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In many applications of tomography, the fundamental quantities
of interest in an image are geometric ones. In these instances,
pixel-based signal processing and reconstruction is at best ineffi-
cient, and, at worst, nonrobust in its use of the available tomo-
graphic data. Classical reconstruction techniques such as filtered
back-projection tend to produce spurious features when data is
sparse and noisy; these “ghosts’” further complicate the process of
extracting what is often a limited number of rather simple geomet-
ric features. In this paper, we present a framework that, in its
most general form, is a statistically optimal technique for the
extraction of specific geometric features of objects directly from
the noisy projection data. We focus on the tomographic reconstruc-
tion of binary polygonal objects from sparse and noisy data. In
our setting, the tomographic reconstruction problem is essentially
formulated as a (finite-dimensional) parameter estimation prob-
lem. In particular, the vertices of binary polygons are used as their
defining parameters. Under the assumption that the projection
data are corrupted by Gaussian white noise, we use the maximum
likelihood (ML) criterion, when the number of parameters is as-
sumed known, and the minimum description length (MDL) crite-
rion for reconstruction when the number of parameters is not
known. The resulting optimization problems are nonlinear and
thus are plagued by numerous extraneous local extrema, making
their solution far from trivial. In particular, proper initialization
of any iterative technique is essential for good performance. To
this end, we provide a novel method to construct a reliable yet
simple initial guess for the solution. This procedure is based on
the estimated moments of the object, which may be conveniently
obtained directly from the noisy projection data. © 1994 Academic
Press, Inc.
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1. INTRODUCTION

In many applications of tomography, the aim is to ex-
tract a rather small set of geometrically based features
from a given set of projection data [1-3]. In these in-
stances, a full pixel-by-pixel reconstruction of the object
is arather inefficient and nonrobust approach. In addition,
in many situations of practical interest, a full set of data
with high signal-to-noise ratio (SNR) is often difficult, if
not impossible, to obtain. Such situations arise in ocean-
ography, nuclear medicine, surveillance, and nondestruc-
tive evaluation when due to the geometry of the object
or the imaging apparatus, only a few noisy projections are
available [4, 5]. In these cases, the classical reconstruction
techniques such as filtered back-projection (FBP) [5] and
algebraic reconstruction techniques (ART) fail to produce
acceptable reconstructions. The shortcomings of these
classical techniques in such situations can be attributed
to two main sources. First, these techniques are invariably
aimed at reconstructing every pixel value of the underly-
ing object with little regard to the quality and quantity of
the available data. To put it differently, there is no explicit
or implicit mechanism to control greed and focus informa-
tion, thus preventing one from attempting to extract more
information from the data than it actually contains. The
second type of shortcoming results from the fact that
if we assume that the projection data are corrupted by
Gaussian white noise, the process of reconstruction will
have the net effect of “‘coloring’ this noise. This effect
manifests itself in the object domain in the form of spuri-
ous features which will complicate the detection of geo-
metric features. This observation points out the impor-
tance of working directly with the projection data when
the final goal is the extraction of geometric information.
In our effort to address these two issues, we have pro-
posed the use of simple geometric priors in the form of
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finitely parameterized objects (namely, binary polygonal).
The assumption that the object to be reconstructed is
finitely parameterized allows for the tomographic recon-
struction problem to be posed as a finite (relatively low-
dimensional) parameter estimation problem. If we further
assume, as we have done in the latter part of this paper,
that the number of such parameters is also an unknown,
we can formulate the reconstruction problem as a mini-
mum description length estimation problem which pro-
vides for an automatic (data-driven) method for comput-
ing the optimal parameterized objects with the ‘‘best”
number of parameters, given the data. This is, in essence,
an information-theoretic criterion which gives us a direct
way to estimate as many parameters as the information
content of the data allows us to, and thus control the
greed factor.

Other efforts in the parametric/geometric study of to-
mographic reconstruction have been carried out in the
past. The work of Rossi and Willsky [6] and Prince and
Willsky (see [7-9]) has served as the starting point for
this research effort. In the work of Rossi, the object was
represented by a known profile, with only four geometric
parameters, namely, size, location, eccentricity, and ori-
entation. These parameters were then estimated from pro-
jection data using the maximum likelihood (ML) formula-
tion. In their approach, the number of unknown
parameters was fixed and the main focus of their work
was on performance analysis. Prince, on the other hand,
used a priori information such as prior probabilities on
sinograms and consistency conditions to compute maxi-
mum a posteriori (MAP) estimates of the sinogram and
then used FBP to obtain a reconstruction. He made use
of prior assumptions about shape, such as convexity, to
reconstruct convex objects from support samples which
were extracted from noisy projections through optimal
filtering techniques. The approach of Prince provided an
explicit method for integrating geometric information into
the reconstruction process but was in essence still a pixel-
by-pixel reconstruction. Extending these ideas, Lele and
co-workers [10, 11] made use of only support information
to produce polygonal reconstructions. Hanson [12] stud-
ied the reconstruction of axially symmetric objects from
a single projection. Karl [13] also has studied the recon-
struction of 3-D objects from 2-D silhouette projections.

The geometric modeling approach of Rossi and Willsky
was expanded upon to include a more general set of ob-
jects by Bresler, Macovski, and Fessler (see [14-17]). In
these papers, the authors chose sequences of 3-D cylin-
ders and ellipsoids parameterized by stochastic dynamic
models based on their radius, position, and orientation to
model and reconstruct objects in two and three dimen-
sions from projections.

Recently, Thirion [2] has introduced a technique to
extract boundaries of objects from raw tomographic data
through edge detection in the sinogram. Other work in
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geometric reconstruction by Chang [18] and more recently
Kuba (19], Volcic [20], Fishburn et al. [21], and Gardner
[22] has been concerned with the reconstruction of binary
objects from only two noise-free projections.

Our approach provides a statistically optimal ML for-
mulation for the direct recovery of vertices of binary poly-
gons from the projection data in the presence of noise.
We also provide an automatic mechanism for identifying
the statistically optimal number of vertices, from a given
data set. The statistically optimal ML formulation leads
to an optimization problem that is norlinear and filled
with local extrema. An appropriate initial guess is thus
essential for its iterative solution. An important contribu-
tion of this paper is that we thus provide a simple proce-
dure to generate an appropriate initial guess based on
moment estimates of the object computed from the origi-
nal projection data.

The organization of this paper is as follows. In Section
2, we introduce the basic definitions and assumptions and
pose the general problem which we intend to solve. We
also discuss the particular statistical formulations of the
reconstruction problem which we use. In particular, in
Section 2.3, we discuss our novel technique for computing
a good initial guess for the nonlinear optimization prob-
lems that result from our formulations. Section 3 contains
basic performance results and robustness studies for vari-
ous scenarios. Section 4 contains our conclusions.

2. THE RECONSTRUCTION PROBLEM

The Radon transform [35, 23] of a function f(x, y) defined
over a compact domain of the plane O is given by

g, 0)= [ [ i, 3)0t —w-[x,yMaxdy. ()

For every fixed ¢ and 6, g(z, 6) is the line-integral of
f over O in the direction w = [cos(8), sin(8)]T, where
8(t ~ [cos(8), sin(®)]-[x, y]I7) is a delta function on a
line at angle @ + «/2 and distance ¢ from the origin. See
Fig. 1.

Here we assume that the function f is the indicator
function for some simply connected binary polygon and
hence a finite set of parameters uniquely specify the func-
tion f. The estimation of the parameters that uniquely
specify the function f'is the concern of this paper. Let us
stack the polygon vertices that uniquely define fin a vector
V. We will assume throughout that the data available
to us are discrete samples of g which are corrupted by
Gaussian white noise of known intensity. In particular,
our observations will be given by

Y, =g, 8, V¥ + w(t, 0), 2)

forl =i=m, 1 =j= nwhere V*is the true object we
wish to reconstruct. The variables w(z;, 8)) are assumed
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g(t,0)

FIG. 1.

The Radon transform.

to be independent, identically distributed (i.i.d.) Gaussian
random variables with variance 2. We will denote by Y
the vector of all such observations.

2.1,

In our approach, the original data in (2) are used to
directly estimate the vertices V of a polygon in a statisti-
cally optimal way. The dimension of the parameter vector
V (i.e., the number of sides) is determined by the level
of detail that one can extract from the sparse and noisy
data. For clarity, we first consider the case where a fixed
and known number of vertices is assumed. In this case, the
maximum likelihood [24] estimate, V,y, , of the parameter
vector V is given by that value of V which makes the
observed data most likely. In particular, using the mono-
tonicity of the logarithm

Maximum Likelihood Approach

VL = arg max log[P(Y| V)], 3)
1%

where P(Y| V) denotes the conditional probability density
of the observed data set Y given the parameter vector V.
It is well-known that given the assumption that the data
is corrupted by i.i.d. Gaussian random noise, the solution
to the above ML-estimation problem is precisely equiva-
lent to the following nonlinear least-squares error
(NLSE) formulation:

Vi = arg m‘én Z 1Y — 8, 6;, VII*. 4
1J

Formulation (4) shows that, in contrast to the linear
formulation of classical reconstruction algorithms, the
ML tomographic reconstruction approach, while yielding
an optimal reconstruction framework, generally results in
a highly nonlinear minimization problem. It is the nature
of the dependence of g on the parameter vector V that
makes the problem nonlinear.
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Finally, note that if additional explicit geometric infor-
mation is available in terms of a prior probabilistic descrip-
tion of the object vector V, then a maximum-a-posteriori
estimate of V may be computed as follows:

Vumap = arg max log[P(V| Y)]. )
v

In this work we concentrate on the ML problem given
in (3) and its extensions, though application of our results
to the MAP formulation is straightforward.

2.2. Minimum Description Length

In the previous ML discussion we assumed we had
prior knowledge of the number of parameters describing
the underlying object. Without this knowledge, we can
consider the minimum description length (MDL) principal
[25]. In this approach, the cost function is formulated
such that the global minimum of the cost corresponds to
a model of least order that explains the data best. The
MDL approach in essence extends the maximum likeli-
hood principal by including a term in the optimization
criterion that measures the model complexity. In the pres-
ent context, the model complexity refers to the number
of vertices used to capture the object in question. Whereas
the ML approach maximizes the log likelihood function
given in (3), the MDL criterion maximizes a modified log
likelihood function, as follows:

VypL = arg max {lOg[P(Yl )l - glog(d)} . ()

Here d = mn is the number of samples of g(z, #) and N
refers to the number of parameters defining the recon-
struction. Roughly speaking, the MDL cost is propor-
tional to the number of bits required to model the observed
data set with a model of order N, hence the term minimum
description length. Under our assumed observation model
(2) the MDL criterion (6) yields the following nonlinear
optimization problem for the optimal parameter vector

VmoL:

Vup = arg “}1311 m‘}'n {0'_2 2 - s, 6, VIII?
iy
(7)
+ N log(d)} .

Here the optimization is now performed over both V and
the number of parameters N. Note that the solution of
the inner minimization in (7) essentially requires solution
of the original ML problem (3) or (4) for a sequence of
values of N.

Unless otherwise stated, we assume from here on that
the matrix V contains the vertices of an N-sided binary,
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FIG. 2. A projection of a binary, polygonal object.

polygonal region as follows:

V=[V1|V2

"'|VN]- 3

Here V; = [x;, y,]" denotes the Cartesian coordinates of
the ith vertex of the polygonal region arranged in the
counterclockwise direction (see Fig. 2). Note that we use
a matrix of parameters rather than a vector in what follows
for notational convenience in the algorithms to follow,
though this is not essential.

2.3. Algorithmic Aspects: Computing a Good

Initial Guess

Given the highly nonlinear nature of the dependence
of the cost function in (4) on the parameters in V, it
appears evident that given a poor initial condition, typical
numerical optimization algorithms may converge to local
minima of the cost function. Indeed, this issue is a major
obstacle to the use of a statistically optimal, though non-
linear, approach such as given in (3) or (6). In this section,
we describe a method for using the projection data to
directly compute an initial guess that is sufficiently close
to the true global minimum as to, on average, result in
convergence to it, or to a local minimum nearby. We do
this by estimating the moments of the object directly from
the projection data and then using (some of) these mo-
ments to compute an initial guess.

In considering the use of moments as the basis for an
initialization algorithm, one is faced with two important
issues. The first is that although estimating the moments
of a function from its projections is a relatively easy task,
as we have shown in [26, 27], the reconstruction of a
function from a finite number of moments is in general a
highly ill-posed problem even when these moments are
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exactly known [28]. Furthermore, in our framework the
moments are estimated from noisy data, and hence are
themselves noisy. In fact, as higher and higher order mo-
ments are estimated, the error in the estimates of these
moments becomes larger. Our approach avoids these mo-
ment related difficulties by using the moments only to
guide an initial coarse estimate of the object parameters
for subsequent use in solution of the nonlinear ML or
MDL problems. This initial estimate, in turn, itself miti-
gates the difficulties associated with the nonlinearities
of the optimal statistical approaches. In particular, the
amount of computation involved in arriving at an initial
guess using our moment-based method is far smaller than
the amount of computation (number of iterations) required
to converge to an answer given a poor initial guess, espe-
cially since a poor initial guess may converge to a local
minimum far from the basin of the global minimum. Fur-
ther, the parameterization of the objects serves to regular-
ize and robustify the moment inversion process [28-31].

Our method of using moments to generate an initial
guess is based on the following set of observations. First,
let u,,, 0 = p, q denote the moment of f(x, y) of order
p + g as given by

Mpy = f j xPyif(x, y) dx dy. )

In particular, note that the moments up to order 2 have
the following physical relationships. The zeroth-order mo-
ment ugy is the area of the object, the first-order moments
o and u, are the coordinates of the center of mass
of the object scaled by the area, and the second-order
moments fg,, i1y, Ky are used to form the entries of the
inertia matrix of the object. Thus these moments contain
basic geometric information about object size, location,
and elongation and orientation that, if available, could be
used to guide our initialization of the nonlinear optimiza-
tion problems (4) or (7). Our first aim then is to estimate
them directly from the noisy projection data. To that end,
it is easy to show that [23]

fw g, 0)*d1 = f fmzf (x, y)lx cos(6)

+ y sin(@)]* dx dy.

(10)

By expanding the integrand on the right hand side of
(10), it becomes apparent that the moments of the projec-
tions are linearly related to the moments w,, of the object.
In particular, specializing (10) to k = 0, I, 2, and noting
that f(x, y) is an indicator function when the objects in
question are binary, we arrive at the following relation-
ships between w,,, 0 < p + q < 2 and the projection
g(t, 8) of f(x, y) at each angle 0:

oo = [ 204, 6) dt = H0), (1)
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follows directly from that of (2). The least-squares esti-

[cos(@) sin(8)] [“"’] = f g(t, Mt dr = V@), (12)
Moy

M20
sin¥(6)] | pn
o2

= j oz, 0)2 dt = %(9). (13)

[cos¥(®) 2 sin(8) cos(B)

Thus if we have projections at three or more distinct,
known angles we can estimate the moments of up to order
2 of the object we wish to reconstruct. The computation
of these moments is a linear calculation, making their
estimation from projections straightforward (see [26]).
Since, in general, many more than three projections are
available, the estimation of these moments determining
the area, center, and inertia axes of the object is overdeter-
mined. The result is a robustness to noise and data sparsity
through a reduction in the noise variance of their esti-
mated values. In particular, we can stack the moments
#W(6)) obtained from the projections at each angle 6; to
arrive at the following overall equations for the p,, up to
order 2:

1 [ 9%9,) |
= : , (14)
1 #9,)
cos(8,) sin(d;) [ ey ]
: : [P«m] _ : , (15)
cos(d,) sin(d,) Hor L?15’“)(45’,.)
cosX8,) 2sin(6;) cos(®) sin*(®,) || uxp
: f 5 My
cos¥#,) 2sin(8,) cos(8,) sin*(8,) | e
%(2)(0‘)
= : . (16)
%(2)(0',)

Using these equations we can easily calculate the least-
squares (LS) estimates of the moments of the object u,,
for 0 < p + g < 2 given noisy observations of the moments
of the projections. In particular, this is done by gathering
the above sets of equations into a single linear equation
of the form h = Au + e, where h is the vector of noisy
computed moments of the projections #*¥(6) appearing
above, and M= [”'00’ Mi0s Hor> Mo, Mi1» F’OZJT’ while e
denotes a zero-mean vector of Gaussian noise with corre-
sponding covariance matrix R which captures the noise in
our observations of #*¥(9,). This noise model, of course,

mate of the vector u is then given by

= (ATR!A)'ATR'h, (17)

Note that if this least-squares estimate is consistent,’
it will coincide with the optimum maximum likelihood
estimate of the moments of the underlying polygon. The
estimates of the low-order moments, such as those we
use here, are robust to noise in the data and hence in the
great majority of the cases, the LS estimate does indeed
coincide with the ML estimate. When this fails, it is typi-
cally due to the inconsistency of the second-order moment
estimates. In such cases, we refrain from using the sec-
ond-order estimates and build our initial guess using only
the area and center of mass estimates as we describe next.
(The general framework for the optimal estimation of the
moments of any order of a function f(x, y) from noisy
measurements of its Radon transform is developed in [26,
27].) We shall henceforth denote the LS moment estimates
by f,,.

Now that we have estimates of the moments of up
to order 2 of the object, and thus estimates of its basic
geometric structure, we need to convert this information
into a suitable object for use in initializing the nonlinear
optimization problem (4) or (7). The initial guess algorithm
outlined next uses these least squares estimates of the
low-order moments f,,, obtained from the noisy projec-
tion data, to produce a polygon which has moments up
to order 2 which are close to (or in some cases equal to)
those which were estimated from the projection data. The
resulting polygon, which will be used as our initialization,
should thus have the same basic geometric structure as
the underlying object.

Recall that in this process of generating an initial object
from the moment data we want to avoid the difficulties
usually associated with obtaining an object from a set of
its moments [28-31]. For this reason, the initial polygon
we will use is simply obtained as the affine transformation
of a reference object V,.{/N), which is a centered regular
N-gon of unit area. For a given choice of number of sides
N, the reference object we use is given by

V,N) = !
V(N/2) sin(2w/N)

(18
s (22 s (2252}
N N

sin (2—77) ‘ -+ |sin (————ZW(N— 1))
N N

3 That is, it satisfies the necessary and sufficient conditions to be the
moment vector of some binary polygon, e.g., give a positive area esti-
mate and a positive definite inertia matrix estimate. We have dealt with
the inconsistent moment case directly in {26].

cos(0)

sin(0)
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The affine transformation of this reference object, which
will be generated from the estimated moment set, consists
of a uniform scaling, a stretching along the coordinate
axes, a rotation, and finally a translation, and simply cor-
responds to the following transformation of the underlying
spatial coordinates of the reference object

-1«

In particular, given the form of V_{N) in (18), this yields
the following equation for the family of possible initial
objects V;:

19

Vinit=LVref(N) + [C' lC] (20)

The set of all such affine transformations of V {(N) we
term the affinely regular N-gons [32]. In the absence of
noise, the initial guess algorithm we detail will exactly
match the given estimated moments if the underlying ob-
Jject itself happens to be affinely regular. If the underlying
object is not affinely regular itself, the algorithm will not
necessarily produce an N-gon exactly matching its mo-
ments, even in the absence of noise, though as we will
show, it will usually be close. Of course, in the presence
of noise the estimated moments themselves are not exact
and thus, while we would hope to get close, our resulting
initial N-gon will never exactly match the true moments
of the underlying object anyway.

Given that we will restrict ourselves to initial objects
of the form (20), let us consider how we might choose
the parameters of the transformation L and C to match a
given estimated moment set f,,, 0 < p + g = 2. Using
(20) and (18) to calculate the moments of V,;, up to order
2, we obtain the relationships

oo Vigi) = |det(L)], (2D
#Jo(Vim't)]
= |det(L)|C,
[I—'«);(Vinn) det(L) @2

[Mzo( Vi) 01 (Vigi)

= |det(L)|(kyLLT + CCT), (23
By (Vinin) I-'«oz(Vinn)] ' l N ) 23
where p,, (Vi) is the pgth moment of Vi and ky =
1/4N tan(w/N)). Thus to match pe(Vind, #i0(Vian)s
(Vi) with their estimated counterparts, the first two
conditions require that

(det(L)] = fioo 24)
c=-! [’f "’] . (25)
Moo L Moy
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The first condition simply corresponds to a scaling of
V.(N) so that its area matches the estimated one. The
second condition shows that the affine term C in the trans-
formation (19) should correspond to a translation of
V..{N) to the estimated center of mass of the object.
These two conditions assure that we match the estimated
area and center of mass location.

Now, after some manipulation, (23) implies that to
match the estimated second-order moments f,,, p +
q = 2, we must have

lA 5p
N0

T =
LLT =1 (26)

where SAP is the matrix of estimated central moments de-
fined by

- g Ry 1 Al . R
$ = [A N ] - T“[ n ] &y fgil- P2)]
My Moz Hoo L frg;

In particular, this condition implies another constraint on
det(L) independent of (24), which we will not, in general,
be able to satisfy. Specifically, a necessary condition for
finding an L satisfying both (26) and (24) is that

det($) = Kyirdo- (28)

Actually, as shown in Appendix A, condition (28) is
also sufficient. Clearly, this condition will not, in general,
be satisfied and we will be unable to exactly match the
estimated second moments. In fact, the objects that do
meet this constraint, and thus whose moments we can
exactly match, are precisely the elements of the set of
affinely regular N-gons. Geometrically, this situation re-
flects the limitation of our restricted initial guess object
class (20), i.e., the set of affinely regular N-gons. Within
this class, for a given object area we are constrained as
to the ‘‘size”’ of the corresponding inertia matrix we may
have, where inertia size is measured as the product of
the principal central inertia moments (eigenvalues of the
central inertia matrix). For example, while our initial
guess objects will always be convex polygons, for a given
area we can always obtain nonconvex objects of greater
inertia by ‘‘moving area outward,’’ as in a dumbell.

The condition (26) can also be viewed as implying a
different scaling on L needed to obtain a perfect match
to the inertia condition. In general, we thus have a choice
of picking this scaling of L to satisfy either the inertia
condition (26) or the area condition (24). Since the area
condition (24) is both a more robustly estimated and a
more fundamental geometric quantity, we choose to en-
force this condition in the algorithm to follow. We then
choose L so that the resulting central inertia matrix of
V.. has the same principal axes directions and has its
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principal inertias in the same ratio as those estimated from
the data as found in $. We accomplish these goals by
using a square root of the matrix $ normalized to have
unit determinant for the form of L, then scaling the result
to match the determinant condition (24). Thus we sacrifice
overall scaling of the inertia matrix in favor of matching
the estimated area. Collecting the above steps and reason-
ing, the overall algorithm is given by the following:

ALGORITHM | (Initial Guess Algorithm). 1. Compute
the least-squares estimates of the moments up to order 2
(f1o0s f1gs for» ags f11» and figy) from the raw projection
data using (14)—(17).

2. Construct an N-sided regular polygon centered at
the origin with vertices chosen as the scaled roots of unity
in counterclockwise order so that they lie on the circle
of radius 1/V(N/2) sin(2w/N). This polygon has unit area
and is defined in Eq. (18).

3. Compute the translation C, obtained as the estimated
object center of mass:

c:g_[ffw].
Koo L Moy

4. Form the estimated central inertia matrix $ from the
estimatgd moments according to (27).

5. If $ is not positive definite, set L = \fﬂglz and goto
step 8. Otherwise proceed to step 6. (I, is the 2 X 2
identity matrix.)

6. Perform an eigendecomposition of the normalized
matrix $ as follows:

29)

g =U [A 0 ] Ut 30)
Vdet(.;) 0 1/ )

Here we have assumed that the eigenvalues are arranged
in descending order and that the eigenvectors are normal-
ized to unit length so that det(l/) = *=1. Note that the
eigenvalues are reciprocals of each other since we have
scaled the left hand side so that its determinant is 1.
7. Form the linear transformation L as a scaled square
root of $ as follows:
VA 0
L \/p,ooU[O 1/\/)—\]. (31)
Note that det(L) = i, as desired. Depending on whether
U is a pure rotation or a rotation followed by a reflection,
it will have determinant +1 or —1, respectively. Also note
that we use this (Schur decomposition-based) square root
formulation over the more numerically attractive
Cholesky factorization since our choice leads to matrices
that are directly interpretable as rotations, reflections,
and scalings.
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8. The initial guess V,,; is now obtained by applying
the scaling, stretching, and rotation transformation L and
the translation C to the reference object V, (N) via the
coordinate transformation [x', y']I' = L[x, y]* + C. Be-
cause of the form of V. (N) this operation yields

Vinit = LV dN) + [C|- -+ | C]. 32)

Note that the eigenvalue X of the unit determinant ma-
trix calculated in step 7 gives the eccentricity of the under-
lying object while the corresponding eigenvectors give its
orientation. Also note that in the presence of noise the
estimated central inertia matrix for the object $ may not
be strictly positive definite and hence may not correspond
to the inertia matrix of any object at all. In such instances,
the algorithm refrains from the use of these moments of
order 2 and computes an initial guess based only on the
estimated area and center of mass.

If the matrix L, computed above, is replacedby L' = LT
for any orthogonal 7, the resulting quantity L'L'T satisfies

LLT=L'L'". (33)
Hence, although the initial guess generated by the above
algorithm is unambiguous and unique in the sense that
the square root of $ obtained by the algorithm is unique,
an infinity of other initial guesses having the same mo-
ments up to order 2 may be generated by replacing L by
LT and allowing T to range over the set of all 2 x 2
orthogonal transformations. A precise characterization of
this set of all affinely regular N-gons with the same mo-
ments up to order 2 is, in fact, given in the following
result, which we prove in Appendix A.

ResuLT 1. Consider the set of all N-gons with mo-
ments up to order 2: pyy, o> Ho1- Ma0s MH11s Hoz2s SUCH that
the resulting inertia matrix

g = [Mzo Mn]

My Moz
satisfies det($) = kiudy. This set coincides with the set
of N-gons with vertices on an ellipse €, and sides tangent,

at their midpoints, to a confocal ellipse €;, where these
ellipses are given by

G4

€0 = {z|(z - C)TEal(z -O) =1} (35)
%I={z|(z—C)TE{‘(z—C)= 1} (36)
with
C= _1_ [#10] G7)
Moo L Ko
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This result states that the class of all affinely regular
N-gons with a given set of moments up to order 2 is given
by the class of N-gons whose vertices are on a fixed ellipse
and whose side are tangent to a second ellipse which is
confocal with the first. (See Fig. 3 for an example.) The
ellipses are uniquely determined by the values of the given
moments. The above result draws attention to a question
of a more general nature; namely, ‘*How many moments
(and hence projections) uniquely specify a simply-con-
nected N-gon?’’. We answer this question in [33] and [26]
where in the former we have shown that moments up
through order 2N — 3 suffice to uniquely specify the verti-
ces of any simply connected N-gon, while in the latter
we have shown that m + | projections are necessary and
sufficient to uniquely specify the moments up through
order m of any object from its projections. Hence, to-
gether these results show that with 2N - 2 projections, we
can uniquely specify the vertices of any N-sided, simply
connected polygon. In contrast to [33, 26] where image
reconstruction from projections is based directly on the
estimated moments, the Initial Guess Algorithm pre-
sented here aims only to give a rough initial guess which is
hopefully within a reasonable neighborhood of the global
optimum of the ML cost.

In order to simplify the Initial Guess algorithm, we do
not search further over the family given by Result 1.
We simply use the output of the Initial Guess Algorithm
described above as the starting guess for our nonlinear
optimization routines.

3. EXPERIMENTAL RESULTS

In this section, we present some performance studies
of our proposed algorithm with simple polygonal objects
as prototypical reconstructions. One may expect that our
algorithms work best when the underlying object (that
from which the data is generated) is itself a simple binary

FIG. 3.

Illustration of Resuit 1.
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polygonal shape. While this is true, we will also show that
our algorithms perform well even when the underlying
objects are complex, nonconvex, and nonpolygonal
shapes.

First we demonstrate reconstructions based on the ML
criterion. In these reconstructions we use the parameters
of the true polygon as the initial guess. Typical reconstruc-
tions are shown along with average performance studies
for a variety of noise and data sampling scenarios. In
particular, we show that given a good initial guess, the
performance of our algorithms is quite robust to noise and
sparsity of the data, significantly more so than classical
reconstruction techniques. To demonstrate this point, re-
constructions using our techniques and the classical FBP
are provided.

Next we demonstrate how the MDL criterion may be
used to optimally estimate the number of parameters
(sides) N directly from the data. We solve these MDL
problems by solving the ML problem for a sequence of
values of N. To initialize each of these ML problems, the
Initial Guess Algorithm was used. The robustness of the
MDL approach and its ability to capture the shape infor-
mation in noisy data when the underlying object is not
polygonal is also shown through polygonal reconstruction
of more complicated shapes. Two remarks are in order
regarding the results presented in Section 3.1. The first
is that the results in this section, begin by initializing the
algorithms with the true underlying polygon. This corre-
sponds to local exploration of the ML and MDL cost
functions. Hence, any interpretation of these performance
results (e.g., robustness) is conditioned on whether or not
the Initial Guess Algorithm will provide a starting guess
that is within the local basin of the global optimum (which
as we show in Section 3.1 apparently includes the underly-
ing polygon). In the subsequent sections, we show that
the Initial Guess Algorithm does, on average, place the
starting values in a reasonable neighborhood of the
global optimum.

The second remark is that the ML, and indeed the
MDL, formulations are not based upon whether the un-
derlying polygon is affinely regular, or even convex.
Hence, although our algorithms may, in general, yield
nonaffinely regular or even nonconvex solutions, they
generally perform best when the underlying polygon is
itself affinely regular; this is a direct consequence of the
fact that the Initial Guess Algorithm always yields an
affinely regular polygon. In Section 3.4, we report studies
in which the Initial Guess Algorithm is used to produce
a starting guess for the optimization routines. In these
studies, we show that although the performance of the
overall algorithm does degrade somewhat, this degrada-
tion in performance is not significant.

In order to quantify some measure of performance of
our proposed reconstruction algorithms, we first need to
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define an appropriate notion of signal-to-noise ratio
(SNR). We define the SNR per sample as

2
2.8 (t;,Or)/d’ (40)
o

where d = m X n is the total number of observations,
and o2 is the variance of the i.i.d. noise w in the projection
observations (2).

In all our simulations, the reconstruction error is mea-
sured in terms of the percent Hausdorff distance {32]
between the estimate and the true polygon or shape. The
Hausdorff metric is a proper notion of ‘‘distance’ be-
tween two nonempty compact sets and it is defined as
follows. Let d(p*, S) denote the minimum distance be-
tween the point p* and the compact set S:

d(p*, ) = inf{|p* - p| | p € S}. (41)
Define the e-neighborhood of the set § as
S© = {pld(p,S)=¢}. (42)

Now given two nonempty compact sets, S, and S,, the
Hausdorft distance between them is defined as

(S, S,) = inf{|S, C $¥ and S, C 5} (43)

In essence, the Hausdorff metric is a measure of the
largest distance by which the sets S, and §, differ. The
percent Hausdorff distance between the true object S and
the reconstruction S is now defined as

*(S, S)

Percent Error = 100% X %0.5)’

(44)

where O denotes the set composed of the single point at
the origin, so that if S contains the origin, #(O, S) is the
maximal distance of a point in the set to the origin and
thus a measure of the set’s size.

In all experiments that follow, the field of view (the
extent of measurement in the variable ¢) is taken to be
twice the maximum width of the true object. While it
is true that significantly enlarging the field of view will
certainly degrade the performance of the proposed algo-
rithms, our choice to fix this at twice the size of the
true object is not unjustified or arbitrary. In fact, we are
assuming that a mechanism exists, such as that reported
in [7], whereby a rough estimate of the maximal support
of the object may be estimated from the raw projection
data in a statistically optimal fashion.

The numerical algorithm used to solve the optimization
problems presented in this paper was the Nelder-Mead
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simplex algorithm [34]. The specific stopping criterion
was to declare a solution after the cost failed to decrease
by more than 1074 in 50 iterations, or after 500 iterations
of the Nelder—Mead algorithm; whichever came first.

Finally, as for the assumption that the underlying object
is simply connected, we did not explicitly enforce this on
the solution. Having obtained a solution (vertices) from
the numerical search algorithm, we essentially connected
the vertices in such a way as to minimize the cost.

3.1. ML-Based Reconstruction

Here we present examples and performance analyses
of the ML-based reconstruction method (4). As we alluded
to before, the studies reported here correspond to a local
exploration of the ML cost function. To this end, we set
the initial guess equal to the true object. While there is
no guarantee that this choice of initial guess will result in
convergence to the global optimum (especially given the
presence of noise in the data), the resulting reconstruc-
tions suggest that this initialization typically yields solu-
tions that are at least very near the global optimum.

311

In Figs. 4 and 5, we show optimal reconstructions of
a triangle and a hexagon, respectively, based on the ML
criterion. The true polygon, in each case is depicted in
solid lines, while the estimate is shown in dashed lines.
For both objects, 1000 noisy projection samples were
collected in the form of 50 equally spaced projections in
the interval (0, #] (m = 50), and 20 samples per projection
(n = 20). The field of view (extent of measurements in

Sample Reconstructions

ok

.W

2} ]
35 2 a 0 1 2 3

FIG. 4., Triangle example: SNR = 0 dB, 50 views, 20 samples/view;
true (—) and reconstruction (- -); % error = 7.2.



380 MILANFAR, KARL, AND WILLSKY

3 " " T ' y the variable t) was chosen as twice the maximum width
of the true object in each case. For each of these data
sets the variance of the noise in (2) was set so that the
SNR given by (40) was equal to 0. The typical behavior
of the optimal ML-based reconstructions in the projection
] space can be seen in Fig. 6, which corresponds to the
hexagon of Fig. 5. The top image of this figure shows the
underlying projection function g(1;, 8;, V*) of (2) for the
hexagon, while the middle image shows the noisy ob-
served data Y, ;. The object is difficult to distinguish due
to the noise in the image. The bottom image shows the
reconstructed projections corresponding to the optimal
estimate g(#;, 8;, V), which are virtually indistinguishable
from those corresponding to the true object. Figure 7
shows the best FBP reconstruction of the hexagon used
in Fig. 5 based on 4096 projection samples of the same
SNR (0) (64 angles with 64 samples per angle). For com-
parison, the reconstruction from this data using our algo-

FIG. 5. Hexagon example: SNR = 0 dB, 50 views, 20 samples/  Fithm is shown in Fig. 8. (Note here that what constitutes
view; true (—) and reconstruction (- -); % error = 9.6. the “‘best”” FBP is somewhat subjective. We tried many
different filters and visually, the best reconstruction was
obtained with a Butterworth filter of order 3 with 0.15
normalized cutoff frequency.)

Note that the number of samples per projection used
in this reconstruction is actually more than the number
used to produce the ML-based reconstruction in Fig. 5.
The increase in sampling was necessary because FBP
produces severe artifacts if the number of views exceeds
the number of samples per view [5]. The ML approach

3 o e 4

3 2 -1 0 1 2 3

FIG. 6. From top to bottom: Sinograms with 50 projections and 20
samples per projection of (I) noiseless hexagon, (II) noisy data at 0 dB,
and (III) reconstructed hexagon. In each of these images, the horizontal
axis is 6, the vertical axis is 7, and the intensity values are the values FIG. 7. Sample reconstruction of a hexagon at 0 dB SNR using FBP:
of the corresponding projections mapped to the grayscale range [0, 255]. 64 views, 64 samples per view.
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2t Percent Error = 3.76

3 L L L _—

-3 -2 -1 0 1 2 3

FIG.8. Sample reconstruction of a Hexagon at 0 dB SNR, 64 views,
64 samples/view; true (—) and reconstruction (- -).

has no such difficulties, as we will see in the next section,
where we examine performance.

In contrast to the ML-based reconstruction, the details
of the hexagon are corrupted in the FBP reconstruction.
In addition, there are spurious features in the FBP recon-
structions and perhaps most importantly, to extract a bi-
nary object from the FBP reconstruction, we would need
to threshold the image or perform edge detection on it.
Neither of these postprocessing steps are easily interpret-
able in an optimal estimation framework and, of course,
they incur even more computational costs.

3.1.2. Effect of Noise on Performance

The average performance of the ML-based reconstruc-
tions is presented through several Monte Carlo studies.
Again, for these experiments an initial condition equal to
the true object was used in each case to ensure that we
obtain the actual ML estimates. The first study establishes
average reconstruction errors at various SNRs for a fixed
number of data samples. The purpose of these simulations
is to demonstrate that the ML-based reconstructions are
robust to the quality of the data used for a wide range of
SNRs. The same two polygons as in Figs. 4 and 5 were
chosen as the underlying objects. Again, in each case,
1000 samples of the projections of these objects were
collected in the form of 50 equally spaced projections in
the interval (0, #] (m = 50), and 20 samples per projection
(n = 20), while the field of view (extent of measurements
in the variable ) was chosen as twice the maximum width
of the object in each case. The samples g(¢;, ;, V*) were
then corrupted by Gaussian white noise w(z;, 9;) of differ-
ent intensities to yield data sets at several SNRs. At each
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SNR, 100 reconstructions were done using independent
sample paths of the corrupting white noise. The average
reconstruction error was then computed and is displayed
versus the SNR in Fig. 9. The error bars denote the 95%
confidence intervals for the computed mean values.

The percent error in these reconstructions increases
with decreasing SNR, as one would expect. In fact, the
graph shows that, at least in the examined SNR range of
—4.35 to +4.35 dB, the relation between percent error
and SNR is roughly linear in the cases of the triangle and
the hexagon. This suggests that given a good initial guess,
the performance of our algorithm does not degrade very
fast with decaying SNR, demonstrating the robustness to
noise of such object-based optimal ML estimates.

3.1.3. Effect of Sampling on Performance

Here the performance of our ML-based estimates with
respect to both the number of available data samples and
their distribution is studied. One would naturally expect
that as the number of available data points decreases, the
reconstruction error should increase. The main aim of
these simulations is to demonstrate that given a good
initial guess, the ML-based reconstructions are robust to
both the quantity and the distribution of data over a wide
range of SNRs. In particular, reasonable estimates are
produced even with a drastic reduction of data and, unlike
the behavior seen in FBP reconstructions, the ML esti-
mates display no catastrophic degradation as the samples
per angular view are reduced. The relative sensitivity of
the ML estimates to density of samples of g(z, 6, V*) in
t and @ is also discussed, providing information of use for
the design of sampling strategies.
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FIG.9. Mean performance curves for ML reconstructions of a trian-
gle and a hexagon.
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FIG. 10. Performance as a function of number of views.

The true hexagon used in Fig. 5 was again used as the
underlying object. As before, an initial condition equal to
the true object was used for each of experiments. A series
of Monte Carlo simulations (50 runs for each sampling
configuration) were then performed at various SNRs to
observe the effect of sparse projections and sparse sam-
pling in each projection. In Fig. 10, the percent Hausdorff
reconstruction error is plotted versus the number of angu-
lar views for SNRs of 0, 4.35, and 8.7 dB, while the
number of samples per view was fixed at 50. With a modest
50 samples per view, all three curves fall below 10% recon-
struction error when the number of views is greater than
about 10. This is only 500 total observations, many of
which do not contain the object at all (since the field of
view is twice as large as the object). Furthermore, as the
number of angular views is decreased from 100 to 10,
only a marginal increase in the reconstruction error is
observed. These observations testify to the robustness of
the ML algorithm with respect to the number of views
when a good initial guess is given.

In Fig. 11, the dual case is presented. In this figure,
the percent Hausdorff reconstruction error is plotted ver-
sus the number of samples per view for SNRs of 0, 4.35,
and 8.7 dB, while the number of angular views was fixed
at 50. With 50 angular views, all curves fall below 10%
reconstruction error when the number of samples per view
is greater than only 10. Also, as the number of samples per
view is decreased from 100 to 10, again only a marginal
increase in the reconstruction error is observed. This be-
havior shows that the ML algorithm is robust with respect

to the number of samples per view when a good initial
guess is given. Note that for a fixed sampling strategy,
the reconstruction error increases only slightly as the SNR
is decreased over a wide range. For instance, in Fig. 10,
with 40 angular views and 50 samples per view, the per-
cent error is reduced only about 5% while the SNR goes
from 0 to 8.7 dB.

Finally, it is noteworthy that the reconstruction error
enjoys a dramatic improvement for all SNRs (0, 4.35, and
8.7 dB) when the number of samples per view is increased
from 5 to 10. This improvement is more significant than
that observed in Fig. 10 when the number of views is
increased from $ to 10. This behavior indicates that in a
scenario where only a small (fixed) number of sample
points can be collected, it is more beneficial to have more
samples per view rather than more views.

3.2. MDL Reconstructions

Here we will examine reconstruction under the MDL
criterion of (7) where we now assume that the number of
sides of the reconstructed polygon is unknown. In particu-
lar, the reconstruction experiments for the hexagon in Fig.
5 were repeated in SNR = 0 dB assuming no knowledge of
the number of sides. The MDL criterion was employed
to estimate the optimal number of sides. As in the ML
algorithm, it is important to find a good initial guess for
the MDL algorithm as well. The problem is twofold. First,
a reasonable guess must be made as to the appropriate
range of the number of sides. We picked a fairly small
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FIG. 11. Performance as a function of number of samples per view.

range for the number of sides of the reconstruction, typi-
cally, 3 to 10 sides. Next, for each number of sides, the
Initial Guess Algorithm was used to produce an initial
guess to the optimization routine. The method for select-
ing the range of the number of sides is ad hoc, but was
shown to be reliable in the sense that for our simulations,
the MDL cost never showed local or global minima for

convex objects with number of sides larger than 10. Figure
12 shows a plot of the MDL cost corresponding to the
expression in (7) versus the number of sides for a sample
reconstruction of the hexagon in Fig. S. It can be seen
that the minimum occurs at N = 6, demonstrating that
the optimal MDL reconstruction will consist of 6 sides.
Indeed this number coincides with the true number of
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FIG. 12. Cost vs number of sides for the hexagon in Fig. 5.
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sides of the underlying object. The optimal MDL estimate
is thus exactly the optimal ML estimate for this data set
presented before.

3.3. Polygonal Reconstruction of Nonpolygonal Objects

In this section, we wish to study the robustness of
MDL-based estimates when the underlying, true object
is nonpolygonal. First, we examine the case of an elliptical
object. We use the MDL formulation presented in the
previous section and study the behavior of the optimal
reconstructions at two different SNRs. To this end, let
the true object (that which generated the data) be a binary
ellipse whose boundary is given by

AR
{x,y (x 2)+ 074 =1;.

The above relation defines an ellipse centered at the point
(1/2, —1/2) whose major and minor axes are aligned with
the coordinate axes with lengths 1 and 3/2, respectively.

One thousand (1000) noisy samples of the Radon trans-
form of this ellipse were generated (m = 50 equally spaced
angular views in (0, 7], and n = 20 samples per view) at
SNRs of 0 and 2.17 dB, respectively, for 50 different
sample paths of the corrupting noise. For each set of data,
reconstructions were performed using the ML algorithm
with 3, 4, §, 6, 7, and 8 sides together with the Initial
Guess Algorithm. The MDL cost in (7) was then computed
for each of these reconstructions. The ensemble mean of
this cost over the 50 runs, for each value of N, is presented
in the top part of Fig. 13. The error bars denote the 95%
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confidence intervals for the computed mean values. The
top-left curve corresponding to the SNR = 2.17 dB case
displays its minimum at N = §. This behavior indicates
that the average optimal MDL reconstruction uses 5 sides
at this noise level. A corresponding typical such S-sided
reconstruction of the ellipse is displayed on the lower left
plot of Fig. 13 together with the true ellipse. The upper-
right curve corresponding to the SNR = § dB case displays
its minimum at N = 6, which indicates that the average
optimal MDL reconstruction for this case uses 6 sides.
The MDL cost curve for this lower SNR case has now
become quite flat however, showing that the reconstruc-
tion with N from 4 to 6 are all about equally explanatory
of the data. Although the curves for both cases demon-
strate the ability of the MDL procedure to capture the
shape’s complexity through its choice of N, this behavior
suggests that with increasing noise intensity, an MDL-
based estimate becomes less sensitive to the precise level
of complexity of the reconstruction, as we would expect.
Apparently, in high noise situations the differences be-
tween these reconstructions that would be apparent in
high SNR scenarios are masked. As the noise level in-
creases, these fine distinctions are unimportant or not
supported by the data. A typical 6-sided reconstruction
is also displayed in the lower right plot of Fig. 13 along
with the true ellipse.

As another example of the use of the proposed algo-
rithms, we choose an object that is nonpolygonal and
nonconvex. In Fig. 14, reconstructions of this object are
shown based on 20 equally spaced projections with 50
samples per projection, at a signal-to-noise ratio of 4.35
dB. In these reconstructions, a slight variant of the initial
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7-sided

FIG. 14. True object (—), reconstruction (--), and initial guess (O)
picked using the Initial Guess Algorithm; SNR = 4.35 dB.

guess algorithm was used to generate the starting polygons
as we will describe shortly. Figure 15, meanwhile, con-
tains the reconstruction produced by FBP using the same
data set. As can be seen, when using 7 or more sides, the
underlying object can be captured more accurately and
without spurious features through the use of our algo-
rithm.

FBP reconstruction of nonpolygonal, nonconvex object:

FIG. 15.
third-order Butterworth filter with 0.15 normalized cut-off frequency;
SNR = 4.35dB.
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FIG. 16. MDL cost curve for the reconstruction of the kidney-
shaped object with the Initial Guess Algorithm used.

To pick the ““best’’ number of sides, in Fig. 16 we show
the MDL cost curve for the reconstructions of the kidney-
shaped object at SNR = 4.35 dB shown in Fig. 14. In
applying our algorithm to this nonconvex object, we found
that we can improve the resulting reconstructions by
slightly perturbing the initialization produced by the pro-
posed Initial Guess Algorithm by rotations through small
angles. In particular, recall that according to Result 1,
any orthogonal transformation of the initial polygon V,;
produced by the Initial Guess Algorithm is a ‘‘valid”
starting guess in the sense that it will have the same first
three moments as V. Taking advantage of this property,
for a given number of sides, we applied several small
rotations to the V;,; produced by the Initial Guess Algo-
rithm and carried out the ML optimization problem with
these resulting initializations. We then picked the solu-
tions which resulted in the lowest ML cost. Using this
procedure for each number of sides, we calculated the
MDL cost values shown in Fig. 16. These ‘‘best’’ recon-
structions are shown in Fig. 14.* We note that, according
to Fig. 16, the minimum of the MDL cost corresponds to
a reconstruction with 7 sides. As is apparent in Fig. 14,
while using a higher number of vertices beyond 7 does
improve the reconstructions somewhat, it does not yield
significantly better results. This fact is directly reflected
in the MDL cost curve becoming increasingly flat beyond
7 sides.

4 The process of applying an orthogonal transformation to the output
of the Initial Guess Algorithm, before using this in the reconstruction
algorithm, is one that can perhaps be applied in general. However,
we found this modification to be needed only when rather complex,
nonconvex and nonpolygonal objects were being reconstructed.
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3.4. Initial Guess Algorithm

In this section, we present some sample reconstructions
and performance plots for which we use the Initial Guess
Algorithm for generating a starting point to the nonlinear
optimization (3). These experiments aim to show that the
Initial Guess Algorithm does indeed provide us with a
starting guess that in the great majority of the cases is near
the global optimum. This will, of course, not guarantee
convergence to the global optimum solution, but as we
shall see, the use of the Initial Guess Algorithm does at
least result in convergence to a local minimum of the cost
which is almost always quite near the global optimum.

To study the average performance of the ML algorithm
using the output of the Initial Guess Algorithm, a Monte
Carlo simulation was done for the reconstruction of the
hexagon shown in Fig. 5; 100 reconstructions were carried
out for different realizations of the noise at various SNRs,
each with 1000 projection samples as before (50 projec-
tions and 20 samples per projection). For each SNR, on
average less than 5% of the reconstructions (i.e., 5 out of
100 sample reconstructions) had very large reconstruction
errors (we call these instances outliers). Fig. 17 shows
the reconstruction errors for 100 realizations of the noise
at 0 dB. The outliers are clearly visible.

Figure 17 indicates that in a few instances, the recon-
structions were essentially at local minima very far from
the global minimum of the cost. In our experience, these
outliers occur most frequently when poor estimates of the
moments of order 2 are obtained from the noisy data.
Note that the second-order moments are used in the Initial
Guess Algorithm only if the corresponding inertia matrix
obtained from them is strictly positive definite. The Initial
Guess Algorithm decides whether to use the second-order
moments or not solely on the basis of this positive defi-
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FIG. 18. Percent error for hexagon vs SNR after outlier removal.

niteness and regardiess of how close the inertia matrix
may be to negative—or indefiniteness. Hence, the outliers
occur in those rare instances when the estimated inertia
matrix happens to be a very poor estimate, but yet positive
definite (and hence used in the Initial Guess Algorithm).
This phenomenon, in turn, seems to occur when relatively
few samples per projection are available.

Figure 18 shows the mean percent error in the Monte
Carlo runs after the removal of the outliers. The outliers
were removed from the ensemble and the results of the
remaining realizations were averaged to yield the values
in Fig. 18. That is to say, that if 3 out of 100 realizations
led to outliers, then only those 97 results which seemed
‘‘reasonable’” were used in computing the ensemble aver-
age. Whether the result of a run was deemed reasonable
or not was decided by comparing the resulting percent
error to the ensemble median reconstruction error for all
100 runs. In particular, if the percent error for a run was
larger than one standard deviation away from the median,
the run was declared an outlier. In the case of Fig. 17,
using the computed median value of 17.2 and standard
deviation of 33.2, a threshold level of 50.4 was chosen
above which outliers were declared.

The resulting ‘‘mean’’ performance is plotted here to
show the average performance without the effect of the
outliers. It can be seen, upon comparing Fig. 18 with
the corresponding performance curve in Fig. 9 that the
performance of the ML algorithm using the output of the
Initial Guess Algorithm still suffers even after discounting
the obvious outliers. This means that instances of conver-
gence to local minima still occur, but note that, at least
from a visual standpoint, the average performance after
the removal of outliers is not significantly different from
the average performance with the actual polygon as the
initial guess. In particular, the degradation in performance
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FIG. 19. A typical reconstruction at a local minimum with SNR =
0 dB: true (—), reconstruction (--), and initial guess {+).

here is roughly 7 percentage points in the Hausdorff norm
over the given SNR range. This corresponds to a small
visual error as can be seen in Fig. 4. From this observa-
tion, we conclude that even though the Initial Guess Algo-
rithm does not always lead to convergence to the global
minimum, it almost always leads to, at least, a local mini-
mum that is fairly close to the global minimum of the cost
function. Typical reconstruction at local minima which
are close to the global minimum of the cost are shown in
Fig. 19 for SNR = 0 dB and in Fig. 20 for SNR = 4.35dB.

4. CONCLUSIONS

In this paper, we studied statistical techniques for the
reconstruction of binary polygonal objects. In particular,

True(-), Reconstruction(- .), initial Guess(+)

w

> O}
I e |
2t
]
-3 -2 -1 0 1 2 3
X

FIG. 20. A typical reconstruction at a local minimum with SNR =
4.35 dB. Symbols as in Fig. 19.
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we focused on the reconstruction of binary polygonal
objects. The reconstruction of such objects was posed as
a parameter estimation problem for which the maximum
likelihood technique was proposed as a solution. In con-
trast to the classical techniques, such as FBP, the ML-
based reconstructions showed great robustness to noise
and data loss and distribution when a good initial guess
was available. The drawback of such ML-based formula-
tions is that the resulting optimization problems are highly
nonlinear, and thus a good initial guess is necessary to
ensure convergence of optimization routines to a solution
that is at least near the true ML estimate. To this end, an
algorithm was presented for computing such a reasonable
initial guess using moments of the object which are esti-
mated directly from the projection data. While estimation
of a function from its moments is, in general, a difficult
and ill-posed problem, we avoid these problems by using
the noisy estimated moments only to guide a coarse object
estimate. This estimate, in turn, mitigates the difficulties
associated with the nonlinearities of the optimal ML sta-
tistical approach. The efficacy of this moment based initial
guess algorithm was demonstrated over a range of SNRs.

If the number of parameters describing the underlying
object are not known, a minimum description length crite-
rion can be employed that simply generalizes the ML
framework to penalize the use of an excessively large
number of parameters for the reconstruction. The MDL
approach was shown to work successfully in estimating
the number of sides and the underlying object itself for
low signal-to-noise ratio situations and for a variety of
sampling scenarios. It was further demonstrated that if
the underlying object is not polygonal, but still binary,
the proposed ML and MDL algorithms are still capable
of producing polygonal reconstructions which reasonably
capture the object shape in the presence of high noise in-
tensity.

In this work, we have focused on the reconstruction of
binary polygonal objects parameterized by their vertices.
The ML- and MDL-based techniques used here may also
be applied to more general object parameterizations. In
particular, while we used the (estimated) moments of the
object only as the basis for generating an initial guess, it
is, in some cases, possible to actually parameterize the
object entirely through its moments. For instance, Davis
(35] has shown that a triangle in the plane is uniquely
determined by its moments up to order 3, while in [27, 33]
we have generalized this result to show that the vertices of
any simply connected nondegenerate N-gon are uniquely
determined by its moments up to order 2N — 3.

More generally, a square integrable function defined
over a compact region of the plane is completely deter-
mined by the entire set of its moments [28, 29, 31]. In
reality, we will only have access to a finite set of these
moments, and these numbers, coming from estimates,
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will themselves be inexact and noisy. While estimation
of the moments of a function based on its projections is
a convenient linear problem, inversion of the resulting
finite set of moments to obtain the underlying function
estimate is a difficult and ill-posed problem. These obser-
vations suggest a spectrum of ways in which to use mo-
ments in our reconstruction problems. At one extreme,
only a few moments are used in a suboptimal way to
generate a simple initialization for solution of a hard,
nonlinear estimation problem. At the other extreme, the
moments are themselves used in an optimal reconstruc-
tion scheme. In [26, 27], we have studied regularized
variational formulations for the reconstruction of a square
integrable function from noisy estimates of a finite number
of its moments. We have also studied [33] array-pro-
cessing-based algorithms for the reconstruction of binary
polygonal objects from a finite number of their moments.

APPENDIX A: THEORETICAL RESULTS ON THE
INITIAL GUESS ALGORITHM

In this section we present some theoretical justification
for the initial guess algorithm. To start, we state some
elementary properties of unit area polygons V_{N) whose
vertices are the scaled Nth roots of unity (in a counter-
clockwise direction) as defined by (18). From [27], it is a
matter of some algebraic manipulations to show that the
regular polygon V,.{N) has moments of up to order 2
given by

Hoo(Vie(N)) = 1 (46)
H1o(Vied N)) = po)(VN)) = 0 47)
_ _ 1 _
Ha(Vied(N)) = poa( Ve IV n= 4N tan(7/N) ky (48)
p(ViedN)) = 0. (49)

Now let V,;, be an affine transformation of V, as

Viie = LV, N) + [C| C]---| C] (50)
for some linear transformation L and some 2 X 1 vector
C. Let 6(V,,;) denote the closed, binary polygonal region
enclosed by the N-gon V,,. Now by considering the
change of variables z = Lu, and dropping the explicit
dependences on N we have

polVisd = [ [, de. 1)

- J Lw det(L)| du, (52)

= oo Viep)|det(L)] = [det(L). (53)
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Similarly, we get

(10(Via) Mm(vinn)]T = (L{p1p(Vier) I"Dl(vref)]T +C) (det(L)l

= |det(L)|C (54)
and
I (Vi) = LIV LT + CCT)|det(L)|
= (kyLL™ + CCT)|det(L)| (55)
where for any N-gon V we write
1% 1%
= [i?iv; ﬁiﬁvﬂ | o

This proves relations (21), (22), and (23).

We next establish an explicit description of the set of
all affinely regular N-gons with a fixed set of moments up
to order 2. In order to do this, we first need to prove
a lemma.

LEMMA 1. For every N-gon V with moments uy,,
Mo = 0, oy = 0, pag, f1qs ozs SCh that the inertia matrix
3 satisfies det(3) = ki udy, there exists a matrix L, unique
up to some orthogonal transformation, such that V =
LV, .

Proof. The assumptions that u,, = 0 and ug, = 0 are
made without loss of generality and to facilitate the pre-
sentation of the proof. Having said this, we define L as
the scaled (unique) square root of $ as follows. First,
write the following eigendecomposition

¥
Vdet($)

where U is orthogonal and S has unit determinant. Define
L as

= US*UT, (57)

L =V u,US. (58)
The moments of V = LV, are then given by
roo(V) = too (59)
piolV) = p(V) =0 (60)
$(V) = kyLLT|det(L)|. (61)
Note that
det($) = kjudo (62)

as required. If L is replaced by LT where T is any 2 X 2
orthogonal transformation, the same moments are ob-
tained. Hence the lemma is established. %=
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Given this lemma, we obtain an interesting geometric
representation of all affinely regular N-gons that have a
prespecified set of moments of up to order 2. This charac-
terization is given by Result 1, which we prove next.

Proof of Result 1. For the sake of simplicity, and

without loss of generality, we carry out the proof for the
case where all polygons are centered at the origin.
Let S, denote the set of all N-gons whose first three mo-
ment sets are ue, i = Mot = 0, pag, M1, Bo- Let S,
denote the set of all N-gons with vertices on the ellipse
zTEa‘z = ], and sides tangent (at their midpoints) to the
ellipse z'E; 'z = 1. We show that S, = §,.

First, consider an N-gon V € §,. V has moments py,,
0, 0, $ and therefore, by Lemma 1, there exists an L given
by (57) and (58), unique up to some orthogonal matrix 7,
such that we can write

V = (LT)V,AN) (63)

Let us denote the N-gons V and V,(N) explicitly in

terms of their columns as

V'_—[Ullvz""'vN] (64)
Vref(N) = [W] |W2{ e IWN] (65)

so that
v,= LT,w,. (66)

It is easy to show from the definition of V, {(N) that

1

W= o = (NpsmaaNy ¢

Wier + w)T(wjey +w) = 48y = NE%M' €8
Now to show that V € §,, we prove that

VTEG'v =1 (69)

G 20 g Gt ) (10)

forj = 1,2 .- N, where by convention, N + | = 1.
Using (57) and (58), we can write

(71

_ k -
vaEo‘vj=-—-——“°° Nylg-ly,.
ay

B M"lﬁaﬂmwfﬂsu‘fusﬂwvsn W
(72)
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1
= ;,; wiw,. 73)
=1. 74)
Similarly,
(Uj+| + Uj)T E-] (Ej+l + Uj)
2 ! 2
1 ugky 1 _
T3 #gNNmum(Uf“ + )79 7w + )
1
= ZE;;(WJH +w)Twiy +w) 75
=1. (76)
Hence, V € §,.
Now assume that V € §,. Then, by assumption,
v Egly; =1 a7
W1 + )" E! W £ 0) _ 1. (78)
2 2
Define the vertices of the related N-gon Z as
= ! S0y, 79)
V Gy oo

where § and U are given by the normalized eigendecom-
position of $ given in (57). Writing (77) and (78) in terms
of z;, after some algebraic manipulations, we get

Zfz=1 (80)

(i) + 207 (zj4) + 2) ™
1 WA 4 = cos?

2 2 N ®1)

~)
From these identities, again with some algebraic manipu-
lation, it easily follows that Z is equilateral. Specifically,

I~ 21" = 2 sin (.;5) . 82)

Since the above identities show that the N-gon Z is a
regular N-gon inscribed in the unit circle, then it must be
related to V (N) through a scaling and some orthogonal
transformation 7. In particular,

- [Ny (27
z= [5sin < N) T,V AN) (83)
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This in turn shows that

\/%;(;S“UTV = %sin (%) T,V AN), (84)
or, after solving for V and simplifying,
V= Vi UST,V,AN). (85)
Letting L = \/EOUS , we obtain
V= (LT)VAN). (86)

This last identity implies that V has moments ug(V) =
Boos molV) = (V) = 0, and
$(V) = kyLL|det(L)] (87)

with det($(V)) = k3 ud,. Hence V € §, and the result is
established. ®

If $ is not the inertia matrix of an affinely regular N-
gon then the L constructed in the Initial Guess Algorithm
will not have the prescribed inertia matrix. We are, how-
ever, able to explicitly compute the approximation error
in the following way.

RESULT 2. Suppose that the moments py, tyy =
rar = 0,
g = [#20 Mn] (88)
M Moy
are given such that det($) = kiud, + € > 0. Define
where
9
—= ST (90)
Vdet($)

is the normalized eigendecomposition of $. Then the nor-
malized Frobenius-norm error is given by

ltagkyLLT = 8l _ '1 __ ke | g
%1l kiindo +

Proof. Letting A = pgkyLLT and B = 9, we can write

A =qUSUT,
B =bUS*U",

92)
(93)
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Relative Error

— N=3
03 - - N=1000
0.2
0.1
0 . " i .
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epsilon
FIG. 21. Relative error in matching second order moments using

the Initial Guess Algorithm.

where
52— [)\ 0 ] .
o inl (94)
a = kyud, (95)
b=Vikiudh+e. (96)
Hence, we have
1A ~ Bly =@ = )5 = la = 6] [X + 5, )
1
1Bl = Il /32 + 5. 98)
Hence,
A - Bl - la — b _ IVk{udy + & ~ kypd
Bl 1 Vi te g
- ’1 _ kNM(z)o
Vg + €

which establishes the result. &

We have plotted the expression for the relative error
in Fig. 21 for N = 3 and N = 1000, assuming that py =
1. This figure shows that although the relative error grows
quite fast as ¢ increases, it never exceeds the maximum
of 1 (i.e., 100%) for a fixed wy. Also, the relative errors
for different number of sides are seen to be very close.
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