
/workdir/inputfiles.

2

1.2.2 Output files

The output files are organized in the following folders:

• /guessd: The NRK solver saves the initial guess in this folder.

• /tempor: The NRK solver saves the solution at each iteration in this folder.

• /result: The NRK solver saves the results in this folder once the accuracy criterion is
satisfied.

• /diagnosticfiles: Solution errors are written in the file ea.dat included in this
folder. The file ea.dat reports both the average error and the maximum error for each
element of the computed vector y.

1.3 User-defined subroutines

The directory /src/src user routines contains all user-modified routines. The driver rou-
tine is the main.f. Subroutines describing the ODEs and boundary conditions of the problem
to be solved are lhs.f, rhs.f, and bc.f, respectively. In addition, the user should modify
mesh.f where the mesh is created, guess.f where a guess is generated and printresult.f

where results are printed to files.

• main.f: Driver routine.

• rhs.f: The user inputs the right hand side of equation (1), represented by the vector
f , into the array f(i). The non-zero elements of the Jacobian, ∂fi/∂yj, are input into
the array fd(i, j). See examples for detail.

• lhs.f: The user inputs the non-zero elements of the matrix M corresponding to the left-
hand-side of equation (1) through the function am(i, j). Likewise, the non-zero elements
of the left-hand-side Jacobian ∂Mij/∂yk are input through the function amd(i, j, k). See
examples for detail.

• bc.f: The user inputs the boundary conditions, defined by the vector g, into the array
g(i). The user also inputs the non-zero elements of the Jacobian ∂gi/∂yj into the array
gs(i, j). Finally, a permutation vector v is also defined in this subroutine to renumber
the dependent variables to prevent formation of singular matrices. See Example 2b for
detail.

• mesh.f: The user defines an array of meshpoints. A default file creating a linearly-
spaced mesh is provided.

• guess.f: The user provides a trial solution either by writing a mathematical function,
or by reading external files. A default file creating a constant initial guess is provided.

• printresult.f: The user specifies in this subroutine how the vector solution y is
printed to files. A default file for printing is provided.

Some examples follow illustrating how to apply NRK ParaSol under different circum-
stances.

3

2 Examples

2.1 Example 1

Let us consider first the following differential equation

d2y

dx2
+

dy

dx
− 2y = ex (3)

on the interval (0, 1), under the following boundary conditions

y(0) = 1 ,

y(1) = 0 . (4)

This second-order equation can be rewritten as two first-order equations, hence I = 2. We
define the parameters for this case in the file init simu.h as follows:

c Initialization file for the specific simulations

c Initialization of parameters specific to the system of ODEs to solve

integer ii,ka,kb

parameter(ii = 2) ! Number of equations

parameter(ka = 1) ! Number of boundary conditions at first meshpoint

parameter(kb = 1) ! Number of boundary conditions at second meshpoint

integer linearlhs

parameter(linearlhs=1) !If the lhs is linear then 1, otherwise 0

c Initialization of parameters specific to the mesh used

integer nn

parameter(nn = 1000) !number of meshpoints

double precision xa,xb ! First and last meshpoint

parameter(xa=0.d0)

parameter(xb=1.d0)

c Initialization of relaxation parameters

integer nprev

parameter(nprev = 0) !use previous guess (1) or not (0)

double precision ucy,acy

parameter(ucy = 1.d0) ! convergence speed (must be le 1.0)

parameter(acy = 1.d-16) ! accuracy required

integer niter

parameter(niter = 10) ! number of iterations to try.

c Initialization of quantities specific to the parallel implementaion

integer nproc,nbppmax

c Number of processors :

parameter(nproc=4)

c Maximum number of blocks per processor

parameter(nbppmax = (nn+1)/nproc +1)

Note that this input file also specifies the number of processors to be 4.

4

2.1.1 Case 1a

By defining

y1 = y ,

y2 =
dy

dx
, (5)

we can rewrite equation (3) in the following way

d

dx

(

y1

y2

)

=

(

y2

2y1 − y2 + ex

)

, (6)

from which we can obtain the expressions for the RHS functions:

f1 = y2 ,

f2 = 2y1 − y2 + ex . (7)

The Jacobian matrix is

(

∂f1

∂y1

= 0 ∂f1

∂y2

= 1
∂f2

∂y1

= 2 ∂f2

∂y2

= −1

)

,

for which only the non-zero terms need to be entered. Hence, the core part of the subroutine
rhs.f is written as

f(1) = y(2)

fd(1,2) = 1.d0

f(2) = 2.d0*y(1)-y(2)+dexp(x)

fd(2,1) = 2.d0

fd(2,2) = -1.d0

The corresponding boundary conditions can be expressed within the subroutine bc.f as

g1 = y(xA) − 1 = y1(xA) − 1 ,

g2 = y(xB) − 0 = y1(xB) − 0 . (8)

We define y1(xA) as ya(1) and y2(xA) as ya(2). Similarly, y1(xB) is yb(1) and y2(xB) is
yb(2). Hence, these functions along with their corresponding derivatives are coded in the
subroutine bc.f as

g(1) = ya(1)-1.d0

gs(1,1) = 1.d0

g(2) = yb(1)

gs(2,1) = 1.d0

In a similar fashion, the subroutine lhs.f contains the expressions for Mij and ∂Mij/∂yk.
By contrast with rhs.f and bc.f these quantities are returned through function calls, Mij

in am and ∂Mij/∂yk in amd. This is done to ease the memory requirement for very large
systems of ODEs. In this example, the Mij matrix is unity. This can be input as:

5

am=0.d0

if(i.eq.j) am=1.d0

in the am function. The amd function needs not to be entered if Mij is independent of y (i.e.
if linearlhs = 1).

All the corresponding subroutines adapted for this example are included in the directory
/example1a/src/src user routines.

2.1.2 Case 1b

Alternatively, we can express equation (3) as

(

1 0
1 1

)

d

dx

(

y1

y2

)

=

(

y2

2y1 + ex

)

, (9)

from which we can obtain the expressions for the subroutines rhs.f, bc.f, and lhs.f to be
slightly different. In the case of lhs.f, for example, the nonzero elements of the matrix M

are now input as

am=0.d0

if(i.eq.j) am=1.d0

if(i.eq.2 .and. j.eq.1) am=1.d0

The user may compare the subroutines rhs.f, bc.f, and lhs.f in the directory
/example1b/src/src user routines

with the corresponding subroutines at
/example1a/src/src user routines.

2.1.3 Result comparison

When the code for this example is executed, the exact solution is written along with the
numerical one in the file Y001.dat both in the directory
/example1a/workdir/result

and
/example1b/workdir/result.

2.2 Example 2

NRK can also be used to find solutions to eigenvalue problems. Let us consider now the
following eigenvalue differential equation

d2y

dx2
+ ω2y = 0 (10)

on the interval (0, 1), under the following boundary conditions

y(0) = 0 ,

y(1) = 0 ,

dy

dx
(0) = 1 . (11)

6

2.2.1 Case 2a

By defining

y1 = y ,

y2 =
dy

dx
,

y3 = ω , (12)

we can rewrite equation (10) in the following way

d

dx





y1

y2

y3



 =





y2

−y2
3y1

0



 (13)

from which we can obtain the expressions for the subroutine rhs.f:

f1 = y2 ,

f2 = −y2
3y1 ,

f3 = 0 . (14)

Hence, the core part of the subroutine rhs.f is written as

f(1) = y(2)

fd(1,2) = 1.d0

f(2) = -y(3)**2*y(1)

fd(2,1) = -y(3)**2

fd(2,3) = -2*y(3)*y(1)

f(3) = 0.d0

Likewise, the corresponding boundary conditions can be expressed within the subroutine
bc.f as

g1 = y(xA) − 0 = y1(xA) = yA(1) ,

g2 =
dy

dx
(xA) − 1 = y2(xA) − 1 = yA(2) − 1 ,

g3 = y(xB) − 0 = y1(xB) = yB(1) . (15)

These functions along with their corresponding derivatives are coded in the subroutine bc.f

as

g(1) = ya(1)

gs(1,1) = 1.d0

g(2) = ya(2) - 1.d0

gs(2,2) = 1.d0

g(3) = yb(1)

gs(3,1) = 1.d0

7

Finally, the subroutine lhs.f contains the expressions for Mij and ∂Mij/∂yj, which reduce
to am=1 for the elements on the diagonal of the matrix M. As in Example 1, amd needs not
to be entered if the problem in lhs.f is linear.

Note that since this is an eigenvalue problem, we expect a number of solutions. Typically,
different solutions are found starting from different initial guesses. The user can modify the
subroutine guess.f to find solutions corresponding to different eigenvalues. We change the
default values in guess.f to solve case 2b to obtain a specific eigenvalue solution. For ex-
ample, if y3 is set to 7 for all x(i) in guess.f, then we get the eigenvalue y3 closest to 7 and
its corresponding solution y1.

2.2.2 Case 2b

This example illustrates the use of the permutation vector. By defining

y1 = ω ,

y2 = y ,

y3 =
dy

dx
, (16)

we can rewrite equation (10) in the following way

d

dx





y1

y2

y3



 =





0
y3

−y2
1y2



 (17)

from which we can obtain the expressions for the subroutine rhs.f:

f1 = 0 ,

f2 = y3 ,

f3 = −y2
1y2 . (18)

Hence, the core part of the subroutine rhs.f is finally written as

f(2) = y(3)

fd(2,3) = 1.d0

f(3) = -y(1)**2*y(2)

fd(3,2) = -y(1)**2

fd(3,1) = -2*y(1)*y(2)

f(1) = 0.d0

Similarly the boundary conditions are now

g(1) = ya(2)

gs(1,2) = 1.d0

g(2) = ya(3) - 1.d0

gs(2,3) = 1.d0

8

g(3) = yb(2)

gs(3,2) = 1.d0

Note that in this case, the Jacobian matrix gs becomes

gs(I, I) =





0 1 0
0 0 1
0 1 0



 (19)

We then see that the submatrix associated with the boundary conditions at xA, namely

gs(kA, kA) =

(

0 1

0 0

)

(20)

is singular. The matrix gs(kA, kA) must be non-singular for this parallel algorithm to work.
Hence, we create a permutation of the columns of gs(I, I) (which is equivalent to renum-
bering the dependent variables) to make the new gs(kA, kA) non-singular:





0 1 0
0 0 1
0 1 0





vT =[2,3,1]
−−−−−−−→





1 0 0

0 1 0

1 0 0



 , (21)

where v(I) is the permutation vector, whose subroutine is in the last part of the file bc.f:

subroutine pervector(v)

c **

c Subroutine where the permutation vector for the boundary condition

c functions is input

c **

implicit none

include ’init_simu.h’

integer v

dimension v(ii)

integer i

v(1) = 2

v(2) = 3

v(3) = 1

return

end

Finally, the subroutine lhs.f contains the expressions for Mij and ∂Mij/∂yj, which reduce
to am=1 for the elements on the diagonal of the matrix M.

9

2.3 Example 3

Let us consider now the Chebishev differential equation ([4]):

(1 − x2)
d2y

dx2
− x

dy

dx
+ ω2y = 0 (22)

under the following boundary conditions

y(0) = 0 ,

y(1) = 1 ,

dy

dx
(0) = −3 . (23)

By defining

y1 = y ,

y2 =
dy

dx
,

y3 = ω , (24)

we can rewrite equation (22) in the following way




1 0 0
0 (1 − x2) 0
0 0 1





d

dx





y1

y2

y3



 =





y2

xy2 − y2
3y1

0



 , (25)

from which we can obtain the expressions for the subroutine rhs.f:

f1 = y2 ,

f2 = xy2 − y2
3y1 ,

f3 = 0 . (26)

The core part of the subroutine rhs.f is

f(1) = y(2)

fd(1,2) = 1.d0

f(2) = x*y(2)-y(3)**2.d0*y(1)

fd(2,1) = -y(3)**2.d0

fd(2,2) = x

fd(2,3) = -2.d0*y(3)*y(1)

f(3) = 0.d0

Likewise, the corresponding boundary conditions can be expressed within the subroutine
bc.f as

g1 = y(xA) − 0 = y1(xA) = yA(1) ,

g2 =
dy

dx
(xA) + 3 = y2(xA) + 3 = yA(2) + 3 ,

g3 = y(xB) − 1 = y1(xB) − 1 = yB(1) − 1 . (27)

10

These functions along with their corresponding derivatives are coded in the subroutine bc.f

as

g(1) = ya(1)

gs(1,1) = 1.d0

g(2) = ya(2) + 3.d0

gs(2,2) = 1.d0

g(3) = yb(1) - 1.d0

gs(3,1) = 1.d0

As in previous examples, the subroutine lhs.f contains the expressions for Mij and ∂Mij/∂yj.
This example requires setting M2,2 = (1 − x2). This is done as:

am=0.d0

if(i.eq.j) am=1.d0

if(i.eq.2 .and. j.eq.2) am=1.d0-x**2.d0

The exact solution is written along with the numerical one in the file Y001.dat in the directory
/example3/workdir/result. The file Y003.dat in the same directory shows the eigenvalue
numerically computed, and the eigenvalue which corresponds to the exact solution provided
in the file Y001.dat.

2.4 Example 4

Let us consider now the van der Pol’s differential equation ([1]):

d2y

dx2
− ǫ(1 − y2)

dy

dx
+

1

4
u2

0y = 0 (28)

under the following boundary conditions

y(0) = 0 ,

dy

dx
(0) = u0 . (29)

In this example, the parameters u0 and ǫ are entered in the init simu.h file as

c Initialization of model-specific parameters

double precision epsil,u0

parameter(epsil=1.d-6)

parameter(u0=1.d0)

By defining

y1 = y ,

y2 =
dy

dx
, (30)

11

we can rewrite equation (28) in the following way

(

1 0
−ǫ(1 − y2

1) 1

)

d

dx

(

y1

y2

)

=

(

y2
1
4u2

0y1

)

, (31)

from which we can obtain the expressions for the subroutine rhs.f:

f1 = y2 ,

f2 =
1

4
u2

0y1 . (32)

The core part of the subroutine rhs.f is

f(1) = y(2)

fd(1,2) = 1.d0

f(2) = 0.25d0*u0**2.d0*y(1)

fd(2,1) = 0.25d0*u0**2.d0

Likewise, the corresponding boundary conditions can be expressed within the subroutine
bc.f as

g1 = y(xA) − 0 = y1(xA) = yA(1) ,

g2 =
dy

dx
(xA) − u0 = y2(xA) − u0 = yA(2) − u0 . (33)

These functions along with their corresponding derivatives are coded in the subroutine bc.f

as

g(1) = ya(1)

gs(1,1) = 1.d0

g(2) = ya(2) - u0

gs(2,2) = 1.d0

The subroutine lhs.f contains the expressions for Mij and ∂Mij/∂yj. This example no
longer has a linear left-hand-side. Indeed,

M2,1 = −ǫ(1 − y2
1) , (34)

∂M2,1

∂y1
= 2ǫy1 , (35)

As a result, we must set linearlhs=0 in the file /workdir/init simu.h. The LHS is then
coded as

double precision function am(i,j,x,y,in)

implicit none

include ’init_simu.h’

12

integer i,j,in

double precision x,y

dimension y(*)

am=0.d0

if(i.eq.j) am=1.d0

if(i.eq.2 .and. j.eq.1) am=-epsil*(1.d0-y(j)**2)

return

end

c ***

double precision function amd(i,j,l,x,y,in)

implicit none

include ’init_simu.h’

integer i,j,l,in

double precision x,y

dimension y(*)

amd=0.d0

if(i.eq.2 .and. j.eq.1 .and. l.eq.1) amd=2.d0*epsil*y(j)

return

end

The first-order approximate solution (for ǫ → 0) is written along with the numerical one in
the file Y001.dat in the directory /example4/workdir/result.

References

[1] Fogiel, M.
The Differential equations Problem Solver
Research & Education Association, 1996, pp. 1261-1263

[2] Garaud and Garaud
Dynamics of the solar tachocline II. The stratified case
MNRAS 391, 1239-1258 (2008)

[3] Press, Teukolsky, Vetterling, and Flannery
Numerical Recipes
Cambridge University Press, 2007, pp. 964-970

[4] Rivlin, T. J.
The Chebyshev Polynomials
John Wiley & Sons, 1974, pp. 4, 31

13

[5] Weinberger, H. F.
A First Course in Partial Differential equations
John Wiley & Sons, 1965, pp. 120, 415

14

