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Abstract—Image denoising has been a well studied problem in
the field of image processing. Yet researchers continue to focus at-
tention on it to better the current state-of-the-art. Recently pro-
posed methods take different approaches to the problem and yet
their denoising performances are comparable. A pertinent ques-
tion then to ask is whether there is a theoretical limit to denoising
performance and, more importantly, are we there yet? As camera
manufacturers continue to pack increasing numbers of pixels per
unit area, an increase in noise sensitivity manifests itself in the form
of a noisier image. We study the performance bounds for the image
denoising problem. Our work in this paper estimates a lower bound
on the mean squared error of the denoised result and compares the
performance of current state-of-the-art denoising methods with
this bound. We show that despite the phenomenal recent progress
in the quality of denoising algorithms, some room for improve-
ment still remains for a wide class of general images, and at certain
signal-to-noise levels. Therefore, image denoising is not dead—yet.

Index Terms—Bayesian Cramér–Rao lower bound (CRLB),
bias, bootstrapping, image denoising, mean squared error.

I. INTRODUCTION

I MAGE denoising has been a well-studied problem in
the image processing community and continues to attract

researchers with an aim to perform better restoration in the
presence of noise. With the rise in the number of image sensors
(or pixels) per unit area of a chip, modern image capturing
devices are increasingly sensitive to noise. Camera manufac-
turers, therefore, depend on image denoising algorithms to
reduce the effects of such noise artifacts in the resultant image.
Recently proposed denoising methods use different approaches
to address the problem. Of them, the best performing methods
[1]–[6] can be shown to share a common framework in that
they work by combining similar patches to effect denoising,
although the parameters of said framework are estimated in
rather different ways. These state-of-the-art algorithms produce
very impressive, though quite comparable results; and this begs
the question: Have we reached some limit of performance? Is
denoising dead? Given the importance of this problem, our
present work studies denoising in a statistical framework to
derive a fundamental bound on the performance of denoising
algorithms and compare the current state-of-the-art to it.1 Lit-
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erature on such performance limits exists for some of the more
complex image processing problems such as image registration
[7], [8] and super-resolution [9]–[12]. Performance limits to
object or feature recovery in images in the presence of point-
wise degradation has been studied by Treibitz et al. [13]. In
their work, the authors study the effects of noise among other
degradations and formulate expressions for the optimal filtering
parameters that define the resolution limits to recovering any
given feature in the image. While their study is practical, it
does not define statistical performance limits to denoising
general images. In [14], Voloshynovskiy et al. briefly analyze
the performance of MAP estimators for the denoising problem.
However, our bounds are developed in a much more general
setting and, to the best of our knowledge, no comparable study
currently exists for the problem of denoising. The present
study will enable us to understand how well the state-of-the-art
denoising algorithms perform as compared to these limits.
From a practical perspective, it will also lead to understanding
the fundamental limits of increasing the number of sensors in
the imaging system with acceptable image quality being made
possible by noise suppression algorithms.

Before we analyze image denoising statistically, we first de-
fine our image formation model as

(1)

where is the actual pixel intensity at location (indexed by
) and is the observed pixel intensity. We assume that the cor-

rupting noise is independent identically distributed (IID) and
sampled from a zero mean density of known variance . The
aim of denoising algorithms is to recover the noise-free pixel
intensity . Most recent denoising algorithms [1]–[6] work on
image patches2, and, hence, we define the patch-based image
model as

(2)

where is the actual patch intensity written in a (column-
stacked or raster-scanned) vectorized form, is the vectorized
noisy image patch and is a vectorized noise patch with a co-
variance . Note that the noise vectors are uncorrelated
only when the patches are nonoverlapping, something that we
assume in developing our bounds formulation.

Although the measurement model of (2) is linear in the
unknown image, the most successful methods [1]–[6] to date
have taken a nonlinear estimation approach to this inverse
problem, resulting in state-of-the-art performance. Of the
various approaches, some of the recently proposed weighted
patch-averaging filters prove to be quite effective for denoising.
Of them, the recently proposed method of nonlocal means
(NLM) [1] attempts to locate patches similar to a patch of

2Patches are defined as a neighborhood of pixels in a small fixed sized
window. Such image patches can be overlapping or nonoverlapping. Most
denoising algorithms work with overlapping patches.
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interest, and denoise a particular pixel at the center of that
patch by a weighted average of the center pixels of the similar
patches. Since searching for similar patches in a large image can
be computationally impractical, typically only a much smaller
neighborhood of the patch under consideration is searched for
possible matches. Kervrann et al. [2] improved on the perfor-
mance of NLM by incorporating an adaptive search window
along with a modified weight calculation formula. Takeda et al.
[3] proposed a framework for denoising using kernel regression
where the kernels are designed to be data adaptive. Another
successful spatial domain denoising technique called K-SVD
[4] assumes the image patches to be sparse-representable. It
performs denoising by learning a large collection of patches
(called a dictionary) from the noisy image such that each patch
in the image can be expressed as a linear combination of only
a few patches from the dictionary.3 In [5], we presented a clus-
tering-based framework (K-LLD) that takes advantage of the
approaches in [3] and [4] to perform denoising. While all these
methods perform denoising in the spatial domain, BM3D [6]
takes a different approach to denoising. This method builds on
the concept of NLM by identifying similar patches in an image
and grouping them together. Denoising is, however, done in the
transform domain. This method has proved to be very effective
and can be considered to be the current state-of-the-art. Irre-
spective of the approaches taken by these denoising algorithms,
the final aim is to estimate the vectors at each spatial location
from the noisy observations . We study the performance
limits of denoising from the point of view of estimating these

vectors using the data model of (2).
For the purposes of our study, namely the calculation of

performance limits, we assume that the noise-free image is
available and our aim then is to find out how well, in terms of
mean squared error (MSE), the given image can be denoised.
In this paper, we consider the case of additive white Gaussian
noise (AWGN), although other noise distributions are equally
applicable. We take advantage of the geometric similarity
approach advocated in [5] where the image is considered to be
composed of a finite number of “clusters”. Each such cluster
contains patches of the image which have similar geometric
structure. For instance, considering Fig. 1, there are four rele-
vant clusters. Namely, these describe the horizontal edges, the
vertical edges, the corners,4 and the “flat” regions. It is worth
noting that clusters are composed of regions which may have
quite different actual gray values, but that are nonetheless visu-
ally similar (flat, edge, etc.). As we shall see later in this paper,
the overall denoising performance bounds for a given image
can then be derived by analyzing the respective performance
bounds for each of the said clusters, and pooling these results
together. For the sake of clarity of presentation, however, we
first begin the analysis by assuming that the image of interest is
composed of a single cluster of geometrically similar patches,
as exemplified by Fig. 2(a). As a result of assuming geometric
similarity across the entire image, we can think of each

3Results for K-SVD reported in this paper are those obtained with the method
outlined in [4]. Recently proposed variations of the method [15], [16] have
shown promise in improving its performance even further.

4In this experiment, we have restricted the image patches to be grouped into 4
clusters, as a result of which the corners are grouped together, even though their
directionalities are quite different. Ideally, they should be clustered differently
by choosing a large enough number of clusters.

Fig. 1. Clustering of a simple image based on geometric similarity. Note how
pixels in any particular cluster can have quite different intensities but similar
geometric structure (edge, corner, flat regions, etc.). (a) Box image. (b) Cluster
1. (c) Cluster 2. (d) Cluster 3. (e) Cluster 4.

vector as a realization of a vector random variable sampled
from some (unknown) probability density function . Our
bounds on the MSE for denoising are then developed for
estimating the random variable .

In the next section, we show that most denoising methods pro-
duce a biased estimate of the vectors. There we study the bias
characteristics of these successful methods and develop a simple
but accurate model for the bias. In such a scenario, studying per-
formance limits for unbiased estimators will not provide us with
practical bounds on the MSE. Our MSE bounds are developed
in Section IV through an Optimal Bias Bayesian Cramér–Rao
Lower Bound (OB-CRLB) formulation for biased estimators
that we explain in Section III. Until that point, the lower bound is
developed assuming geometric homogeneity among patches in
the image. Since patches in any given image can exhibit widely
varying geometric structures, we extend our lower bound to gen-
eral images in Section V. Using the method thus developed, we
calculate performance bounds for denoising on various images
and compare them to the performance (in terms of MSE) of
some of the best existing denoising methods in Section VI. Fi-
nally, we conclude with some remarks on the future of denoising
in Section VII.

II. BIAS IN DENOISING

In this section, we study the bias in nonlinear estimators used
to solve the denoising problem of (2). In estimation theory, it is
well known that unbiased estimators do not always exist. More-
over, even when unbiased estimators do exist, it is sometimes
advantageous to work with biased estimators as they may result
in a lower MSE [17], [18]. Moreover, unbiased estimators for a
difficult problem such as denoising will tend to have unaccept-
ably large variance and, therefore, result in processed images
that will not look very good to the viewer. Hence, bias in high
quality image denoising is to be expected. It is for these reasons
that we focus our attention on general estimators that may be
biased. The MSE of an estimator is determined by its bias as
well as the covariance of the estimate. In order to study the bias
of an estimator, we need a model. We claim that it is reasonable

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on March 19,2010 at 16:54:35 EDT from IEEE Xplore.  Restrictions apply. 



CHATTERJEE AND MILANFAR: IS DENOISING DEAD? 897

to approximate the local5 behavior of the bias function as affine.
Namely

(3)

where is the bias of the estimator, and the matrix and
the vector are parameters of the affine bias model. Such a
model for the bias has been justified and used to study the MSE
bound for estimation problems in [19]. In Appendix A, we pro-
vide further mathematical justification for using such an affine
model of the bias. Since we are dealing with patches that are ge-
ometrically similar, it is fair to assume here that is a random
vector that has a particular (as of yet unknown) pdf and the
model of (3) holds for every instance of sampled from the
(unknown) distribution. That is to say, for any particular patch
within a cluster, the bias model holds. As
we will demonstrate, this model, while simple, is reflective of
the behavior of essentially all the leading state-of-the-art algo-
rithms. So we believe that it is a good starting point. In Ap-
pendix C, we study the case where the bias function is modeled
with higher order terms. There, we show that such a general-
ization makes little difference to our bounds formulation under
certain reasonable and physically meaningful assumptions on

.
To further substantiate the claim that the bias can be mod-

eled to be approximately affine, we perform experiments where
the model parameters ( and ) are estimated to fit to the bias
from some leading denoising methods. This is done by solving
the system of equations obtained using (3) for each of the
vectors. Before describing this experimental demonstration, it
is worth noting that our interest here does not lie specifically
with the actual values of the bias function for such leading al-
gorithms. Rather, we simply aim to convince the reader that the
affine model is a reasonable overall local model for the bias. As
can be expected, different denoising methods will have different
bias characteristics (that is, different and ). Fig. 2 shows the
bias of the denoised intensity estimates obtained using ten runs
of BM3D [6] and K-SVD [4] respectively and illustrates how
well the model learned individually fits the actual bias. In these
experiments, we simulate noisy images by corrupting the 512
512 textured grass image with 10 different realizations of addi-
tive white Gaussian noise of standard deviation 25. The noisy
images are then denoised with each of the methods (using the
default parameter settings in each case) and the mean denoised
image is obtained for each method. From this, the bias vectors

are obtained for each method using nonoverlapping 11
11 patches. The bias vectors of all such patches are tiled to

form the method bias images shown in Fig. 2. The bias for each
method is then modeled by (3) and the model parameters (
and ) are fit using least squares. The predicted bias patches

are then computed for each patch in each case. These vec-
tors are tiled to form the predicted bias images in Fig. 2. The
difference between the actual and predicted bias is also shown
as the error in modeling in each case. For a good fit, the

5Here, local refers to the members of a cluster of geometrically similar
patches across the image. As a result, for general images made up of geometri-
cally nonhomogeneous patches, we have to use a different � and � for each
cluster. That is to say, the bias is modeled as a different affine function for each
cluster.

TABLE I
� VALUES FOR THE AFFINE MODEL FIT OF THE BIAS PRODUCED BY

DIFFERENT METHODS FOR DIFFERENT IMAGES

difference between the actual bias and that predicted by the
model can be expected to be a random variable sampled from
some short tailed distribution centered around zero. This can
be qualitatively verified by examining the histogram of the dif-
ference. While the model performs quite well visually, we also
present a quantitative measure for the goodness of fit of the
model. For the quantitative evaluation, we use the coefficient
of determination [20] which can be defined as

(4)

where indexes all the patches in the image, is the actual
bias of the estimated intensity of the th patch, is the mean
bias obtained by the denoising method across all patches in the
image and is the predicted bias obtained
from the estimated parameters and of the affine model.
We obtained high values6 for the examples in Fig. 2 with
various denoising methods [3]–[6], as can be seen from Table I.
Our experiments with these denoising methods on other images7

have yielded comparable results that confirm the goodness of the
affine model (Table I).

To provide further empirical evidence that the affine model is
a good fit for the bias and that it holds true only when the patches
considered have roughly similar geometric structure, we per-
formed experiments with general images such as the parrot and
house images (shown in Fig. 5), where we randomly selected
patches from the image and tried to model the bias for such
patches by estimating a single set of parameters ( and ). For
both the images, we obtained much lower values
for the goodness of fit. However, when only patches of similar
geometry were considered for the same images, the values
for the fit were considerably higher (Table I). These experiments
indicate that the affine model is a good local fit, where locality
is characterized by similarity in patch geometry. For the sake
of completeness, we refer the interested reader to Appendix C
where we show that the MSE bounds formulation for a more so-
phisticated (higher order) bias model remains unchanged from
the affine case under certain symmetry constraints on the den-
sity . In the remainder of the paper, we will assume an affine
model for the bias to derive the theoretical performance limits
of denoising.

6The � value indicates the level of variability in the data that is explained
effectively by the regression model. A higher value of� thus indicates a higher
level of predictability of the bias by the affine model.

7For general images such as the house and parrot images (Fig. 5) that contain
patches of diverse geometric structure, the � values are computed separately
on clusters of geometrically similar patches. This will become apparent later in
Section V where we discuss the bound calculation process for general images.
The mean � values across 5 clusters are reported in Table I.
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Fig. 2. Visual comparison of the actual bias obtained from BM3D [6] and K-SVD [4] and reconstructed bias using affine model fit for the 512 � 512 grass
image. The patch size chosen was 11� 11. We can see that the histograms for the modeling errors in both the cases are centered around zero and have short tails.
(a) Original image; (b) noisy image; (c) denoised (BM3D); (d) denoised (K-SVD); (e) BM3D; (f) histogram of (e); (g) K-SVD; (h) histogram of (g).

III. OPTIMAL BIAS BAYESIAN CRAMÉR–RAO

LOWER BOUND (OB-CRLB)

In the statistics and signal processing literature, a number of
bounds exist to evaluate performance limits of estimation. While
some bounds were developed for the estimation of a determin-
istic parameter (for instance, those proposed by Seidman [21],
Cramér [22] and Rao [23], [24]), others, such as those devel-
oped by Ziv et al. [25], address the Bayesian setting where the
parameter of interest is a random variable. One primary dif-
ference between the two cases lies in the meaning of MSE for
which the lower bound is established. In the deterministic case
the bound is a function of the parameter of interest, whereas in
the Bayesian case it is a numerical value obtained by integrating
over the random parameter [18] ( in our case). As a result,
Bayesian versions have been derived for many of the bounds
developed for the deterministic case [26]. In our work, we build

on a Bayesian version of the classical CRLB [27]. In its simplest
form, the CRLB is a lower bound on the variance of an unbiased
estimator of , subject to the regularity condition

(5)

on the conditional probability density function , as-
suming that is twice differentiable with respect to .
An important point to note here is that our CRLB formulation
differs from that defined by van Trees [26], [28] where the joint
pdf is directly used. The two pdf’s are related by

(6)

where is the probability density function on . We work
with the conditional pdf to formulate a bound on the
MSE in the conditional sense and integrate it to get the overall
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(Bayesian) MSE, as we illustrate below in (12). Assuming for
now that an unbiased estimator of exists, the bound on the
(conditional) covariance of the estimate is given by the CRLB
as

(7)

where the operator in the matrix case implies that the differ-
ence of the two matrices has to be positive semi-definite and
where is the conditional Fisher information matrix (FIM)
given by

(8)

The estimator which achieves this lower bound is said to be effi-
cient. While this provides us with a simple method of evaluation
of performance limits for an estimation problem, it cannot be
applied directly to our denoising problem. As illustrated previ-
ously, most denoising methods are biased in nature and this bias
needs to be taken into account to obtain a useful lower bound.
For such cases, the CRLB on the covariance of the biased esti-
mate is given by

(9)

(10)

where denotes the identity matrix and (10) comes from making
use of our bias model of (3). It is useful to note here that the
estimator covariance for the affine model is only influenced by
the parameter (which can also be termed as the gradient of
the bias) and not by the constant term . As such, a negative
definite gradient on the bias lowers the minimum achievable
estimator variance compared to that of the unbiased case given
by (7). Performance limits for image reconstruction problems
based on the biased CRLB have been studied by Fessler et al.
[29] using a constraint on the bias gradient. Using the relation
in (10), we can calculate a lower bound on the conditional MSE
in estimating as

(11)

where denotes the trace of a matrix. Now, by the law of
total expectation, the overall Bayesian MSE can be expressed

as (12), shown at the bottom of the page. It is interesting to note
that in the above formulation the pdf can be thought of as
the prior information on . Most denoising methods make use of
informative priors in the form of smoothness or sparsity penal-
ties and other constraints to achieve improved performance. Our
Bayesian approach thus takes into account the effect of such
priors in calculating the lower bound on the MSE. Knowledge
of as a prior has been used by Young et al. [30] to derive
a Bayesian MSE bound for the estimation of a scalar param-
eter that is known to lie within a fixed interval. Recently, their
results have been generalized for an unconstrained vector case
by Ben-Haim et al. [31]. It would appear that the effective cal-
culation of the above Bayesian bound necessitates the complete
knowledge of the prior density , as is the case for [30], [31].
This is related to the subject of statistical modeling of images,
which has seen much activity [32]–[38] and is still the subject of
some controversy. Happily, as described in Section IV-A below,
we are able to avoid the need for complete knowledge of such
priors. More specifically, only a few low order moments of the
density are needed for our calculations, and as we will
show, these can be effectively estimated directly from a given
(noise-free) image. The bound formulation of (12) used in our
work is related to those used in [30] and [31] but differs from
the Bayesian CRLB (B-CRLB) of van Trees8 [26], [28], as al-
luded to earlier. To disambiguate the two, we refer to our formu-
lation as the Optimal Bias B-CRLB (OB-CRLB). We calculate
the lower bound on the MSE based on the OB-CRLB formula-
tion in the next section.

IV. LOWER BOUND ON THE MSE

In this section, we derive the bound using expressions for the
bias model parameters ( and ) that minimize the right hand
side of (12). We also derive an analytical expression for the FIM
and discuss how we derive the covariance of image patches that
is needed to derive the MSE bound.

A. Deriving the Bayesian MSE Bound

The MSE of any estimator is a function that depends on the
variance as well as the bias term. To obtain the lower bound on
the MSE, we thus need to establish optimal values for and
that minimize (12). This is in line with the approach advocated

8The FIM used in the B-CRLB formulation of van Trees [26], [28] is cal-
culated from the joint pdf ���� �� whereas in our case (and also [30], [31]) it
is calculated from the conditional pdf ������. Hence, the B-CRLB of [28] is
more restrictive in the sense that ���� �� has to be twice differentiable. In our
case twice differentiability is necessary only for the conditional pdf.

(12)
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in [31]. We can thus obtain the optimal and (denoted as
and , respectively) by solving the optimization problem

(13)

The optimum and can be obtained by differentiating
(defined in (12)) with respect to and and solving the

simultaneous system of equations

(14)

Solving these simultaneous equations results in expressions for
the optimum bias model parameters

(15)

(16)

It is important to note that the covariance is not of any esti-
mated vectors but the second moment from the pdf of the
random vector . The derivations are detailed in Appendix B.
Thus, we are able to obtain expressions for and that re-
sult in the theoretical lower bound on the MSE for any affine-bi-
ased denoiser.9 Note that it is not necessary that any denoiser
with the said bias and variance characteristics actually exist.
That is to say, no “Bayes-efficient” estimator that achieves this
derived lower bound may actually exist. Next, we obtain an ex-
pression for the lower bound on the MSE using the optimized
parameters for our bias model by inserting and in the
expression for [given in (13)].

Once we have obtained expressions for the FIM and the pa-
rameters for the affine model of the optimal bias function, we
can proceed to find an expression for the optimal lower bound
on the MSE. We rewrite the right hand side of (12) by plugging
in the obtained expressions of the parameters from (15) and (16)
as

9It is interesting to note that this optimization indeed yields a negative definite
� as can be seen in (15).

(17)

where the last equality is derived from the matrix inversion
lemma [39]. Equation (17) thus allows us to get a neat expres-
sion for the lower bound on the MSE for the denoising problem,
that is

(18)

It is interesting to analyze the implications of the obtained ex-
pression. This lower bound is a function of both the FIM and
the covariance of the parameter vector . Within a cluster of ge-
ometrically similar patches, the covariance of is an indication
of the variability of the geometric structures encountered in the
image (or within a cluster). For images that are mostly smooth,
we can expect to have a smaller variance whereas images con-
taining more geometric variability will yield larger . This
is also in keeping with our expectations and experimental find-
ings that smooth images lacking much detail are easier to de-
noise than those containing much texture (Table II).

Our bounds are derived assuming an affine-biased estimator.
One type of estimator having this bias is an affine estimator
which, in the case of Gaussian noise, can be shown to be the only
class of estimators having an affine bias function [19]. More-
over, the expression for the lower bound is precisely that of the
Linear Minimum Mean Square Error (LMMSE) estimate for the
problem [27]. In theory, this bound is achievable by an affine es-
timator with exact knowledge of the first and second order mo-
ments of . In practice, however, the moments can only be
estimated from the given noisy image, leading to a sub-optimal
performance. Also, the expression for the lower bound corre-
sponds to the MSE of the Bayesian Minimum Mean Square
Error (BMMSE) estimate of when the prior pdf is as-
sumed to be Gaussian [27]. We, of course, make no such as-
sumption on the prior. Moreover, the bounds formulation does
not even assume complete knowledge of the entire distribution
of , unlike the Bayesian MSE bound derived by Ben-Haim et
al. [31]. Our affine model of the bias allows us to assume only
the availability of the first and second order moments of for
the computation of the lower bound. Extending our approach to
the case where the bias is higher order will incorporate corre-
spondingly higher order moments of the distribution of (see
Appendix C). For practical computation of the bound, we use
the noise-free image to estimate the covariance of . In Sec-
tion IV-C, we explain this process in detail. But first, we derive
an analytical expression for the FIM, assuming Gaussian white
noise.
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TABLE II
SOME IMAGES RANKED ACCORDING TO IMPROVEMENT IN DENOISING YET TO BE ACHIEVED, AS PREDICTED BY OUR BOUNDS.

THE NOISE STANDARD DEVIATION IS 25 AND THE BOUNDS ARE CALCULATED USING 11 � 11 PATCHES

�������� �	
���
� 
��� ���� ��������� �� ���� ���������� ������

decibel figures are: ��� ��� 
���, which indicate room for improvement.

B. Fisher Information Matrix

The expression for the MSE bound in (18) holds true for any
noise distribution, which in turn needs to be taken into account
in deriving an analytical expression for the FIM . Hence, our
framework can be used to derive bounds for any noise distribu-
tion. In this paper, however, we only consider the case of addi-
tive white Gaussian noise (AWGN). Although we assume the
noise to be IID pointwise, this does not allow us to immediately
claim statistical independence of all the noise patches across
the entire image. In fact, if the patches are allowed to overlap,
data from one patch will be duplicated in neighboring patches.
To make our derivation of the FIM simple, we will assume the
image patches to be nonoverlapping. This allows us to assert that
the noise patches are mutually independent. Since the corrupting
noise patches of size are sampled from a multivariate
Gaussian, we can write the pdf as

(19)

where is the total number of (nonoverlapping) patches. As
explained earlier, is a random variable and vectors are in-
stances of the variable sampled from a certain (unknown) dis-
tribution. In the denoising problem, one is required to estimate
each of the instances in an image, and, hence, the FIM is cal-
culated on a per patch basis. Many denoising algorithms [1], [2],
[6] infer information about a single patch by taking into account
multiple similar10 patches. Such algorithms in essence estimate
the vector from multiple similar noisy vectors. In such a
scenario, we obtain an expression for the FIM as

where (20)

(21)

10Similarity in those cases means, similar in terms of patch intensities. We
denote the similarity between the two patches � and � as � � � . In (22), we
define similarity more precisely and describe how to identify similar patches to
compute denoising bounds.

assuming that similar patches are taken into account in de-
noising any given patch. Note that (21) is only an approximate
expression for the FIM. The FIM takes this exact form only
when identical patches are considered. It is also important to
reiterate that (21) holds only when we assume that the patches
are nonoverlapping. In the case where the image patches are
considered to be overlapping, the calculation of the FIM be-
comes more complicated and the issue of it being singular arises.
In this paper, we only deal with the nonoverlapping case where
the noise patches can be considered to be IID.

The expression for the FIM [and, hence, the bound in (18)]
thus takes into account the strength of the noise, as well as the
number of radiometrically similar patches that are considered in
denoising any given patch. In (21), we obtain an expression for
the FIM considering radiometrically similar patches being
available in denoising any given patch. However, the number
of such similar patches will vary widely from image to image,
and also from patch to patch within the same image. For ex-
ample, the corner regions of the box image [Fig. 1(a)] have fewer
matching patches than the smoother regions. Thus, using a fixed
value of for the entire image is unwise. In this section, we de-
scribe how a value of is chosen adaptively in a given image.
But first, we define a measure of similarity between two patches.
We consider two patches and to be similar if they can be
expressed as

(22)

where is a small threshold value. It can be seen that one
needs to choose a proper threshold to ensure few false posi-
tives and negatives in the similarity detection process. Further,
the threshold should also take into account the number of pixels
present in each patch. For our experiments, we choose to be
such that all patches that are identified to be similar to
differ (on average) in less than of the range of intensity
values in each pixel location. Assuming this range to be within
0 to 255, an expression for the threshold is

(23)
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Fig. 3. Some query patches and their respective least similar neighbors as de-
fined by (22) with various values of � found from a dictionary of approximately
450,000 patches from four different images. (a) Query; (b) � � �; (c) � � �;
(d) � � ��.

where is the number of pixels in each image patch. The value
of is empirically chosen such that radiometric similarity of
patches that satisfy (22) can be guaranteed for all patches. For
this, we devised an experiment where 11 11 patches from four
different images were used to form a database of approximately
450,000 radiometrically (and geometrically) diverse patches.
We then randomly chose some patches from the database and
searched for similar patches using various values of . Fig. 3
shows some reference patches with interesting structure and the
corresponding least similar patches that satisfied (22) for dif-
ferent values of . It can be seen from Fig. 3 that is a rea-
sonable choice for the threshold. That is to say, similar patches
are allowed to vary, on average, in less than 5% of the intensity
range for each pixel. In what follows, we fix throughout
the rest of the paper.

From (22), it is obvious that the number of similar patches
will vary from patch to patch and this we denote as . As such,
we calculate the FIM on a per patch basis as

(24)

where similar patches are taken into account in denoising a
patch . The MSE bound can then be calculated with a corre-
sponding FIM for each patch, and the MSE bound for the entire
image can be calculated as the aggregate of the patch-wise MSE
bounds as

(25)

Although the FIM is derived for nonoverlapping patches, to be
more realistic, we consider overlapping patches in our calcula-
tion of . This leads to a practical estimate of the number of
patches that is available to any denoising algorithm. Fig. 4 shows
the spatial distribution of values for the house and parrot im-
ages calculated with 11 11 patches. As can be expected,
takes much larger values for the smoother regions than the edge
and textured regions. While the FIM is calculated on a per patch
basis, the covariance in (25) is estimated from all the patches in
the image, as we describe in the next section.

Fig. 4. Spatial distribution of� values for a patch size of 11� 11 on (a) house
image, and (b) parrot image, shown in Fig. 5.

C. Estimating the Covariance Matrix

The expression for the lower bound on the MSE given in (25)
relies on the computation of the covariance of . In order to
estimate this second moment, we use a bootstrapping method
[40] which is robust with respect to possibly small number of
samples. Bootstrapping is a method of estimating parameters of
an unknown distribution, from its empirical distribution formed
from a finite set of samples ( in our case). This well-studied
statistical method performs sampling with replacement from the
set of observed samples to form multiple empirical distribu-
tions. The parameter of interest (in our case, the second order
moment) is then calculated from each such empirical distribu-
tion. The final estimate of the covariance is then obtained as
an average of all the calculated parameters. This final estimate
converges to the actual second moment when resampling is per-
formed sufficiently many times [41]. Since the covariance it-
self is calculated through an estimation process, it has associ-
ated with it a confidence interval. This means that ultimately
our lower bound is, in practice, a stochastic one with a corre-
sponding confidence interval. Since the parameter of interest is
the covariance matrix , the associated confidence interval
itself will be of similar dimensions. To simplify matters, we in-
stead use the bootstrapping mechanism to directly estimate the
MSE bound from each empirical distribution and obtain
an associated confidence interval for it. This is done using the
following steps.

1) Given the noise-free image, make nonoverlapping patches
.

2) Generate samples with replacement from the
pool of available samples (empirical distribution) to gen-
erate bootstrap sample set .

3) Estimate from the bootstrap sample set using the
formula

(26)

where is the mean of all the vectors that make up
the bootstrap sample set .

4) Compute using the estimated from (25).
5) Repeat steps 2 through 4, times.

In each of the iterations, an estimate of the covariance of and
a corresponding estimate of are obtained as the bootstrap
estimates. Finally, these bootstrap estimates of are aver-
aged to obtain the estimated MSE bound (denoted as ). The
confidence interval of the MSE bound estimate can be readily
calculated as the variance of the bootstrap estimates. The 95%
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Fig. 5. Some examples of general images that we will use to calculate the
bounds. (a) House image; (b) parrot image; (c) Lena image; (d) Barbara image;
(e) boats image; (f) Mandrill image.

confidence interval is given by the Normal interval11 formula-
tion [42]

(27)

where is the standard error of the bootstrapped estimate
. We now have a formulation for estimating the lower

bound and its associated confidence interval for an image (or a
cluster) where the patches are structurally similar. In the next
section we extend this formulation to more general images.

V. BOUNDS FOR GENERAL IMAGES

Until now, we have assumed that the image patches we deal
with are geometrically similar across the entire image (that is,
samples from a single ), although the patch intensities may
differ. This was necessary only for the sake of clarity of the pre-
sentation. To make our formulation applicable to geometrically
heterogeneous images (Fig. 5), we need to first cluster the image
into geometrically similar regions. Analysis of denoising perfor-
mance can be considered independently for each such region of
similar structure. The performance limits on denoising for a par-
ticular image can then be calculated as an aggregate of the MSE
bounds for each of the clusters. In our previous work [5], we
introduced a scheme of clustering an image into geometrically
similar regions for image denoising. Later in this section we give
a brief description of our automatic “geometric” clustering. In
the present scenario, however, we are chiefly interested in com-
puting a performance bound. Therefore, we can assume an ideal
“oracle” clustering method (which may be user-defined) to char-
acterize the various clusters in a given image. Assuming avail-
ability of such a clustering, we proceed to calculate the MSE
bound for any general image that is composed of such (not
necessarily contiguous) clusters.

A. Calculating the Bounds

Clustering the given image decomposes it into multiple seg-
ments such that patches of similar geometric structure are cap-
tured in the same cluster (see Fig. 7). In such a case, we can as-

11This interval formulation is accurate only if the distribution of� is close
to Normal. Our experiments indicate that the histograms of the bootstrapped
� values for different images indeed closely approximate a Gaussian.

sume that the vectors corresponding to patches belonging to
a particular cluster (say ) are realizations of a random vector
sampled from an unknown pdf . This allows us to model
the bias to be an affine function of in each cluster resulting in
cluster-wise optimal bias model parameters and . Con-
sequently, the bounds formulation of (25) holds separately for
each cluster. However, before such a bound can be calculated
for a particular cluster, we need to estimate the second moment
of for that cluster. This is done by forming a sample pool
from the (noise-free) patches belonging to the cluster. An esti-
mate of the actual covariance of is then obtained by the boot-
strapping mechanism outlined in Section IV-C. An MSE bound
for each cluster is then obtained from (25). The final bound on
the MSE for the entire image can then be obtained as a weighted
average of the bounds for each cluster. Mathematically, this can
be derived from observing the sum of squared error (SSE) for
the entire image, given by

(28)

where is the estimate of the bound for the entire image,
and are the estimates of the bounds on the MSE and the
SSE respectively for the th cluster, denotes the cardinality
of the set , denotes the set of all patches in the image, and

is the weight corresponding to the th cluster in the aver-
aging process. An expression for the 95% confidence interval
can be obtained by calculating the standard deviation of
the estimte

(29)

where is the standard deviation of the estimate. The
95% confidence interval, as shown before in (27), is the Normal
interval

(30)

We now have an expression for the MSE bound and its asso-
ciated confidence interval computed from an independent anal-
ysis of each cluster. Referring to our discussions on the achiev-
ability of the bound in Section IV-A, we expect the bound to
be theoretically achievable by a linear MMSE estimator in each
cluster. However, in addition to perfect knowledge of the first
and second order moments of , such an estimator now has
to have access to “perfect” clustering as well. Due to all these
nuances one can only hope to come up with an affine estimator
with performance close to the bound, thus making our formula-
tion a valid lower bound. In the next section, we briefly describe
one particular method of performing clustering based on under-
lying patch geometry.

B. Practical (“Nonoracle”) Clustering

Clustering is a much studied research problem that has led to
a number of different methods [43], [44]. Image clustering is a
subset of this huge field where researchers have devoted con-
siderable attention to the choice of a clustering method as well
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Fig. 6. Steering kernels at different locations of the house image. The patch size
is chosen to be 11 � 11. Note how the kernels adapt to the underlying image
structure.

Fig. 7. Clustering results by K-Means algorithm on the house and parrot
images. Notice how edges and patterns of a certain kind are clustered together
even when they have different intensities. (a) Clustering of house image;
(b) clustering of parrot image.

as the features to use to achieve the intended segmentation. The
choice of features to work with is particularly important as they
need to effectively portray the property on which the clustering
is to be based. For our purposes, we need to identify features that
capture the underlying geometry of the image patches, without
regard to the average intensity of the patches. For this, we make
use of the data adaptive steering kernels developed by Takeda
et al. [3]. In that work on Steering Kernel Regression (SKR),
robust estimates of the local gradients are taken into account in
analyzing the similarity between two pixels in a patch. The gra-
dients are then used to describe the shape and size of a canonical
kernel (in particular, a Gaussian). The steering kernel weight at
the th pixel in the th patch, which is a measure of similarity
between the two pixels, is then given by

(31)

where is a global smoothing parameter also known as the
bandwidth of the kernel. The matrix denotes the gradient
covariance formed from the estimated vertical and horizontal
gradient of the th pixel that lies in the th patch. This allows
the Gaussian of (31) to align with the underlying image struc-
ture. The weight is calculated for each location in the th
patch to form the weight matrix (or kernel). It is interesting to
see that the weight matrix thus formed is indicative of the un-
derlying image geometry. This fact is illustrated in Fig. 6. Note
that in each point of the weight matrix a different is used to
compute the weight, and, hence, the kernels do not have simple
elliptical contours.

These kernels, normalized such that the weights in a partic-
ular patch sum to one, then form excellent descriptors of the
underlying image geometry [5], [45]. We make use of these as
feature vectors to perform clustering. We chose K-Means [5],
[43] for clustering due to its simplicity and efficiency. K-Means
requires as input the feature vectors (normalized steering ker-
nels in our case) and the number of clusters. For our work, we
require the user to specify the number of clusters to segment
the image into. The number of clusters will vary across images
based on the variance in the edge orientation and strength that
an image exhibits. The choice of the number of clusters is im-
portant to us since too few members in a particular cluster will
lead to erroneous estimation of the covariance matrix for and
as a result an erroneous MSE bound. On the other hand, too
few clusters will result in patches of widely varying geometric
structures being grouped together, again resulting in an inaccu-
rate MSE bound. The effect of the number of clusters on the
predicted MSE bounds is discussed in Section VI.

Fig. 7 illustrates the effectiveness of using K-Means with our
choice of normalized steering kernels as feature vectors. It can
be seen that regions that are similar in geometry are clustered
together, even though the pixel intensities may widely differ in
any particular cluster. Note how even the finer texture like the
facade of the house and the cheek of the parrot are correctly
captured by the features and are hence differentiated from the
largely smooth background. This shows that with our choice of
features, a simple clustering method such as K-Means is able to
perform geometric clustering accurately.

VI. RESULTS

In this section, we describe experimental results where we
calculate the MSE bounds for various images and compare these
to the performance of several state-of-the-art denoising algo-
rithms. To start this section, we first show results obtained on
simulated images of simple repeating patterns. We then show
results obtained using uniform texture images and on more gen-
eral images that consist of both smooth and texture regions. The
bound in each case is influenced by the choice of certain param-
eters such as the size of the patches and the number of clusters
used. We present results that illustrate how the bounds are influ-
enced by each of these parameters.

Fig. 8(a) shows a simulated image (of size 220 220) that
we generated to provide a proof of concept for our MSE bounds
calculation. The image consists of simple repeating patterns
(stripes), each 2 pixels wide. The image is made up of two gray
levels (75 and 200). It is very easy to see that for a sufficiently
large patch size the image patches will all be similar in geo-
metric structure, and, hence, no clustering is necessary for this
particular image. Fixing the patch size to be 11 11, we calcu-
late the performance bounds of denoising this particular image
under different noise strengths. We compare the lower bound
to the MSE obtained using various state-of-the-art denoising
methods ([3]–[6]). It can be seen from the plots in Fig. 8(c) that
our MSE bound is quite small as a result of larger number of
identical patches being available. Also, the image consists of a
very simple repeating pattern leading to rather small variability
in geometric structure of the image patches. This makes it
easier to denoise as opposed to more complex natural images.
Our bounds formulation takes into account these factors and
predicts a lower bound on the MSE that can be seen to be rather
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Fig. 8. MSE bounds computed on simulated images and compared with the performance of some state-of-the-art methods (BM3D [6], K-SVD [4], SKR [3],
K-LLD [5]). The bounds are calculated using 11 � 11 patches. (a) Stripes image; (b) box image; (c) bounds for stripes image; (d) bounds for box image.

lower than the performance of the state-of-the-art denoising
algorithms.

As a next step, we calculate the MSE bounds for another,
more interesting, simulated image. Fig. 8(b) shows the box
image (of size 200 200) where, as opposed to the stripes
image, the edges vary in directionality. Clearly, such an image
requires the use of multiple clusters to capture the different
geometric structures. As shown earlier in Fig. 1, we make use
of four clusters to capture the smooth, horizontal and vertical
edges, and the corner regions. Fig. 8(d) shows the calculated
MSE bounds for the box image for different noise standard
deviations and compares them to the performance of denoising
methods. It can be seen that this image is more difficult to
denoise than the stripes image and the predicted MSE bound
is considerably lower than the MSE obtained by any of the
state-of-the-art denoising methods.

We now present experimental results obtained using images
containing relatively uniform natural texture. These images
typically contain (stochastic) repetitive patterns. Patches from
such images can be considered to be geometrically similar and
hence can be grouped together in a single cluster. However,
the patches typically contain more natural variability in their
structure than the simulated stripes image. It can be seen in
Fig. 9(c) that most of the methods perform quite comparably to
the predicted bounds in the heavily textured grass image. The
bound in Fig. 9(d) for another texture image (cloth) is lower
than the best performing method (BM3D), but not significantly
so. These seem to indicate that, theoretically, the performance
can not be vastly improved for such class of images. Also note
that the MSE for each of the methods (and our bounds predic-
tion) are much higher than those obtained for the simulated
images. This is because the (stochastic) variability in the image
patches makes them harder to denoise than the simpler simu-

lated images. This fact is captured by our bounds formulation
as well.

Next, we show experimental results and bounds calculations
for some general images (Fig. 5). Such images are typically
made up of regions of both smooth and textured areas. Thus,
clustering is needed to group together patches of similar geo-
metric structure. In our experiments, we cluster each image into
five clusters using the technique outlined in Section V-B. The
MSE bound is then calculated on a per cluster basis from which
a final estimate of the MSE bound is obtained for the entire
image, along with a confidence interval for the estimate. Fig. 10
shows the MSE bounds obtained for these images using a patch
size of 11 11 and its comparison to performances of some
state-of-the-art methods. The bounds for different images also
give us an idea of the relative difficulty and the amount of im-
provement that can be expected to be achieved in denoising the
images. This can be seen in Table II where the images are ranked
based on the relative efficiency which we define as the ratio of
the predicted MSE bound and the MSE of the best denoising
algorithm for each image. There it can also be seen that images
containing a fair amount of texture are denoised quite well as
compared to the predicted bounds and little room for improve-
ment exists. However, at higher signal-to-noise levels, there is
still room for improvement even for these images. This can be
seen from Fig. 11 where we plot the relative efficiency (in deci-
bels) across different noise levels. The plots there also indicate
that better denoising can be expected for much smoother im-
ages, even though the absolute MSEs of denoising methods are
comparatively lower than those for textured images (Fig. 10).

Until now, the bounds that we have shown were obtained with
a fixed patch size (11 11). Not surprisingly, the patch size
plays a role in calculation of the MSE bounds. Too large a patch
size might capture regions of widely varying geometric structure
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Fig. 9. Bounds for texture images compared to denoising performance of some state-of-the-art denoising methods. A single cluster is considered for this experi-
ment with a patch size of 11 � 11. (a) Grass image; (b) cloth image; (c) bounds for grass image; (d) bounds for cloth image.

in a single patch and also result in fewer similar patches being
present in the image. On the other hand, too small a patch size
can lead to degraded denoising performance resulting from the
lack of geometric structure captured by each patch. In practice,
noise greatly impairs the search for nearest neighbors when too
small a patch size is considered. In our work, search for sim-
ilar patches is carried out on the noise-free image resulting in
larger values of when using smaller patches. But this effect
is typically stabilized with patch sizes of 11 11 or beyond.
Fig. 12(a) illustrates this effect on different images. Note how
the bound on the predicted MSE increases at different rates as
the patch size grows from 5 5 to 19 19 for the images. In
our comparisons, we calculated the bounds with a fixed patch
size of 11 11 which is a reasonable choice for denoising as it
can capture the underlying patch geometry while offering suffi-
cient robustness in the search for similar patches.

Another parameter that influences our predicted lower bound
is the number of clusters. Clustering ensures that patches of
similar geometric structure are grouped together. In Fig. 12(b),
we show the effect of the predicted bounds as a function of in-
creasing number of clusters. Note how, in most cases, the MSE
bounds change little once the number of clusters is chosen to
be or higher. This may encourage one to think that it
might be best to use a much larger number of clusters

. However, with a smaller , we can ensure the pres-
ence of enough patches in the clusters so as to obtain a reason-
ably accurate estimate of the covariance matrix for each cluster.
At the same time, we do not compromise on the requirement
that patches of similar geometric structure be grouped together
in each cluster. On the other hand, choosing too small a value
for results in an erroneous bound as dissimilar patches may
be clustered together and the covariance matrix is then learned
assuming that all vectors are sampled from a single . This

can be seen for the general images of Fig. 5 where clearly
is not a good choice. As a general rule, choosing a value of
to lie within 5 and 10 leads to a stable estimate of the bound
without incurring unnecessary time penalty in clustering.

The experimental results in this section show that although
the current state-of-the-art methods perform denoising quite
well, there is still room for improvement in some cases. In that
sense, given the tremendous variety of images, denoising is a
problem that is still open. In practice, images containing more
texture (e.g., parrot and Barbara images) are harder to denoise
than smoother ones (e.g., house image) and this is shown in
the denoising performance of all the state-of-the-art denoising
methods to which we compared. However, our bounds seem
to indicate that very little room for improvement exists for
images rich in texture. One probable reason for this is that for
naturally occurring textures, few similar patches may exist,
leading to poor denoising. As an extreme case, consider images
where, on average, is close to 1. Denoising then has to be
performed from essentially a single observation of each patch
and, hence, not much denoising can be expected. Our formu-
lation also cannot be expected to predict an informative bound
for such extreme cases. However, for most general images, our
formulation predicts meaningful bounds, as can be seen from
the various experiments shown in this section.

VII. CONCLUSION

In this paper, we studied performance bounds on denoising.
We formulated a method of calculating the lower bounds on the
MSE that accounts for the strength of the corrupting noise, the
number of observations that are typically available to estimate a
denoised patch, as well as the variability of the geometric struc-
tures in the image. It was derived taking into account the effect
of prior information, without the knowledge of the entire prior
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Fig. 10. Comparison of some state-of-the-art methods with our bounds formulation for some general images. The patch size is fixed at 11 � 11 and the number
of clusters ��� used is 5 in all the cases. (a) House image; (b) parrot image; (c) Lena image; (d) Barbara image.

Fig. 11. Room for improvement (in decibels) for various images at different
noise levels, as predicted by our bounds formulation.

pdf. The formulation is on a per cluster basis, where each cluster
consists of patches of similar geometric structure. Our results
showed that there is room for improvement in denoising a class
of sufficiently simple images. On the other hand, images rich in
(particularly repeating stochastic) texture have already been de-
noised close to the limit of performance, although some gain can
yet be achieved at low noise levels where most methods exhibit
bias and artifacts. Our bounds formulation can also be extended
to study performance limits of denoising videos. For that, the

entire video can be clustered into multiple clusters, each cluster
being composed of space-time patches. The MSE bound
can then be calculated from the bounds learned for each cluster,
as has been done for the case of images.

In our present formulation, we assume that the noise-free
image is available in order to predict how well the given image
can be ideally denoised. As such, the bounds are also useful as
a relative measure of denoising quality, which can allow us to
rank images in terms of their denoising “complexity”. Practi-
cally speaking, one may also want to know how well a particular
noisy image can be denoised when no such ground truth is avail-
able. One way of obtaining such an estimate is through the use of
Stein’s unbiased risk estimator (SURE) [46] for a theoretically
optimal estimator. Our method can be modified to study the per-
formance bounds in such cases as well. One possible way of
doing this is through a learning based method where a large data-
base of a variety of noise-free images are available. These im-
ages can be clustered based on geometric similarity of patches
and the covariance matrices can be calculated for each of the
clusters. Then, given any noisy image, it can be clustered (as
described in Section V-B) and values for each patch can be
estimated from either the noisy image patches or using patches
from a naive denoised estimate of the image. The bound for each
of the clusters can then be calculated using the covariance ma-
trix looked up from the nearest cluster in the noise-free image
database. Although the predicted bound in such a case will not
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Fig. 12. MSE bounds for noise standard deviation 25 as a function of (a) varying patch size with � � � for the grass and cloth images, and � � � for house
and parrot images and (b) varying number of clusters with patch size 11 � 11.

be as accurate, it can still serve as an indicator of the optimal
parameters to use for denoising.

APPENDIX A
MATHEMATICAL JUSTIFICATION FOR AFFINE BIAS

Most current state-of-the-art methods perform denoising of
any given patch by searching for similar patches in the
noisy image. Here, we show that such class of nonlinear de-
noising methods produce biased estimates and that the bias for
such methods can be shown to be an affine function of the under-
lying patch . In this derivation we assume that for two patches

, to be similar, their noise-free versions will have to be
similar and can be written as

such that (32)

where is some small threshold value and is a vector. The
denoised estimate of the patch is obtained by performing a
weighted averaging over all (say ) such similar noisy patches.
In general, this can be written as

(33)

where is a (data-dependent) weight matrix that measures
the similarity between patches and . Using the data model
of (2), and (32) above, we can express (33) as

(34)

The expected value of this estimate can then be written as

(35)

This allows us to calculate the bias of such nonlinear weighted
averaging methods as

(36)

where and .
As can be seen from the above derivation, to first order, the

bias is an affine function of . While the parameters of the
affine bias (namely, and ) are different for each patch, we
make the simplifying assumption that the same and pro-
vide an adequate approximation of the bias within members of
the same cluster. This assumption is also statistically justified in
Section II of the paper.

APPENDIX B
OPTIMAL PARAMETERS FOR AFFINE BIAS FUNCTION

In this section we derive expressions for and that mini-
mize the cost function of (13). This can be obtained by solving
a system of simultaneous equations [shown in (14)]. To do this,
we first solve for

(37)
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Taking the derivative with respect to , we get

(38)

Now, using (37) in (38), we get

(39)

where is the covariance of .
Thus, we obtain the optimal bias parameters that minimize the
function as

(40)

(41)

APPENDIX C
HIGHER ORDER BIAS MODEL

In Section II, we assumed that the bias can be modeled rea-
sonably well by an affine function of . This allows us to derive
the corresponding optimal bias function in Section IV-A of the
paper and, finally, an expression for the MSE bound. Although
we have shown experimentally that the bias from some of the
recent denoising methods can be effectively modeled as affine,
the question about the effect of higher order models remains. In
this section, we briefly study the implications of such a higher
order model for the bias. For simplicity, we model the bias func-
tion to be a restricted second order model given by

and

(42)

where is the number of pixels in a patch, is a scalar,
is the th row from a matrix and is the th entry from a
vector . Now, we can express the Bayesian bound as

(43)

assuming without any loss of generality. Next, it can
be seen that

...

...

...

...

(44)

where is the th column of the identity matrix containing all
zeros except a one at the th position and

. We can then write (43) as

(45)

As before, we take the derivatives of the right hand side of (45)
with respect to the unknown parameters ( , and ) and
solve the equations to get expressions for the optimal parameters
that minimize . Differentiating the right hand side of (45) with
respect to , , and , we get three simultaneous equations

(46)

(47)

(48)

Now, using the expression for from (46) in (47) and (48), we
get the system of equations in two variables

(49)
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(55)

(50)

where we denote
to be the higher order moment that is related to the multidimen-
sional skewness of the pdf of . Now, we use the expression for

as given in (49) and plug it in (50) to obtain

(51)

This equation can be written in a much simpler form by making
use of the relation

(52)

where is related to the multidimensional kurtosis (fourth
order moment) of the pdf and is defined as

(53)
This allows us to rewrite (51) as

(54)

which leads to the expression for the optimal parameter as
(55), shown at the top of the page.

Skewness is very good indicator of reflectance properties of
surfaces such as albedo and gloss [47], [48]. As such, the image
of a well-exposed scene will generally have small skew such
that the histogram of the image is more or less symmetric [49].
This principle is, in fact, behind the tried and true method of
histogram equalization which is used often to improve contrast
in images. So, for typical natural images, the term related
to the skewness is close to zero and the optimal bias model then
collapses to the affine model that we have used earlier.
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