
UNIVERSITY OF CALIFORNIA

SANTA CRUZ

LOCALLY ADAPTIVE KERNEL REGRESSION METHODS FOR
MULTI-DIMENSIONAL SIGNAL PROCESSING

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

ELECTRICAL ENGINEERING

by

Hiroyuki Takeda

September 2010

The Dissertation of Hiroyuki Takeda
is approved:

Professor Peyman Milanfar, Chair

Professor Benjamin Friedlander

Professor Roberto Manduchi

Tyrus Miller
Vice Provost and Dean of Graduate Studies

Copyright © by

Hiroyuki Takeda

2010

Table of Contents

List of Figures vi

List of Tables xix

Abstract xx

Dedication xxi

Acknowledgments xxii

1 Introduction 1
1.1 Regression Problem . 1
1.2 Contributions . 4
1.3 Classic Kernel Regression and its Properties 6

1.3.1 Kernel Regression in 1-D . 6
1.3.2 Related Regression Methods . 12
1.3.3 Kernel Regression in 2-D . 16
1.3.4 Smoothing Matrix Selection . 23

2 Data-Adaptive Kernel Regression 26
2.1 Data-Adaptive Kernels . 26

2.1.1 Bilateral Kernel . 28
2.1.2 Steering Kernel . 33
2.1.3 Iterative Steering Kernel Regression 42

2.2 Experiments . 46
2.2.1 Image Restoration . 46
2.2.2 Image Reconstruction from Irregularly Sampled Data 51

iii

2.3 Robust Kernel Regression . 56

3 Kernel-Based Image Deblurring 61
3.1 Introduction . 61
3.2 Kernel-Based Deblurring . 65

3.2.1 Kernel-Based Deblurring Estimator 65
3.2.2 Locally Adaptive, Data-Dependant Weights 72
3.2.3 Deblurring Examples . 76

3.3 Generalized Kernel-Based Image Restoration 82

4 Multi-Dimensional Kernel Regression for Space-Time Video Upscaling 87
4.1 Introduction . 88
4.2 Motion-Assisted Steering Kernel (MASK) Regression 93

4.2.1 Spatiotemporal (3-D) Kernel Regression 93
4.2.2 Motion-Assisted Steering Kernel Function 95
4.2.3 Spatial Upscaling and Temporal (Frame) Interpolation 97
4.2.4 A Practical Video Upscaling Algorithm Based on MASK 99

4.3 3-D Steering Kernel Regression . 113
4.3.1 Spatiotemporal Steering Kernel regression 114
4.3.2 Kernel Regression with Rough Motion Compensation 120
4.3.3 Implementation and Iterative Refinement 124

4.4 Video Upscaling Examples . 127

5 Video Deblurring 135
5.1 Introduction . 136

5.1.1 Existing Methods and a Path Ahead 138
5.2 Video Deblurring in 3-D . 141

5.2.1 The Data Model . 141
5.3 Experiments . 147

6 Conclusion and Future Works 155
6.1 Conclusion . 155
6.2 Future Directions . 159

6.2.1 The Choice of Kernel Function . 159
6.2.2 The Choice of Distance Metric . 161
6.2.3 Iteration Filtering Scheme . 165

iv

6.2.4 Quantization of Local Steering Kernel 168
6.2.5 Kernel Regression for Vector Functions 170

A Equivalent Kernels 172

B Local Gradient Estimation 174

C Kernel-Based Deblurring Estimator 176

D Motion Estimation 177

E 3-D Steering Kernel Parameters 180

Bibliography 181

v

List of Figures

1.1 A simple imaging system model of commercial digital image/video cam-
eras. 2

1.2 Possible spatial data sampling models: (a) an incomplete set of regularly
sampled data, (b) irregularly sampled data set, and (c) an complete set
of regularly sampled data. 3

1.3 Image fusion often yields us irregularly sampled data. 4
1.4 The effect of the regression orders: (a) Zeroth order kernel regression

(constant model, N = 0), (b) First order kernel regression (linear model,
N = 1), and (c) Second order kernel regression (quadratic model, N = 2). 11

1.5 Examples of local polynomial regression on an equally-spaced data set.
The signals in the first and second rows are contaminated with Gaussian
noise of SNR = 9[dB] and −6.5[dB], respectively. The dashed, solid lines,
and dots represent the actual function, estimated , and the noisy data,
respectively. The columns from left to right show the constant, linear,
and quadratic interpolation results. Corresponding PSNR values for the
first row experiments are 28.78, 28.78, 30.26[dB] and for the second row
are as 15.41, 15.41, 15.37[dB]. 12

1.6 A comparison of the position of knots in (a) kernel regression and (b)
classic B-spline method. 14

1.7 The data model for the kernel regression framework in 2-D. 17
1.8 Equivalent kernels for a regularly sampled data: (a) a regularly sampled

data set and (b) a horizontal cross section of the equivalent kernels of
orders N = 0, 1, and 2. Gaussian kernel KH in (1.26) is used with the
smoothing matrix H = diag[10,10]. 22

vi

1.9 Equivalent kernels for an irregularly sampled data: (a) an irregularly
sampled data set, (b) the second order equivalent kernel (N = 2), and
(c)(d) the horizontal and vertical cross sections of the equivalent kernels
of different orders (N = 0,1,2) are compared, respectively. Similar to the
case of the regularly sampled data set in Figure 1.8, Gaussian kernel KH

in (1.26) is also used with the smoothing matrix H = diag[10,10]. 22
1.10 Smoothing (kernel support size) selection by local sample density. 23

2.1 Kernel contours in a uniformly sampled data set: (a) Kernels in the clas-
sic method depend only on the spatial distances, and (b) Data-adaptive
kernels elongate with respect to the local edge structure. 27

2.2 Bilateral kernel weights given by (2.2) at flat, edge, and Lena’s eye re-
gions of a clean image. 29

2.3 A visual analysis of the bilateral equivalent weight function in (2.4) at a
variety of image structures; flat, strong edge, corner, texture, and weak
edge for the zeroth and second order (N = 0 and 2). Note: Each weight
function is respectively normalized, and Figure 2.4 illustrates the detail
of the weight function at the strong edge. 30

2.4 Horizontal cross-sections of the bilateral equivalent weight function at
the strong edge for the zeroth and second order (N = 0 and 2): (a)-(b)
the footprints of Wi for the zeroth and second order, respectively, (c) the
horizontal cross-sections pointed by the arrows of Wi of (a) and (b). . . . 31

2.5 Bilateral kernel weights given by (2.2) at flat, edge, and Lena’s eye re-
gions of a noisy image. The noisy image is given by adding white Gaus-
sian noise with standard deviation = 25 (the corresponding SNR is 5.64[dB]). 33

2.6 A schematic representation illustrating the effects of the steering matrix
and its components (Ci = γi Rθi Λi RT

θi
) on the size and shape of the regres-

sion kernel footprint. 36

vii

2.7 A schematic representation of the estimates of local covariance metrics
and the steering kernel weights at a local region with one dominant ori-
entation: (a) First, we estimate the gradients and compute the local co-
variance matrix Ci by (2.13) for each pixel, and (b) Next, when denois-
ing y13, we compute the steering kernel weights with Ci for neighboring
pixels. Even though, in this case, the spatial distances between y13 and
y1 and between y13 y21 are equal, the steering kernel weight for y21 (i.e.
KH21 (x21 − x13)) is larger than the one for y1 (i.e. KH1 (x1 − x13)). This is
because y13 and y21 are located along the same edge. 39

2.8 Visualizations of steering kernels with covariance matrices Ci given by
the local orientation estimate (2.13) at a variety of image structures. (a)
the estimated kernel values in a clean image and (b) the estimated kernel
values for the same areas of a noisy image (after 7 iterations considering
additive Gaussian noise with standard deviation = 25 similar to the ex-
periment in Section 2.2. 40

2.9 A schematic description of pixel denoising by steering kernel regression:
(a) at the flat area, the steering kernel spreads widely, and steering kernel
regression denoises the pixel of interest by a weighted average of neigh-
boring samples (2.12). (b) For the edge area, the kernel spreads along the
local edge, and the estimator computes an average of pixels on the same
edge, which the pixel of interest is located on. (c) At a area with complex
structures, e.g. Lena’s eye, the steering kernel stays small. Thus the es-
timator effectively leave the pixel alone and preserve the local structure.
The kernel weights are the ones shown in Figure 2.8(b). 41

viii

2.10 Steering kernel regression for image upscaling: (a) Input image, (b) we
compute steering matrices for each given pixel and then estimate the
missing pixel z(x) and denoise the given pixels yi . In the figure, we
show regression examples at two positions: one is in flat region and the
other is in edge region. When we estimate z(x) in flat region, the steering
kernels of neighboring pixels tend to be circular and widely spread, and
thus the estimated pixel is the average value of the neighboring pixels
(i.e. y1, y2, y6, and y7). On the other hand, in edge region, the steering
kernels are elliptic and elongated along the local orientation, and the
steering kernel regression estimates the missing pixel z(x) by taking its
neighboring pixels that are located on the same orientation (i.e. y13 and
y17) strongly into account. The red dashed line is a speculative local
orientation. 42

2.11 Steering kernel regression for image reconstruction from irregularly sam-
pled data: (a) A irregularly sampled data set. (b) First we estimate miss-
ing pixels on regular grid positions (marked as black dots) by, for ex-
ample, classic kernel regression, and that is what we call “pilot estima-
tion”. Then we estimate steering matrices for the given irregular data.
One simple way to estimate a steering matrix for an off-grid sample is
to take the local analysis window at the nearest regular grid position. (c)
Once the steering matrices are available, we estimate the missing pixel
of interest by steering kernel regression. The figure illustrate an exam-
ple of estimating a pixel at near an local edge. This case, steering kernels
give larger weights to the samples located on the same edge (i.e. y7, y8,
y9, and y10). 43

2.12 Block diagram representation of iterative steering kernel regression: (a)
the initialization process, and (b) the iteration process. 44

2.13 An example of the behavior of mean square error, variance, and bias
of the iterative steering kernel method, and its estimated images at the
different number of iterations. 45

ix

2.14 An example of Gaussian noise removal with the Lena image: (a) the
original Lena image, (b) the noise-ridden image that we generated by
adding white Gaussian noise with standard deviation 25 (SNR = 5.64[dB]),
(c) the second order classic KR (1.35), (d) bilateral filter [7], (e) anisotropic
diffusion [25], (f) a wavelet method [46], (g) K-SVD [44], and (i) Iterative
SKR. The corresponding RMSE values are (b)25, (c)8.94, (d)8.65, (e)8.64,
(f)6.66, (g)6.90, (h)6.35, and (i) 6.64. 48

2.15 An example of white Gaussian noise removal with the Lena image: the
images (a)-(i) show the enlarged selected regions of the respective im-
ages shown in Figure 2.14. 49

2.16 An example of blocking artifact reduction with the pepper image: (a) the
original pepper image, (b) the compressed image that we generated by
compressing with the quality factor 10, (c) the second order classic KR
(1.35), (d) bilateral filter [7], (e) Anisotropic diffusion [25], (f) a wavelet
method [46], (g) K-SVD [44], (h) BM3D [45], and (i) Iterative steering
KR. The corresponding RMSE values are (b)9.76, (c)9.03, (d)8.52, (e)9.70,
(f)8.80, (g)8.54, (h)8.60, and (i)8.48. 50

2.17 An example of film grain removal: (a) the JFK image that carries real
film grain noise, (b) K-SVD [44], (c) BM3D [45], and (d) iterative SKR. . . 51

2.18 The comparison of the film grain removal on the JFK image by resid-
ual images (the absolute differences between the JFK image and the de-
noised images): (a) the JFK image that carries real film grain noise, (b)
K-SVD [44], (c) BM3D [45], and (d) iterative SKR. 52

2.19 An example of image reconstruction from irregularly sampled data with
the house image: (a) the irregularly sampled data that we generated by
randomly eliminating 85% of pixels (no noise), (b) the original house
image, (c) Delaunay triangulation, (d) classic KR (1.35), and (e) Iterative
SKR. The corresponding RMSE values of the reconstructed images are
(c)9.11, (d)10.36, and (e)8.72. 53

2.20 An example of image reconstruction from irregularly sampled data with
the Lena image: (a) the irregularly sampled data that we generated by
randomly eliminating 85% of pixels (no noise), (b) the original house
image, (c) Delaunay triangulation, (d) classic KR (1.35), and (e) Iterative
SKR. The corresponding RMSE values of the reconstructed images are
(c)9.29, (d)9.72, and (e)8.21. 54

x

2.21 An example of resolution enhancement with the Adyoron video sequence:
(a) the first video frame of the Adyoron sequence, (b) multiframe Delau-
nay triangulation, (c) multiframe classic KR (1.35), and (d) multiframe
iterative SKR. 55

2.22 An example of salt & pepper noise reduction by Susan filter (2.6): (a),(c)
noise-ridden images that we generated by adding 1% and 20% salt &
pepper noise, respectively, and (b),(d) the restored images of (a) and
(c) by Susan filter, respectively. The corresponding RMSE values are
(a)13.50, (b)6.20, (c)63.84, and (d)28.33. 57

2.23 An example of Salt & pepper noise reduction with a cropped Lena im-
age: (a) a noise-ridden image that we generated by adding 20% salt
& pepper noise, and (b) the restored image by 3× 3 median filter, (c)
a wavelet method [46], (d) L2 classic KR (1.35), (e) L2 iterative SKR (2.12),
and L1 iterative SKR. The corresponding RMSE values are (a)63.84, (b)11.05,
(c)21.54, (d)21.81, (e)21.06, and (f)7.14, respectively. 59

3.1 The data model for the deblurring problem. 62
3.2 The i -th pixel at xi and its neighboring pixel u(x j) at xi located ν1- and

ν2-pixels away in x1- and x2-directions (ν= [ν1,ν2]T), respectively. 66
3.3 A graphical representation of the proposed regularization term (3.14):

The figures (a)-(c) shows the pixels (u(xflat), u(xedge), and u(xeye)) at a flat
region, an edge region and the eye, respectively, with their neighboring
pixels, and the figures (d)-(f) shows the steering kernel weight values
given by KHu (x j −ν) (ν) for the pixels (u(xflat), u(xedge)), and u(xeye)). 70

3.4 Block diagram representation of the kernel-based deblurring method
with the steering weight matrices: (a) initialization and (b) Steepest de-
scent iteration with the update of the weight matrix. 74

xi

3.5 Single-frame deblurring experiment with the Cameraman image: (a) the
original cameraman image, (b) degraded image by blurring with a 19×19

uniform PSF and adding white Gaussian noise (BSNR = 40[dB]), (c) re-
stored image by Wiener filtering (smoothing parameter 0.0003) [29], (d)
restored image by a multi-step filter (first denoised by iterative steer-
ing kernel regression [52], and deblurred by BTV [2]), (e) restored image
by ForWaRD [59], (f) restored image by LPA-ICI [53], and (g) restored
image by AKTV ((3.20) with q = 1, N = 1, and steering kernels (2.9)).
The corresponding RMSE values for (b)-(g) are 29.67, 17.17, 17.39, 14.37,
13.36, and 14.03, respectively. A selected sections of (a) and (d)-(g) are
zoomed in (h)-(l), respectively. 77

3.6 Single-frame deblurring experiment on the Cameraman image: (a) orig-
inal cameraman image, (b) degraded image by blurring with a 19× 19

uniform PSF and adding white Gaussian noise (BSNR = 25[dB]), (c) re-
stored image by Wiener filtering (the smoothing parameter 0.004 [29]),
(d) restored image by a multi-step filter (first denoised by iterative steer-
ing kernel regression [52], and deblurred by BTV [2]) (e) restored image
by ForWaRD [59], (f) restored image by LPA-ICI [53], and (g) restored
image by AKTV ((3.20) with q = 1, N = 1, and steering kernels (2.9)).
The corresponding RMSE values for (b)-(g) are 29.82, 21.62, 20.78, 19.44,
18.23, and 17.64, respectively. A selected sections of (a) and (d)-(g) are
zoomed in (h)-(l), respectively. 79

3.7 Single-frame deblurring simulation of the Lena image: (a) original Lena
image, (b) degraded image by blurring with a 5×5 Gaussian PSF (STD =
1.5) and adding white Gaussian noise (BSNR = 15[dB]), (c) restored im-
age by the Wiener filter method with smoothing parameter of 0.05 [29],
(d) restored image by ForWaRD [59], (e) restored image by LPA-ICI [53],
and (f) restored image by AKTV ((3.20) with q = 1, N = 1, and steer-
ing kernels (2.9)). The corresponding RMSE values for (b)-(f) are 10.78,
11.18, 7.55, 6.76, and 6.12, respectively. A selected sections of (a) and
(d)-(f) are zoomed in (g)-(j), respectively. 80

xii

3.8 Single-frame deblurring simulation of the Chemical Plant image: (a)
original Lena image, (b) degraded image by blurring with a 11×11 Gaus-
sian PSF (STD = 1.75) and adding white Gaussian noise (BSNR = 30[dB]),
(c) restored image by the Wiener filter method with smoothing parame-
ter of 0.01 [29], (d) restored image by ForWaRD [59], (e) restored image
by LPA-ICI [53], and (f) restored image by AKTV ((3.20) with q = 1,
N = 1, and steering kernels (2.9)). The corresponding RMSE values for
(b)-(f) are 15.09, 9.29, 8.98, 8.98, and 8.57, respectively. A selected sec-
tions of (a) and (d)-(f) are zoomed in (g)-(j), respectively. 81

3.9 A denoising example by AKTV: (a) a traditional x-ray image of a chicken
wing, (b) a high resolution x-ray image, (c) the denoised image by AKTV
((3.19) with Φ= I ∈RLM×LM , q = 1, N = 1, and steering kernels (2.9)), and
(d) absolute residual image. 84

3.10 An upscaling example: (a) a low resolution MRI image of a human head,
and (b)-(d) ×2 upscaled images by bicubic, NEDI [61], and AKTV ((3.19)
with Φ= D ∈R

L
r

M
r ×LM , the upscaling factor r = 2, q = 1, N = 1, and steer-

ing kernels (2.9)), respectively. 85

4.1 Schematic representations of the construction of MASK weights. The
proposed MASK weights are constructed by the following procedure:
(a-i) we compute 2-D steering kernel weights for each frame (with mi =
[0,0]T at this moment), (a-ii) we shift the steering kernels by the local mo-
tion vectors, and then (a-iii) we scale the shifted steering kernels by the
temporal kernel function. Figure (b) illustrates the weight construction
for the estimation of an intermediate frame at time t 98

4.2 Illustration of spatiotemporal video upscaling based on the MASK ap-
proach. 101

4.3 A schematic representation of temporal weighting in MASK for upscal-
ing the ℓ-th block (yℓ,t) of the frame at time t . First, we locate the neigh-
boring blocks (yℓ,i for i = −2,−1,1,2) indicated by the motion vectors
(mℓ,i). Then, we compute the motion reliability (ηℓ,i) based on the dif-
ference between the ℓ-th block at t and the neighboring blocks, and com-
bine the temporal penalization by Kt with the spatial kernel function K . 105

4.4 The graphical relationship between the steering kernel parameters and
the values of covariance matrix. 108

xiii

4.5 Equivalent kernels given by classic kernel regression: (a) the zeroth or-
der equivalent kernel with the global smoothing parameter h = 0.75, (b)
the second order equivalent kernel (w0(2)) with h = 0.75, (c) a sharp-
ened zeroth order equivalent kernel (w̃0(2)) with a 3×3 Laplacian kernel
(Γ= [1, 1, 1; 1, −8, 1; 1, 1, 1]) and κ= 0.045, and (d) Horizontal cross sec-
tions of the equivalent kernels w0(0), w0(2), and w̃0(2). For this example,
we used a Gaussian function for K (·). 111

4.6 Local scaling parameters (γi) for (a) Barbara image and (b) Boat image.
With the choice of the adaptive regression order κi = 0.01γi (4.24), the
regression order becomes nearly zero in the areas where γi is close to
zero, while in areas where γi is around 5, the resulting equivalent kernel
given by (4.23) approximately becomes second order. 112

4.7 Visualizations of steering kernels for (a) the case of one horizontal edge
moving up (this creates a tilted plane in a local cubicle) and (b) the case
of one small dot moving up (this creates a thin tube in a local cubicle). (a)
and (b) show some cross-sections of the 3-D data, and (b) and (c) show
the cross-sections of the weights given by the steering kernel function
when we denoise the sample located at the center of the data cube, and
(d) and (e) show the isosurface of the steering kernel weight for (a) and
(b), respectively. 117

4.8 A graphical representation of 3-D steering kernel weights (4.31) for the
Foreman sequence: The figure illustrate cross-sections of the steering
kernel function KHi (xi − x) with (4.25) at every 15 pixels in horizontal,
vertical, and time. For the illustration, we chose the analysis cubicle
sizes ω= 15×15×15 and ξi = 5×5×5. 118

4.9 Steering kernel footprints for (a) a video with small displacements, (b) a
video with large displacements, and (c) the video after neutralizing the
large displacements. 121

4.10 Steering kernel footprints for (a) a video with a complex motion trajec-
tory, and (b) the video after neutralizing the relatively large displacements.122

4.11 Block Diagram representation of the 3-D iterative steering kernel regres-
sion with motion compensation: (a) the initialization process, and (b)
the iteration process. 125

xiv

4.12 A simple super-resolution example: (a) the original image, (b) one of 9
low resolution images generated by blurring with a 3×3 uniform PSF,
spatially downsampling with a factor of 3 : 1, and adding white Gaus-
sian noise with standard deviation 2, (c) an upscaled image by Lanczos
(single frame upscale), (d) an upscaled image by robust super-resolution
(SR) [2], and (e) an upscaled image by non-local mean (NLM) based
super-resolution [80], and (f) an upscaled image by 3-D ISKR with rough
motion compensation. The corresponding PSNR values are (c)19.67,
(d)30.21, (e)27.94, and (f)29.16[dB], respectively. 126

4.13 A Carphone example of video upscaling with spatial upscaling factor
1 : 2: (a) the input video frame at time t = 27 (144×176, 30 frames), (b)-(c)
upscaled frames by Lanczos interpolation and NLM-based SR method
[80], respectively, (d)-(f) upscaled frames by MASK at t = 26.5, 27, and
27.5, respectively, and (g)-(i) upscaled frames by 3-D ISKR at t = 26.5, 27,
and 27.5, respectively. 131

4.14 Spatial upscaling of Texas video sequence: (a) the input frame at t = 5,
(b)-(d) the upscaled video frames by NML-based SR [80], 3-D ISKR, and
MASK, respectively. (e)-(h) Enlarged images of the input frame and the
upscaled frames by NML-based SR, 3-D ISKR, and MASK, respectively. 132

4.15 Spatiotemporal upscaling of Texas video sequence: (a)-(b) the estimated
intermediate frames at time t = 5.5 by 3-D ISKR and MASK, and (b)-(c)
the enlarged images of the upscaled frames by 3-D ISKR and MASK,
respectively. 133

4.16 Spatiotemporal upscaling of Spin Calendar video sequence: (a)-(c) the
input frame at time t = 5, the estimated intermediate frames at time t =
5.5 by 3-D ISKR and MASK, and (d)-(f) the enlarged images of the input
frame, the upscaled frames by 3-D ISKR and MASK, respectively. 134

5.1 An example of motion blur reduction: (a) the ground truth, (b) the blurred
frame, (c)-(e) deblurred frames by Fergus’s method [98], Shan’s method
[99], and the proposed 3-D deblurring approach. 137

xv

5.2 A schematic representation of the exposure time τe and the frame in-
terval τf: (a) a standard camera, (b) multiple videos taken by multiple
cameras with slight time delay is fused to produce a high frame rate
video, (c) the original frames with estimated intermediate frames, and
(d) the output frames temporally deblurred. 143

5.3 The forward model addressed in this paper, and we estimate the desired
video u by two-step approach: (i) space-time upscaling, and (ii) space-
time deblurring. 144

5.4 The overall PSF kernel in video (3-D) is given by the convolution of the
spatial and temporal PSF kernels. 145

5.5 A motion (temporal) deblurring example of the Cup sequence (130×165,
16 frames) in which a cup moves upward: (a) 2 frames of the ground
truth at times t = 6 to 7, (b) the blurred video frames generated by tak-
ing the average of 5 consecutive frames (the corresponding temporal
PSF is 1×1×5 uniform) (PSNR[dB]: 23.76(top), 23.68(bottom), and SSIM:
0.76(top), 0.75(bottom)), (c)-(e) the deblurred frames by Fergus’s method
[98] (PSNR[dB]: 22.58(top), 22.44(bottom), and SSIM: 0.69(top), 0.68(bot-
tom)), Shan’s method [99] (PSNR[dB]: 18.51(top), 10.75(bottom), and SSIM:
0.57(top), 0.16(bottom)), the proposed 3-D TV method (5.7) (PSNR[dB]:
32.57(top), 31.55(bottom), and SSIM: 0.98(top), 0.97(bottom)), respec-
tively. The figures (f)-(j) are the selected regions of the video frames
(a)-(e) at time t = 6, respectively. 148

5.6 A motion (temporal) deblurring example of the ToyRobo sequence (84×
124, 16 frames) in which a cup moves upward: (a) 2 frames of the ground
truth at times t = 6 to 7, (b) the blurred video frames generated by tak-
ing the average of 5 consecutive frames (the corresponding PSF is 1×
1×5 uniform) (PSNR[dB] : 27.83(top), 24.62(bottom), and SSIM : 0.93(top),
0.87(bottom)), (c)-(e) the deblurred frames by Fergus’s method [98] (PSNR[dB] :

25.71(top), 24.84(bottom), and SSIM : 0.90(top), 0.88(bottom)), Shan’s method
[99] (PSNR[dB] : 10.88(top), 8.69(bottom), and SSIM : 0.26(top), 0.14(bot-
tom)), the proposed 3-D TV method (5.7) (PSNR[dB] : 43.02(top), 39.61(bot-
tom), and SSIM : 0.99(top), 0.99(bottom)), respectively. The figures (f)-(j)
are the selected regions of the video frames (a)-(e) at time t = 6, respec-
tively. 149

xvi

5.7 Plots of (a) PSNR and (b) SSIM values of the iterative deblurring method
with the proposed 3-D TV method (5.9) for the frames of Cup and Toy-
Robo sequences at t = 6. For the iterations, we set the step size µ in (5.9)
0.75. 150

5.8 A motion (temporal) deblurring example of the StreetCar sequence (120×
290, 5 frames) with real motion blur: (a) 2 frames of the ground truth at
times t = 2 to 3, (b)-(c) the deblurred frames by Fergus’s method [98],
Shan’s method [99], and (d) the deblurred frames by the proposed 3-D
TV method (5.7) using a 1×1×8 uniform PSF. 151

5.9 Selected regions from the frame at t = 2 of the StreetCar sequence: (a)
the input frame, (b)-(d) the deblurred results by Fergus et al. [98], Shan
et al. [99], and the proposed 3-D TV (5.7) method, respectively. 152

5.10 A 3-D (spatio-temporal) deblurring example of the Foreman sequence in
CIF format: (a) the cropped frame at time t = 6, (b)-(c) the deblurred re-
sults of the upscaled frame shown in (e) by Fergus’ method [98], Shan’s
method [99], (d) the deblurred frames by the proposed 3-D TV method
(5.7) using a 2× 2× 2 uniform PSF, and (e) the upscaled frames by 3-D
SKR (4.37) at time t = 6 and 6.5 in both space and time with the spatial
and temporal upscaling factors of 1 : 2 and 1 : 8, respectively. The figures
(f)-(i) and (j)-(n) are the selected regions of the frames shown in (a)-(e) at
t = 6 and 6.5. 153

5.11 Deblurring performance comparisons using absolute residuals (the ab-
solute difference between the deblurred frames shown in Figures. 5.10(b)-
(d) and the estimated frames shown in Figures. 5.10(e)): (a) Fergus’
method [98], (b) Shan’s method [99], and our proposed method (5.7). . . 154

6.1 A comparison of the possible kernel functions. 160
6.2 The performance comparison of a vaerity of kernel functions for image

upscaling. In this example, we downsampled the original Lena image
shown in (a) with the factor of 2:1, and then upscale the downsampled
image with the factor of 1:2. The upscaled images by Epanechnikov,
biweight, triangle, Laplacian, and Gaussian kernel functions are shown
in (b)-(f), respectively. The smoothing parameters are optimized by the
cross-validation method. 161

xvii

6.3 The performance comparison of a vaerity of kernel functions by image
upscaling. In this example, we downsampled the original Parrot image
shown in (a) with the factor of 2:1, and then upscale the downsampled
image with the factor of 1:2. The upscaled images by Epanechnikov,
biweight, triangle, Laplacian, and Gaussian kernel functions are shown
in (b)-(f), respectively. The smoothing parameters are optimized by the
cross-validation method. 162

6.4 Block diagram representation of iterative steering kernel regression: (a)
the initialization process, and (b) the iteration process where we apply
SKR to the given noisy data. 165

6.5 An example of the behavior of mean square error, variance, and bias
of the iterative steering kernel regression proposed in Figure 2.12 with
three different smoothing parameters h = 2.5,2.75, and 3.0. 166

6.6 An example of the behavior of mean square error, variance, and bias of
the iterative steering kernel regression shown in Figure 6.4 with three
different smoothing parameters h = 3.5,4.0, and 4.5. 167

6.7 A quantization example of local steering kernel (LSK): (a) the original
House image, and (b) centroids of the clustered LSKs by K-means method
and the corresponding pixels. 168

6.8 A diagram of the steering kernel regression with a look-up table of local
steering kernel weights. 169

D.1 The block diagram representation of our motion estimation. 178

xviii

List of Tables

4.1 A compact lookup table for the normalized covariance matrix C̃s
j (ϱj ,θj) =

[c̃11, c̃12; c̃12, c̃22]. 109

6.1 Choices of possible kernel functions . 159
6.2 Representative Distance Metrics and Related Image Restoration Methods 164

xix

Abstract

Locally Adaptive Kernel Regression Methods for Multi-Dimensional Signal

Processing

by

Hiroyuki Takeda

While digital imaging devices have been rapidly improved and widely used for con-

sumer photography as well as microscope, medical, and astronomical imaging, the

measured images/videos often suffer from some degradations, such as noise, blur-

ring, aliasing effects, and more due to the electromechanical limitations. Although

many different methods have been proposed, they are often designed for recovering

the images from one specific degradation.

In this work, we study the kernel regression (KR) as a general restoration ap-

proach for multidimensional signals. The classic KR is a statistical technique that en-

ables us to regard a variety of image/video restoration problems as regression, and it

has a few advantageous properties: (i) the classic KR is a spatially-adaptive point esti-

mation procedure that is capable of finding missing pixels and smoothing noise-ridden

pixels, and (ii) it requires few assumptions on the underlying multidimensional data.

Furthermore, the data-adaptive KR we propose locally learns the optimal filter coeffi-

cient from not only the spatial density of the given data but also the radiometric struc-

tures of the underlying data. Thus, it is applicable to a wide variety of problems, such

as denoising, interpolation, deblurring and super-resolution tasks for images/videos.

The experimental results with synthetic/real data presented in each chapter will show

the superiority of the KR approach.

To my family.

xxi

Acknowledgments

First, I wish to express my gratitude to my advisor, Professor Peyman Milanfar. With-

out his support and guidance, I would have never gotten to where I am now. Since

I joined the MDSP group as a master’s student in 2004, he has taught me not only

the basics of the image processing but also a number of practical skills to accom-

plish the projects. In addition, his advice and suggestions helped me develop ana-

lytical/creative thinking. I consider myself lucky that I had an opportunity to work

with him throughout my research.

I am indebted to Professor Benjamin Friedlander and Professor Roberto Man-

duchi for being the thesis committee members, and Dr. Peter van Beek for being my

mentor during the summer internship at Sharp in 2007 and 2008. Also, I would like

to thank Professor Michael Elad and Professor Sina Farsiu for providing the valuable

feedback to my journal papers.

I thank the former students of Professor Milanfar, Dr. Dirk Robinson, and Dr.

Morteza Shaharam, and Dr. Amyn Poonawara, and the new students, Priyam, Hae

Jong, and Xiang. They are excellent researchers to have technical discussions as well

as nice friends to hang out. My life in Santa Cruz was enjoyable because of them.

I am thankful for the best friend, Dr. Shigeru (CJ) Suzuki. Without him, I

would not be able to survive in graduate school. He always gives me a unique question

which indirectly teaches me how to see the things from many other perspectives.

Finally, I want to thank my parents, Ren Jie Dong and Akemi Takeda, my

sisters, Asako and Tomoko, my grand mother, Kinu, and my wife, Mayumi, for their

consideration. I dedicate this work to my family.

Santa Cruz, California

June 7th, 2010

Hiroyuki Takeda

xxii

Chapter 1

Introduction

Abstract— This chapter addresses the regression problem in which we study

and understand the typical degradation models of imaging system, such as downsam-

pling, blurring, and noise effects. In addition, we consider the given samples (pixels)

measured irregularly spaced, and hence, the data model becomes quite general. In-

stead of restoring/reconstructing images while making specific assumptions on the

given data, we introduce classic kernel regression, which requires minimal assumptions,

as a fundamental tool for the regression problem.

1.1 Regression Problem

The ease of use and cost efficiency have contributed to the growing popular-

ity of digital imaging systems. However, digital imaging systems always suffer from

some sort of degradations. For instance, inferior spatial resolution causes the appar-

ent aliasing effect due to the limited number of CCD pixels. In this case, an proper

interpolation is necessary to reduce the aliasing and increase the number of pixels. On

1

Figure 1.1: A simple imaging system model of commercial digital image/video cameras.

the other hand, using denser array CCD (with smaller pixels) increases not only the

spatial image resolution but also results in noisier images since the number of photons

for each pixel is insufficient. Longer exposure time allows each pixel to obtain more

photons and suppresses the noise effect, then the captured images may be degraded

by motion blur effect because of camera shaking or object movements. In addition,

out-of-focus also blurs images. Hence, denoising and deblurring are necessary. As a

cost efficient way, image processing methods have even exploited through the years

to improve the quality of digital images. This thesis focuses on regression problems

that attempt to recover the noiseless high-frequency information corrupted by the lim-

itations of imaging system, as well as the degradation processes such as compression.

More specifically, the regression (estimation) problem in this thesis includes denoising,

interpolating (and upscaling), and deblurring. Figure 1.1 illustrates a simple imaging

system, and it shows how the measured images are degraded at each step. When we

take a gray-scale photo of a real scene (Lena’s face), first the scene is blurred by atmo-

2

x1

x2

x1

x2

x1

x2

(a) (b) (c)

Figure 1.2: Possible spatial data sampling models: (a) an incomplete set of regularly sampled
data, (b) irregularly sampled data set, and (c) an complete set of regularly sampled data.

sphere and camera lenses, and the camera sensor measures the blurred scene. Due to

the limited number of pixels on the camera sensor, the measured image has a finite

number of pixels, and this is referred to as discretization or the downsampling effect.

Also due to the physical shortcoming of camera sensor (such as thermal noise and dark

current), the measured pixels are contaminated by some noise. Finally, cameras usu-

ally compress the image in for example JPEG format before saving it, and hence the

image is also degraded by compression artifacts (e.g., blocking artifacts).

In this thesis, we study regression, as a tool not only for interpolation of reg-

ularly sampled data, but also for restoration and enhancement of noisy and possi-

bly irregularly sampled data. Figure 1.2(a) illustrates an example of the former case,

where we opt to upsample an image by a factor of 1 : 2 in each direction as well as to

remove noise. Figure 1.2(b) illustrates an example of the latter case, where an irreg-

ularly sampled noisy data is to be reconstructed onto a high resolution regular grid.

Besides inpainting applications [1] and reconstruction of irregularly sampled image

data is essential for applications such as multi-frame super-resolution, where several

low-resolution images are fused (interlaced) onto a high-resolution grid [2]. Figure 1.3

represents a diagram representation of such super-resolution algorithm. We note that

“denoising” is a special case of the regression problem where samples at all desired

3

Upsample
Shift Interlace

#1

#2

#N

Input frames

Finer grid

Measurement

Figure 1.3: Image fusion often yields us irregularly sampled data.

pixel locations are given as illustrated in Figure 1.2(c), but these samples are corrupted,

and need to be restored.

1.2 Contributions

As introduced above, the regression problem covers a variety of signal (im-

age/ video) processing problems, i.e. interpolation, denoising, and deblurring. Fur-

thermore, as illustrated in Figures 1.2 and 1.3, the given samples could be incomplete

and even irregularly spaced, and thus, few assumptions are made on the underlying

signals. The main contribution of this thesis is to describe and propose the kernel re-

gression framework as an effective tool even for irregularly spaced samples. Kernel

regression is known as a nonparametric approach that requires minimal assumptions,

and hence the framework is one of the suitable approaches to the regression problem.

In the rest of this introductory chapter, we study the classic kernel regression frame-

work, and expand it and develop applications for image and video in the following

chapters. Specifically, this thesis is structured as follows:

◃ Chapter 2 – Data Adaptive Kernel Regression

4

Having introduced the classic kernel regression in Chapter 1, in this chapter, we

propose a novel adaptive generalization of kernel regression with excellent re-

sults in both denoising and interpolation for single and multi-frame applications.

◃ Chapter 3 – Kernel-Based Image Deblurring

Using the knowledge of the data-adaptive kernel regression, we apply it for im-

age deblurring. Deblurring is a very challenging problem and we present a reg-

ularization based on the data-adaptive method, which reduces both noise and

ringing effectively, with experimental results.

◃ Chapter 4 – Multi-Dimensional Kernel Regression for Video Upscaling

In this chapter, introducing the 3rd dimension (time axis), we develop two types

of spatiotemporal application for video denoising and upscaling based on the

data-adaptive kernel regression. One explicitly takes local motion information

into account. The other approach captures local signal structures in 3-D, which

contain local motion information implicitly, and it avoids explicit subpixel mo-

tion estimation.

◃ Chapter 5 – Video Deblurring

Upscaled videos in space and time often suffer from blurring effects, motion

(temporal) blur as well as spatial blur. In this chapter, we discuss motion (tem-

poral) deblurring in particular along with the necessity of temporal upscaling of

video (so-called frame-rate upconversion).

Finally, in Chapter 6, we conclude the thesis and discuss possible topics of future work

and its applications presented in this thesis.

5

1.3 Classic Kernel Regression and its Properties

In this section, we review the classic kernel regression framework, provide

some intuitions on computational efficiency as well as weaknesses of this basic ap-

proach, and motivate the development of more powerful regression tools presented in

the following chapters.

1.3.1 Kernel Regression in 1-D

Classical parametric image processing methods rely on a specific model of

the signal of interest, and seek to compute the parameters of this model in the pres-

ence of noise. Examples of this approach are presented in diverse problems ranging

from denoising to upscaling, interpolation, and deblurring. A generative model based

upon the estimated parameters is then produced as the best estimate of the underlying

signal.

In contrast to the parametric methods, non-parametric methods rely on the

data itself to dictate the structure of the model, in which case this implicit model is

referred to as a regression function [3]. With the relatively recent emergence of machine

learning methods, kernel methods have become well-known and used frequently for

pattern detection and discrimination problems [4]. Surprisingly, it appears that the

corresponding ideas in non-parametric estimation – what we call here kernel regression,

are not widely recognized or used in the image and video processing literature. In-

deed, in the last decades, several concepts related to the general theory we promote

here have been rediscovered in different guises, and presented under different names

such as normalized convolution [5, 6], bilateral filter [7, 8], edge-directed interpolation [9],

and moving least-squares [10]. Later in this chapter, we shall say more about some of

6

these concepts and their relation to the general regression theory. To simplify this in-

troductory presentation, we threat the 1-D case where the measured data are given

by

yi = z(xi)+εi , i = 1,2, · · · ,P, (1.1)

where z(·) is the (hitherto unspecified) regression function, εi is the independent and

identically distributed zero mean noise value (with otherwise no particular statistical

distribution assumed), and P is the number of measured samples in a local analysis

window. As such, kernel regression provides a rich mechanism for computing point-

wise estimates of the function with minimal assumptions about global signal or noise

models.

While the specific form of the regression function z(·) may remain unspecified,

if we assume that it is locally smooth to some order N , then in order to estimate the

value of the function at any point x given the data, we can rely on a generic local

expansion of the function about this point. Specifically, if the position of interest x is

near the sample at xi , we have the N -term Taylor series

z(xi) = z(x)+ z ′(x)(xi − x)+ 1

2!
z ′′(x)(xi − x)2 +·· ·+ 1

N !
z

(N)
(x)(xi − x)N

= β0 +β1(xi −x)+β2(xi −x)2 +·· ·+βN (xi −x)N , (1.2)

where z ′(·) and z
(N)

(·) are the first and N -th derivatives of the regression function. The

above suggest that if we now think of Taylor series as a local representation of the re-

gression function, estimating the parameters β0 can yield the desired (local) estimate

of the regression function based on the data1. Indeed, the parameters
{
βn

}N
n=1 will pro-

vide localized information on the n-th derivatives of the regression function. Naturally,

1Indeed the local approximation can be build upon bases other than polynomials [3].

7

since this approach is based on local approximation, a logical step to take is to estimate

the parameters
{
βn

}N
n=0 from the data while giving the nearby samples higher weight

than samples farther away. A least-squares formulation capturing this idea is to solve

the following optimization problem:

min
βn

P∑
i=1

[
yi −β0 −β1(xi −x)−β2(xi − x)2 −·· ·−βN (xi − x)N]2 1

h
K

(xi −x

h

)
, (1.3)

where K (·) is the kernel function which penalizes distant away from the local position

where the approximation is centered, ant the smoothing parameter h (also called the

“bandwidth”) controls the strength of this penalty [3]. In particular, the function K is a

symmetric function which attains its maximum at zero, satisfying

∫
δK (δ)dδ= 0,

∫
δ2K (δ)dδ= c, (1.4)

where c is some constant value2. The choice of the particular form of the function K

is open, and may be selected as a Gaussian, exponential, or other forms which comply

with the above constraints. It is known that for the case of classic regression the choice

of the kernel has only a small effect on the accuracy of estimation [11] and therefore

preference is given to the differentiable kernels with low computational complexity

such as the Gaussian kernel. The effect of kernel choice for the data-adaptive algo-

rithms, presented in Chapter 2, is an interesting avenue of research, which is outside

the scope of this thesis and part of our future work discussed in Section 6.2.1.

Several important points are worth making here. First, the above structure al-

lows for tailoring the estimation problem to the local characteristics of the data, whereas

2Basically, the only conditions needed for the regression framework are that the kernel function be
non-negative, symmetric and unimodal. For instance, unlike the kernel density estimation problems [11],
even if the kernel weights in the minimization (1.3) do not sum up to one, they will be normalized in the
estimator derived from the minimization (see (1.34) and Appendix A).

8

the standard parametric model is generally intended as a more global fit. Second, in

the estimation of the local structure, higher weight is given to the nearby data as com-

pared to samples that are farther away from the center of the analysis window. Mean-

while, this approach does not specifically require the data to follow a regular or equally

spaced sampling structure. More specifically, so long as the samples are near the point

x the framework is valid. Again this is in contrast to the general parametric approach

which generally either does not directly take the location of the data samples into ac-

count, or relies on regular sampling over a grid. Third, and no less important as we

will describe in Chapter 2, the data-adaptive approach is both useful for denoising, and

equally viable for interpolation of sampled data at points where no actual samples ex-

ist. Given the above observations, the kernel-based methods are well-suited for a wide

class of image/video processing problems of practical interest.

Returning to the estimation problem based upon (1.3), one can choose the

order N to effect an increasingly more complex local approximation of the signal. In

the non-parametric statistics literature, locally constant, linear, and quadratic approxi-

mation (corresponding to N = 0,1,2) have been considered most widely [3, 12, 13, 14].

In particular, choosing N = 0, a locally linear filter is obtained, which is known as the

Nadaraya-Watson Estimator (NWE) [15]. Specifically, this estimator has the form:

ẑ(x) =

P∑
i=1

Kh(xi − x) yi

P∑
i=1

Kh(xi −x)

, (1.5)

where

Kh(xi −x) = 1

h
K

(xi −x

h

)
. (1.6)

The NWE is the simplest manifestation of an adaptive filter resulting from kernel re-

9

gression framework. As we shall see later in Chapter 2, the bilateral filter [7, 8] can be

interpreted as a generalization of NWE with a modified kernel definition.

Of course, higher order approximations (N > 0) are also possible. The choice

of order in parallel with the smoothness (h) affects the bias and variance of the estimate.

Mathematical expression for bias and variance can be found in [16, 17], and therefore

here we only briefly review their properties. In general, lower order approximates,

such as NWE, result in smoother signals (large bias and small variance) as there are

fewer degrees of freedom. On the other hand over-fitting happens in regressions using

higher orders of approximation, resulting in small bias and large estimation variance.

We illustrate the effect of the regression orders from N = 0 to 2 with a fixed smoothing

parameter in Figure 1.4, where the blue curve is the regression (true) function, the

gray circles (y1, y2, and y3) are the measurements with some noise at x1, x2 and x3,

respectively, and, in this illustration, we estimate an unknown value at the position

of interest x located between the samples y2 and y3 with different regression orders.

First, for the zeroth order (constant model, N = 0), we take only the constant term of

Taylor series into account, i.e. β0. In this case, the kernel regression estimates z(x) by

NWE (1.34); a weighted average of nearby samples with the weights that the kernel

function gives. The red circle is the estimated value and the red line is the estimated

fitted line. Similar to the zeroth order case, we draw the estimate values and fitted lines

by the first and second order kernel regression, which incorporate up to the linear and

quadratic terms, respectively. As seen in Figures 1.4(a)-(c), the estimated line fits the

neighboring samples better the higher the regression order becomes. This is because

a high order regressor has more degrees of freedom, which is the cause of small bias

and large variance. We also note that smaller values for h result in small bias and

10

Figure 1.4: The effect of the regression orders: (a) Zeroth order kernel regression (constant
model, N = 0), (b) First order kernel regression (linear model, N = 1), and (c) Second order
kernel regression (quadratic model, N = 2).

consequently large variance in estimates. Optimal order and smoothing parameter

selection procedures are studied in [10].

The performance of kernel regressors of different orders is compared in the il-

lustrative example of Figure 1.5. In the first experiment, illustrated in the first row, a set

of moderately noisy3 regularly sampled data are used to estimate the underlying func-

tion. As expected, the computationally more complex high order interpolation (N = 2)

results in a better estimate than the lower ordered interpolators (N = 0 or N = 1). The

presented quantitative comparison of the Peak Signal to Noise Ratio4 (PSNR) supports

this claim. The second experiment, illustrated in the second row, shows that for the

heavily noisy data sets (variance of the additive Gaussian noise 0.5), the performance

of lower order regressors is better. Note that the performance of the zeroth and first

3Variance of the additive Gaussian noise is 0.1. Smoothing parameter is chosen by the cross validation
method (Section 1.3.4).

4PSNR = 20log10

(
Peak Signal Value

Root Mean Square Error

)
[dB]

11

−2 0 2 4 6 8

0

0.5

1

1.5
Local Constant Estimator (N=0)

x

z(
x)

−2 0 2 4 6 8

0

0.5

1

1.5
Local Linear Estimator (N=1)

x

z(
x)

−2 0 2 4 6 8

0

0.5

1

1.5
Local Quadratic Estimator (N=2)

x

z(
x)

−2 0 2 4 6 8

−1

−0.5

0

0.5

1

1.5

2

x

z(
x)

−2 0 2 4 6 8

−1

−0.5

0

0.5

1

1.5

2

x

z(
x)

−2 0 2 4 6 8

−1

−0.5

0

0.5

1

1.5

2

x

z(
x)

Actual function
Data
Estimated function

Figure 1.5: Examples of local polynomial regression on an equally-spaced data set. The signals
in the first and second rows are contaminated with Gaussian noise of SNR = 9[dB] and −6.5[dB],
respectively. The dashed, solid lines, and dots represent the actual function, estimated , and the
noisy data, respectively. The columns from left to right show the constant, linear, and quadratic
interpolation results. Corresponding PSNR values for the first row experiments are 28.78, 28.78,
30.26[dB] and for the second row are as 15.41, 15.41, 15.37[dB].

order estimators (N = 0 and 1) for these equally-spaced samples experiments are iden-

tical. In Section 1.3.3, we study this property in more details for the 2-D case.

1.3.2 Related Regression Methods

In addition to kernel regression methods which we are advocating, there

are several other related and effective regression methods such as B-spline interpola-

tion [18], orthogonal series [13, 19], cubic spline interpolation [20], and spline smoother [13,

12

18, 21]. We briefly review some or these methods in this section.

In orthogonal series methods, instead of using Taylor series, the regression

function z can be represented by a linear combination of other basis functions, such as

Legendre polynomials, wavelet bases, Hermite polynomials [10] and so on. In the 1-D

case, such a model in general is represented as

z(x) =
N∑

n=0
βnϕn(x). (1.7)

The coefficients {βn}N
n=0 are the unknown parameters we want to estimate. We refer the

interested reader to [13] (pages 104-107) which offers further examples and insights.

Following the notation used in the previous subsection, the B-spline regres-

sion is expressed as the linear combination of shifted spline functions B n(·):

z(x) =∑
k
βk B n(x −k), (1.8)

where the n-th order B-spline function is defined as a n + 1 times convolution of the

zeroth order B-spline [18], that is

B n(x) = B 0(x)∗B 0(x)∗·· ·∗B 0(x)︸ ︷︷ ︸
n+1

, (1.9)

where

B 0(x) =

1, −1

2 < x < 1
2

1
2 , |x| = 1

2

0, else

. (1.10)

The scalar k in (1.7), often referred to as the knot, defines the center of the spline. Least-

squares is usually exploited to estimate the B-spline coefficients {βk }.

The B-spline interpolation method bears some similarities to the kernel re-

gression method. One major difference between these methods is the number and po-

sition of the knots as illustrated in Figure 1.6. While in the classic B-spline method the

13

Figure 1.6: A comparison of the position of knots in (a) kernel regression and (b) classic B-spline
method.

knots are located in equally spaced position, in the case of kernel regression, the knots

are implicitly located on the sample positions. A related method, the Non-Uniform

Rational B-Spline is also proposed to address this shortcoming of the classic B-spline

method, by irregularly positioning the knots with respect to the underlying signals

[22].

Cubic spline interpolation technique is one of the most popular members of

the spline interpolation family which is based on fitting a polynomial between any pair

of consecutive data. Assuming that the second derivative of the regression function

exists, cubic spline interpolator is defined as

z(x) =β0(i)+β1(i)(xi −x)+β2(i)(xi −x)2 +β3(i)(xi −x)3, x ∈ [xi , xi+1], (1.11)

where, under following boundary conditions

z(x)
∣∣∣

x=−xi

= z(x)
∣∣∣

x=+xi

, z ′(x)
∣∣∣

x=−xi

= z ′(x)
∣∣∣

x=+xi

,

z ′′(x)
∣∣∣

x=−xi

= z ′′(x)
∣∣∣

x=+xi

, z ′′(x1) = z ′′(xP) = 0, (1.12)

all the coefficients βn(i) can be uniquely defined [20].

14

Note that an estimated curve by cubic spline interpolation passes through

all the given data points which is ideal for the noiseless data case. However, in most

practical applications, data are contaminated with noise and therefore such perfect

fits are no longer desirable. Consequently a related method called spline smoother

has been proposed [18]. In spline smoothing method the above hard conditions are

replaced with soft ones, by introducing them as Bayesian priors which penalize rather

than constrain non-smoothness in the interpolated signals. A popular implementation

of the spline smoother [18] is given by

ẑ(x) = argmin
z(x)

[
P∑

i=1

{
yi − z(xi)

}2 +λ
∥∥z ′′∥∥2

2

]
, (1.13)

where ∥∥z ′′∥∥2
2 =

∫
{z ′′(x)}2d x, (1.14)

and z(xi) can be replaced by either (1.7) or any orthogonal series (e.g. [23]), and λ is

the regularization parameter. Note that assuming a continuous sample density func-

tion, the solution to this minimization problem is equivalent to NWE (1.34), with the

following kernel function and smoothing parameter

K (δ) = 1

2
exp

(
− |δ|p

2

)
sin

(
|δ|p
2+ π

4

)
, (1.15)

h(xi) = 4

√
λ

P f (xi)
, (1.16)

where f if the density of sample [13, 11]. Therefore, spline smoother is a special form

of kernel regression.

In Chapter 2, we compare the performance of the spline smoother with the

data-adaptive kernel regression method, and we give some intuitions for the outstand-

ing performance of the kernel regression methods.

15

Li et al. proposed an edge-directed interpolation method for upscaling regu-

larly sampled images [9]. The interpolation is implemented by weighted average of the

four immediate neighboring pixels in a regular upsampling scenario where the filter

coefficients are estimated using the classic covariance estimation method [24].

The normalized convolution method presented in [5] is theoretically identical

to the classic kernel regression method (considering a different basis function), which

we show a simplified version of the adaptive kernel regression introduced in Chap-

ter 2. An edge adaptive version of this work is also proposed in [6].

We note that other popular edge adaptive denoising or interpolation tech-

nique are available in the literature, such as the PDE based methods [25, 26, 27]. A

denoising experiment using the anisotropic diffusion (the second order PDE) method

of [25] is presented in Chapter 2, however we refrain from a detailed discussion and

comparison of all these diverse methods.

1.3.3 Kernel Regression in 2-D

Similar to the 1-D case in (1.1), the data model in 2-D is given by

yi = z(xi)+εi , i = 1, · · · ,P, xi = [x1i , x2i]T , (1.17)

where yi is a noisy sample at a sampling position xi (Note: x1i and x2i are spatial coor-

dinates), z(·) is again the (unspecified and bivariate) regression function to be estimated,

εi is an i.i.d. zero mean noise, and P is the total number of samples in an arbitrary

“window” around a position x of interest as shown in Figure 1.7. Correspondingly,

the local representation of the regression function using Taylor series (up to the N -th

16

Figure 1.7: The data model for the kernel regression framework in 2-D.

polynomial) is given by

z(xi) ≈ z(x)+ {∇z(x)}T (xi −x)+ 1

2
(xi −x)T {H z(x)}(xi −x)+·· ·

= z(x)+ {∇z(x)}T (xi −x)+ 1

2
vecT {H z(x)}vec

{
(xi −x)(xi −x)T }+·· · , (1.18)

where ∇ and H are the gradient (2 × 1) and Hessian (2 × 2) operators, respectively,

and vec(·) is the vectorization operator, which lexicographically orders a matrix into a

column-stack vector. Defining vech(·) as the half-vectorization operator of the “lower-

triangular” portion of a symmetric matrix, e.g.,

vech

 a11 a12

a12 a22

 = [a11 a12 a22]T

vech

a11 a12 a13

a12 a22 a23

a13 a23 a33

 = [a11 a12 a13 a22 a23 a33]T (1.19)

and considering the symmetry of the Hessian matrix, the local representation in (1.18)

is simplified to

z(xi) ≈β0 +βT
1 (xi −x)+βT

2 vech
{
(xi −x)(xi −x)T }+·· · . (1.20)

17

then, comparison of (1.18) and (1.20) suggests that β0 is the pixel value of interest, and

the vectors β1 and β2 are the first and second derivatives, respectively, i.e.,

β0 = z(x), (1.21)

β1 = ∇z(x) =
[
∂z(x)

∂x1

∂z(x)

∂x2

]T

, (1.22)

β2 = 1

2

[
∂2z(x)

∂x2
1

2
∂2z(x)

∂x1∂x2

∂2z(x)

∂x2
2

]T

. (1.23)

As in the case of univariate data, the βn’s are computed from the following optimiza-

tion problem:

min
{βn }

P∑
i=1

[
yi −β0 −βT

1 (xi −x)−βT
2 vech

{
(xi −x)(xi −x)T }−·· ·

]2
KH(xi −x), (1.24)

with

KH(xi −x) = 1

det(H)
K (H−1(xi −x)), (1.25)

where K is the 2-D realization of the kernel function, and H is the 2 × 2 smoothing

matrix, which will be studied more carefully in Chapter 2. For example, if we choose

Gaussian function for K , the kernel function is expressed as

KH(xi −x) = 1

2π
√

det(HT H)
exp

{
−1

2
(xi −x)T (

HT H
)−1

(xi −x)

}
. (1.26)

Regardless of the regression order (N) and the dimensionality of the regression func-

tion, we can rewrite the optimization problem (1.24) as a weighted least squares opti-

mization problem [3, 10, 28]:

b̂ = argmin
b

[
(y−Xb)T K(y−Xb)

]
, (1.27)

18

where

y = [
y1 y2 · · · yP

]T , (1.28)

b = [
β0 βT

1 · · · βT
N

]T
, (1.29)

K = diag
[

KH(x1 −x) KH(x2 −x) · · · KH(xP −x)
]

, (1.30)

X =

1 (x1 −x)T vechT{
(x1 −x)(x1 −x)T

} · · ·

1 (x2 −x)T vechT{
(x2 −x)(x2 −x)T

} · · ·
...

...
...

...

1 (xP −x)T vechT{
(xP −x)(xP −x)T

} · · ·

(1.31)

with “diag” defining a diagonal matrix. Using the notation above, the optimization (1.24)

provides the weighted least square estimator:

b̂ = (
XT KX

)−1
XT K y. (1.32)

Since our primary interest is to compute an estimate of the image (pixel values), the

necessary computations are limited to the ones that estimate the parameter β0. There-

fore, the estimator is simplified to

ẑ(x) = β̂0 = eT
1

(
XT KX

)−1
XT K y, (1.33)

where e1 is a column vector with the first element equal to one, and the rest equal

to zero. Of course, there is a fundamental difference between computing β0 for the

N = 0 case, and using a high order estimator (N > 0) and then effectively discarding

all βn’s except β0. Unlike the former case, the high regression order method computes

estimates of pixel values assuming an N -th order local polynomial structure is present

by including higher order polynomial bases as in the matrix X (1.31). Similar to the 1-D

19

case, for N = 0, the kernel estimator (1.33) is expressed as

ẑ(x) = β̂0 =

P∑
i=1

KH(xi −x) yi

P∑
i=1

KH(xi −x)

, (1.34)

which is Nadaraya-Watson estimator (NWE) in 2-D. For example, when we choose the

kernel function as Gaussian (1.26), NWE is nothing but the well-known Gaussian low-

pass filter [29] and it provides a pixel value of interest β0 by a weighted linear combina-

tion of the nearby samples. Even the higher order estimator can be generally expressed

in the weight linear fashion as

ẑ(x) = β̂0 = eT
1 b̂ =

P∑
i=1

Wi (K ,H, N ,xi −x) yi , (1.35)

where
P∑

i=1
Wi (·) = 1, (1.36)

and we call Wi the equivalent kernel function for yi (q.v. Appendix A and [3] for more

detail). It is worth noting that the estimator (1.32) also yield local gradients for the

regression orders N > 0 (q.v. for Appendix B). While the exact expressions in Appen-

dices A and B yield the mathematical property of the kernel regression estimator, the

pixel estimator and the gradient estimator can be simply expressed as follows. We can

rewrite the overall estimator (1.32) for the regression order N > 0 as

b̂ = (
XT KX

)−1
XT K y = WN y =

wT
0 (N)

wT
1 (N)

wT
2 (N)

...

y, (1.37)

where N is the regression order, and w0(N), w1(N), and w2(N) ∈RP×1 are the equivalent

kernel weight matrices that compute the unknown pixel value and its derivatives as

20

follows. From (1.35) and (B.1), we have

ẑ(x) = β̂0 = eT
1 b̂ = wT

0(N)y, (1.38)

∇ẑ(x) = β̂1 =

 eT
2

eT
3

 b̂ =

 wT
1 (N)

wT
2 (N)

 y. (1.39)

Note that when we estimate the n-th derivatives of z(·), the regression order N must be

equal or higher than n (N ≥ n). For instance, w1(0) and w2(0) do not exist.

Therefore, regardless of the regression order, the classic kernel regression is

local weighted averaging of data (linear filtering), where the order determines the type

of complexity of the weighing scheme. This also suggests that higher order regressions

(N > 0) are equivalents of the zeroth order regression (N = 0) but with a more complex

equivalent kernel function. In other words, to effect the higher order regressions, the

original kernel KH(xi − x) is modified to yield a newly adapted “equivalent” kernel

[3, 17, 30]

To have a better intuition of equivalent kernels, we study the example in Fig-

ure 1.8, which illustrates a regularly sampled data set, and a horizontal cross section

of its corresponding equivalent kernels for the regression orders N = 0, 1, and 2. The

direct result of the symmetry condition (1.4) on K with uniformly sampled data is

that all odd-order moments consist of element with values very close to zero (i.e.,∑
i (xi −x)KH(xi −x) ≈ 0 in (A.9) and (A.10) in Appendix A). Therefore, as noted in Fig-

ure 1.8(b), the equivalent kernels for N = 0 and N = 1 are essentially identical. As this

observation holds for all regression orders, for the regularly sampled data, the N = 2ν

(even number, i.e., N = 0,2, · · ·) order regression is preferred to the computational more

complex than the N = 2ν+1 (odd number, i.e., N = 1,3, · · ·) order regression, as they pro-

duce the same equivalent kernels. This property manifests itself in Figure 1.8, where

21

−15−10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

Sample distribution

x
1

x 2

−15 −10 −5 0 5 10 15

0

0.05

0.1

0.15

0.2

0.25

Equivalent kernel

x
1

W

N=2

N=0, 1

(a) (b)

Figure 1.8: Equivalent kernels for a regularly sampled data: (a) a regularly sampled data set
and (b) a horizontal cross section of the equivalent kernels of orders N = 0, 1, and 2. Gaussian
kernel KH in (1.26) is used with the smoothing matrix H = diag[10,10].

−15−10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

Sample distribution

x
1

x 2

−15
0

15

−15
0

15

0
0.05

0.1
0.15

0.2

x
1

Equivalent kernel, N=2

x
2

−15 −10 −5 0 5 10 15

0

0.05

0.1

0.15

0.2

0.25

Equivalent kernel

x
1 −15 −10 −5 0 5 10 15

0

0.05

0.1

0.15

0.2

0.25

Equivalent kernel

x
2

N=2

N=1

N=0

N=2

N=1

N=0

W

W W

(a) (b) (c) (d)

Figure 1.9: Equivalent kernels for an irregularly sampled data: (a) an irregularly sampled data
set, (b) the second order equivalent kernel (N = 2), and (c)(d) the horizontal and vertical cross
sections of the equivalent kernels of different orders (N = 0,1,2) are compared, respectively.
Similar to the case of the regularly sampled data set in Figure 1.8, Gaussian kernel KH in (1.26)
is also used with the smoothing matrix H = diag[10,10].

the N = 0 or N = 1 ordered equivalent kernels are identical. It is also worth noting here

that the side lobes of the second order equivalent kernel coefficients are negative even

though we use Gaussian function. The negative coefficients in fact yield mild sharpen-

ing effect to the estimated images. With this property, we are able to locally control the

amount of sharpening effect by the regression order. We study and take advantages of

the property in Section 4.2.

In the next experiment, we compare the equivalent kernels for an irregularly

sampled data set shown in Figure 1.9(a). The second order equivalent kernel (N = 2) for

22

Small footprint
Large footprint

Figure 1.10: Smoothing (kernel support size) selection by local sample density.

the sampled marked with “×”, is shown in Figure 1.9(b). Figures 1.9(c) and (d) show

the horizontal and vertical cross sections of the equivalent kernels for the irregularly

measured samples, respectively. This figure demonstrates the fact that the equivalent

kernels tend to adapt themselves to the density of available samples. Also, unlike the

uniformly sampled data case, since the odd-order moments are nonzero, the zeroth

(N = 0) and first (N = 1) equivalent kernels are no longer identical.

1.3.4 Smoothing Matrix Selection

The shape (or contour) of the regression kernel as defined in (1.25), and con-

sequently the performance of the estimator depends on the choice of the smoothing

matrix H [16]. For the bivariate regression problem, the smoothing matrix H is 2×2,

and it should extend the support of the regression kernel to contain “enough” samples.

As illustrated in Figure 1.10, it is reasonable to use a smaller support size in the area

with more available samples, whereas a larger support size is more suitable for the

more sparsely sampled area of the image.

The cross validation “leave-one-out” method [3, 13] is a popular technique for

estimating the elements of the local smoothing matrices Hi for all the given samples yi .

23

However, as the cross validation method is computationally very expensive, we can

use a simplified and computationally more efficient model of the smoothing matrix as

Hi = hµi I, (1.40)

where µi is a scalar that captures the local density of samples (nominally set to µi = 1)

and h is the global smoothing parameter.

The global smoothing parameter is directly computed from the cross valida-

tion method, by minimizing the following cost function

Ccv(h) = 1

P

P∑
i=1

{
ẑ i−(xi)− yi

}2
(1.41)

where ẑ i−(xi) is the estimated pixel values without including the i -th sample (i.e., yi)

at xi . To further reduce the computations, rather than leaving a single sample out, we

can leave out a set of samples (a whole row or column) [31, 32, 33].

Following [11], the local density parameter µi is estimated as follows

µi =
{

f̂ (xi)

exp
(1

P

∑P
i=1 log f̂ (xi)

)}−ζ
, (1.42)

where the sample density f̂ (xi) is measured as

f̂ (xi) = 1

P

P∑
i=1

KHi (xi −x), (1.43)

and ζ, the density sensitivity, is a scalar satisfying 0 < ζ ≤ 1. Note that Hi and µi are

estimated in an iterative fashion. In the first iteration, µi is initialized by 1 and we

estimate the density by (1.43). Then, we update µi by (1.42) with the estimated density

and estimate the density. The process is repeated until µi converges (typically, only a

few iterations (at most 5 iterations)).

24

Summary— In this chapter, we introduced a variety of image and video pro-

cessing problems as regression and studied the classic kernel regression framework.

We also showed that the framework is equivalent to an adaptive locally “linear” fil-

tering process. The price that one pays for using such computationally efficient classic

kernel regression methods with diagonal matrix Hi is the low quality of reconstruction

in the edge areas. Experimental results on this material will be presented later in Chap-

ter 2. Also in Chapter 2, we gain even better performance by proposing data-adaptive

kernel regression methods which take into account not only the spatial sampling den-

sity of the data, but also the actual (pixel) values of those samples. These more so-

phisticated methods lead to locally adaptive “nonlinear” extensions of classic kernel

regression.

25

Chapter 2

Data-Adaptive Kernel Regression

Abstract— In the previous chapter, we studied the classic kernel regression

framework and its properties, and also showed its usefulness for image restoration and

reconstruction purposes. One fundamental improvement on the above method can be

realized by noting that, the local polynomial kernel regression estimates, independent

of the regression order N , are always local “linear” combinations of the data. As such,

though elegant, relativity easy to analyze, and with attractive asymptotic properties

[16], they suffer from an inherent limitation due to this local linear action on the data.

In what follows, we discuss extensions of the kernel regression method that enable this

structure to have nonlinear, more effective, action on the given data: data-adaptive

kernel regression.

2.1 Data-Adaptive Kernels

Data-adaptive kernel regression relies on not only the spatial properties (the

sample location and density), but also the photometric properties of these samples (i.e.

26

(a) Contours of classic kernels (b) Contours of data-adaptive kernels

Figure 2.1: Kernel contours in a uniformly sampled data set: (a) Kernels in the classic method
depend only on the spatial distances, and (b) Data-adaptive kernels elongate with respect to
the local edge structure.

pixel values). Thus, the effective size and shape of the regression kernel are adapted

locally to image feature such as edges. A desired property of such regression kernel

is illustrated in Figure 2.1, in which the classic kernel estimates the pixel z(x) by the

combination of neighboring samples with linear weights while the data-adaptive ker-

nel elongates/spreads along the local edge structure and the estimate is most strongly

affected by the edge pixels. Hence, the data-adaptive kernel approach effectively sup-

presses noise while preserving local image structures.

Data-adaptive kernel regression is formulated similarly to (1.24) as an opti-

mization problem

min
{βn }

P∑
i=1

[
yi −β0 −βT

1 (xi −x)−βT
2 vech

{
(xi −x)(xi −x)T }−·· ·]2

Kadapt(xi −x, yi − y), (2.1)

where the data-adaptive kernel function Kadapt now depends on the spatial sample co-

ordinates xi ’s and density as well as the photometric values yi of the data. Katkovnik et

27

al. have also studied this data-adaptive approach in [34]. In the following, we study

two different data-adaptive kernels: bilateral kernel and steering kernel, and discuss

their properties.

2.1.1 Bilateral Kernel

A simple and intuitive choice of the Kadapt is to use separate terms for penal-

izing the spatial distance between the pixel position of interest x and its neighboring

pixel positions {xi }, and the photometric “distance” between the pixel of interest y and

its neighbors {yi }:

Kbilat(xi −x, yi − y) ≡ KHs (xi −x) ·Khp (yi − y), (2.2)

where Hs (= hsI) is the spatial smoothing (diagonal) matrix and hp is the photometric

smoothing scalar. Figure 2.2 illustrates weight values for this bilateral kernel function

at a few different regions of the clean Lena image: flat, edge, and Lena’s eye. As seen

in the figure, the photometric kernel captures local image structures effectively. The

properties of this adaptive method, which we call bilateral kernel regression (for reasons

that will become clear shortly), can be better understood by studying the special case

of the zeroth order (N = 0), which results in a data-adapted version of the Nadaraya-

Watson estimator (NWE):

ẑ(x) = β̂0 =

P∑
i=1

KHs (xi −x)Khp (yi − y) yi

P∑
i=1

KHs (xi −x)Khp (yi − y)

. (2.3)

Interestingly, this is nothing but the well-studied and popular bilateral fil-

ter [7, 8]. We note that, in general, since the pixel values (y) at an arbitrary position

(x) might be unavailable from the given data, the direct application of the bilateral ker-

28

Figure 2.2: Bilateral kernel weights given by (2.2) at flat, edge, and Lena’s eye regions of a clean
image.

nel function (2.2) is limited to the denoising problem. This limitation, however, can be

overcome by using an initial estimate of y by an appropriate interpolation technique.

Also, it is worth noting that the bilateral kernel choice, along with higher order choices

for N (> 0), will lead to generalizations of the bilateral filter, which we study in the

following.

Similar to classic kernel regression, the pixel estimator given by bilateral ker-

nel regression is also summarized as the form of the weighted linear combination of all

the neighboring samples using the bilateral “equivalent” weight function Wi regardless

of the regression order N as follows:

ẑ(x) = β̂0 =
P∑

i=1
Wi (K ,Hs,hp, N ,xi −x, yi − y) yi . (2.4)

Figure 2.3 illustrates the bilateral equivalent weight function Wi (K ,Hs,hp, N ,xi −x, yi −y)

in (2.4) at a variety of image structures for the zeroth and second orders (N = 0 and 2).

Note that each weigh function is respectively normalized. Figure 2.4 illustrates the

29

Figure 2.3: A visual analysis of the bilateral equivalent weight function Wi (K ,Hs,hp, N ,xi −
x, yi − y) in (2.4) at a variety of image structures; flat, strong edge, corner, texture, and weak
edge for the zeroth and second order (N = 0 and 2). Note: Each weight function is respectively
normalized, and Figure 2.4 illustrates the detail of the weight function at the strong edge.

details of Wi at the strong edge: (a)-(b) equivalent weight values Wi for the zeroth and

second orders, respectively, and (c) the horizontal cross-sections as indicated in (a) and

(b).

The derivation of the zeroth order bilateral filter (2.3) above indicates that the

bilateral filter only consists of the constant term (i.e. β0), and the consideration of only

β0 is the cause of filtered image signals being piecewise constant. Such signals are

often unsuitable for image processing because image signals of interest have compli-

cated contours, such as texture and gradation. Higher order bilateral filters relax the

piecewise constancy by the choice of N > 0. For instance, the images estimated by the

first and second order bilateral filter become locally linear and quadratic, respectively.

30

0

1

2

3

4

x 10
−3

0

5

10

15

x 10
−3

−30 −20 −10 0 10 20 30
−2

0

2

4

6

8

10

12

14

16
x 10

−3

Spatial difference, x
1i

 − x
1

E
qu

iv
al

en
t k

er
ne

l w
ei

gh
t,

W
i

Zeroth order
Second order

(a) Zeroth order (b) Second order (c) Horizontal cross-sections of Wi

Figure 2.4: Horizontal cross-sections of the bilateral equivalent weight function
Wi (K ,Hs,hp, N ,xi − x, yi − y) at the strong edge for the zeroth and second order (N = 0

and 2): (a)-(b) the footprints of Wi for the zeroth and second order, respectively, (c) the
horizontal cross-sections pointed by the arrows of Wi of (a) and (b).

As a further extension of the standard bilateral filter, Elad suggested iterative

filtering in order to intensify the smoothing effect in [8]. The iterative filtering process

is as follows: (i) apply bilateral filter to the given noisy data, (ii) apply bilateral filter to

the previous estimate, (iii) repeat the step (ii). For N = 0, such estimator can be written

as

ẑ(ℓ+1)(x) =

P∑
i=1

KHs (xi −x)Khp

(
ẑ(ℓ)(xi)− ẑ(ℓ)(x)

)
ẑ(ℓ)(xi)

P∑
i=1

KHs (xi −x)Khp

(
ẑ(ℓ)(xi)− ẑ(ℓ)(x)

) , (2.5)

where ẑ(0)(xi) = yi and ℓ is the index of the number of iterations. This filtering algorithm

is very similar to Mean-Shift algorithm [35, 36], in which the spatial kernel function

KHs (xi −x) is not taken into account.

The bilateral filter has appeared in another form (2.3), which is known as

the Susan filter [37]. The difference between bilateral filter and Susan filter is minor;

Susan filter excludes the center pixel from the estimates. That is to say, Susan filter is

31

expressed as

ẑ(x) = β̂0 =

∑
xi ̸=x

KHs (xi −x)Khp (yi − y) yi∑
xi ̸=x

KHs (xi −x)Khp (yi − y)
. (2.6)

This small modification significantly improves the filter performance in particular when

the given data contains a few outliers (e.g. salt & pepper noise). For the bilateral filter,

such outlier pixels yields very small photometric kernel values for neighboring pixels

because the photometric distances, yi − y , tend to be large. In other words, the bilat-

eral filter doesn’t smooth an outlier pixel with its neighboring pixels. We will discuss

an alternative approach for removing outliers in Section 2.3 including comparisons to

Susan filter.

In any event, breaking Kadapt into spatial and photometric terms as utilized

in the bilateral case weakens the estimator performance since it limits the degrees of

freedom and ignores correlations between positions of the pixels and their values. In

particular, we note that, for very noisy data sets, the photometric distances, yi − y , tend

to be large and noisier. Therefore, most photometric weights are close to zero and

also noisy as shown in Figure 2.5. Such weights are effectively useless. Although we

could set the photometric smoothing parameter (hp) larger in order to reduce the ef-

fect of the noisy photometric distances, the bilateral filter becomes almost equivalent

to the non-linear (Gaussian low-pass) filter with a large hp. The following section pro-

vides a general solution to overcome this and many other drawbacks of competing

approaches.

32

Figure 2.5: Bilateral kernel weights given by (2.2) at flat, edge, and Lena’s eye regions of a noisy
image. The noisy image is given by adding white Gaussian noise with standard deviation = 25

(the corresponding SNR is 5.64[dB]).

2.1.2 Steering Kernel

The filtering procedure that we propose next takes the data-adaptive idea one

step further, based upon the earlier nonparametric framework. In particular, we ob-

serve that the effect of computing the photometric kernel, Khp (yi − y) in (2.2) is to im-

plicitly measure a function of the local gradient estimated between neighboring pixels

and to use this estimate to weight the respective measurements. As an example, if a

pixel is located near an edge, then pixels on the same side of the edge will have much

stronger influence in the filtering. With this an initial estimate of the image gradients

is made using some kind of gradient estimator (say the second order classic kernel re-

gression method). Next, this estimate is used to measure the dominant orientation of

the local gradients in the image (e.g. [38]). In a second filtering stage, this orientation

information is then used to adaptively “steer” the local kernel, resulting in elongated,

33

contours spread along the directions of the local edge structure. With these locally

adapted kernels, the denoising is effected most strongly along the edges, rather than

across them, resulting in strong preservation of details in the final output. To be more

specific, the data-adaptive kernel function takes the form

Ksteer(xi −x, yi − y) ≡ KHsteer
i

(xi −x), (2.7)

where Hsteer
i ’s are now the data-dependent full (2×2) matrices which we call steering

matrices. We define them as

Hsteer
i = hµi C

− 1
2

i , (2.8)

where again h and µi are the global smoothing parameter and the local density param-

eter, respectively, and Ci ’s are (symmetric, 2×2) covariance matrices based on differ-

ences in the local gray-values. A good choice for Ci will effectively spread the kernel

function along the local edges, as shown in Figure 2.1(b). It is worth noting that, even if

we choose a large h in order to have a strong denoising effect, the undesirable blurring

effect, which would otherwise have resulted, is tempered around edges with appro-

priate choice of Ci . With such steering matrices, for example, if we choose a Gaussian

kernel, i.e. plugging the steering matrix (2.8) into Gaussian kernel function (1.26), the

steering kernel is mathematically represented as

KHsteer
i

(xi −x) =
√

det(Ci)

2πh2µ2
i

exp

{
− (xi −x)T Ci (xi −x)

2h2µ2
i

}
. (2.9)

It is also noteworthy that, for the estimate of the unknown pixel β0 (= z(x)), the steer-

ing kernel function takes all the steering matrices (Hsteer
i) of the neighboring pixels yi

around the position of interest x into account, and hence, the steering kernel is not sim-

ply elliptic but it provides us weights that fit the local image structures more flexibly.

We will show some actual steering kernels shortly in this section.

34

The local edge structure is related to the gradient covariance (or equivalently,

the locally dominant orientation), where a naive estimate of this covariance matrix may

be obtained as follows:

Cnaive
i = JT

i Ji , (2.10)

where Ji is a stack of local gradient vectors in a local analysis window ωi :

Ji =

...

...

zx1(x j) zx2(x j)

...
...

 , x j ∈ωi , (2.11)

zx1(·) and zx2(·) are the first derivatives along x1 (vertical) and x2 (horizontal) directions,

and ωi is a local analysis window around the position of a given sample. The dominant

local orientation of the gradients is then related to the eigenvectors of this estimated

matrix. Since the gradients, zx1(·) and zx2(·), depend on the pixel values {yi }, and since

the choice of the localized kernels in turns depends on these gradients, it, therefore,

follows that the “equivalent” kernels for the proposed data-adaptive methods form a

locally “nonlinear” combination of the data:

ẑ(x) =
P∑

i=1
Wi (K ,Hsteer

i , N ,xi −x) yi . (2.12)

While the above approach to computing the steering matrices [38, 39, 40], is

simple and has nice tolerance to noise, the resulting estimate can be unstable, and,

therefore, care must be taken not to take the inverse of the estimate directly in this

case. In such case, a diagonal loading or regularization methods can be used to obtain

stable estimates of the covariance. In [38], Feng et al. proposed an effective multiscale

technique for estimating local orientations, which fits the requirements of this problem

nicely. Informed by the above, in this work, we take a more robust approach to the

design of the steering matrix.

35

Figure 2.6: A schematic representation illustrating the effects of the steering matrix and its
components (Ci = γi Rθi Λi RT

θi
) on the size and shape of the regression kernel footprint.

In order to have a more convenient form of the covariance matrix, we decom-

pose it into three components (equivalent to eigenvalue decomposition) as follows:

Ci = γi Rθi Λi RT
θi

, (2.13)

where Rθi is the rotation matrix and Λi is the elongation matrix:

Rθi =

 cosθi sinθi

−sinθi cosθi

 , Λi =

 ϱi 0

0 1
ϱi

 . (2.14)

Now, the covariance matrix given by the three parameters γi , θi , and ϱi , which are

the scaling, rotation, and elongation parameters, respectively. Figure 2.6 schematically

explains how these parameters affect the spreading of kernels. First, the circular kernel

is elongated by the elongation matrix Λi , and its semi-minor and major axes are given

by ϱi . Second, the elongated kernel is rotated by the matrix Rθi . Finally, the kernel is

scaled by the scaling parameter γi .

We define the scaling, elongation, and rotation parameters as follow. Follow-

ing the work in [38], the dominant orientation of the local gradient field is the singular

vector corresponding to the smallest (nonzero) singular value of the local gradient ma-

36

trix Ji (2.11) arranged in the following form:

Ji = Ui Si VT
i = Ui

 s1 0

0 s2

[
v1 v2

]T

, (2.15)

where Ui Si VT
i is the truncated singular value decomposition of Ji , and Si is a diagonal

2×2 matrix representing the energy in the dominant directions. Then, the second col-

umn of the 2×2 orthogonal matrix Vi , v2 = [v12, v22]T , defines the dominant orientation

angle θi as

θi = arctan

(
v12

v22

)
. (2.16)

That is, the singular vector corresponding to the smallest nonzero singular value s2

of Ji represents the dominant orientation of the local gradient field. The elongation

parameter ϱi can be scaled corresponding to the energy of the dominant gradient di-

rection

ϱi = s1 +λ′

s2 +λ′ , λ′ ≥ 0, (2.17)

where λ′ is a “regularization” parameter for the kernel elongation, which dampens

the effect of the noise and restricts the ratio from becoming degenerate. The intuition

behind (2.17) is to keep the shape of the kernel circular in flat areas (s1 ≈ s2 ≈ 0), and

elongate it near edge areas (s1 ≫ s2). Finally, the scaling parameter γi is defined by

γi =
(

s1s2 +λ′′

M

)α
, (2.18)

where λ′′ is again a “regularization” parameter, which dampens the effect of the noise

and keeps γi from becoming zero1, M is the number of samples in the local analysis

window, and α is the structure sensitivity parameter. The intuition behind (2.18) is that,

1The regularization parameters λ′ and λ′′ are used to prohibit the shape of the kernel from becoming
infinitely narrow and long. In practice, it suffices to keep these numbers reasonably small, and, therefore,
in all experiments in this chapter, we fixed their values equal to λ′ = 1.0 and λ′′ = 0.01, respectively.

37

to reduce noise effects while producing sharp images, large footprints are preferred in

the flat (smooth regions) and smaller ones in the textured areas. Note that the local

gradients and the eigenvalues of the local gradient matrix Cnaive
i are smaller in the flat

(low-frequency) areas than the textured (high-frequency) areas. As the product s1s2

is the geometric mean of the eigenvalues of Cnaive
i , γi makes the steering kernel area

large in the flat, and small in the textured areas. The structure sensitivity α (typically

0 ≤ α ≤ 0.5) controls how strongly the size of the kernel footprints is affected by the

local structure. The product of the singular values indicates the amount of energy of

the local signal structure: the larger the product, the stronger and the more complex

the local structure is. A large α is preferable when the given signal carries severe noise.

While the choice of the parameters in the above may appear to be ad-hoc, we

direct the interested readers to a more careful statistical analysis of the distributional

properties of the singular values (s1, s2) in [38, 41, 42]. Our particular selections for

these parameters are directly motivated by these earlier works. However, to main-

tain focus, we have elected not to include such details in this presentation. We also

note that the presented formulation is quite close to the apparently independently de-

rived normalized convolution formulation of [6]. The significant difference between

the adaptive normalized convolution and the steering kernel method is that the con-

tours of the kernel function in adaptive normalized convolution method [6] is always

elliptic.

Figure 2.7 illustrates a schematic representation of the estimate of local co-

variance matrices and the computation of steering kernel weights for the center pixel

y13. First, we estimate the gradients and compute the local covariance matrix Ci by

(2.13)-(2.18) for each pixel. Then, when denoising y13, we compute the steering kernel

38

(a) Covariance matrices from local gradients with 3×3 analysis window (b) Steering kernel weights

Figure 2.7: A schematic representation of the estimates of local covariance metrics and the
steering kernel weights at a local region with one dominant orientation: (a) First, we estimate
the gradients and compute the local covariance matrix Ci by (2.13) for each pixel, and (b) Next,
when denoising y13, we compute the steering kernel weights with Ci for neighboring pixels.
Even though, in this case, the spatial distances between y13 and y1 and between y13 y21 are
equal, the steering kernel weight for y21 (i.e. KH21 (x21 − x13)) is larger than the one for y1 (i.e.
KH1 (x1 −x13)). This is because y13 and y21 are located along the same edge.

weights for each neighboring pixel with its Ci . In this case, even though the spatial

distances from y13 to y1 and to y21 are equal, the steering kernel weight for y21 (i.e.

KH21 (x21−x13)) is larger than the one for yi (i.e. KH1 (x1−x13)). Moreover, as Figure 2.8(a)

illustrates the steering kernel weights on a variety of image structures of a clean Lena

image, weights given by the steering kernel function (2.9) with (2.13) captures local

structures more effectively. This is because the steering kernel function is a function

of the position of neighboring samples (xi) with the position of interest (x) held fixed.

Each neighboring sample (yi) has a steering matrix (Hsteer
i), and, unlike the adaptive

normalized convolution method, the steering kernel function takes not only the steer-

ing matrix at the position of interest but also its neighborhoods’ into account. As a

result, the steering kernel has more flexibility to adapt to local image structures. This

property is effective for not only denoising and interpolation of images but also object

39

Figure 2.8: Visualizations of steering kernels with covariance matrices Ci given by the local
orientation estimate (2.13) at a variety of image structures. (a) the estimated kernel values in
a clean image and (b) the estimated kernel values for the same areas of a noisy image (after
7 iterations considering additive Gaussian noise with standard deviation = 25 similar to the
experiment in Section 2.2.

recognition applications [43]. In addition, even in a noisy case (a noisy Lena image

given by adding white Gaussian noise with standard deviation = 25) illustrated in Fig-

ure 2.8(b), the shape and orientation of of the kernels are very close to those of the

noiseless case. Also, depending on the underlying features, in the flat areas, they are

relatively more spread to reduce the noise effects, whereas, in the edge areas, they are

spread along the local edge to reduce the noise effects along the edge rather and across

them as described in Figure 2.9.

Up to this point, we mostly described how the above formulation works for

the denoising case. Figure 2.10 illustrates a summary of image upscaling by steering

kernel regression. We begin with computing steering (covariance) matrices, Ci for all

the pixels, yi , from the input image shown in Figure 2.10(a) by (2.13). Once Ci ’s are

available, we have the steering matrices, Hsteer
i by (2.8), and compute steering kernel

40

Figure 2.9: A schematic description of pixel denoising by steering kernel regression: (a) at the
flat area, the steering kernel spreads widely, and steering kernel regression denoises the pixel
of interest by a weighted average of neighboring samples (2.12). (b) For the edge area, the
kernel spreads along the local edge, and the estimator computes an average of pixels on the
same edge, which the pixel of interest is located on. (c) At a area with complex structures, e.g.
Lena’s eye, the steering kernel stays small. Thus the estimator effectively leave the pixel alone
and preserve the local structure. The kernel weights are the ones shown in Figure 2.8(b).

weights by (2.9). For example, when we estimate the missing pixel z(x) at x shown as

the red circle in Figure 2.10(b), the steering kernel function gives high weights to the

samples y13 and y17. This is because z(x) most likely lies on the same edge (shown

by the red dashed curve) as y13 and y17. Next, plugging the steering kernel weights

into (1.33), we compute the equivalent kernel Wi and the estimator (2.12) gives the es-

timated pixels ẑ(x) at x. Furthermore, Figure 2.11 illustrates a schematic description

of image reconstruction from irregularly sampled data using steering kernel regres-

sion. Figure 2.11(a) shows the input data which are irregularly sampled. First, we

estimate missing pixels on regular grid positions (marked as black dots) by classic ker-

nel regression2, and that is what we call “pilot estimation”. Similar to the regular case

explained in Figure 2.10, we compute steering matrices for the given irregular data by

(2.8) and (2.13). One simple way to estimate a steering matrix for an off-grid sample is

to take the local analysis window at the nearest regular grid position. Once the steer-

2We use the second order classic kernel regression, but other simple methods can be of course used.

41

(a) Input image (b) The given samples with steering matrices

Figure 2.10: Steering kernel regression for image upscaling: (a) Input image, (b) we compute
steering matrices for each given pixel and then estimate the missing pixel z(x) and denoise
the given pixels yi . In the figure, we show regression examples at two positions: one is in
flat region and the other is in edge region. When we estimate z(x) in flat region, the steering
kernels of neighboring pixels tend to be circular and widely spread, and thus the estimated
pixel is the average value of the neighboring pixels (i.e. y1, y2, y6, and y7). On the other hand,
in edge region, the steering kernels are elliptic and elongated along the local orientation, and
the steering kernel regression estimates the missing pixel z(x) by taking its neighboring pixels
that are located on the same orientation (i.e. y13 and y17) strongly into account. The red dashed
line is a speculative local orientation.

ing matrices are available, we estimate the missing pixels of interest by steering kernel

regression (2.12). Figure 2.11(c) shows an example of estimating a pixel near an local

edge in which steering kernel regression gives large weights to the neighboring sam-

ples located near the same local edge (i.e. y7, y8, y9, and y10). Hence, the steering kernel

approach preserves and reconstructs the edge well.

2.1.3 Iterative Steering Kernel Regression

The estimated smoothing matrices of the steering kernel regression method

are data dependent, and, consequently, sensitive to the noise in the input image. As

42

(a) Irregularly sampled data (b) Pilot estimation (c) Reconstruction by SKR

Figure 2.11: Steering kernel regression for image reconstruction from irregularly sampled data:
(a) A irregularly sampled data set. (b) First we estimate missing pixels on regular grid positions
(marked as black dots) by, for example, classic kernel regression, and that is what we call “pilot
estimation”. Then we estimate steering matrices for the given irregular data. One simple way
to estimate a steering matrix for an off-grid sample is to take the local analysis window at
the nearest regular grid position. (c) Once the steering matrices are available, we estimate
the missing pixel of interest by steering kernel regression. The figure illustrate an example of
estimating a pixel at near an local edge. This case, steering kernels give larger weights to the
samples located on the same edge (i.e. y7, y8, y9, and y10).

we experimentally demonstrate in this section, steering kernel regression is most ef-

fective when an iterative regression/denosing procedure is used to exploit the output

(less noisy) image of each iteration to estimate the photometric terms of the kernel in

the next iteration. The most simple block diagram representation of this method mo-

tivated by the iterative bilateral filter method (2.5) is shown in Figure 2.12, where ℓ is

the iteration number. In the first diagram shown in Figure 2.12(a), the data samples

are used to create the initial (dense) estimte3 of the interpolated output image. In the

next iteration, the reconstructed (less noisy) image is used to calculate a more reliable

3Note that, in this thesis, all adaptive kernel regression experiments are initialized with the outcome
of the second order classic kernel regression.

43

Gradient Est.
Smoothting

Kernel Reg.y
H(0)

i β̂
(1)
1

ẑ(1)

(a) Initialization

H(ℓ+1)
i β̂

(ℓ+1)
1

ẑ(ℓ+1)

β̂
(ℓ)
1

(b) Iteration

Noisy data

ẑ(ℓ)

Initial
Matrix Est.

Steering

(B.2) (2.8) (2.12)

Smoothting
Matrix Est.

(2.8)
Kernel Reg.

Steering

(2.12)

β̂
(0)
1

Figure 2.12: Block diagram representation of iterative steering kernel regression: (a) the initial-
ization process, and (b) the iteration process.

estimate of the gradient as shown in Figure 2.12(b), and this process continues for a

few more iterations. A quick consultation with Figure 2.12(a) shows that, although the

iterative algorithm relies on an initial estimate of the gradient, we directly apply the

estimated kernels on the original (noninterpolated) samples which results in the popu-

lated (or denoised) image in the first iteration. Therefore, denoising and interpolation

can be done jointly in one step. Further iterations in Figure 2.12(b) apply the modi-

fied kernels on the denoised pixels which results in more aggressive noise removal. In

other words, the output image becomes more blurry as iterations continue. We note

that while increasing the number of iterations reduces the variance of the estimate,

it also leads to increased bias (which manifests as blurriness). Therefore, in some it-

erations, a minimum mean-squared estimate is obtained. An example of the typical

behavior of mean square error (MSE), variance, and bias, and estimated images at the

different number of iterations are shown in Figure 2.13. Although, in the first several

iterations, the MSE value decreases, as does the variance, the bias keeps increasing.

At a certain number of iterations, the MSE hits bottom and increases as well as the

44

4 6 8 10 12 14 16 18 20 22 24
0

20

40

60

80

100

120

140

The number of iterations

Mean Square Error
Squared Bias
Variance

(a) MSE, bias, and variance of the iterative steering kernel regression method

(b) Input image (MSE = 252) (c) 4 iterations (MSE = 126) (d) 11 iterations (MSE = 44) (e) 24 iterations (MSE = 80)

Figure 2.13: An example of the behavior of mean square error, variance, and bias of the iterative
steering kernel method, and its estimated images at the different number of iterations.

bias. Another property of the iteration method is that, with a larger global smoothing

parameter h in (2.8), we need fewer iterations to reach the minimum MSE. Another

iteration scheme is to compute the steering matrices from the cleaned image, but to

apply the SKR to the given noise-ridden image. In Section 6.2.3, we discuss this issue

including a way to optimize the number of iterations as a future work.

45

2.2 Experiments

Having introduced the iterative steering kernel regression (SKR) above, in

this section, we provide experiments on simulated and real data. These experiments

show diverse applications, including denoising, deblocking, image reconstruction from

irregularly sampled data, and resolution enhancement, illustrating the excellence of

the proposed adaptive technique.

2.2.1 Image Restoration

In the first set of experiments, we compare the performance of several de-

noising techniques. We set up a controlled simulated experiment by adding white

Gaussian noise with standard deviation 25 to the Lena image (512×512) shown in Fig-

ure. 2.14(a), while the resulting noise-ridden image is shown in Figure. 2.14(b) (the

corresponding SNR value4 is 5.64[dB]). The noise-ridden image is then denoised by

the classic KR5 (1.35) with N = 2 (second order) and h = 1.8, result of which is shown in

Figure 2.14(c). The result of applying the bilateral filter (2.3) with hs = 1.5 and hp = 7.4 is

shown in Figure 2.14(d). For the sake of comparison, we have included the result of ap-

plying anisotropic diffusion6 [25], a wavelet denoising method7 [46], K-SVD8 [44], and

BM3D9 [45] in Figures 2.14(e)-(h), respectively. Finally, Figure 2.14(i) shows the result

4Signal-to-Noise Ratio is defined as 20log10(σsignal/σnoise), where σnoise and σsignal are standard devi-
ation of noise and clean signal, respectively.

5The criterion for parameter selection in this example (and other simulated examples discussed in
this section) was to choose parameters which give the best mean square error result and the suggested
parameter by the authors for K-SVD [44] and BM3D [45].

6The software is available at
http://www.cns.nyu.edu/heegerlab/index.php?page=software&id=robanistdif.

7The software is available at http://decsai.ugr.es/~javier/denoise/index.html.
8The software is available at http://www.cs.technion.ac.il/~elad/software/.
9The software is available at http://www.cs.tut.fi/~foi/GCF-BM3D/.

46

http://www.cns.nyu.edu/heegerlab/index.php?page=software&id=robanistdif
http://decsai.ugr.es/~javier/denoise/index.html
http://www.cs.technion.ac.il/~elad/software/
http://www.cs.tut.fi/~foi/GCF-BM3D/

of applying the iterative SKR proposed in Figure 2.12 with N = 2, h = 2.5, and 7 itera-

tions. The corresponding RMSE10 values of the restored images of Figures 2.14(c)-(i)

are (c)8.94, (d)8.65, (e)8.64, (f)6.66, (g)6.90, (h)6.35, and (i) 6.64, respectively. Although,

the iterative SKR is not specifically designed to remove white Gaussian noise, the re-

sult is comparable to the state of art denoising methods numerically and visually. For

the visual comparison, Figure 2.15 shows the enlarged selected region of each image

shown in Figure 2.14.

We set up a second controlled simulated experiment by considering JPEG

compression (blocking) artifacts which result from compression of the pepper image

(256×256) shown in Figure 2.16(a). The JPEG images was constructed by MATLAB’s

JPEG compression routine with quality factor 10. This compressed image is shown in

Figure 2.16(b), and the resulting RMSE value is 9.76. We again applied several denois-

ing methods (similar to the ones used in the previous example). The results of applying

classic KR (1.35) with N = 2 and h = 1.0, bilateral filter (2.3) with hs = 2.0 and hp = 4.1,

the anisotropic diffusion [25], the wavelet method [46], K-SVD [44], BM3D [45], and the

iterative SKR with N = 2, h = 2.0, and 3 iterations are shown in Figure 2.16(c)-(h), re-

spectively. The corresponding RMSE values are (b)9.76, (c)9.03, (d)8.52, (e)9.70 (f)8.80,

(g)8.54, (h)8.60, and (i)8.48.

The third experiment is a denoising example with the color JFK image (367×

343) carrying real film grain noise and scanning process noise, shown in Figure 2.17(a).

To produce better color estimates, following [47], first we convert this RGB image to

the YCbCr representation. Then, we applied K-SVD [44], BM3D [45], and iterative SKR

on each channel (the luminance component Y, and the chrominance components Cb

10Root Mean Square Error is defined as 1
Ω

∥∥u− ẑ
∥∥

2, where Ω is the total number of pixels, u is the true
signal (image), and ẑ is the estimated signal (image).

47

(a) Original Lena image (b) Noisy image (c) Classic KR (1.35)
RMSE = 25.0 RMSE = 8.94

(d) Bilateral filter [7] (e) Anisotropic diffusion [25] (f) Wavelet [46]
RMSE = 8.65 RMSE = 8.64 RMSE = 6.66

(g) K-SVD [44] (h) BM3D [45] (i) Iterative SKR
RMSE = 6.90 RMSE = 6.35 RMSE = 6.64

Figure 2.14: An example of Gaussian noise removal with the Lena image: (a) the original Lena
image, (b) the noise-ridden image that we generated by adding white Gaussian noise with
standard deviation 25 (SNR = 5.64[dB]), (c) the second order classic KR (1.35), (d) bilateral filter
[7], (e) anisotropic diffusion [25], (f) a wavelet method [46], (g) K-SVD [44], and (i) Iterative
SKR. The corresponding RMSE values are (b)25, (c)8.94, (d)8.65, (e)8.64, (f)6.66, (g)6.90, (h)6.35,
and (i) 6.64.

and Cr), separately. The restored images by K-SVD, BM3D, and iterative SKR (N = 2,

h = 2.0, and 3 iterations) are shown in Figures 2.17(b)-(d), respectively. Figures 2.18(b)-

48

(a) Original Lena (b) Noisy image (c) Classic KR (1.35)

(d) Bilateral filter [7] (e) Anisotropic diffusion [25] (f) Wavelet [46]

(g) K-SVD [44] (h) BM3D [45] (i) Iterative SKR

Figure 2.15: An example of white Gaussian noise removal with the Lena image: the images
(a)-(i) show the enlarged selected regions of the respective images shown in Figure 2.14.

(d) show the absolute values of the residuals (the difference between the noise-ridden

signal and the restored signal), on the Y component of K-SVD, BM3D, and iterative

SKR, respectively.

49

(a) Original pepper iamge (b) Compressed image (c) Classic KR (1.35)
RMSE = 9.76 RMSE = 9.03

(d) Bilateral filter [7] (e) Anisotropic diffusion [25] (f) Wavelet [46]
RMSE = 8.52 RMSE = 9.70 RMSE = 8.80

(g) K-SVD [44] (h) BM3D [45] (i) Iterative SKR
RMSE = 8.54 RMSE = 8.60 RMSE = 8.48

Figure 2.16: An example of blocking artifact reduction with the pepper image: (a) the original
pepper image, (b) the compressed image that we generated by compressing with the quality
factor 10, (c) the second order classic KR (1.35), (d) bilateral filter [7], (e) Anisotropic diffusion
[25], (f) a wavelet method [46], (g) K-SVD [44], (h) BM3D [45], and (i) Iterative steering KR. The
corresponding RMSE values are (b)9.76, (c)9.03, (d)8.52, (e)9.70, (f)8.80, (g)8.54, (h)8.60, and
(i)8.48.

50

(a) JFK image (b) K-SVD [44]

(c) BM3D [45] (d) Iterative SKR

Figure 2.17: An example of film grain removal: (a) the JFK image that carries real film grain
noise, (b) K-SVD [44], (c) BM3D [45], and (d) iterative SKR.

2.2.2 Image Reconstruction from Irregularly Sampled Data

The fourth and fifth experiments are controlled simulated interpolations of ir-

regularly sampled images: house (256×256) and Lena (512×512). We randomly deleted

85% of the pixels in the House image and the Lena image of Figure 2.19(b), and Fig-

ure 2.20(b), generating the irregularly sampled images shown in Figure 2.19(a) and

Figure 2.20(a), in which the black regions represent missing pixels. To fill the miss-

51

(a) JFK image (b) K-SVD [44]

(c) BM3D [45] (d) Iterative SKR

Figure 2.18: The comparison of the film grain removal on the JFK image by residual images
(the absolute differences between the JFK image and the denoised images): (a) the JFK image
that carries real film grain noise, (b) K-SVD [44], (c) BM3D [45], and (d) iterative SKR.

ing values, we first applied Delaunay triangulation11, and the reconstructed image is

shown in Figure 2.19(c) and Figure 2.20(c). Next, we applied classic KR (1.35) with

N = 2 and h = 2.25 and iterative SKR with N = 2, h = 1.6, and 1 iteration), and the

results are shown in Figures 2.19(c)-(d) and Figures 2.20(c)-(d), respectively. The corre-

11We used MATLAB’s routine “griddata” function with “linear” method.

52

(a) irregularly sampled data (b) Original house image (c) Delaunay triangulation
RMSE = 9.11

(d) Classic KR (1.35) (e) Iterative SKR
RMSE = 10.36 RMSE = 8.72

Figure 2.19: An example of image reconstruction from irregularly sampled data with the house
image: (a) the irregularly sampled data that we generated by randomly eliminating 85% of
pixels (no noise), (b) the original house image, (c) Delaunay triangulation, (d) classic KR (1.35),
and (e) Iterative SKR. The corresponding RMSE values of the reconstructed images are (c)9.11,
(d)10.36, and (e)8.72.

sponding RMSE values for the House experiment are (c)9.11, (d)10.36, and (e)8.72, and

(c)9.29, (d)9.72, and (e)8.21 for the Lena experiment.

The final experiment is a multi-frame resolution enhancement (also known as

super-resolution [2]) of a real compressed color image sequence captured with a com-

mercial video surveillance camera, courtesy of Adyoron Intelligence System, Ltd., Tel

Aviv, Israel. We cropped the original input Adyoron sequence into 100× 100 region

with 10 frames, where the first frame is shown in Figure 2.21(a). Again, to produce bet-

53

(a) irregularly sampled data (b) Original Lena image (c) Delaunay triangulation
RMSE = 9.29

(d) Classic KR (1.35) (e) Iterative SKR
RMSE = 9.72 RMSE = 8.21

Figure 2.20: An example of image reconstruction from irregularly sampled data with the Lena
image: (a) the irregularly sampled data that we generated by randomly eliminating 85% of
pixels (no noise), (b) the original house image, (c) Delaunay triangulation, (d) classic KR (1.35),
and (e) Iterative SKR. The corresponding RMSE values of the reconstructed images are (c)9.29,
(d)9.72, and (e)8.21.

ter color estimates, following [47], we convert the RGB video frames into the YCbCr

representation, and processed each channel separately. Assuming that the underly-

ing motion is translational (q.v. Appendix D), we estimate motions between frames of

the Y channel, and obtain an irregularly sampled data set as described in Figure 1.3

for each channel. In this example, we set the resolution enhancement factor of 1:5

(i.e. 25 times as many overall pixels), reconstruct high-resolution images from the ir-

regular data by Delaunay triangulation, classic KR (1.35) (N = 2 and h = 2.0 for the Y

54

(a) Adyoron sequence (b) Multiframe Delaunay triangulation

(c) Multiframe classic KR (1.35) (d) Multiframe iterative SKR

Figure 2.21: An example of resolution enhancement with the Adyoron video sequence: (a) the
first video frame of the Adyoron sequence, (b) multiframe Delaunay triangulation, (c) multi-
frame classic KR (1.35), and (d) multiframe iterative SKR.

channel, h = 3.5 for the Cb and Cr channels), and iterative SKR (N = 2, h = 4.0 for the

Y channel, h = 8.0 for the Cb and Cr channels, and 1 iteration), and then deblurred

the reconstructed images using Bilateral total variation regularization12 [2]. The final

results using Delaunay triangulation, classic KR, and iterative SKR are shown in Fig-

ures 2.21(b)-(d), respectively. The iterative SKR successfully enhances the resolution

12For this experiment, the camera point spread function (PSF) was assumed to be a 5× 5 disk kernel
(obtained by the MATLAB’s routine “fspecial” with “disk” option and the radius parameter of 2.

55

while suppressing compression artifacts effectively.

2.3 Robust Kernel Regression

As we briefly discussed in Section 2.1.1, when the given image is contami-

nated by a few outliers, such as salt & pepper noise, Susan filter (2.6) is a possible

method to eliminate them. An example of salt & pepper noise reduction using Susan

filter is shown in Figure 2.22. As seen in the results, Susan filter works well only for a

few outliers. When the number of outliers increases, some outliers are too close to each

other, and leaving out the center pixel only is no longer effective. Hence we need an

alternative approach. Specifically, in this section, we introduce the technique of robust

estimator [48, 49] into the kernel regression framework.

So far, in the data models (1.1) and (1.17), we assume that εi is zero-mean

i.i.d. noise, such as white Gaussian noise, and, therefore, the weighted least square

(weighted L2-norm) was a good choice to remove noise while preserving major image

structures as shown in Section 2.2. Although such limiting assumptions facilitate the

design of optimal methods for a certain type of data, in real situations when the data

and noise models do not faithfully describe the measured signals, the performance of

such non-robust methods significantly degrades [2].

The robust estimation technique explicitly reflects the statistical property of

noise in the optimization. To be specific, when the noise statistics are more heavy-

tailed, the squared error between the given data yi and the estimate ẑ(·) (i.e. (yi −β0 −

βT
1 (xi − x)− ·· ·)2) is no longer a suitable choice. Thus, we modify the optimization of

56

(a) Salt & pepper noise, 1% (b) The restored image of (a) by Susan filter
RMSE = 13.50 RMSE = 6.20

(c) Salt & pepper noise, 20% (d) The restored image of (c) by Susan filter
RMSE = 63.84 RMSE = 28.33

Figure 2.22: An example of salt & pepper noise reduction by Susan filter (2.6): (a),(c) noise-
ridden images that we generated by adding 1% and 20% salt & pepper noise, respectively, and
(b),(d) the restored images of (a) and (c) by Susan filter, respectively. The corresponding RMSE
values are (a)13.50, (b)6.20, (c)63.84, and (d)28.33.

kernel regression (2.1) with the generic error norm function φ(·) as

min
{βn }

P∑
i=1

φ
(

yi −β0 −βT
1 (xi −x)−βT

2 vech
{
(xi −x)(xi −x)T }−·· ·

)
Kadapt(xi −x, yi − y). (2.19)

The estimator above not takes not only the statistics of the underlying signal (image)

into account, but the noise statistics are also taken into account by the data-adapted

kernel Kadapt(·) and the error norm function φ(·), respectively. Some possible choices for

φ(·) can be found in [50]. The robustness with respect to outliers (such as salt & pepper

57

noise) can be significantly improved by exploiting the absolute error (i.e. φ(·) = | · |),

which in effect incorporates L1-norm estimator [2] in the kernel regression framework.

Using the matrix form, the optimization problem (2.19) can be posed as weighted L1-

norm:

b̂ = argmin
b

∥∥K
(
y−Xb

)∥∥
1 , (2.20)

and we find the solution of the optimization by the steepest descent [28]:

b̂(ℓ+1) = b̂(ℓ) +µXT K sign
(
y−Xb̂(ℓ)

)
, (2.21)

where µ is a scalar defining the step size in the direction of the gradient.

Its implementation is similar to iterative steering kernel regression. In the

diagram shown in Figure 2.12, we replace the classic kernel gradient estimator (B.2)

by (2.21) with classic kernel matrix (i.e. K = diag{KH(x1 − x), · · · ,KH(xP − x)}), and then

we compute steering matrices. Also replacing (2.12) by (2.21) with steering kernel

matrix (i.e. K = diag{KHsteer
1

(x1 − x), · · · ,KHsteer
P

(xP − x)}), we estimate the image z(·) again.

Figure 2.23 shows an example of salt & pepper noise removal. In this experiment, we

again added 20% salt & pepper noise to a part of Lena image, resulting in the noisy

image of Figure 2.23(a). Using (b) a 3×3 median filter, (c) wavelet method of [46], (d)

L2 classic KR (1.35) (N = 2 and h = 2.46), (e) L2 iterative SKR (2.12) (N = 2, h = 2.25, and

20 iterations), and (f) L1 iterative SKR (N = 2, h = 2.25, and 1 iteration), we denoised the

noisy image. The corresponding RMSE values are (a)63.84, (b)11.05, (c)21.54, (d)21.81,

(e)21.06, and (f)7.14, respectively. The example show that, while the wavelet method,

L2 classic KR, and L2 steering KR are ineffective for salt & pepper removal, the L1 steer-

ing KR removes the noise successfully and the result is much better than the median

filter.

58

(a) Salt & pepper noise, 20% (b) Median, 3×3 (c) Wavelet [46]
RMSE = 63.84 RMSE = 11.05 RMSE = 21.54

(d) L2 Classic KR (1.35) (e) L2 iterative SKR (2.12) (f) L1 iterative SKR
RMSE = 21.81 RMSE = 21.06 RMSE = 7.14

Figure 2.23: An example of Salt & pepper noise reduction with a cropped Lena image: (a) a
noise-ridden image that we generated by adding 20% salt & pepper noise, and (b) the restored
image by 3× 3 median filter, (c) a wavelet method [46], (d) L2 classic KR (1.35), (e) L2 itera-
tive SKR (2.12), and L1 iterative SKR. The corresponding RMSE values are (a)63.84, (b)11.05,
(c)21.54, (d)21.81, (e)21.06, and (f)7.14, respectively.

Summary— In this chapter, in order to overcome the inherent limitations dic-

tated by the locally linear filtering properties of the classic kernel regression frame-

work, we developed the nonlinear data-adaptive class of kernel regressors. We showed

that the popular bilateral filtering technique is a special case of adaptive regression.

We introduced and justified a novel adaptive kernel regression method, called steering

kernel with comparable or better performance with respect to state of the art methods.

Moreover, we presented an iterative scheme to further improve the performance of

59

the steering kernel regression method. An automatic method for picking the optimal

smoothing parameter and the number of iterations as well as the optimal regression

order is one of our important future works, which we include in Chapter 6.

60

Chapter 3

Kernel-Based Image Deblurring

Abstract— Kernel regression is an effective tool for a variety of image process-

ing tasks, such as denoising and interpolation, as we described in Chapter 2. In this

chapter, we extend the use of kernel regression for deblurring applications. In some

earlier examples in the literature, such non-parametric deblurring was sub-optimally

performed in two sequential steps, namely, denoising followed by deblurring. In con-

trast, our optimal solution jointly denoises and deblurs images. The kernel-based ap-

proach takes advantage of an effective and novel image prior that generalizes some

of the most popular regularization techniques in the literature. Experimental results

demonstrate the effectiveness of the method.

3.1 Introduction

The kernel regression framework [3] has been widely used in different guises

for solving a variety of pattern detection and discrimination problems [4]. In Chap-

ter 2, we described kernel regression as an effective tool for image restoration and re-

61

Figure 3.1: The data model for the deblurring problem.

construction, and established its relation with some popular existing techniques such

as normalized convolution [51, 6], bilateral filter [7, 8], edge-directed interpolation [9], and

moving least-squares [10]. Moreover, we proposed a novel adaptive generalization of

kernel regression with excellent results in both denoising and interpolating (for single

and multi-frame) applications. The image degradation model for all the above tech-

niques mainly considered regularly or irregularly sampled data, contaminated with

independent and identically distributed (i.i.d) additive zero mean noise (with other-

wise no particular statistical distribution assumed).

In the previous chapter, an important image degradation source, namely the

(out of focus or atmospheric) blur [2], was ignored. In other works, this problem was

treated in a two-step process, for instance, denoising or interpolation followed by de-

blurring [52, 53]. Such two-step solutions in general are suboptimal, and improve-

ments upon them are the subject of this chapter.

Generally, we have a model for the deblurring problem in Figure 3.1. where

u is the real scene which is the unknown function of interest, g is the point spread

function (PSF) of the blur, ε is an additive white noise, and y is an observation that

is the distorted function of u. Following this model, we express the pixel value yi

62

measured at xi by extending the data model (1.17) as

yi = z(xi)+εi = (g ∗u)(xi)+εi , (3.1)

where ∗ is the convolution operator, z(xi) = (g ∗u)(xi) is the unknown blurred pixel

value at a sampling position xi . In matrix notation, we write the blur-free pixels of

interest as u = [· · · ,u(xi), · · ·]T . Next, we rewrite the model (3.1) in matrix form as:

y = Gu+ε, (3.2)

where y ∈ RL×M is an observed (blurry and noisy) image, u ∈ RL×M is the unknown

image of interest, G ∈RLM×LM is the blur operation, and ε ∈RL×M is a noise image. The

underline indicates that the matrices are lexicographically ordered into a column-stack

vector, e.g., u ∈ RLM×1. Since the deblurring problem is typically ill-posed, a popular

way to estimate the unknown image u is to use the regularized least square technique

[29]:

ûRLS = argmin
u

∥∥∥y−Gu
∥∥∥2

2
+λCR(u), (3.3)

where λ is the regularization parameter, and CR(u) is the regularization term. Some

representative examples of CR(u) are

i. Tikhonov [54]

CR(u) = ∥∥Γu
∥∥2

2 (3.4)

ii. Total variation (TV) [55]

CR(u) = ∥∥Γu
∥∥

1 (3.5)

iii. Bilateral total variation (BTV) [2]

CR(u) =
ζ∑

l=−ζ

ζ∑
m=−ζ

η|l |+|m|
∥∥∥u−Sl

x1
Sm

x2
u
∥∥∥

1
(3.6)

63

where Γ ∈RLM×LM is a high-pass filter, such as Laplacian [29], η is a smoothing param-

eter, ζ is the local analysis window size, and Sl
x1

,Sm
x2

∈ RLM×LM are the shift operators

that shift the image (u) l and m pixels in the x1- and x2-directions, respectively. In

this chapter, we replace the likelihood term (∥y−Gu∥2
2) in (3.3) with one motivated by

the kernel regression technique, which results in a spatially adaptive weighted least

square problem. Additionally, we introduce novel regularization terms which provide

spatially adaptive prior information, resulting in a powerful overall setting for decon-

volution.

Contributions of this chapter are the following: i) We describe and propose

kernel regression as an effective tool for deblurring, ii) We also propose a novel image

prior which is effective in suppressing both noise and ringing effects. These effects

are typical in deblurring applications. We further show that many popular regulariza-

tion techniques such as digital total variation (TV) [55], bilateral TV [2], and Tikhonov

regularization [54] are special cases of this adaptive prior.

This chapter is organized as follows: In Section 3.2, we bring the blurring ef-

fect into the kernel regression (KR) framework, and introduce a regularized estimator

based on the KR framework for the deblurring application. Also, we discuss the rela-

tionships with the existing approaches (i.e. Tikhonov, TV, and BTV). Next, we describe

how to apply the data-adaptive kernels presented in Chapter 2 for the kernel-based

deblurring estimator. Experiments are presented in Section 3.2.3. Furthermore, the

kernel-based approach is applicable to other image restoration problems besides de-

blurring. We discuss the generalization of the kernel-based approach in Section 3.3.

64

3.2 Kernel-Based Deblurring

Deblurring is an ill-posed problem when the PSF completely kills high fre-

quency components of the underlying image, and the ill-posedness of the deblurring

problem causes the ringing and noise artifacts. An effective approach to reduce the un-

desirable effects is the regularization approach (3.3). In this section, first we will derive

a likelihood term and a regularization term based on the kernel regression framework,

and formulate a kernel-based deblurring estimator. As a result, the deblurring esti-

mator becomes a regularized method with a choice of the kernel function. Using the

data-adaptive kernel functions described in Chapter 2, we control the smoothness of

the output image locally. Briefly speaking, the proposed deblurring estimator with the

data-adaptive kernels recovers the high frequency components at the regions where

edges and textures are present and smooths the regions where no image structures

are present. We describe the details of the implementation of the kernel-based deblur-

ring with the steering kernel function (2.9) in Section 3.2.2 and show some deblurring

examples with comparisons to the existing deblurring methods in Section 3.2.3.

3.2.1 Kernel-Based Deblurring Estimator

Considering the blurring effect, instead of estimating the unknown function z

as we have explained in Chapters 1 and 2, the function u is the one we wish to estimate.

Therefore, in place of representing the blurred function z by a local approximation

(Tayler series), we apply the kernel framework to the function u of interest and use the

local signal representation between two unknown values, u(xi) at a sampling position

65

Figure 3.2: The i -th pixel at xi and its neighboring pixel u(x j) at xi located ν1- and ν2-pixels
away in x1- and x2-directions (ν= [ν1,ν2]T), respectively.

xi and u(x) at a neighboring arbitrary position x, with a Taylor series:

u(xi) = u(x)+ {∇u(x)}T (xi −x)+ 1

2
(xi −x)T {H u(x)} (xi −x)+·· · . (3.7)

Furthermore, unlike the denoising/interpolation problem where we use the noise only

model (1.17) and derive a pointwise estimator (such as (2.12)), in the presence of blur,

the blurring effect associates (couples) all the sampling positions xi ’s with their neigh-

bors, and this linkage precludes individual estimations of deblurred pixels, and neces-

sitates a simultaneous estimation of all the pixels of interest (e.g. the regularization

approach (3.3)). Hence we tightly constrain the reciprocal relationship between neigh-

boring pixel values by a local representation model, i.e., the Taylor series, in order

to derive a simultaneous pixel estimator based on the kernel regression framework.

Suppose we have a pixel value u(x j) and its neighbor u(xi) which is located ν1-pixels

in the x1-direction and ν2-pixels in the x2-direction away from u(xi) as illustrated in

Figure 3.2. That is to say, we have

u(xi) = u(x j −ν), (3.8)

66

where ν = [ν1,ν2]T is the spatial displacement vector. The Taylor series (3.7) indicates

the following relationship between u(xi) and u(x j):

u(xi) = u(x j −ν)

= u(x j)+{∇u(x j)
}T
ν+ 1

2
νT{H u(x)}ν+·· ·

= u(x j)+

 ux1(x j)

ux2(x j)

T

ν+ 1

2

ux2

1
(x j)

2ux1x2 (x j)

ux2
2
(x j)

T

vech
{
ννT }+·· · . (3.9)

In order to estimate all the pixels simultaneously as an image, we write the local rep-

resentation (3.9) at every sampling point (xi ’s) together, and gather the result into lexi-

cographically stacked vector form as
...

u(x j −ν)

...

 =

...

u(x j)

...

+

...

ux1(x j)

...

ν1 +

...

ux2(x j)

...

ν2

+1

2

...

ux2
1
(x j)

...

ν2
1 +

...

ux1x2(x j)

...

ν1ν2 + 1

2

...

ux2
2
(x j)

...

ν2
2 +·· · .(3.10)

For convenience, we denote, for example, the first and the second right hand vectors in

(3.10) as the lexicographically ordered desired image (u) and its first derivative along

the x1-direction (ux1
), respectively. Additionally, the left-hand vector in (3.10) can be

regarded as the shifted version of u, and thus, we simplify the notation in (3.10) as

S−ν1
x1

S−ν2
x2

u = u+ux1
ν1 +ux2

ν2 +ux2
1
ν2

1 +ux1x2
ν1ν2 +ux2

2
ν2

2 +·· · , (3.11)

where S−ν1
x1

and S−ν2
x2

are the shift operators that shift an image by (−ν1) and (−ν2) pixels

along x1- and x2-directions, respectively, and we absorb the coefficient 1/2 in ux2
1

and

67

ux2
2
. Finally, considering an N -th order approximation, we have

u = Sν1
x1

Sν2
x2

(
u+ux1

ν1 +ux2
ν2 +ux2

1
ν2

1 +ux1x2
ν1ν2 +ux2

2
ν2

2 +·· ·
)

≈ Sν1
x1

Sν2
x2
IN UN , (3.12)

where, for example, when N = 2, we have

I2 =
[

I Iν1 Iν2 Iν2
1

Iν1ν2 Iν2
2

]
U2 =

[
uT uT

x1
uT

x2
uT

x2
1

uT
x1x2

uT
x2

2

]T
(3.13)

where we define Iν1= diag{ν1, · · · ,ν1}. Naturally, with fewer higher-order terms in this

expansion, the smaller shift distances result in a more faithful approximation in (3.12).

This suggests a general (smoothness) prior (regularization term) with weights given

by the shift (spatial) vector ν for images smooth to order N as

CR(UN) =
ζ∑

ν1=−ζ

ζ∑
ν2=−ζ

∥∥∥ {Wu(ν)}
1
q
(
u−Sν1

x1
Sν2

x2
IN UN

)∥∥∥q

q
(3.14)

which we call the adaptive kernel total variation (AKTV) when q = 1, and where Wu(ν) is

the weight matrix and a function of the shift vector ν for this term defined as

Wu(ν) = diag
{· · · , KHu (x j −ν) (ν), · · ·} . (3.15)

Here again, K (·) is the kernel function and Hu(x j −ν) is the smoothing matrix at (x j −ν)

computed based on the unknown (estimated) function û(·) as described in detail in

Section 3.2.2. The deblurring problem is often ill-posed, in particular, when the width

of the PSF is large. Therefore, the regularization term (3.14) is useful to further restrict

the solution space for the signal of interest. Figure 3.3 illustrates a graphical represen-

tation of the proposed regularization term. Figure 3.3(a)-(c) show three pixels (u(xflat),

u(xedge), and u(xeye)) at a flat region, an edge region, and the eye with some of their

68

neighboring pixels. Those neighboring pixels are shifted with the vector ν in order

to smooth the pixels (u(xflat), u(xedge), and u(xeye)). When using the higher regression

order (e.g. N = 1 or 2), the shift operation involves the derivatives, as described in

(3.12). The derivatives compensate the pixel values based on the approximation by

the Taylor expansion of the signal of interest, and, consequently, we estimate the un-

derlying signal with the locally linear model (N = 1) and the locally quadratic model

(N = 2). Furthermore, we penalize the neighboring pixels with the weights given by

the data-adaptive (steering) kernel function, which we will describe in Section 3.2.2.

The steering weight values for the neighboring pixels of u(xflat), u(xedge), and u(xeye)

are shown in Figure 3.3(d)-(f), respectively. The weights control how much the neigh-

boring pixels should contribute to the smoothing operations locally. For instance, the

steering kernel for the nearby pixels around the pixel at the flat region (u(xflat)) spreads

wider as shown in Figure 3.3(d), and it indicates the pixel u(xflat) will be smoothed with

all the neighbors. That is preferable for the flat region to remove noise. On the other

hand, for the pixel at the edge region (u(xedge)), we have the steering weights spread-

ing along the local edge as shown in Figure 3.3(e). Hence, our regularization term

smooths the pixel u(xedge) with the neighboring pixels which belong to the same edge

(i.e. the neighboring pixels at upper-left and lower-right), and it largely excludes the

other pixels. In addition, the steering kernel stays small at the eye region and excludes

all the neighboring pixel from the smoothing operation by giving low weights. Hence,

the data-adaptive kernel approach is effective to suppress noise while preserving the

image structures (edges and textures).

Having introduced the regularization term, we now turn our attention to de-

scribing the kernel-based data fidelity term. Using the local representation (3.12), the

69

Figure 3.3: A graphical representation of the proposed regularization term (3.14): The figures
(a)-(c) shows the pixels (u(xflat), u(xedge), and u(xeye)) at a flat region, an edge region and the
eye, respectively, with their neighboring pixels, and the figures (d)-(f) shows the steering kernel
weight values given by KHu (x j −ν) (ν) for the pixels (u(xflat), u(xedge)), and u(xeye)).

blurred noisy image y is expressed as

y = Gu+ε

= GSν1
x1

Sν2
x2

(
u+ux1

ν1 +ux2
ν2 +ux2

1
ν2

1 +ux1x2
ν1ν2 +ux2

2
ν2

2 +·· ·
)
+ε

≈ Sν1
x1

Sν2
x2
GN UN +ε (3.16)

70

where

GN =
[

GI GIν1 GIν2 GIν2
1

GIν1ν2 GIν2
2

]
. (3.17)

Similar to the regularization term (3.14), the local representation for the blurred noisy

image (3.16) suggests a data fidelity or likelihood term:

CL(UN) =
ζ∑

ν1=−ζ

ζ∑
ν2=−ζ

∥∥∥{Wz (ν)}
1
2

(
y−Sν1

x1
Sν2

x2
GN UN

)∥∥∥2

2
(3.18)

where Wz (ν) is the weight matrix for this likelihood term computed based on the esti-

mated blurred signal ẑ = g ∗ û as we will describe in Section 3.2.2.

In summary, the overall cost function to be minimized is formulated as

C (UN) = CL(UN)+λCR(UN)

=
ζ∑

ν1=−ζ

ζ∑
ν2=−ζ

[∥∥∥{Wz (ν)}
1
2

(
y−Sν1

x1
Sν2

x2
GN UN

)∥∥∥2

2
+λ

∥∥∥ {Wu(ν)}
1
q
(
u−Sν1

x1
Sν2

x2
IN UN

)∥∥∥q

q

]
(3.19)

where λ is the regularization parameter. We can solve the optimization problem using

the steepest descent method [28] (see Appendix C for the gradient term)

Û(ℓ+1)
N

= Û(ℓ)
N

+µ
∂C (UN)

∂UN

∣∣∣∣
UN =Û(ℓ)

N

(3.20)

where µ is the step size.

There are two points worth highlighting about the regularization cost func-

tion CR(·) (3.14). First, the regularization term is general enough to subsume several

other popular regularization terms existing in the literature, for example, Tikhonov

(3.4), TV (3.5), and BTV (3.6). In particular, note that, if we choose the zeroth regression

order (i.e. N = 0), the proposed regularization term (3.14) becomes

CR(UN=0) =
ζ∑

ν1=−ζ

ζ∑
ν2=−ζ

∥∥∥{Wu(ν)}
1
q
(
u−Sν1

x1
Sν2

x2
u
)∥∥∥q

q
. (3.21)

71

Therefor, for q = 1, the regularization term (3.21) can be regarded as digital TV [56]

with Wu(ν) = I and ζ= 1. Alternatively, again with N = 0, and with Wu(ν) = η∥ν∥1 I, where

0 ≤ η ≤ 1, the term represents the BTV regularization criterion first introduced in [2].

That is to say, the BTV implicitly defines the kernel function as

Kη(xi −x) = η∥xi−x∥1 , (3.22)

where η in this case is the global smoothing parameter. Second, with the choice of the

zeroth order (N = 0), we would be assuming that the unknown image u is piecewise

constant. On the other hand, the unknown image is assumed piecewise linear and

quadratic with N = 1 and 2, respectively. In addition, with the locally data-adaptive

weights (introduced in Section 3.2.2), the proposed framework can effectively remove

noise and ringing effects while preserving local edges and textures. Of course, other

choices of the kernel function are also possible. In the image restoration literature,

the use of data-adaptive kernel functions has recently become very popular. As such,

one may opt to use mean-shift [35, 36], or nonlocal means [57] weights as the kernel

function in the weight matrices Wu(ν) and Wz (ν) in (3.14) and (3.18), respectively. These

methods have implicitly used zeroth-order local representations (N = 0), which can

also be generalized [58].

3.2.2 Locally Adaptive, Data-Dependant Weights

One fundamental improvement on our kernel-based approach (3.19) can be

realized by noting that the kernel regression estimates using the non-adaptive kernel

function such as (1.25) and (3.22), independent of the regression order (N), are always

local linear combinations on the data as described in Section 1.3.3. This is of course

relevant to the kernel-based deblurring estimate as well.

72

In this section, we describe how to apply the data-adaptive kernel, i.e. the

steering kernel function (2.9) for the kernel-based deblurring estimator. The resulting

deblurring method can effectively suppress both the noise and ringing effects, which

are fundamental issues in the deblurring problem. As we will see later in Section 3.2.3,

the choice of the steering kernels is most effective. Furthermore, we will also explain

how to implement the data-adaptive kernel-based deblurring method, in which we

estimate the unknown image u by iteratively updating the image and the data-adaptive

weight matrices.

In the kernel-based deblurring approach (3.19), there are two weight matri-

ces Wu(ν) for the regularization term and Wz (ν) for the likelihood term. Plugging the

steering kernel function (2.9) into Wu(ν) and Wz (ν), we have the data-adapted weight

matrices as

Wu(ν) = diag
{· · · , KHu (x j −ν) (ν), · · ·} (3.23)

Wz (ν) = diag
{· · · , KHz (x j −ν) (ν), · · ·} , (3.24)

where Hu(·) and Hz (·) are the steering matrices estimated from the unknown function

u(·) of interest and its blurred version z(·), respectively. Figure 3.4 shows a block di-

agram representation of the kernel-based deblurring method (3.20) with the steering

weight matrices (3.23) and (3.24). We note that, using the steering kernel (2.9), the

filtering performance depends on the quality of the orientation information. In Sec-

tion 2.1.3, we presented an algorithm to iteratively refine the orientation information,

and then recalculate the steering matrices Hi by the new orientation estimates. Sim-

ilarly, for deblurring, we propose an iterative method to refine the steering weight

matrices using the steepest descent method 3.20. To begin, we first initialize ÛN and

73

(a) Initialization

(b) Steepest descent iteration with the update of the weight matrix

Figure 3.4: Block diagram representation of the kernel-based deblurring method with the steer-
ing weight matrices: (a) initialization and (b) Steepest descent iteration with the update of the
weight matrix.

the weight matrices Wu(ν) and Wz (ν)1. To initialize them, we deblur the given image y

by Wiener filter [29] to have a reasonable estimate of the unknown image û(0). Next,

by applying the second order (N = 2) classic kernel regression (1.32), we obtain the first

and second derivatives (û(0)
x1

, û(0)
x2

, û(0)
x2

1
, û(0)

x1x2
, û(0)

x2
2

), and put them together into Û
(0)
2 as de-

fined in (3.13)2. Then, using the first derivatives (û(0)
x1

and û(0)
x2

), we estimate the rotation,

elongation, and scaling parameters, θi (2.16), σi (2.17), and γi (2.18), respectively, and

create the steering matrices Hu(·) for every pixel of û(0). Finally, we create the weight

matrix W(0)
u (ν) in (3.23) for the regularization term by plugging the steering kernel func-

1Although we can start with an image whose are all zero or the given blurry image, a good initializa-
tion greatly reduce the number of iterations.

2We eliminate the second derivatives for the first regression order N = 1.

74

tion (2.9) with Hi = Hu(xi). As for the likelihood term, we blur the gradients ûx1 and

ûx2 in order to have the gradients of the estimated blurred image. Following the same

procedure, with the gradients, we create W(0)
z (ν). This is the initialization process, and

the block diagram is illustrated in Figure 3.4(a). After the initialization, the iteration

process begins with Û(0)
N

, W(0)
u (ν), and W(0)

z (ν). Using (C.2) and (C.3) in Appendix C, we

compute the gradient term in (3.20), and update Û(ℓ)
N

and refine the weight matrices

(W(ℓ)
u (ν) and W(ℓ)

z (ν)) with the current estimates of the gradients (û(ℓ)
x1

and û(ℓ)
x1

) con-

tained in Û(ℓ)
N

alternately in each iterations3. Figure 3.4(b) illustrates the block diagram

of the iteration process. As the iteration process continues, the estimated image and its

derivatives (and therefore, the orientation information) are gradually improved.

It may be desirable to mention the relationship between the iterative SKR

described in Section 2.1.3 and the kernel-based approach (3.20). The iterative SKR

smooths the previous estimate without referring to the given noisy data y during the

iteration process. On the other hand, the kernel-based approach (3.20) with the update

of the weight matrices keeps the given data in the likelihood term (3.18) and refers to y

at every iteration with a choice of the regularization parameter λ. Neglecting the blur-

ring operation, for a large λ, the kernel-based approach is close to the iterative SKR

filtering, whereas for λ = 0, the kernel-based approach is equivalent to iteratively ap-

plying SKR to the given noisy data y while updating weight matrices by the current

estimate.
3Alternatively, one can consider updating the weight matrices every few iterations.

75

3.2.3 Deblurring Examples

In this section, we examine the performance of the kernel-based deblurring

method, hereinafter called AKTV4, while comparing to some existing deblurring algo-

rithms in the literature, we demonstrate the competitiveness of our proposed approach

with the existing methods.

First, we replicated an experiment from a two-step deblurring/denoising tech-

nique [53]. In this experiment, we restored an image which is degraded by appli-

cation of a severe blur (19 × 19 uniform PSF) and addition of white Gaussian noise

(BSNR = 40[dB]5). Figure 3.5(a)-(b) shows the original Cameraman image and the de-

graded image, and Figure 3.5(c)-(g) shows the restored images by the Wiener filter

[29], a multi-step filter (first denoised by iterative SKR introduced in Section 2.1.3, and

then deblurred by the regularization technique (3.3 with BTV (3.6)), ForWaRD6 [59],

LPA-ICI7 [53], and AKTV (the kernel-based deblurring method (3.20) with q = 2, N = 1,

and steering kernels (2.9)), respectively. The corresponding RMSE values8 are (b)29.67,

(c)17.17, (d)17.39, (e)14.37, (f)13.36, and (g)14.03. Figure 3.5(h)-(l) shows the zoomed

images of Figure 3.5(a),(d)-(g), respectively. The smoothing parameters for the Wiener

filter, the multi-step filter, LPA-ICI, and AKTV are manually optimized to produce the

best RMSE values for each method. The default setup for choosing the parameters

was used for the ForWaRD method as suggested by the authors. We see that, in this

particular (almost noiseless) experiment, the LPA-ICI method results in an image with

4A MATLAB software package containing all the code used to derive the resulted reported in this
section is available at http://www.soe.ucsc.edu/~htakeda/AKTV.

5Blurred signal to noise ratio = 10log10(blurred signal vairnace/noise variance)[dB].
6The software is available at http://www.dsp.rice.edu/software/ward.shtml.
7The software is available at http://www.cs.tut.fi/~lasip/.
8Root mean square error = ∥∥True image−The estimated image

∥∥
2 = ∥∥u− û

∥∥
2.

76

http://www.soe.ucsc.edu/~htakeda/AKTV
http://www.dsp.rice.edu/software/ward.shtml
http://www.cs.tut.fi/~lasip/

(a) Cameraman (256×256) (b) Blurry and noisy image (c) Wiener filter [29]
RMSE = 29.69 RMSE = 17.17

(d) Multi-step [52, 2] (e) ForWaRD [59] (f) LPA-ICI [53] (g) AKTV (3.20)
RMSE = 17.39 RMSE = 14.37 RMSE = 13.36 RMSE = 14.03

(h) The original (i) Multi-step [52, 2] (j) ForWaRD [59] (k) LPA-ICI [53] (l) AKTV (3.20)

Figure 3.5: Single-frame deblurring experiment with the Cameraman image: (a) the original
cameraman image, (b) degraded image by blurring with a 19× 19 uniform PSF and adding
white Gaussian noise (BSNR = 40[dB]), (c) restored image by Wiener filtering (smoothing pa-
rameter 0.0003) [29], (d) restored image by a multi-step filter (first denoised by iterative steer-
ing kernel regression [52], and deblurred by BTV [2]), (e) restored image by ForWaRD [59],
(f) restored image by LPA-ICI [53], and (g) restored image by AKTV ((3.20) with q = 1, N = 1,
and steering kernels (2.9)). The corresponding RMSE values for (b)-(g) are 29.67, 17.17, 17.39,
14.37, 13.36, and 14.03, respectively. A selected sections of (a) and (d)-(g) are zoomed in (h)-(l),
respectively.

slightly better RMSE value than AKTV.

Next, we modified the previous experiment by blurring the Cameraman im-

age by the same PSF (19× 19 uniform PSF) and adding much more white Gaussian

noise to the blurred image resulting in a degraded image of BSNR = 25[dB]. The re-

77

sulting image is shown in Figure 3.6(b) with the RMSE value of 29.82. Similar to the

previous experiment, we restored the degraded cameraman image by the Wiener filter,

the multi-step filter [52, 2], ForWaRD [59], LPA-ICI [53], and AKTV (the kernel-based

deblurring method (3.20) with q = 2, N = 1, and steering kernels (2.9)). The restored

images are shown in Figure 3.6(c)-(g), respectively, with the RMSE values of (c)21.62,

(d)20.78, (e)19.44, (f)18.23, and (g)17.64. Figure 3.6(h)-(l) shows the zoomed images of

Figure 3.6(a),(d)-(g), respectively. Again, we manually tuned the parameters of each

method independently to find the restored image with the best RMSE value. In this

noisier example, AKTV resulted in an image with the best RMSE value.

The third deblurring experiment is the case of moderate blur and high noise

level. We blur the Lena image with a 5×5 Gaussian PSF with standard deviation (STD)

1.5 and add white Gaussian noise (BSNR = 15[dB]). The original Lena image and the

degraded version are shown in Figure 3.7(a) and (b), respectively. Similar to the pre-

vious experiments, we have compared the reconstruction performance of the Wiener

filter [29], ForWaRD [59], LPA-ICI [53], and AKTV ((3.20) with q = 1, N = 1, and steer-

ing kernels (2.9)) in Figure 3.7(c)-(f). The corresponding RMSE values are (b)10.78,

(c)11.18, (d)7.55, (e)6.76, and (f)6.12. Figure 3.7(g)-(j) shows the zoomed images of Fig-

ure 3.7(a),(d)-(f), respectively.

The last deblurring example addresses the case of a fair amount of blur and

noise level. Using the Chemical Plant image which contains fine details shown in Fig-

ure 3.8(a), we generate a blurred image by applying an 11×11 Gaussian PSF with STD

1.75 and adding white Gaussian noise (BSNR = 30[dB]), and the degraded image is

shown in Figure 3.8(b). Again, similar to the previous experiments, the restored im-

ages by the Wiener filter [29], ForWaRD [59], LPA-ICI [53], and AKTV ((3.20) with q = 1,

78

(a) Cameraman (256×256) (b) Blurry and noisy image (c) Wiener filter [29]
RMSE = 29.82 RMSE = 21.62

(d) Multi-step [52, 2] (e) ForWaRD [59] (f) LPA-ICI [53] (g) AKTV (3.20)
RMSE = 20.78 RMSE = 19.44 RMSE = 18.23 RMSE = 17.64

(h) The original (i) Multi-step [52, 2] (j) ForWaRD [59] (k) LPA-ICI [53] (l) AKTV (3.20)

Figure 3.6: Single-frame deblurring experiment on the Cameraman image: (a) original cam-
eraman image, (b) degraded image by blurring with a 19×19 uniform PSF and adding white
Gaussian noise (BSNR = 25[dB]), (c) restored image by Wiener filtering (the smoothing parame-
ter 0.004 [29]), (d) restored image by a multi-step filter (first denoised by iterative steering ker-
nel regression [52], and deblurred by BTV [2]) (e) restored image by ForWaRD [59], (f) restored
image by LPA-ICI [53], and (g) restored image by AKTV ((3.20) with q = 1, N = 1, and steering
kernels (2.9)). The corresponding RMSE values for (b)-(g) are 29.82, 21.62, 20.78, 19.44, 18.23,
and 17.64, respectively. A selected sections of (a) and (d)-(g) are zoomed in (h)-(l), respectively.

N = 1, and steering kernels (2.9)) are shown Figure 3.8(c)-(f), respectively. The corre-

sponding RMSE values are (b)15.09, (c)9.29, (d)8.98, (e)8.98, and (f)8.57. In the last two

experiments, the restored images by AKTV again show the best numerical and visual

performance.

79

(a) Lena (512×512) (b) Blurry and noisy image (c) Wiener filter [29]
RMSE = 10.78 RMSE = 11.18

(d) ForWaRD [59] (e) LPA-ICI [53] (f) AKTV (3.20)
RMSE = 7.55 RMSE = 6.76 RMSE = 6.12

(g) The original (h) ForWaRD [59] (i) LPA-ICI [53] (j) AKTV (3.20)

Figure 3.7: Single-frame deblurring simulation of the Lena image: (a) original Lena image, (b)
degraded image by blurring with a 5×5 Gaussian PSF (STD = 1.5) and adding white Gaussian
noise (BSNR = 15[dB]), (c) restored image by the Wiener filter method with smoothing parame-
ter of 0.05 [29], (d) restored image by ForWaRD [59], (e) restored image by LPA-ICI [53], and (f)
restored image by AKTV ((3.20) with q = 1, N = 1, and steering kernels (2.9)). The correspond-
ing RMSE values for (b)-(f) are 10.78, 11.18, 7.55, 6.76, and 6.12, respectively. A selected sections
of (a) and (d)-(f) are zoomed in (g)-(j), respectively.

80

(a) Chemical plant (256×256) (b) Blurry and noisy image (c) Wiener filter [29]
RMSE = 15.09 RMSE = 9.29

(d) ForWaRD [59] (e) LPA-ICI [53] (f) AKTV (3.20)
RMSE = 8.98 RMSE = 8.98 RMSE = 8.57

(g) The original (h) ForWaRD [59] (i) LPA-ICI [53] (j) AKTV (3.20)

Figure 3.8: Single-frame deblurring simulation of the Chemical Plant image: (a) original Lena
image, (b) degraded image by blurring with a 11× 11 Gaussian PSF (STD = 1.75) and adding
white Gaussian noise (BSNR = 30[dB]), (c) restored image by the Wiener filter method with
smoothing parameter of 0.01 [29], (d) restored image by ForWaRD [59], (e) restored image by
LPA-ICI [53], and (f) restored image by AKTV ((3.20) with q = 1, N = 1, and steering kernels
(2.9)). The corresponding RMSE values for (b)-(f) are 15.09, 9.29, 8.98, 8.98, and 8.57, respec-
tively. A selected sections of (a) and (d)-(f) are zoomed in (g)-(j), respectively.

81

3.3 Generalized Kernel-Based Image Restoration

Considering the effect of general distortions or transformation, beyond the

blurring operation H in the data model (3.2), the kernel-based approach can be again

applicable to denoising and interpolation. Denoting the general distortion operation

by Φ, we rewrite the data model (3.2) as

y = z+ε=Φu+ε, (3.25)

where the dimension of Φ is RL′M ′×LM , y ∈ RL′×M ′
is the measured signal, z ∈ RL′×M ′

is the noise-free distorted signal, ε ∈ RL′×M ′
is the noise signal, and u ∈ RL×M is the

unknown image or interest. The dimensions of y and u may be different due to the

distortion operation, e.g. the downsampling operation.

Now, we modify the cost function of the kernel-based approach taking the

new data model (3.25) into account:

C (UN) = CL(UN)+λCR(UN)

=
ζ∑

ν1=−ζ

ζ∑
ν2=−ζ

[∥∥∥{Wz (ν)}
1
2

(
y−ΦSν1

x1
Sν2

x2
IN UN

)∥∥∥2

2
+λ

∥∥∥ {Wu(ν)}
1
q
(
u−Sν1

x1
Sν2

x2
IN UN

)∥∥∥q

q

]
.

(3.26)

Using the generalized kernel-based approach (3.19), we conducted two experiments: a

denoising example and a simultaneous denoising-interpolation example. The first de-

noising example is shown in Figure 3.9, where the operator Φ is the identity matrix, i.e.

Φ = I ∈ RLM×LM , and we used a real high resolution X-ray image of a chicken wing9

obtained by a super-resolution X-ray imaging method [60] shown in Figure 3.9(b).

By contrast, Figure 3.9(a) shows a traditional X-ray of the same object, which is less

9The image is available at http://blogs.zdnet.com/emergingtech/?p983.

82

http://blogs.zdnet.com/emergingtech/?p983

noisy, but also considerably less detailed. Therefore, effective denoising of the high-

resolution X-ray image can provide unprecedented levels of detail and clarity for this

imaging modality. The denoised result by AKTV ((3.19) with Φ = I ∈ RLM×LM , q = 1,

N = 1, and steering kernels (2.9)) is shown in Figure 3.9(c). Figure 3.9(d) illustrates the

absolute residual image (the absolute difference between the given noisy image (Fig-

ure 3.9(b)) and the denoised image), which is intended to show that AKTV effectively

removed unknown noise while preserving structures.

The second example is image upscaling. For upscaling, the operator Φ is a

downsampling operator, i.e. Φ = D ∈ RL′M ′×LM , where L′ = L
r , M ′ = M

r , and r is the

downsampling factor. Figure 3.10(a) shows a real low-resolution MRI image (256×256)

of a human head, which we obtained from the Whole Brain Atlas10. The upscaled

image with r = 2 by bicubic interpolation11, NEDI [61], and AKTV ((3.19) with Φ =

D ∈ R
L
2

M
2 ×LM , q = 1, N = 1, and steering kernels (2.9)) are shown in Figures 3.10(b)-

(d), respectively. The example shows that the proposed method, AKTV, is capable

of upscaling and denoising an image simultaneously, and such a one-step approach

is generally more suitable than a multiple-step approach (e.g., denoising followed by

upscaling).

In this section, we illustrated the applicability of an advanced nonparamet-

ric approach to the treatment of images from a variety of modalities. The approach is

sufficiently general so that, as shown in Figures 3.9 and 3.10, it is an effective tool for

denoising and interpolation as well as deblurring. It is of particular note that the ap-

proach makes minimal assumptions about the global structure of the signal and noise,

and is therefore, quite generally useful. It is also worth stating that the distortion op-

10http://www.med.harvard.edu/AANLIB/cases/caseNA/gr/cor/051.png
11We used a MATLAB routine “interp2” with cubic option.

83

http://www.med.harvard.edu/AANLIB/cases/caseNA/gr/cor/051.png

(a) A traditional x-ray image (b) A high resolution x-ray image

(d)Absolute residual image between (b)and(c) (c) AKTV, applied to (b)

Figure 3.9: A denoising example by AKTV: (a) a traditional x-ray image of a chicken wing, (b)
a high resolution x-ray image, (c) the denoised image by AKTV ((3.19) with Φ = I ∈ RLM×LM ,
q = 1, N = 1, and steering kernels (2.9)), and (d) absolute residual image.

erator Φ can be, for instance, a combination of the downsampling and blur operations.

Furthermore, the kernel-based approach is also applicable to the super resolution prob-

lem [2] where multiple images are fused to provide a higher resolution image.

84

(a) A low resolution MRI image (b) ×2 Upscaling by bicubic interpolation

(c) ×2 Upscaling by NEDI [61] (d) ×2 Upscaling by AKTV

Figure 3.10: An upscaling example: (a) a low resolution MRI image of a human head, and
(b)-(d) ×2 upscaled images by bicubic, NEDI [61], and AKTV ((3.19) with Φ= D ∈R

L
r

M
r ×LM , the

upscaling factor r = 2, q = 1, N = 1, and steering kernels (2.9)), respectively.

85

Summary— In this chapter, we extended the data-adaptive kernel regression

framework introduced in Chapter 2, which was earlier used for denoising and inter-

polation, for the deblurring application. Numerical and visual comparison with the

existing deblurring techniques showed the effectiveness of the proposed technique in

the low-SNR cases, while in the high-SNR cases the performance was comparable to

the best technique in the literature. In addition, the kernel-based deblurring approach

produces less artifacts including ringing artifacts compared to the Wiener filter, For-

WaRD, and LPA-ICI.

Also, the proposed image prior (3.14) in its general form subsumes some of

the most popular image priors in the literature (Tikhonov (3.4), digital TV (3.5), and

BTV (3.6)). It is of course possible to create other image prior based on it by choosing

local representation other than Taylor series or using other type of kernel functions,

e.g., bilateral kernel [7], non-local means [57]. Finally, we described the generalized

form of the kernel-based approach and showed its applicability to a wide variety of

image processing problems.

86

Chapter 4

Multi-Dimensional Kernel Regression for

Space-Time Video Upscaling

Abstract— In this chapter, we develop an adaptive enhancement method for

video-to-video application including not only denoising but also spatiotemporal up-

scaling of videos which possibly contain complex motions. Our approach is based

on multidimensional kernel regression, where each pixel in the video sequence is now

approximated with a 3-D local representation (i.e. 3-D Taylor series), capturing the es-

sential local behavior of its spatiotemporal neighborhood. The coefficients of the series

are estimated by solving a local weighted least-squares problem, where the weights

are given by a 3-D (spatiotemporal) kernel function taking both local spatial orien-

tations and local motion trajectories in the neighborhood into account. This chapter

presents two approaches to construct the 3-D local kernels: (i) we separately estimate

spatial orientations and local motions, and then explicitly embed them in the local ker-

nels to compute adaptive weights for neighborhoods, and (ii) a 3-D version of steering

kernel regression where we estimate spatial orientations and local motions together

87

implicitly 3-D (spatiotemporal) orientations and then compute adaptive weights. We

call the former approach motion assisted steering kernel regression (MASK) and the lat-

ter approach 3-D steering kernel regression (3-D SKR). In Section 4.2 and Section 4.3, we

describe MASK and 3-D SKR in details, respectively.

4.1 Introduction

The emergence of high definition displays in recent years (e.g. 720×1280 and

1080× 1920 or higher spatial resolution, and up 240Hz in temporal resolution), along

with the proliferation of increasingly cheaper digital imaging technology has resulted

in the need for fundamentally new image processing algorithms. Specifically, in order

to display relatively low quality content on such high resolution displays, the need

for better space-time upscaling, denoising, and deblurring algorithms has become an

urgent market priority, with correspondingly interesting challenges for the academic

community. The goal for spatial and temporal video interpolation/reconstruction is

to enhance the resolution of the input video in a manner that is visually pleasing and

artifact-free. Common visual artifacts that may occur in spatial and temporal inter-

polation are edge jaggedness, ringing, blurring, of edges and texture detail, as well

as motion blur and judder. In addition, the input video usually contains noise and

other artifacts caused by compression. Due to the increasing size of modern video

displays, as well as incorporation of new display technologies (e.g. higher brightness,

wider color gamut), artifacts in the input video and those introduced by scaling are

amplified, and become more visible than with past display technologies. High quality

video upscaling requires resolution enhancement and sharpness enhancement as well

as noise and compression artifact reduction.

88

A common approach for spatial image and video upscaling is to use linear fil-

ters with compact support, such as from the family of cubic filters [62]. In this chapter,

our focus is on multi-frame methods, which enable resolution enhancement in spatial

upscaling, and allow temporal frame interpolation (also known as frame rate upcon-

version). Although many algorithms have been proposed for image and video inter-

polation, spatial upscaling and frame interpolation (temporal upscaling) are generally

treated separately. The existing literature on enhancement and upscaling (often called

super-resolution1) is vast and rapidly growing in both the single frame case [63, 64] and

the multi frame (video) case [2, 65, 66, 67, 68, 69, 70, 71, 72], and many new algorithms

for this problem have been proposed recently. Yet, one of the most fundamental road-

blocks have not been overcome. In particular, in order to be effective, essentially all the

existing multi-frame super-resolution approaches must perform (sub-pixel) accurate

motion estimation [2, 65, 66, 67, 68, 69, 70, 71, 72, 73]. As a result, most methods fail to

perform well in the presence of complex motions which are generally present in videos.

Indeed, in most practical cases where complex motion and occlusions are present and

not estimated with pinpoint accuracy, existing algorithms tend to fail catastrophically,

often producing outputs that are of even worse visual quality than the low-resolution

inputs.

For temporal upscaling, a motion-based technique called motion compensated

frame interpolation is popular. In [74], Fujiwara et al. extract motion vectors from a com-

pressed video stream for motion compensation. However, these motion vectors are

often unreliable; hence they refine the motion vectors by the block matching approach

1To clarify the use of words super-resolution and upscaling, we note that if the algorithm does not receive
input frames that are aliased, it will still produce an output with a higher number of pixels and/or frames
(i.e. “upscaled”), but which is not necessarily “superresolved”.

89

with variable-size blocks. Similar to Fujiwara’s work, in [75], Huang et al. proposed an-

other refinement approach for motion vectors. Using the motion reliability computed

from prediction errors of neighboring frames, they smooth the motion vector field by

employing a vector median filter with weights decided based on the local motion reli-

ability. In [76, 77], instead of refining the motion vector field, Kang et al. and Choi et al.

proposed block matching motion estimation with overlapped and variable-size block

technique in order to estimate motion as accurately as possible. However, the diffi-

culty of the motion-based approach is that, even though the motion vector field may

be refined and/or smoothed, more complex transitions (e.g. occlusions, transparency,

reflection, and non-rigidity) are not accurately treated. That is, motion errors are in-

evitable even after smoothing/refining motion vector fields, and, hence, an appropri-

ate mechanism that takes care of the errors is necessary for producing artifact-free out-

puts.

In this chapter, we will present two different spatiotemporal video upscal-

ing methods based on multi-dimensional (3-D) kernel regression with the steering kernel

function presented in Chapter 2: motion-assisted steering kernel (MASK) regression, and

3-D steering kernel regression (3-D SKR). First, in Section 4.2, we describe the MASK

approach, where the MASK function computes the adaptive weights for the neigh-

boring samples. The MASK function is a 3-D function and it explicitly takes spatial

(2-D) orientation and the local motion trajectory into account. Then, the MASK func-

tion utilizes an analysis of the spatial orientation and the local motion vectors to steer

spatiotemporal regression kernels. Subsequently, local kernel regression is applied to

weighted least-squares to find optimal pixel estimates. Although 2-D kernel regression

has been applied to achieve super-resolution reconstruction through fusion of multiple

90

pre-registered frames on to a 2-D plane in Chapter 2, the MASK approach is different in

that it does not require explicit motion compensation of the video frames. Instead, we

use 3-D weighting kernels that are “warped” accordingly to estimated motion vectors,

such that the regression process acts directly upon the video data. Although we con-

sider local motion vectors in MASK, we propose an algorithm that is robust against

errors in the estimated motion field. Prior multi-frame resolution enhancement or

super-resolution (SR) reconstruction methods often consider only global translational

or affine motions; local motion and object occlusions are often not addressed. Many SR

methods [2, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73] require explicit motion compensation,

which may involve interpolation or rounding of displacements to grid locations. These

issues can have a negative impact on accuracy and robustness. The MASK approach is

capable of handling local motions, avoids explicit motion compensation, and is more

robust to errors in the estimated motion field.

Next, in Section 4.3, addressing the challenging problem of spatiotemporal

video super-resolution in a fundamentally different way, which removes the need for

explicit subpixel accuracy motion estimation, we introduce the 3-D SKR approach. We

present a methodology that is based on the notion of consistency between the esti-

mated pixels, which is derived from the novel use of kernel regression [52, 78]. Clas-

sic kernel regression is a well-suited, non-parametric point estimation procedure. In

Chapter 2, we generalized the use of these technique to spatially adaptive (steering)

kernel regression, which produces results that preserve and restore details with min-

imal assumptions on local signal and noise models [3]. Other related non-parametric

techniques for multidimensional signal processing have emerged in recent years as

well. In particular, the concept of normalized convolution [5], and the introduction of

91

support vector machines [79] are notable examples.

In a related work [80] to the 3-D SKR approach, we have generalized the non-

local means (NLM) framework [57] to the problem of super-resolution. In that work,

measuring the similarity of image patches across space and time resulted in “fuzzy” or

probabilistic motions, which is well evaluated in [81] by Protter et al.. Such estimates

also avoid the need for explicit motion estimation and give relatively larger weights to

more similar patches used in the computation of the high resolution estimate. Another

example of a related approach appears in [82] where Danielyan et al. have presented

an extension of the block-matching 3-D filter (BM3D) [45] for video super-resolution,

in which explicit motion estimation is also avoided by classifying the image patches

using a block matching technique. The objectives of the present work, the NLM-based

approach [80], and Video-BM3D [82] just mentioned are the same: namely, to achieve

super-resolution on general sequences, while avoiding explicit (subpixel-accurate) mo-

tion estimation. These approaches represent a new generation of super-resolution al-

gorithms that are quite distinctly different from all existing super-resolution methods.

Specifically, existing methods have required highly accurate subpixel motion estima-

tion and have thus failed to achieve resolution enhancement on arbitrary sequence.

To sum up, both MASK and 3-D SKR encompass super-resolution in 3-D as

well as denoising and spatiotemporal upscaling. The framework is based on the de-

velopment of locally adaptive 3-D filters with coefficients depending on the pixels in

a local neighborhood of interest in space-time in a novel way. These filter coefficients

are computed using a particular measure of similarity and consistency between the

neighboring pixels which uses the local geometric and radiometric structure of the

neighborhood.

92

4.2 Motion-Assisted Steering Kernel (MASK) Regression

SKR estimates an unknown pixel value in a single image by a weighted com-

bination of neighboring pixels that belong to the same image, giving larger weights to

the pixels along orientation. In this section, we develop a multi-frame video upscal-

ing method based on SKR by additionally utilizing local motion vectors, and we call

the resulting method motion-assisted steering kernel (MASK) regression. The MASK ap-

proach is a 3-D kernel regression method in which the pixel of interest is estimated by

a weighted combination of pixels in its spatiotemporal neighborhood involving mul-

tiple video frames. Hence, we first extend the 2-D kernel regression framwork into a

3-D framework introducing the time axis. Then we present our 3-D data-adaptive ker-

nel, the MASK function, which relies not only on local spatial orientation but also local

motion trajectory. Then, we describe the process of spatial upscaling and temporal

frame interpolation based on MASK. While we focus on the principle of our approach

in this section, we present a specific algorithm for video processing based on the MASK

approach later in this section.

4.2.1 Spatiotemporal (3-D) Kernel Regression

The extension of the 2-D kernel regression into 3-D is straightforward. Intro-

ducing the time axis to the data model (1.17), we have the 3-D data model as

yi = z(xi)+εi , xi ∈ω, i = 1, · · · ,P, (4.1)

where yi is a noise-ridden measurement at xi = [x1i , x2i , ti]T , x1i and x2i are the spatial

coordinates, ti (= x3i) is the temporal coordinate, z(·) is the trivariate regression func-

tion of interest, εi is an i.i.d. zero-mean noise process, and P is the total number of

93

nearby samples in a 3-D neighborhood ω of interest, where we will henceforth call ω a

“cubicle”.

Similar to the 2-D case, in order to estimate the value of z(x) at an arbitrary

position x, given the above data samples yi , we can rely on a local N -th order Taylor

expansion about x. We denote the pixel value of interest z(x) by β0, while β1,β2, · · · ,βN

denote vectors containing first-order, second-order, · · · , N -th order partial derivatives

of z(x) at x, resulting from the Taylor expansion, For instance, β0 and β1 are defined as

β0 = z(x), (4.2)

β1 =
[

zx1 (x) zx2 (x) zt (x)

]T

. (4.3)

Regardless of the dimensionality of x, the unknown parameters βn for n =

0, · · · , N can be estimated from yi with i = 1, · · · ,P using the kernel regression optimiza-

tion procedure:

min
{βn}N

n=0

P∑
i=1

[
yi −β0 −βT

1 (xi −x)−βT
2 vech

{
(xi −x)(xi −x)T }−·· ·

]2
KHi (xi −x), (4.4)

where N is the regression order and K (·) is the kernel function that weights the influ-

ence of each nearby samples. Hi is now a 3×3 smoothing matrix of the i -th sample (yi),

and the rest of this chapter focuses on how we incorporate the local spatial and tempo-

ral structures into Hi in two different ways so that the resulting estimator provides a

pixel in high quality. Similar to the 1-D and 2-D cases, the optimization (4.4) yields an

estimator which computes a local unknown pixel by a weighted linear combination of

nearby samples:

ẑ(x) = β̂0 =
P∑

i=1
Wi (K ,Hi , N ,xi −x) yi , (4.5)

where Wi (·) is the equivalent kernel weight function in 3-D.

94

4.2.2 Motion-Assisted Steering Kernel Function

A good choice for the steering matrices spatiotemporally is to consider local

motion or optical flow vectors caused by object displacements across frames, in con-

junction with spatial steering along local edges and isophotes. Spatial steering should

consider the locally dominant orientation of the pixel data and should allow elonga-

tion of the kernel in this direction. Spatiotemporal steering should allow alignment

of the kernel weights with the local optical flow or motion trajectory, as well as over-

all temporal scaling. Hence, we construct our spatiotemporal kernel as a product of a

spatial- and motion-steering kernel, and a kernel that acts temporally:

K MASK(xi −x) = 1

det
(
Hs

i

)K
{(

Hs
i

)−1 Hm
i (xi −x)

}
Kht (ti − t), (4.6)

where Hs
i ∈ R3×3 is a spatial steering matrix, Hm

i ∈ R3×3 is a motion steering matrix, the

second kernel Kht (·) is a temporal kernel function, and ht is the temporal smoothing

parameter which controls the temporal penalization. These data-dependent kernel

components determine the steering action at the position of the i -th sample xi , and

are described next.

Following Section 2.1.2, we define the spatial steering matrix Hs
i for the MASK

function (4.6) as

Hs
i = hs

 Ci

1

− 1

2

= hsC
− 1

2
i , (4.7)

where hs is a global spatial smoothing parameter, and Ci ∈R2×2 is the covariance ma-

trix which is given by (2.13) and captures the sample variations in a local spatial neigh-

borhood around xi . All the covariance matrices Ci ’s are constructed in a parametric

manner as described in (2.13).

95

Next, the motion steering matrix Hm
i is constructed on the basis of a local esti-

mate of the motion (or optical flow vector) mi = [m1i ,m2i]T at xi . Namely, we warp the

kernel along the local motion trajectory using the following shearing transformation:
(x1i − x1) ← (x1i − x1)−m1i · (ti − t)

(x2i − x2) ← (x2i − x1)−m2i · (ti − t).
(4.8)

Hence, we have

Hm
i =

1 0 −m1i

0 1 −m2i

0 0 0

 , (4.9)

where the detailed formulation is shown in (4.11) in the following section. Assuming a

spatial prototype kernel was used with elliptical footprint, this results in a spatiotem-

poral kernel with the shape of a tube or cylinder with elliptical cross-sections at any

time instance t . Most importantly, the center point of each such cross-section moves

along the motion path.

The final component of the MASK function (4.6) is a kernel that provides tem-

poral penalization. A natural approach is to give higher weights to samples in frames

closer to the temporal position t of interest. An example of such a kernel is a Gaussian:

Kht (ti − t) = 1

ht
exp

{
− (ti − t)2

2h2
t

}
, (4.10)

where a smoothing parameter ht controls the relative temporal extent of the kernel. We

use the temporal kernel (4.10) in this section to illustrate the MASK approach. How-

ever, we will introduce a more powerful adaptive temporal weighing kernel function

in Section 4.2.4, which acts to compensate for unreliable local motion vector estimates.

96

4.2.3 Spatial Upscaling and Temporal (Frame) Interpolation

Having introduced a choice of 3-D smoothing matrix Hi , using the Gaussian

kernel for K , we have the MASK function as

K MASK(xi −x) = 1

det
(
Hs

i

)K
{(

Hs
i

)−1 Hm
i (xi −x)

}
·Kht (ti − t)

= 1

det
(
Hs

i

)K

(
Hs

i

)−1

xi −x−

 mi

1

 (ti − t)

 ·Kht (ti − t)

=
√

det(Ci)

h2
s h2

t

exp

− 1

2h2
s

∥∥∥∥∥∥∥∥xi −x−

 mi

1

 (ti − t)

∥∥∥∥∥∥∥∥
2

Ci

 ·exp

{
− (ti − t)2

2h2
t

}
,

(4.11)

where ∥·∥2
Ci

is a weighted squared L2-norm, i.e. ∥a∥2
Ci

= aT Ci a. Figure 4.1(a-i)-(a-iii)

graphically describe how the proposed MASK function (4.11) constructs its weights

for spatial upscaling. For ease of explanation, suppose there are 5 consecutive frames

at times from t1 to t5, and we upscale the third frame (spatial upscaling). When esti-

mating the pixel value at x = [x1, x2, t]T , where t = t3, first we compute 2−D steering

kernel weights for each frame, as illustrated in Figure 4.1(a-i), using the first Gaussian

kernel function in (4.11). Motions are not taken into account at this stage. Second,

having motion vectors mi , which we estimate using the optical flow technique with

the translational motion model and the frame at ti=3 as the anchor frame, we shift the

steering kernels for each frame by mi as illustrated in Figure 4.1(a-ii). Finally, as in

Figure 4.1(a-iii), the temporal kernel function penalized the shifted kernels so that we

give high weights to closer neighboring frames.

Local steering parameters and spatiotemporal weights are estimated at each

pixel location xi in a small cubicle for the final regression step. Once the MASK weights

97

(a-i) 2-D steering kernel weights for each frame (a-ii) Shifting the kernel with local motion vectors

(a-iii) Scaling by the temporal kernel function (b) MASK weights for temporal upscaling

Figure 4.1: Schematic representations of the construction of MASK weights. The proposed
MASK weights are constructed by the following procedure: (a-i) we compute 2-D steering
kernel weights for each frame (with mi = [0,0]T at this moment), (a-ii) we shift the steering
kernels by the local motion vectors, and then (a-iii) we scale the shifted steering kernels by the
temporal kernel function. Figure (b) illustrates the weight construction for the estimation of an
intermediate frame at time t .

are available, we plug them into (4.4), compute the equivalent kernel weight function

Wi , and then estimate the missing pixels and denoise the given samples from the local

input samples yi around the position of interest x. Similar to (4.5), the final spatiotem-

98

poral regression step can be expressed as follows:

ẑMASK(x) =
P∑

i=1
Wi (x,Hs

i ,Hm
i ,ht,K , N) yi . (4.12)

The MASK approach is also capable of upscaling video temporally (also called

frame interpolation or frame rate upconversion). Figure 4.1(b) illustrates the MASK

weights for estimating an intermediate frame at sometime between the third frame at

t3 and the fourth frame at t4. Fundamentally, following the same procedure as de-

scribed in Figures 4.1(a-i)-(a-iii), we generate MASK weights. However, for the motion

vector with the unknown intermediate frame as the anchor frame, we assume that the

motion between the frames at t3 and t4 is constant, and using the motion vectors mi

for i = 1, · · · ,5, we linearly interpolate motion vectors m′
i as

m′
i = mi +m4(t − t3), where t3 ≤ t < t4. (4.13)

Note that when m4 is inaccurate, the interpolated motion vectors for other frames in

the temporal window (m′
i) are also inaccurate. In this case, we would shift the kernel

toward the wrong direction, and the MASK weights would be less effective for tempo-

ral upscaling. Therefore, one should incorporate a test of the reliability of m4 into the

process, and use vectors mi instead of m′
i if it is found to be unreliable. Our specific

technique to compute the reliability of motion vectors in described next in Section 4.2.4.

4.2.4 A Practical Video Upscaling Algorithm Based on MASK

In this section, we describe a complete algorithm for spatial upscaling, de-

noising and enhancement, as well as temporal frame interpolation, based on the MASK

approach. We introduce several techniques that enable a practical implementation of

99

the MASK principles explained in the previous section. In particular, we develop an al-

gorithm with reduced computational complexity and reduced memory requirements,

that is suitable for both software and hardware implementation.

An overview of the proposed video interpolation and denoising algorithm

based on the MASK approach is provided in Figure 4.2. The algorithm estimates spatial

steering parameters and motions using (2.8) with (2.13) and the optical flow technique

(q.v. Appendix D). Hence, we first compute initial estimates of the spatial and temporal

derivatives, e.g. based on classic kernel regression. In this work, we obtain quick and

robust estimate of the spatial orientation angle, elongation and scaling parameters, θi ,

ϱi , and γi , at xi by applying a vector quantization technique [83] to the covariance

matrix obtained from the spatial gradient data as shown in (2.13). Motion vectors are

estimated using the well-known Lucas and Kanade’s method, first introduced in [84]

(see Appendix D for our detailed implementation), based on both spatial and temporal

gradients in a local region. This is followed by computing estimates of the temporal

motion reliability (η), and will be described further in this section. Given spatial and

motion steering parameters, final MASK regression is applied directly on the input

video samples.

The following are further salient points for our algorithm based on MASK.

We first summarize them, and then provide details in subsequent subsections.

◃ Block-by-Block Processing

Since the kernel-based estimator is a pointwise process, it is unnecessary to store

the orientations and motion vectors of all the pixels in a video frame (Hs
i and Hm

i

for all i) in memory. However, strict pixel-by-pixel processing would result in a

large number of redundant computations due to the overlapping neighborhoods

100

Figure 4.2: Illustration of spatiotemporal video upscaling based on the MASK approach.

of nearby pixels. In order to reduce the computational load while keeping the

required memory space small, we break the video data into small blocks (e.g.

8×8 pixels), and process the blocks one-by-one.

◃ Adaptive Temporal Penalization

MASK relies on motion vectors, and the visual quality of output video frames

is strongly associated with the accuracy of motion estimation. Even though our

motion estimation approach is able to estimate motion vectors quite accurately,

the estimated vectors become unreliable when the underlying scene motion and

camera projection violate the motion model. In practice, errors in motion vectors

are inevitable and it is important to provide a fall-back mechanism in order to

avoid visual artifacts.

◃ Quantization of Orientation Map

The estimation of spatial orientations or steering covariance matrices Cs
i by (2.13)

involves singular value decomposition (SVD), which represents significant com-

putational complexity. Instead of using the SVD, we use a pre-defined lookup

101

table containing a set of candidate covariance matrices, and locally select an ap-

propriate matrix from the table. Since the lookup table contains only stable (in-

vertible) covariance matrices, the estimation process remains robust.

◃ Adaptive Regression Order

A higher regression order (e.g. N = 2 in this chapter) preserves high frequency

components in filtered images, although it requires more computation due to the

number of bases (column vectors) in X (1.37). On the other hand, zeroth regres-

sion order (N = 0) has lower computational cost, but it has a stronger smoothing

effect. Although second order regression is preferable, it is only needed at pixel

locations in texture and edge regions. Moreover, in terms of noise reduction,

zeroth order regression is more suitable in flat regions. We propose an approxi-

mation to adjust the order N locally, based on the scaling parameter (γi). Conse-

quently, this adaptive approach keeps the total computational cost low while it

preserves, and even enhances, high frequency components.

4.2.4.1 Block-by-Block Processing

The overall MASK algorithm consists of several operations (i.e. estimating

spatial and temporal gradients, spatial orientations, and motions as shown in Fig-

ure 4.2 and finally applying kernel regression), and it is possible to implementation

these in, for example, a pixel-by-pixel process or a batch process. For the pointwise

process, we estimate gradients, orientations, and motions individually, and then finally

estimate a pixel value. Note that most of these operations require calculations involv-

ing other pixels in a neighborhood around the pixel of interest. Since the neighbor-

hoods may overlap significantly, frequently the same calculation would be performed

102

multiple times. Hence, a pointwise implementation suffers from a large computational

load. On the other hand, this implementation requires very little memory. On the other

hand, for the batch process, we estimate gradients for all pixels in an entire frame and

store the results in memory, then estimate orientations of all the pixels and store those

results, etc. In the batch implementation, we need a large amount of memory space

to store intermediate results for all the pixels in a frame: however, it avoids repeated

calculations. This type of process is impractical particularly for a hardware implemen-

tation.

As a compromise, in order to limit both the computational load and the use

of memory, we process a video frame in a block-by-block manner, where each block

contains, for instance, 8× 8 or 16× 16 pixels. Further reduction of the computational

load is achieved by using a block-based motion model: we assume that, within a block,

the motion of all the pixels follow a parametric model, e.g., translational or affine. In

this chapter, we fix the block size to 8×8 pixels and we use the translational motion

model.

4.2.4.2 Motion Estimation and Adaptive Temporal Penalization

Motion estimation is based on the well-known Lucas and Kanade’s method

[84, 85], applied in a block-by-block manner as follows. Assume we computed initial

estimates of the local spatial and temporal derivatives. For example, spatial deriva-

tives may be computed using classic kernel regression or existing derivative filtering

techniques, e.g. Sobel filter [29]. Temporal derivatives are computed by taking the

temporal difference between pixels of the current frame and one of the neighboring

frames. Let ẑx1,ℓ, ẑx2,ℓ, and ẑt ,ℓ denote vectors containing (in lexicographical order)

103

derivative estimates from the pixels in a local analysis window ω associated with the

ℓ-th block in the frame. This window contains and is typically centered on the block

of pixels of interest, but may include additional pixels beyond the block (i.e. analysis

windows from neighboring blocks may overlap). A motion vector mℓ for the ℓ-th block

is estimated by solving the optical flow equation ([ẑx1,ℓ, ẑx2,ℓ]mℓ+ ẑt ,ℓ = [0, · · · ,0]T) in the

least-squares sense. The basic Lucas and Kanade’s method is applied iteratively for

improved performance. As explained before, MASK uses multiple frames in a tempo-

ral window around the current frame. For every block in the current frame, a motion

vector is computed to each of the neighboring frames in the temporal window. Hence,

if the temporal window contains 4 neighboring frames in addition to the current frame,

we compute 4 motion vectors for each block in the current frame.

In practice, a wide variety of transitions/activies will occur in natural video.

Some of these are so complex that no parametric motion model matches them exactly,

and motion errors are unavoidable. When there are errors in the estimated motion

vectors, visually unacceptable artifacts may be introduced in the reconstructed frames

due to the motion-based processing. One way to avoid such visible artifacts in up-

scaled frames is to adapt the temporal weighting based on the correlation between the

current block and the corresponding blocks in other frames determined by the motion

vectors. That is to say, before constructing MASK weights, we compute the reliability

(ηℓ) of each estimated motion vector. A simple way to define ηℓ is to use the mean

square error or mean absolute error between the block of interest and the correspond-

ing block in the neighboring frame towards which the motion vector is pointing. Once

the reliability of the estimated motion vector is available, we penalize the steering ker-

nels by a temporal kernel Kt , a kernel function of η. Figure 4.3 illustrates the temporal

104

Figure 4.3: A schematic representation of temporal weighting in MASK for upscaling the ℓ-th
block (yℓ,t) of the frame at time t . First, we locate the neighboring blocks (yℓ,i for i =−2,−1,1,2)
indicated by the motion vectors (mℓ,i). Then, we compute the motion reliability (ηℓ,i) based
on the difference between the ℓ-th block at t and the neighboring blocks, and combine the
temporal penalization by Kt with the spatial kernel function K .

weighting, incorporating motion reliability. Suppose we upscale the ℓ-th block in the

frame at time t using 2 previous and 2 forward frames, and there are 4 motion vec-

tors, mℓ,i , between a block in the frame at t and the 4 neighboring frames. First, we

find the blocks that the motion vectors indicate from the neighboring frames shown

as yℓ,i in Figure 4.3. Then, we compute the motion reliability based on the difference

between the ℓ-th block at t and other blocks and decide the temporal penalization for

each neighboring block.

More specifically, we define the motion reliability ηℓ,∆t and the adaptive tem-

poral kernel as

ηℓ,∆t =

∥∥∥y
ℓ,t

−y
ℓ,t+∆t

∥∥∥
2

M
, (4.14)

Kht (ηℓ,∆t) = 1

1+ ηℓ,∆t

ht

(4.15)

where ht is the (global) temporal smoothing parameter, that controls the strength of the

105

temporal penalization, y
ℓ,t

is the ℓ-th block of the frame at time t (in lexicographical

order), t+∆t is the temporal position of a neighboring frame, and M is the total number

of pixels in a block. We replace the temporal kernel in (4.11) by (4.15). This temporal

weighting technique is similar to the adaptive weighted averaging (AWA) approach

proposed in [86]; however, the weights in AWA are computed pointwise. In MASK, the

temporal kernel weights are a function of radiometric distances between small blocks

and are computed block-wise.

4.2.4.3 Quantization of Orientation Map

The computational cost of estimating local spatial steering (covariance) ma-

trices is high due to the SVD. In this section, using the well-known technique of vector

quantization [83], we describe a way to obtain stable (invertible) steering matrices with-

out using the SVD. Briefly speaking, first, we construct a look-up table which has a

certain number of stable (invertible) steering matrices. Second, instead of computing

the steering matrix by (2.13), we compute the naive covariance matrix (2.10), and then

find the most similar steering matrix from the look-up table. The advantages of using

the look-up table are that (i) we can lower the computational complexity by avoiding

singular value decomposition, (ii) we can control and trade-off accuracy and compu-

tational load by designing an appropriate vector quantization scheme with almost any

desired number of steering matrices in the look-up table, and (iii) we can pre-calculate

kernel weights to lower the computational load further (since the steering matrices are

fixed).

From (2.13), the elements of the spatial covariance matrix Cs
i are given by the

106

steering parameters with the following equations:

Cs
i (γi ,ϱi ,θi) =

 c11 c12

c21 c22

 , (4.16)

with

c11 = γi
(
ϱi cos2θi +ϱ−1

i sin2θi
)

, (4.17)

c12 = c21 =−γi
(
ϱi +ϱ−1

i

)
cosθi sinθi , (4.18)

c22 = γi
(
ϱi sin2θi +ϱ−1

i cos2θi
)

, (4.19)

where, again, γi is the scaling parameter, ϱi is the elongation parameter, and θi is the

orientation angle parameter for the pixel yi . Figure 4.4 visualizes the relationship be-

tween the steering parameters and the elements of the covariance matrix. Based on the

above formulae, using a pre-defined set of the scaling, elongation, and angle parame-

ters, we can can generate a lookup table for covariance matrices, off-line.

During the on-line processing stage, we compute a naive covariance matrix

Cnaive
i (2.10) and then normalize Cnaive

i so that the determinant of the normalized co-

variance matrix C̃naive
i equals 1:

C̃naive
i = Cnaive

i√
detCnaive

i

= 1

γi
Cnaive

i . (4.20)

This normalization eliminates the scaling parameter from the lookup table and sim-

plifies the relationship between the elements of the covariance matrix and the rest of

the steering parameters (i.e. ϱi and θi), and allows us to reduce the size of the table.

Table 4.1 shows an example of a compact lookup table. When the elongation param-

eter ϱi is smaller than 2.5, we decide that there is no significant edge structure at the

position xi and C̃naive
i is quantized as an identity matrix (i.e. the kernel spreads equally

107

0
0.1

0.2
0.3

0.4

−0.2
−0.1

0
0.1

0.2

0

0.1

0.2

0.3

0.4

c
11

c
12

c 22

θ[rad]
0

0.5

1

1.5

2

2.5

0

0.1

0.2

0.3

0.4
−0.2

−0.1
0

0.1
0.2

0

0.1

0.2

0.3

0.4

c
12c

11

c 22

θ[rad]
0

0.5

1

1.5

2

2.5

(a) varying the angle parameter

0
0.1

0.2
0.3

0.4

−0.2
−0.1

0
0.1

0.2

0

0.1

0.2

0.3

0.4

c
11

c
12

c 22

ρ
1

2

3

4

5

6

7

8

9

10

0

0.1

0.2

0.3

0.4
−0.2

−0.1
0

0.1
0.2

0

0.1

0.2

0.3

0.4

c
12c

11

c 22

ρ
1

2

3

4

5

6

7

8

9

10

(b) varying the elongation parameter

0
0.1

0.2
0.3

0.4

−0.2
−0.1

0
0.1

0.2

0

0.1

0.2

0.3

0.4

c
11

c
12

c 22

γ

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0

0.1

0.2

0.3

0.4
−0.2

−0.1
0

0.1
0.2

0

0.1

0.2

0.3

0.4

c
12c

11

c 22

γ

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

(c) varying the scaling parameter

Figure 4.4: The graphical relationship between the steering kernel parameters and the values
of covariance matrix.

every direction). Note that, after the quantization, since we put the effect of the scal-

ing parameter γi back into the covariance matrix, the width of the kernel contour stays

108

Table 4.1: A compact lookup table for the normalized covariance matrix C̃s
j (ϱj ,θj) =

[c̃11, c̃12; c̃12, c̃22].

c̃11 c̃12 c̃22 ϱj θj

1.0000 0 1.0000 1.0 0

2.5000 0 0.4000 2.5 0

2.1925 1.0253 0.7075 2.5 1
8π

1.4500 1.4500 1.4500 2.5 2
8π

0.7075 1.0253 2.1925 2.5 3
8π

0.4000 0 2.5000 2.5 4
8π

0.7075 -1.0253 2.1925 2.5 5
8π

1.4500 -1.4500 2.1925 2.5 6
8π

2.1925 -1.0253 0.7075 2.5 7
8π

small at texture regions. On the other hand, when ϱi ≥ 2.5, we quantize C̃naive
i with 8

angles. Using C̃naive
i , we obtain the closest covariance matrix C̃s

i from the table by

C̃s
i = arg min

C̃s
j (ϱj ,θj)

∥∥∥C̃s
j (ϱj ,θj)− C̃naive

i

∥∥∥
F

, (4.21)

where ∥ · ∥F is the Frobenius norm. Finally, putting the scaling parameter back into the

covariance matrix, we have the quantized covariance matrix as

Ĉs
i = γi C̃s

i . (4.22)

4.2.4.4 Adaptive Regression Order

The advantage of a higher regression order is that the estimated images pre-

serve high frequency components, though the higher order regressor requires more

computational load. In this section, we discuss how we can reduce the computational

complexity, while enabling adaptation of the regression order. According to [87], the

109

second order equivalent kernel w0(2) in classic KR (1.37) can be obtained approximately

from the zeroth order one w0(0) in (1.37) as follows:

wT
0(2) ≈ w̃T

0(2) = wT
0(0)−κΓwT

0(0), (4.23)

where Γ is Laplacian kernel2 in matrix form (we use [1,1,1;1,−8,1;1,1,1] as a discrete

Laplacian kernel) and κ is a regression order adaptation parameter. This operation

can be seen to “sharpen” the equivalent kernel, and is equivalent to sharpening the re-

constructed image. Figure 4.5 shows the comparison between the actual second order

equivalent kernel w0(2) and the approximated equivalent kernel w̃0(2) given by (4.23).

In the comparison, we used the Gaussian function for K , and compute the zeroth order

and the second order equivalent kernels, shown in Figures 4.5(a) and (b), respectively.

The approximated equivalent kernel w̃0(2) is shown in Figure 4.5(c), and Figure 4.5(d)

compares the horizontal cross section of w0(0), w0(2), and w̃0(2). As seen in Figure 4.5(d),

w̃0(2) is close to the exact one w0(2).

There are two advantages brought by the approximation (4.23): (i) The for-

mula simplifies the computation of the second order equivalent kernels, i.e., we no

longer need to generate the basis matrix X or take inversion of matrices. (ii) Since the

effect of the second order regression is now explicitly expressed by κΓwT
0(0) in (4.23),

the formulation allows for adjustment of the regression order across the image, but also

it allows for “fractional” regression orders, providing fine control over the amount of

sharpening (κ) applied locally.

We propose a technique to automatically select the regression order parame-

ter κ adaptively as follows. By setting κ near zero in flat regions and to a large value in

edge and texture regions, we can expect a reduction of computational complexity, pre-

2Laplacian of Gaussian (LoG) kernel makes the approximation (4.23) more accurate.

110

−5

0

5

−5

0

5
0

0.05

0.1

x
2

x
1

K
er

ne
l c

oe
ffi

ci
en

t

−5

0

5

−5

0

5
0

0.05

0.1

x
2

x
1

K
er

ne
l c

oe
ffi

ci
en

t

(a) The zeroth order equivalent kernel (w0(0)) (b) The second order equivalent kernel (w0(2))

−5

0

5

−5

0

5
0

0.05

0.1

x
2

x
1

K
er

ne
l c

oe
ffi

ci
en

t

−5 −4 −3 −2 −1 0 1 2 3 4 5
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

x
2

K
er

ne
l c

oe
ffi

ci
en

t

The zeroth order
The second order
The sharpened zeroth order

(c) A sharpened zeroth order equivalent kernel (w̃0(2)) (d) Horizontal cross sections of the equivalent kernels

Figure 4.5: Equivalent kernels given by classic kernel regression: (a) the zeroth order equivalent
kernel with the global smoothing parameter h = 0.75, (b) the second order equivalent kernel
(w0(2)) with h = 0.75, (c) a sharpened zeroth order equivalent kernel (w̃0(2)) with a 3×3 Laplacian
kernel (Γ = [1, 1, 1; 1, −8, 1; 1, 1, 1]) and κ = 0.045, and (d) Horizontal cross sections of the
equivalent kernels w0(0), w0(2), and w̃0(2). For this example, we used a Gaussian function for
K (·).

vent amplifying noise component in flat regions, and preserve or even enhance texture

regions and edges. In order to select spatially adapted regression factors, we can make

use of the scaling parameter γi , which we earlier used to normalize the covariance ma-

trix in (4.20). This makes practical sense since γi is high in texture and edge areas and

low in flat areas as shown in Figure 4.6. Because γi is already computed when comput-

111

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500 1

1.5

2

2.5

3

3.5

4

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500
1

1.5

2

2.5

3

3.5

4

(a) Barbara (b) Boat

Figure 4.6: Local scaling parameters (γi) for (a) Barbara image and (b) Boat image. With the
choice of the adaptive regression order κi = 0.01γi (4.24), the regression order becomes nearly
zero in the areas where γi is close to zero, while in areas where γi is around 5, the resulting
equivalent kernel given by (4.23) approximately becomes second order.

ing the steering matrices, no extra computation is required. A good way to choose the

regression factor κ locally is to make it a simple function of γi . Specifically, we choose

our adaptive regression factor by

κi = 0.01γi , (4.24)

where 0.01 is a global parameter controlling the overall sharpening amount. For in-

stance, it is possible to choose a larger number if a stronger sharpening effect is desired

globally. As shown in Figure 4.6, with the choice of the adaptive regression order as in

(4.24), the regression order becomes close to zero in the area where γi is close to zero,

while the resulting equivalent kernel given by (4.23) approximately becomes a second

order kernel in the area where γi is around 5. Setting κ too large results in overshoot of

pixel values around texture and edges. We process color video in the YCbCr domain

and estimate spatial orientations in the luminance component only, since the human

visual system is most sensitive to orientations in the luminance component.

112

4.3 3-D Steering Kernel Regression

A direct extension of the SKR framework introduced in Chapter 2 to 3-D sig-

nals for the express purpose of video denoising and resolution enhancement is the next

subject of this chapter. As we shall see, since the development in 3-D involves the com-

putation of orientation in space-time [87], motion information is implicitly and reliably

captured. Therefore, unlike conventional approaches to video processing including the

MASK approach presented in the previous section, 3-D SKR does not require explicit

estimation of (modestly sized but essentially arbitrarily complex) motions, as this in-

formation is implicitly captured with in the locally “learned” metric. It is worth men-

tioning in passing here that the approach we take, while independently derived, is in

the same spirit as the body of work known as metric learning in the machine learning

community, e.g. [88].

Naturally, the performance of the proposed approach is closely correlated

with the quality of estimated spatiotemporal orientations. In the presence of noise,

aliasing, and other artifacts, the estimates of orientations may not be initially accurate

enough, and as we explain in Section 4.3.1, we therefore propose an iterative mecha-

nism for estimating the orientations, which relies on the estimate of the pixels from the

previous iteration similar to the 2-D case described in Figure 2.12.

To be more specific, as shown in Figure 4.11, we can first process a video

sequence with orientation estimates of modest quality. Next, using the output of this

first step, we can re-estimate the spatiotemporal orientations, and repeat this process

several times. As this process continues, the orientation estimates are improved, as is

the quality of the output video. The overall algorithm we just described will be referred

to as the 3-D iterative steering kernel regression (3-D ISKR).

113

As we will see in the coming sections, the approach we introduce here is

ideally suited for implicitly capturing relatively small motions using the orientation

tensors. However, if the motions are somewhat large, the resulting (3-D) local similar-

ity measure, due to its inherent local nature, will fail to find similar pixels in nearby

frames. As a result, the 3-D kernels essentially collapse to become 2-D kernels centered

around the pixel of interest within the same frame. Correspondingly, the net effect

of the algorithm would be to do frame-by-frame 2-D upscaling. For such cases, as dis-

cussed in Section 4.3.2, some level of explicit motion estimation is unavoidable in order

to reduce temporal aliasing and achieve resolution enhancement. This rough motion

estimate can then be used to “neutralize” or “compensate” for the large motion, leav-

ing behind a residual of small motions, which can be implicitly captured within the 3-D

orientation kernel. In summary, the 3-D SKR approach can accommodate a variety of

complex motions in the input videos by a two-tiered approach: (i) large displacements

are neutralized by rough motion compensation either globally or block-by-block as

appropriate, and (ii) 3-D ISKR handles the fine-scale and detailed rest of the possibly

complex motion present.

4.3.1 Spatiotemporal Steering Kernel regression

The 3-D extension of the SKR framework is straightforward. For the min-

imization of 3-D kernel regression (4.4), similar to the 2-D SKR case, we define the

steering matrix Hi as

Hi ≡ h (Ci)−
1
2 , (4.25)

where the covariance matrix Ci ∈R3×3 can be naively estimated as

Ci = JT
i Ji (4.26)

114

with

Ji =

...

...
...

zx1(x j) zx2(x j) zt(x j)

...
...

...

 , x j ∈ ξi , j = 1, · · · ,Q, (4.27)

where zx1(·), zx2(·), and zt(·) are the first derivatives along x1-, x2- and t-axes, ξi is a

local analysis cubicle around a sample position at xi , and Q is the number of rows in

Ji . Once again for the sake of robustness, as explained in Section 2.1.2, we compute a

more stable estimate of Ci by invoking the SVD of Ji with regularization as:

Ĉi = γi

3∑
q=1

ϱq vq vT
q , (4.28)

with

ϱ1 = s1 +λ′

s2s3 +λ′ , ϱ2 = s2 +λ′

s1s3 +λ′ ,

ϱ3 = s3 +λ′

s1s2 +λ′ , γi =
(

s1s2s3 +λ′′

Q

)α
, (4.29)

where ϱq and γi are the elongation and scaling parameters, respectively, λ′ and λ′′ are

regularization parameters that dampen the noise effect and restrict γi , the denomina-

tors of ϱq ’s from being zero (q.v. Appendix E for the derivations), and Q is the number

of rows in Ji . We fix λ′ = 1 and λ′′ = 0.1 throughout this work. The singular values (s1,

s2, and s3) and the singular vectors (v1, v2, and v3) are given by the (compact) SVD of

Ji :

Ji = Ui Si VT
i = Ui diag{s1, s2, s3} [v1,v2,v3]T . (4.30)

similar to the 2-D case, the steering kernel function in 3-D is defined as

KHi (xi −x) =
√

det(Ci)

(2πh2)3 exp

{
− 1

2h2

∥∥∥(Ci)
1
2 (xi −x)

∥∥∥2

2

}
, (4.31)

with x = [x1, x2, t]. The main tuning parameters are the global smoothing parameter

(h) in (4.31) and the structure sensitivity (α) in (4.29). The specific choices of these

115

parameters are indicated in Section 4.4, and Section 2.1.2 gives more details about the

parameters h and α.

Figure 4.7 shows visualizations of 3-D weights given by the steering kernel

function for two cases: (a) a horizontal edge moving vertically over time (creating a

tilted plane in the local cubicle), and (b) a small circular dot also moving vertically

over time (creating a thing tube in a local cubicle). Considering the case of denoising

for the pixel located at the center of each data cube of Figures 4.7(a) and (b), we have the

steering kernel weights illustrated in Figures 4.7(c)(d) and (e)(f). Figures 4.7(c)(d) and

(e)(f) show the cross-sections and the isosurface of the weights, respectively. As seen

in these figures, the weights faithfully reflect the local signal structure in space-time.

Also, Figure 4.8 gives a graphical representation of the 3-D steering kernel weights for

the Foreman sequence. In the figure, we show the cross sections (transverse, sagittal,

and axial) of the video (3-D) data, and draw the cross sections of the steering kernel

weights at every 15 pixels in every direction. For this example, we chose the analysis

cubicle sizes ω = 15× 15× 15 and ξi = 5× 5× 5. It is worth noting that the orientation

structures which appear in the x1-t and x2-t cross sections are motion trajectories, and

our steering kernel weights fit the local motion trajectories without explicit motion

estimation.

As illustrated in Figures 4.7 and 4.8, the weights provided by the steering ker-

nel function capture the local signal structures which include both spatial and temporal

edges. Here we give a brief description of how orientation information thus captured

in 3-D contains the motion information implicitly. It is convenient in this respect to

use the (gradient-based) optical flow framework [50, 89, 90] to describe the underlying

idea. Defining the 3-D motion vector as m̃i = [m1,m2,1]T = [mT
i ,1]T and invoking the

116

(a) A tilted plane (b) A thin tube

(c) Cross-sections of SK weights of (a) (d) Cross-sections of SK weights of (b)

(e) The isosurface of (c) (f) The isosurface of (d)

Figure 4.7: Visualizations of steering kernels for (a) the case of one horizontal edge moving
up (this creates a tilted plane in a local cubicle) and (b) the case of one small dot moving up
(this creates a thin tube in a local cubicle). (a) and (b) show some cross-sections of the 3-D data,
and (b) and (c) show the cross-sections of the weights given by the steering kernel function
when we denoise the sample located at the center of the data cube, and (d) and (e) show the
isosurface of the steering kernel weight for (a) and (b), respectively.

117

0

0.5

1

1.5

2

Figure 4.8: A graphical representation of 3-D steering kernel weights (4.31) for the Foreman
sequence: The figure illustrate cross-sections of the steering kernel function KHi (xi − x) with
(4.25) at every 15 pixels in horizontal, vertical, and time. For the illustration, we chose the
analysis cubicle sizes ω= 15×15×15 and ξi = 5×5×5.

brightness constancy equation (BCE) [91] in a local cubicle centered at xi , we can use

the matrix of gradients Ji in (4.27) to write the BCE as

Ji m̃i = Ji

 mi

1

= 0. (4.32)

Multiplying both sides of the BCE above by JT
i , we have

JT
i Ji m̃i = Ci m̃i ≈ 0. (4.33)

118

Now invoking the decomposition of Ĉi in (4.28), we can write

3∑
q=1

ϱq vq

(
vT

q m̃i

)
≈ 0. (4.34)

The above decomposition shows explicitly the relationship between the mo-

tion vector and the principal orientation directions computed within the SKR frame-

work. The most generic scenario in a small cubicle is one where the local texture fea-

tures move with approximate uniformity. In this generic case, we have ϱ1,ϱ2 ≫ ϱ3, and

it can be shown that the singular vector v3 (which we do not directly use) correspond-

ing to the smallest singular value ϱ3 can be approximately interpreted as the total least

squares estimate of the homogeneous optical flow vector m̃i
∥m̃i ∥ [92, 93]. As such, the

steering kernel footprint will therefore spread along this direction, and consequently

assign significantly higher weights to pixels along this implicitly given motion direc-

tion. In this sense, compensation for small local motions is taken care of implicitly

by the assignment of the kernel weights. It is worth noting that a significant strength

of using the proposed implicit framework (as opposed to the direct use of estimated

motion vectors for compensation) is the flexibility it provides in terms of smoothly

and adaptively changing the elongation parameters defined by the singular values in

(4.29). This flexibility allows the accommodation of even complex motions, so long

as their magnitudes are not excessively large. When the magnitude of the motions is

large (relative to the support of the steering kernels, specifically) a basic form of coarse

but explicit motion compensation will become necessary.

There are two approaches that we can consider to compensate for large dis-

placement. In the MASK approach introduced in Section 4.2, we explicitly feed local

motion vectors directly into 3-D kernels. More specifically, we construct 3-D kernels

by shifting the 2-D (spatial) steering kernels by motion vectors. Moreover, in order to

119

suppress artifacts in the estimated videos due to the errors in motion vectors, we com-

pute the reliability of each local motion vector, and penalize the 2-D steering kernels

accordingly. In the next section, we describe an alternative approach that does not re-

quire accurate motion vectors. In general, it is hard to estimate motions in the presence

of occlusions and nonrigid transitions. As shown in Figure 4.8, the 3-D steering ker-

nel effectively fits them. Therefore, all we need is to compensate large displacements

by shifting the video frames with whole pixel accuracy, and the 3-D steering kernels

implicitly take the leftover motions into account as local 3-D image structures.

4.3.2 Kernel Regression with Rough Motion Compensation

Before formulating the 3-D SKR with motion compensation, first, let us dis-

cuss how the steering kernel behaves in the presence of relatively large motions3. In

Figures 4.9(a) and (b), we illustrate the contours of steering kernels for the pixel of inter-

est located at the center of the middle frame. For the small displacement case illustrated

in Figure 4.9(a), the steering kernel ideally spreads across neighboring frames, taking

advantage of information contained in the space-time neighborhood. Consequently,

we can expect to see the effects of resolution enhancement and strong denoising. On

the other hand, in the presence of large displacements as illustrated in Figure 4.9(b),

similar pixels, though close in the time dimension, are found far away in space. As

a result, the estimated kernels will tend not to spread across time. That is to say, the

net result is that the 3-D SKR estimates in effect default to the 2-D case. However, if

we can roughly estimate the relatively large motion of the block and compensate (or

3It is important to note here that by large motions we mean speeds (in units of pixels per frame) which
are larger than the typical support of the local steering kernel window, or the moving object’s width along
the motion trajectory. In the latter case, even when the motion speed is slow, we are likely to see temporal
aliasing locally.

120

(a) (b) (c)

Figure 4.9: Steering kernel footprints for (a) a video with small displacements, (b) a video with
large displacements, and (c) the video after neutralizing the large displacements.

“neutralize”) for it, as illustrated in Figure 4.9(c), and then compute the 3-D steering

kernel, we find that it will again spread across neighboring frames and we regain the

interpolation/denoising performance of 3-D SKR. The above approach can be useful

even in the presence of aliasing when the motions are small but complex in nature. As

illustrated in Figure 4.10(b), if we cancel out these displacements, and make the motion

trajectory smooth, the estimated steering kernel will again spread across neighboring

frames and result in good performance.

In any event, it is quite important to note that the above compensation is

done for the sole purpose of computing the more effective steering kernel weights.

More specifically, (i) this “neutralization” of large displacements is not an explicit mo-

tion compensation in the classical sense invoked in coding or video processing, (ii) it

requires absolutely no interpolation, and therefore introduces no artifacts, and (iii) it

requires accuracy no better than a whole pixel.

121

(a) (b)

Figure 4.10: Steering kernel footprints for (a) a video with a complex motion trajectory, and (b)
the video after neutralizing the relatively large displacements.

To be more explicit, 3-D SKR with motion compensation can be regarded as

a two-tiered approach to handle a wide variety of transitions in video. Complicated

transitions can be split into two different motion components: large whole-pixel mo-

tions (mlarge
i) and small but complex motion (mi):

mtrue
i = mlarge

i +mi , (4.35)

where mlarge
i is easily estimated by, for instance, optical flow or block matching algo-

rithms, but mi is much more difficult to estimate precisely.

Suppose a motion vector mlarge
i = [mlarge

1i ,mlarge
2i]T is computed for each pixel in

the video. We neutralize the motions of the given video data yi by mlarge
i , to produce a

new sequence of data y(x̃i), as follows:

x̃i = xi +

 mlarge
i

0

 (ti − t), (4.36)

where t is the time coordinate of interest. It is important to reiterate that since the

motion estimates are rough (accurate to at best a single pixel) the formation of the

122

sequence y(x̃i) does not require any interpolation, and therefore no artifacts are intro-

duced. Rewriting the 3-D SKR problem for the new sequence y(x̃i), we have:

min
{βn}N

n=0

P∑
i=1

[
y(x̃i)−β0 −βT

1 (x̃i −x)−βT
2 vech

{
(x̃i −x)(x̃i −x)T }−·· ·]2

KH̃i
(x̃i −x) (4.37)

where the steering matrix H̃i is computed from the motion-compensated sequence

y(x̃i). Similar to the 2-D estimator (1.33), the above minimization yields the follow-

ing pixel estimator at the position of interest (x) as

ẑ(x) = β̂0 = eT
1

(
X̃T K̃sX̃

)−1
X̃T K̃s ỹ

=
P∑

i=1
Wi (K ,H̃i , N , x̃i −x) y(x̃i), (4.38)

where ỹ is column-stacked vector of the given pixels (y(x̃i)), and X̃ and K̃s are the basis

matrix and the steering kernel weight matrix constructed with the motion compen-

sated coordinates (x̃i); that is to say,

ỹ =
[

y(x̃1), y(x̃2), · · · , y(x̃P)

]T

, b =
[

β0, βT
1 , · · · , βT

N

]T

,

K̃s = diag

[
KH̃1

(x̃1 −x), KH̃2
(x̃2 −x), · · · , KH̃P

(x̃P −x)

]
, (4.39)

and

X̃ =

1, (x̃1 −x), vech
{
(x̃1 −x)(x̃1 −x)T

}
, · · ·

1, (x̃2 −x), vech
{
(x̃2 −x)(x̃2 −x)T

}
, · · ·

...
...

...
...

1, (x̃P −x), vech
{
(x̃P −x)(x̃P −x)T

}
, · · ·

. (4.40)

In the following section, we further elaborate on the implementation of the 3-D SKR

for enhancement and super-resolution, including its iterative application.

123

4.3.3 Implementation and Iterative Refinement

As we explained earlier, since the performance of the SKR depends on the

accuracy of the orientations, we refine it to derive an iterative algorithm we call itera-

tive SKR (ISKR), which results in improved orientation estimats and therefore a better

final denoising and upscaling result. The extension for upscaling is done by first in-

terpolating or upscaling using some reasonably effective low-complexity method (say

the “classic” KR method) to yield what we call a pilot initial estimate. The orientation

information is then estimated from this initial estimate and the SKR method is then

applied to the input video data yi which we embed in a higher resolution grid. To be

more precise, the basic procedure, as shown in Figure 4.11 is as follow.

First, estimate the large motions (mlarge
i) of the given input sequence ({yi }P

i=1).

Then using mlarge
i , we neutralize the large motions and generate a motion-compensated

video sequence ({y(x̃i)}P
i=1). Next, we compute the gradients (β̂(0)

1 = [ẑx1 (·), ẑx2 (·), ẑt (·)]T)

at the sampling positions {x̃i }P
i=1 of the motion-compensated video. This process is

indicated as the “pilot” estimate in the block diagram. Subsequently, we create steering

matrices (H̃(0)

i) for all the samples y(x̃i) by (4.25) and (4.28). Once H̃(0)

i are available, we

plug them into the kernel weight matrix (4.39) and estimate not only an unknown

pixel value (z(x)) at a position of interest (x) by (4.38) but also its gradients (β̂(1)

1). This

is the initialization process shown in Figure 4.11(a). Next, using β̂
(1)

1 , we re-create the

steering matrices H̃(1)

i . Since the estimated gradients β̂(1)

1 are also denoised and upscaled

by SKR, the new steering matrices contain better orientation information. With H̃(1)

i , we

apply SKR to the embedded input video again. We repeat this process several times

as shown in Figure 4.11(b). While we do not discuss the convergence properties of

this approach here, it is worth mentioning that typically, no more than a few iterations

124

(a) Initialization

(b) Iteration

Figure 4.11: Block Diagram representation of the 3-D iterative steering kernel regression with
motion compensation: (a) the initialization process, and (b) the iteration process.

are necessary to reach convergence4. Finally, we perform deblurring on the upscaled

videos to recover the high frequency components. We use the deblurring with BTV

(i.e. the deblurring estimator (3.3) with the BTV regularization (3.6)) in this work.

Figure 4.12 illustrates a simple super-resolution example, where we created

9 synthetic low resolution frames from the image shown in Figure 4.12(a) by blurring

with a 3×3 uniform PSF, shifting the blurred image by 0, 4, or 8 pixels5 along the x1-

and x2-axes, spatially downsampling with a factor 3 : 1, and adding white Gaussian

noise with standard deviation 2. One of the low resolution frames is shown in Fig-

4It is worth noting that the application of the iterative procedure results in a tradeoff of bias and
variance in the resulting final estimate. As for an appropriate number of iterations, a relatively simple
stopping criterion can be developed based on the behavior of the residuals (the difference images between
the given noisy sequence and the estimated sequence) [94, 95].

5Note: this amount of shift creates severe temporal aliasing.

125

(a) Original (b) Low resolution frame (c) Lanczos

(d) Robust SR [2] (e) NLM base SR [80] (f) ISKR with motion comp.

Figure 4.12: A simple super-resolution example: (a) the original image, (b) one of 9 low reso-
lution images generated by blurring with a 3×3 uniform PSF, spatially downsampling with a
factor of 3 : 1, and adding white Gaussian noise with standard deviation 2, (c) an upscaled im-
age by Lanczos (single frame upscale), (d) an upscaled image by robust super-resolution (SR)
[2], and (e) an upscaled image by non-local mean (NLM) based super-resolution [80], and (f)
an upscaled image by 3-D ISKR with rough motion compensation. The corresponding PSNR
values are (c)19.67, (d)30.21, (e)27.94, and (f)29.16[dB], respectively.

ure 4.12(b). Then we created a synthetic input video by putting those low resolution

images together in random order. Thus, the motion trajectory of the input video is not

smooth and the 3-D steering kernel weights cannot spread effectively along time as

illustrated in Figure 4.10(a). The upscaled frames by Lanczos, robust super-resolution

[2], non-local mean based super-resolution [80], and 3-D ISKR with rough motion esti-

mation at time t = 5 are shown in Figures 4.12(c)-(f), respectively.

126

In the presence of severe temporal aliasing arising from large motions, the

task of accurate motion estimation becomes significantly harder. However, rough mo-

tion estimation and compensation is still possible. Indeed, once this compensation has

taken place, the level of aliasing artifacts within the new data cubicle becomes mild,

and as a result, the orientation estimation step is able to capture the true space-time

orientation (and therefore implicitly the motion) quite well. This estimate then leads

to the recovery of the missing pixel at the center of the cubicle, from the neighbor-

ing compensated pixels, resulting in true super-resolution reconstruction as shown in

Figure 4.12.

It is worth noting that while in the proposed algorithm in Figure 4.11, we

employ an SVD-based method for computing the 3-D orientations, other methods can

also be employed such as that proposed by Farnebäck et al. using local tensors in [96].

Similarly, in our implementation, we used the optical flow framework [84] to compute

the rough motion estimates. This step too can be replaced by other methods such as a

block matching algorithm [97].

4.4 Video Upscaling Examples

The utility and novelty of the both algorithms, MASK and 3-D ISKR, lies in the

fact that they are capable of both spatial and temporal (and therefore spatiotemporal)

upscaling and super-resolution. Therefore, in this section, we study the performance

of our method in both spatial and spatiotemporal cases.

Using two real sequences: Carphone and Texas video sequences, we first

compare MASK and 3-D ISKR to non-local mean based super-resolution [80]. The

algorithm proposed in [80] consists of multi-frame fusion with non-local mean based

127

weighting [57], as well as explicit deblurring. For MASK and 3-D ISKR, we set the tem-

poral window support to 5, and NL-based SR approach searches similar local patches

across all the frame in time and and in a window of support 21×21 in space.

The first example shown in Figure 4.13 is a visual comparison of spatial up-

scaling and temporal frame interpolation results, using NLM-based SR [80], MASK,

and 3-D ISKR. For this example, we used the Carphone video sequence in QCIF for-

mat (144×176 pixels, 30 frames) as input, and spatially upscaled the video by a factor of

1 : 3. Figure 4.13(a) shows the input frame at time t = 27 (upscaled by pixel-replication).

The spatially upscaled results by single frame Lanczos interpolation, NL-based SR [80],

MASK, and 3-D ISKR are shown in Figures 4.13(b),(c),(f), and (h), respectively. In ad-

dition, Figures 4.13(d)(f) and (g)(i) show spatiotemporally upscaled frames at t = 26.5

and 27.5 of Carphone sequence by MASK and 3-D ISKR, respectively. We used the

same spatial upscaling factor of 1 : 3 for the intermediate frames as well. Comparing to

the result by Lanczos interpolation, all the adaptive methods, NLM-based SR, MASK,

and 3-D ISKR, reconstruct high-quality upscaled frames, although each has a few arti-

facts: jaggy artifacts on edge regions for NLM-based SR and MASK, and overshoting

artifact for 3-D ISKR.

Next, similar to the Carphone example, the second example is also spatiotem-

poral video upscaling using Texas sequence (504×576 pixels, 30 frames). Figure 4.14(a)

shows an input frame of Texas sequence at time t = 5. Texas sequence also contains

complicated motions, i.e., occlusion, 3-D rotation of human heads, and reflection on

the helmet, and is degraded with compression artifacts (e.g. blocking). Video frames

that were spatially upscaled with a factor of 1 : 3 using NLM-based SR [80], 3-D ISKR,

and MASK are shown in Figures 4.14(b)-(d), respectively. In addition, Figures 4.14(e)-

128

(h) show selected portions of the input frame, and the upscaled frames by NLM-based

SR, 3-D ISKR, and MASK, respectively. Next, we estimated an intermediate frame at

time t = 5.5 for the Texas sequence by 3-D ISKR and MASK, and the results are shown

in Figure 4.15. The intermediate frames are also spatially upscaled by the same factor

1 : 3. Again, both 3-D ISKR and MASK produce high quality frames in which blocking

artifacts are hardly visible while the important contents are preserved.

The final example is again spatiotemporal video upscaling. This time, we

used Spin-Calender sequence (504×576 pixels, 30 frames). The sequence has relatively

simpler motions comparing to Carphone and Texas sequences: the scene rotates clock-

wise with a constant speed. Using the sequence, we test MASK and 3-D ISKR and

see how tolerant they are against motion errors. Although it is possible to find an ac-

curate motion model for the underlying motions, we estimated the motions with the

translational model. Hence, errors in the estimated motions are inescapable due to

the violation of the motion model. Figure 4.16(a) shows the input frame at time t = 5,

and we estimated an intermediate frame at t = 5.5 with a spatial upscaling factor 1 : 2.

The estimated frames by 3-D ISKR and MASK are shown in Figures 4.16(c) and (d),

respectively, and Figures 4.16(e)-(f) show the selected portions of (a)-(c), respectively.

As seen in the figure, although both 3-D ISKR and MASK succeeded in suppressing

compression noise, 3-D ISKR recovers finer details in the stripe region. This is because

3-D steering kernels adapt the residual motions that the translational motion estima-

tion left behind, while the MASK approach simply penalizes the neighboring frames

based on the motion errors. The temporal penalization of the MASK method can be

regarded as a fail-safe mechanism for the motion estimation, that excludes the neigh-

boring samples with unreliable motions from the local kernel regression in order not to

129

produce artifacts. Of course, the more accurate the motions are, the MASK approach

is also able to produce the higher quality frames.

Summary— In this chapter, we presented two different extensions of steer-

ing kernel regression for video upscaling. First, we proposed the MASK method that

is capable of spatial upscaling with resolution enhancement, temporal frame interpo-

lation, noise reduction, as well as sharpening. In the MASK approach, we construct

3-D kernels based on local motion vectors. The algorithm requires accurate motion

estimation but doesn’t use explicit motion compensation of video frames. Instead, the

spatiotemporal kernel is oriented along the local motion trajectory, and subsequent

kernel regression acts directly on the pixel data. Also, we reduce the computational

cost of MASK by using a block-based motion model, using a quantized set of local ori-

entations, and adapting the regression order. The adaptive regression order technique

not only reduces the computational cost, but also provides sharpening while avoiding

noise amplification.

Next, we proposed the 3-D SKR approach (a direct extension of 2-D SKR to 3-

D) for spatiotemporal video upscaling. Traditionally, super-resolution reconstruction

of image sequences has relied strongly on the availability of highly accurate motion

estimations between frames. As is well-known, subpixel motion estimation is quite

difficult, particularly in situations where the motions are complex in nature. As such,

this has limited the applicability of many existing upscaling algorithms to simple sce-

narios. In this chapter, significantly, we illustrated that the need for explicit subpixel

motion estimation can be avoided by the two-tiered approach presented in Section 4.3,

which yields excellent results in both spatial and temporal upscaling.

130

(a) The input at t = 27 (b) Lanczos (t = 27) (c) NML-based SR [80] (t = 27)

(d) MASK (t = 26.5) (e) MASK (t = 27) (f) MASK (t = 27.5)

(g) 3-D ISKR (t = 26.5) (h) 3-D ISKR (t = 27) (i) 3-D ISKR (t = 27.5)

Figure 4.13: A Carphone example of video upscaling with spatial upscaling factor 1 : 2: (a)
the input video frame at time t = 27 (144×176, 30 frames), (b)-(c) upscaled frames by Lanczos
interpolation and NLM-based SR method [80], respectively, (d)-(f) upscaled frames by MASK
at t = 26.5, 27, and 27.5, respectively, and (g)-(i) upscaled frames by 3-D ISKR at t = 26.5, 27, and
27.5, respectively.

131

(a) Input (b) NML-based SR [80]

(c) 3-D ISKR (d) MASK

(e) Input (f) NML-based SR [80] (g) 3-D ISKR (h) MASK

Figure 4.14: Spatial upscaling of Texas video sequence: (a) the input frame at t = 5, (b)-(d)
the upscaled video frames by NML-based SR [80], 3-D ISKR, and MASK, respectively. (e)-(h)
Enlarged images of the input frame and the upscaled frames by NML-based SR, 3-D ISKR, and
MASK, respectively.

132

(a) 3-D ISKR (b) MASK

(c) 3-D ISKR (d) MASK

Figure 4.15: Spatiotemporal upscaling of Texas video sequence: (a)-(b) the estimated interme-
diate frames at time t = 5.5 by 3-D ISKR and MASK, and (b)-(c) the enlarged images of the
upscaled frames by 3-D ISKR and MASK, respectively.

133

(a) Input (t = 5) (b) 3-D ISKR (t = 5.5)

(d) Input (e) 3-D ISKR

(c) MASK (t = 5.5) (f) MASK

Figure 4.16: Spatiotemporal upscaling of Spin Calendar video sequence: (a)-(c) the input frame
at time t = 5, the estimated intermediate frames at time t = 5.5 by 3-D ISKR and MASK, and
(d)-(f) the enlarged images of the input frame, the upscaled frames by 3-D ISKR and MASK,
respectively.

134

Chapter 5

Video Deblurring

Abstract— In Chapter 4, we extended 2-D steering kernel regression into 3-D

as an application of space-time video upscaling, but we did not address the blur effect.

In general, video sequences are degraded by not only spatial blur, due to the camera

aperture, but also motion blur, due to relative displacements between the camera and

the objects. Although spatial deblurring is relatively well-understood by assuming that

the blur kernel is shift-invariant, motion blur is not so when we attempt to deconvolve

this motion blur on a frame-by-frame basis: this is because, in general, videos include

complex, multi-layer transitions. Indeed, we face an exceedingly difficult problem in

motion deblurring of a single frame when the scene contains motion occlusions. In-

stead of deblurring video frames individually, a fully 3-D deblurring method is exam-

ined in this chapter to reduce motion blur from a motion-blurred image sequence. The

approach is free from knowledge of local motions. Most importantly, due to its inher-

ent locally adaptive nature, the 3-D approach is capable of automatically deblurring

the parts of the sequence which are motion blurred without segmentation, and with-

out adversely affecting the rest of the spatiotemporal domain where such blur is not

135

present.

5.1 Introduction

The practical solutions to blind motion deblurring available so far largely only

treat the case where the blur is a result of global motions due to the camera displace-

ment [98, 99], rather than motion of the objects in the scene. When the motion blur

is not global then the segmentation information is needed in order to identify what

part of the image suffers from motion blur (typically due to the fast-moving objects).

Consequently, the problem of deblurring moving objects in the scene is quite com-

plex because it requres (i) segmentation of moving objects from the background, (ii)

estimation of a spatial motion point spread function (PSF) for each moving object, (iii)

deconvolution of the moving objects one-by-one with the corresponding PSFs, and fi-

nally (iv) putting the deblurred objects back together into a coherent and artifact free

image or sequence [100, 101, 102, 103]. In order to perform the first two steps, i.e.

segmentation and PSF estimation, one would need to carry out global/local motion

estimation [104, 105, 106, 107]. Thus, the deblurring performance strongly depends

on the accuracy of motion estimation and segmentation of moving objects. However,

the errors in both are in general unavoidable, particularly in the presence of multiple

motions, occlusions, or non-rigid motions, i.e. when there are any motions that violate

parametric models or the standard optical flow brightness consistency constraint.

In this chapter, we present a motion deblurring approach for videos that is

free of both motion estimation and segmentation. Briefly speaking, we point out and

exploit what in hindsight seems obvious, through not exploited so far: that motion blur

is by nature a temporal blur, which is caused by relative displacements of the camera

136

(a) the ground truth (b) a motion-blurred frame (c) Fergus et al. [98] (d) Shan et al. [99] (e) Proposed

Figure 5.1: An example of motion blur reduction: (a) the ground truth, (b) the blurred frame,
(c)-(e) deblurred frames by Fergus’s method [98], Shan’s method [99], and the proposed 3-D
deblurring approach.

and the objects in the scene while the camera shutter is opened. Therefore, a temporal

blur degradation model is more appropriate and physically meaningful for the general

motion delubrring problem than the usual spatial blur model. An important advan-

tage of the use of the temporal blur model is that regardless of whether the motion

blur is global (camera induced) or local (object induced) in nature, the temporal PSF

stays shift-invariant whereas the spatial PSF must be considered shift-variant in es-

sentially all state of the art frame-by-frame (or spatial) motion deblurring approaches

[100, 101, 102, 103]. The example in Figure 5.1 illustrates the advantage of our aproach

as compared to the spatial motion deblurring methods proposed by Fergus et al. [98]

and Shan et al. [99]. Both methods are designed for the removal of the global blur

effect cased by the camera displacement. The ground truth, a blurry frame, and the

restored images by Fergus’methods, Shan’s method, and our approach are shown in

Figure 5.1(a)-(e), respectively. As can be seen from this typical example, Fergus’and

Shan’s methods deblur the background, while in fact we wish to restore the details of

the mug. We will discuss this example in more detail in Section 5.3. In the meantime,

we briefly summarize some existing methods for motion deblurring problem next.

137

5.1.1 Existing Methods and a Path Ahead

Ben-Erza et al. [100], Tai et al. [101], and Cho et al. [102] proposed deblur-

ring methods where the spatial motion PSF is obtained from the estimated motions.

Ben-Erza et al. [100] and Tai et al. [101] use two different cameras: a low-speed high

resolution camera and a high-speed low resolution camera, and capture two videos of

the same scene at the same time. Then, they estimate motions using the high-speed low

resolution video so that detailed local motion trajectories can be estimated, and the es-

timated local motions yield a spatial motion PSF for each moving object. On the other

hand, again using two cameras, Cho et al. [102] take a pair of stereo images. The stereo

images enable the separation of the images into the foreground and the background.

The foreground and the background are often blurred with different PSFs. The separa-

tion is helpful in estimating the different PSFs individually, and the estimation process

of the PSFs becomes more stable.

Whereas the deblurring methods in [100, 101, 102] obtain the spatial motion

PSF based on the global/local motion information, Levin proposed a blind motion

deblurring method using a relationship between the distribution of derivatives and

the degree of blur [103]. With this in hand, the method estimates a spatial motion PSF

for each segmented object. In order to speed up the PSF estimation process, the PSF is

parameterized by two parameters (direction and length) as a 1-D box kernel.

Later, inspired by Levin’s blind motion deblurring method, Fergus et al. [98]

and Shan et al. [99] proposed blind deblurring methods for a single blurred image

caused by a shaking camera. Although their methods are limited to global motion

blur, using the relationship between the distribution of derivatives and the degree of

blur proposed by Levin, they estimate a shift-invariant PSF without parametrization.

138

Ji et al. [108] and Dai et al. [109] also proposed derivative-based methods. Ji et

al. estimate the spatial motion PSF by a spectral analysis of the image gradients, and

Dai et al. obtain the PSF by studying how blurry the local edges are as indicated by local

gradients. Recently, another blind motion deblurring method was proposed by Chen

et al. [110] for the reduction of global motion-blur. They claim that the PSF estimation

is more stable with two images of the same scene degraded by different PSFs, and also

use a robust estimation technique to stabilize the PSF estimation process further.

All the methods mentioned above are similar in that they aim at removing

motion blur by spatial (2-D) processing. In the presence of multiple motions, the exist-

ing methods would have to estimate shift-variant PSF or segment the blurred images

by local motions (or depth maps). However, occlusions make the deblurring problem

harder because pixel values around motion occlusions are a mixture of multiple ob-

jects moving in independent directions. In this chapter, we reduce the motion blur

effect from videos by introducing the 3-D deblurring data model. Since the data model

is more reflective of the actual data acquisition process, even under the presence of mo-

tion occlusions, the deblurring with 3-D blur kernel can remove both global and local

motion blur effectively without segmentation or reliance on motion information.

Practically speaking, for videos, it is not always preferable to remove all the

motion blur effect from video frames. Particularly, for videos with relatively low frame

rate (e.g. 10− 20 frames per second), in order to show smooth trajectory of moving

objects, motion blur (temporal blur) is often intentionally added. Thus, when removing

(or more precisely “reducing”) the motion blur from videos, we would need to increase

the temporal resolution of the video. This operation can be thought of as the familiar

frame-rate upconversion, with the following caveat: in our context, the intermediate

139

frames are not the end results of interest, but as we will explain shortly, rather a means

to obtain a deblurred sequence, at possibly the original frame-rate. It is worth noting

that the temporal blur reduction is equivalent to shortening the exposure time of video

frames. Typically, the exposure time τe is less than the time interval τf between the

frames (i.e. τe ≤ τf) as shown in Figure 5.2(a). Many commercial cameras set τe to

shorter than 0.5τf (see for instance [111]). Borissoff in [111] pointed out that τe should

ideally depend on the speed of moving objects. Specifically, the exposure time should

be half of the time that a moving objects runs through the scene width, or the temporal

aliasing would be visible. In [112], Shechtman et al. presented a space-time super-

resolution algorithm where multiple cameras capture the same scene at once with slight

spatial and temporal displacements. Then, multiple low resolution videos in space and

time are fused to obtain a spatiotemporally super-resolved video. As a post-processing

step, they spatiotemporally deblur the super-resolved video so that the exposure time

τe nearly equals to the frame interval τf. In the present chapter, we solve the more

restricted problem of motion blur resotration from a single, possible low frame-rate,

video sequence.

To sum up, (i) removing motion blur effects from video frames completely

is not always desirable because it can produce temporal aliasing effects. Instead of re-

moving, we reduce motion blur for each frame. (ii) Frame interpolation (also known as

frame rate upconversion) is necessary in order to reduce temporal aliasing and to show

smooth trajectories of moving objects. (iii) Unlike motion deblurring algorithms which

address the problem in two dimensions [98, 99, 100, 101, 102, 108, 109, 110]. We spa-

tiotemporally deblur videos with a shift-invariant 3-D PSF, which is effective for any

kind of motion blur. To obtain the 3-D PSF, we simply need the exposure time τe of the

140

input videos (with is generally available from the camera setting) and the desired τe

and τf of the output videos.

This chapter is organized as follows: in Section 5.2, we present the data model

in 3-D and extend the image (2-D) deblurring technique with total variation (TV) regu-

larization into 3-D for the video deblurring problem. The 3-D TV approach is effective

in suppressing both noise and ringing effects. In Section 5.3, we show some motion

deblurring examples of videos.

5.2 Video Deblurring in 3-D

In this section, we extend the single image (2-D) deblurring technique with

TV regularization space-time (3-D) motion deblurring for videos. Ringing suppression

is of importance because the ringing effect in time creates significant visual distortion

for the output videos.

5.2.1 The Data Model

The exposure time τe of videos taken with a standard camera is always shorter

than the frame interval τf as illustrated in Figure 5.2(a). It is generally impossible to re-

duce motion blur by temporal deblurring when τe < τf (i.e. the temporal support of the

PSF is shorter than the frame interval τf). This is because the standard camera captures

one frame at a time (the camera reads a frame out of the image sensor and resets the

sensor). Unlike the spatial sampling rate, the temporal sampling rate is always below

the Nyquist rate. This is an electromechanical limitation of the standard video camera.

One way to have a high speed video with τe > τf is to fuse multiple videos captured

by multiple cameras at the same time with slight time delay as shown in Figure 5.2(b).

141

As we mentioned earlier, the technique is referred to as space-time super-resolution [112]

or high speed videography [113]. After the fusion of multiple videos into a high speed

video, the frame interval becomes shorter than the exposure time and we can carry out

the temporal deblurring to reduce the motion blur effect.

An alternative to using multiple-cameras is to generate intermediate frames,

which may be obtained by frame interpolation (e.g. [114], or our proposed method,

3-D SKR and MASK, in Chapter 4), so that the new frame interval τ̃f is now smaller

than τe as illustrated in Figure 5.2(c). Once we have the video sequence with τe > τ̃f,

the temporal deblurring reduces τe to be nearly equal to τ̃f, and the video shown in

Figure 5.2(d) is our desired output. It is worth noting that, in the most general setting,

generation/interpolation of temporally intermediate frames is indeed a very challeng-

ing problem. However, since our interest lies mainly in the removal of motion blur,

the temporal interpolation problem is not quite as complex as the general setting. In

the most general case, the space-time super-resolution method [112] employing mul-

tiple cameras may be the only practical solution. Of course, it is possible to apply the

frame interpolation for the space-time super-resolved video to generate an even higher

speed video. However, in this chapter, we focus on the case where only a single video

is available and show that out intermediate frame interpolation, 3-D SKR, enables the

motion deblurring.

Figure 5.3 illustrates an idealized forward model which we adopt in this pa-

per. More precisely, the camera captures the first frame by temporally integrating the

first few frames (say the first, second and third frames) of the desired video u, and

the second frame by integrating, for example, the fifth frame and the following two

142

(a) Standard camera (b) Multiple cameras [112]

(c) Frame-rate upconversion (d) Temporally deblurred

Figure 5.2: A schematic representation of the exposure time τe and the frame interval τf: (a) a
standard camera, (b) multiple videos taken by multiple cameras with slight time delay is fused
to produce a high frame rate video, (c) the original frames with estimated intermediate frames,
and (d) the output frames temporally deblurred.

frames1. Next, the frames are spatially downsampled due to the limited number of

pixels on the image sensor. We can regard spatial and temporal sampling mechanisms

of the camera altogether as space-time downsampling effect, as shown in Figure 5.3.

In this work, we estimate the desired output u by a two-step approach: (i)

space-time upscaling and (ii) space-time deblurring. In Chapter 4, we proposed a

space-time upscaling method, where we left the motion (temporal) blur effect un-

treated, and removed only the out-of-focus spatial blur with a shift-invariant (2-D) PSF

with TV regularization. In this chapter, we study the reduction of the spatial and tem-

1This frame accumulation represents the temporal blur effect, and the skips of the temporal sampling
position can be regarded as temporal downsampling

143

Figure 5.3: The forward model addressed in this paper, and we estimate the desired video u by
two-step approach: (i) space-time upscaling, and (ii) space-time deblurring.

poral blur effects simultaneously with a shift-invariant (3-D) PSF. A 3-D PSF is effec-

tive because the out-of-focus blur and the temporal blur (frame accumulation) are both

shift-invariant. PSF becomes shift-variant when we convert the 3-D PSF into 2-D tem-

poral slices which yield the spatial PSF due to the moving objects for frame-by-frame

deblurring. Again, unlike the existing methods [98, 99, 100, 101, 102, 108, 109, 110],

after the space-time upscaling, no motion estimation or scene segmentation is required

for the space-time deblurring.

Having graphically introduced our data model in Figure 5.3, we define the

mathematical model between the blurred data denoted y and the desired signal u with

a 3-D PSF g as:

y(x) = z(x) ↓ +ε= (g ∗u)(x) ↓ +εi , (5.1)

where εi is the noise, x = [x1, x2, t], ↓ is the downsampling operator, ∗ is the convolution

operator, and g is the combination of spatial blur gs and the temporal blur gτ

g (x) = gs(x1, x2)∗ gτ(t). (5.2)

144

Figure 5.4: The overall PSF kernel in video (3-D) is given by the convolution of the spatial and
temporal PSF kernels.

In this paper, we find u by a two-step approach by breaking the data model into

Spatiotemporal upsampling model : y(x) = z(x) ↓ +ε, (5.3)

Spatiotemporal deblurring model : z(x) = (g ∗u)(x). (5.4)

In matrix form, if the sizes of the spatial and temporal PSF kernels are N ×N ×1 and

1×1×τ, respectively, then the overall PSF kernel has size N ×N ×τ as illustrated in Fig-

ure 5.4. Since any unknown pixel value is coupled with its space-time neighbors due

to the space-time blurring operation, it is preferable that we rewrite the data models

(5.3) and (5.4) in matrix form as

y = Dz+ε, (5.5)

z = Gu, (5.6)

respectively, where y ∈R
L
rs
× M

rs
× T

rt is the blurred noise-ridden low resolution video (τe >

τf) with spatial and temporal downsampling factors rs and rt, D ∈ R
L
rs

M
rs

T
rt
×LMT rep-

resents the downsampling operation, z ∈ RL×M×T is the blurred version of the high

resolution video that is available after the space-time video upscaling by the 3-D SKR

method (4.37), u ∈ RL×M×T is the video of interest, G ∈ RLMT×LMT represents the blur-

ring operation, and ε ∈ RL×M×T is noise. The matrices with underscore represent that

they are lexicographically ordered into column-stack vector form (e.g. z ∈RLMT×1).

145

5.2.1.1 Space-Time (3-D) Deblurring

Assuming that, at the space-time upscaling stage, noise is effectively sup-

pressed by 3-D SKR, the important issue that we need to carefully treat in the deblur-

ring stage is the suppression of the ringing artifacts, particularly, across time. The

ringing effect in time may cause undesirable flicker when we play the output video.

Therefore, the deblurring approach should smooth the output pixel across not only

space but also time. To this end, we propose a 3-D deblurring method with the 3-D

version of total variation to recover the pixels across space and time:

û = argmin
u

{∥∥z−Gu
∥∥2

2 +λ
∥∥Γu

∥∥
1

}
, (5.7)

where λ is the regularization parameter, and Γ is a high-pass filter. Specifically, we

implement the TV regularization as

∥∥Γu
∥∥

1 ⇒
1∑

l=−1

1∑
m=−1

1∑
t=−1

∥∥∥u−Sl
x1

Sm
x2

St
t u

∥∥∥
1

(5.8)

where Sl
x1

, Sm
x2

, and St
t are the shift operators that shift the video u toward x1, x2, and t-

directions with l , m, and t-pixels, respectively. We iteratively minimize the cost C (u) =∥∥z−Gu
∥∥2

2+λ
∥∥Γu

∥∥
1 in (5.7) with (5.8) to find the deblurred sequence û using the steepest

descent method:

û(ℓ+1) = û(ℓ) +µ
∂C (u)

∂u

∣∣∣∣
u=û(ℓ)

(5.9)

where µ is the step size and

∂C (u)

∂u
=−GT (

z−Gu
)+λ

1∑
l=−1

1∑
m=−1

1∑
t=−1

(
I−S−l

x1
S−m

x2
S−t

t

)
sign

(
u−Sl

x1
Sm

x2
St

t u
)

. (5.10)

146

5.3 Experiments

We illustrate the performance of our proposed technique on both real and

simulated sequences. To begin, we first illustrate motion deblurring performance on

two sequences, namely, the Cup sequence and ToyRobo sequence, with simulated mo-

tion blur2. The Cup example is the one we briefly showed in the introduction. This

sequence contains relatively simple transitions, i.e. the cup moves upward. On the

other hand, in the ToyRobo sequence, a toy robot walks to the right, and therefore

it yields more complicated transitions. Figures. 5.5(a) and 5.6(a) show the ground

truth frames of each sequence, and Figures. 5.5(b) and 5.6(b) show the motion blurred

frames generated by taking average of 5 consecutive frames, i.e. the corresponding

PSF in 3-D is 1×1×5 uniform. The deblurred images of Cup and ToyRobo sequences

by Fergus’ method [98], Shan’s method3 [99] and our approach (5.7) with (µ,λ) =

(0.75,0.04) for Cup sequence and (µ,λ) = (0.75,0.04) for ToyRobo sequence are shown

in Figures. 5.5(c)-(e) and 5.6(c)-(e), respectively. Figures. 5.5(f)-(j) and Figures. 5.6(f)-(j)

show the selected regions of the video frames Figures. 5.5(a)-(e) and Figures. 5.6(a)-(e)

at time t = 6, respectively. The corresponding PSNR4 and SSIM5 values are indicated in

the figure captions. Also, Figure. 5.7 shows the plots of the PSNR and SSIM values of

the iterative deblurring approach with 3-D TV (5.9) for the Cup and ToyRobo frames

at t = 6. It is worth noting here again that, although motion occlusions are present

2In order to examine how well the motion blur will be removed, we do not take the out-of-focus spatial
blur into account for all the experiments.

3The software is available at http://w1.cse.cuhk.edu.hk/ ~leojia/programs/deblurring/

deblurring.htm. We set the parameter “noiseStr” to 0.05 and used the default setting for the other
parameters for all the examples.

4Peak Signal to Noise Ratio = 10log10

(
2552

Mean Square Error

)
[dB].

5The software for Structure SIMilarity index is available at http://www.ece.uwaterloo.ca/

~z70wang/research/ssim/.

147

http://w1.cse.cuhk.edu.hk/
~leojia/programs/deblurring/deblurring.htm
~leojia/programs/deblurring/deblurring.htm
http://www.ece.uwaterloo.ca/~z70wang/research/ssim/
http://www.ece.uwaterloo.ca/~z70wang/research/ssim/

t
=

6
t
=

7

(a) The ground truth (b) Blurred frames (c) Fergus et al. [98] (d) Shan et al. [99] (e) Proposed (5.7)

t
=

6

(f) The ground truth (g) Blurred frames (h) Fergus et al. [98] (i) Shan et al. [99] (j) Proposed (5.7)

Figure 5.5: A motion (temporal) deblurring example of the Cup sequence (130 × 165, 16

frames) in which a cup moves upward: (a) 2 frames of the ground truth at times t = 6 to
7, (b) the blurred video frames generated by taking the average of 5 consecutive frames (the
corresponding temporal PSF is 1 × 1 × 5 uniform) (PSNR[dB]: 23.76(top), 23.68(bottom), and
SSIM: 0.76(top), 0.75(bottom)), (c)-(e) the deblurred frames by Fergus’s method [98] (PSNR[dB]:
22.58(top), 22.44(bottom), and SSIM: 0.69(top), 0.68(bottom)), Shan’s method [99] (PSNR[dB]:
18.51(top), 10.75(bottom), and SSIM: 0.57(top), 0.16(bottom)), the proposed 3-D TV method
(5.7) (PSNR[dB]: 32.57(top), 31.55(bottom), and SSIM: 0.98(top), 0.97(bottom)), respectively. The
figures (f)-(j) are the selected regions of the video frames (a)-(e) at time t = 6, respectively.

in the both sequences, the 3-D deblurring requires neither segmentation nor motion

estimation.

The next experiment shown in Figure. 5.8 is a real example, where we deblur a

low temporal resolution sequence degraded by real motion blur. The sequence consists

of 5 frames6, and the second and third frames are shown in Figure. 5.8(a). Motion blur

can be seen in the foreground (i.e. texts), and there is no blur in the background. Similar

to the previous experiments, we first deblurred those frames individually by Fergus’

and Shan’s methods. Their deblurred results are in Figure. 5.8(c) and (d), respectively.

6The full video sequence is available online at http://videoprocessing.ucsd.edu/~stanleychan/
research/SPL_2010.html.

148

http://videoprocessing.ucsd.edu/~stanleychan/research/SPL_2010.html
http://videoprocessing.ucsd.edu/~stanleychan/research/SPL_2010.html

t
=

6
t
=

7

(a) The ground truth (b) Blurred frames (c) Fergus et al. [98] (d) Shan et al. [99] (e) Proposed (5.7)

t
=

6

(f) The ground truth (g) Blurred frames (h) Fergus et al. [98] (i) Shan et al. [99] (j) Proposed (5.7)

Figure 5.6: A motion (temporal) deblurring example of the ToyRobo sequence (84× 124, 16

frames) in which a cup moves upward: (a) 2 frames of the ground truth at times t = 6 to 7, (b)
the blurred video frames generated by taking the average of 5 consecutive frames (the corre-
sponding PSF is 1×1×5 uniform) (PSNR[dB] : 27.83(top), 24.62(bottom), and SSIM : 0.93(top),
0.87(bottom)), (c)-(e) the deblurred frames by Fergus’s method [98] (PSNR[dB] : 25.71(top),
24.84(bottom), and SSIM : 0.90(top), 0.88(bottom)), Shan’s method [99] (PSNR[dB] : 10.88(top),
8.69(bottom), and SSIM : 0.26(top), 0.14(bottom)), the proposed 3-D TV method (5.7) (PSNR[dB] :

43.02(top), 39.61(bottom), and SSIM : 0.99(top), 0.99(bottom)), respectively. The figures (f)-(j) are
the selected regions of the video frames (a)-(e) at time t = 6, respectively.

For our method, temporal upscaling is necessary before deblurring. Here it is indeed

the case that exposure time is shorter than the frame interval (τe < τf) as shown in

Figure. 5.2(a). Using the 3-D SKR method (4.37), we upscaled the sequence with the

temporal upscaling factor7 1 : 8 in order to generate intermediate frames to have the

sequence as illustrated in Figure. 5.2(c). Then we deblurred the upscaled video with a

1×1×8 uniform PSF by the 3-D TV method (5.7) with (µ,λ) = (0.75,0.06). The selected

deblurred frames are shown in Figure. 5.8(d), and selected regions of the input and

7Since the magnitude of the motion speed around texts is about 8 pixels per frame, we chose the
temporal upscaling factor 1 : 8 in order to reduce the motion blur completely.

149

0 50 100 150 200 250 300
20

25

30

35

40

45

The number of iterations

P
ea

k
si

gn
al

 to
 n

oi
se

 r
at

io
 [d

B
]

Cup frame at t=6
ToyRobo frame at t=6

0 50 100 150 200 250 300
0.75

0.8

0.85

0.9

0.95

1

The number of iterations

S
tr

uc
tu

re
 s

im
ila

rit
y

in
de

x

Cup frame at t=6
ToyRobo frame at t=6

(a) Peak signal to noise ratio (PSNR) (b) Structure similarity index (SSIM)

Figure 5.7: Plots of (a) PSNR and (b) SSIM values of the iterative deblurring method with the
proposed 3-D TV method (5.9) for the frames of Cup and ToyRobo sequences at t = 6. For the
iterations, we set the step size µ in (5.9) 0.75.

deblurred frames at t = 2 are shown for comparison in Figure. 5.9.

The last example is another real example. This time we used the Foreman

sequence in CIF format. Figure 5.10(a) shows one frame of the cropped input sequence

(170×230, 10 frames) at time t = 6. In this example, we upscaled the Foreman sequence

using 3-D SKR (4.37) with spatial and temporal upscaling factor of 1 : 2 and 1 : 8, re-

spectively, and Figure 5.10(e) show the estimated intermediate frame at time t = 5.5

and the estimated frame at t = 6. These frames are the intermediate results of our two-

step deblurring approach). The 3-D SKR method successfully estimated the blurred

intermediate frames, as seen in the figures, and the motion blur is spatially variant;

the man’s face is blurred as a result of the out-of-plane rotation of his head. In this

time, we deblur the upscaled frames using Fergus’ and Shan’s methods [98, 99], and

the proposed 3-D deblurring method. The deblurred frames are in Figures. 5.10(b)-(d),

respectively, and Figures. 5.10(f)-(i) and (j)-(n) are the selected regions of the frames

shown in (a)-(e) at t = 5.5 and 6, respectively. In addition, in order to compare the per-

150

t = 2 t = 3

(a
)I

np
ut

fr
am

es
(b

)F
er

gu
s

[9
8]

(c
)S

ha
n

[9
9]

(d
)P

ro
po

se
d

(5
.7

)

Figure 5.8: A motion (temporal) deblurring example of the StreetCar sequence (120× 290, 5

frames) with real motion blur: (a) 2 frames of the ground truth at times t = 2 to 3, (b)-(c) the
deblurred frames by Fergus’s method [98], Shan’s method [99], and (d) the deblurred frames
by the proposed 3-D TV method (5.7) using a 1×1×8 uniform PSF.

formance of our proposed method to Fergus’ and Shan’s methods, in Figure 5.11, we

compute the absolute residuals (the absolute difference between the deblurred frames

151

(a) Input, t = 2 (b) Fergus et al. [98]

(c) Shan [99] (d) Proposed (5.7)

Figure 5.9: Selected regions from the frame at t = 2 of the StreetCar sequence: (a) the input
frame, (b)-(d) the deblurred results by Fergus et al. [98], Shan et al. [99], and the proposed 3-D
TV (5.7) method, respectively.

shown in Figures. 5.10(b)-(d) and the estimated frames shown in Figures. 5.10(e) in

this case). The results illustrate that our 3-D deblurring approach successfully recovers

more details of the scene, such as the man’s eye pupils, the outlines of the face and

nose even without scene segmentation.

Summary— In this chapter, instead of removing the motion blur as spatial

blur, we proposed deblurring with a 3-D space-time invariant PSF. The results showed

that we could avoid segmenting video frames based on the local motions, and the

temporal deblurring effectively removed motion blur even in the presence of motion

occlusions.

152

t = 5.5 t = 6

(a
)I

np
ut

fr
am

es
(b

)F
er

gu
s

et
al

.[
98

]
(c

)S
ha

n
et

al
.[

99
]

(d
)P

ro
po

se
d

(5
.7

)
(e

)U
ps

ca
le

d
fr

am
es

(4
.3

7)

t = 5.5

(f
)F

er
gu

s
et

al
.[

98
]

(g
)S

ha
n

et
al

.[
99

]
(h

)P
ro

po
se

d(
5.

7)
(i

)U
ps

ca
le

d
(4

.3
7)

t = 6

(j)
In

pu
tf

ra
m

es
(k

)F
er

gu
s

et
al

.[
98

]
(l

)S
ha

n
et

al
.[

99
]

(m
)P

ro
po

se
d(

5.
7)

(n
)U

ps
ca

le
d

(4
.3

7)

Figure 5.10: A 3-D (spatio-temporal) deblurring example of the Foreman sequence in CIF for-
mat: (a) the cropped frame at time t = 6, (b)-(c) the deblurred results of the upscaled frame
shown in (e) by Fergus’ method [98], Shan’s method [99], (d) the deblurred frames by the pro-
posed 3-D TV method (5.7) using a 2×2×2 uniform PSF, and (e) the upscaled frames by 3-D
SKR (4.37) at time t = 6 and 6.5 in both space and time with the spatial and temporal upscaling
factors of 1 : 2 and 1 : 8, respectively. The figures (f)-(i) and (j)-(n) are the selected regions of the
frames shown in (a)-(e) at t = 6 and 6.5.

153

t
=

5.
5

t
=

6

0

10

20

30

40

50

60

70

(a) Fergus et al. [98] (b) Shan et al. [99] (c) Proposed (5.7)

Figure 5.11: Deblurring performance comparisons using absolute residuals (the absolute dif-
ference between the deblurred frames shown in Figures. 5.10(b)-(d) and the estimated frames
shown in Figures. 5.10(e)): (a) Fergus’ method [98], (b) Shan’s method [99], and our proposed
method (5.7).

154

Chapter 6

Conclusion and Future Works

6.1 Conclusion

In this thesis, we studied a non-parametric point estimation approach, ker-

nel regression (KR), and proposed a data-adaptive extension, steering kernel regression

(SKR), which locally learns the optimal filter coefficients from the underlying multi-

dimensional data. We applied the proposed approach to a wide variety of problems

in image/video processing, such as denoising, interpolation, deblurring, and super-

resolution. The experimental results of both simulated and real data showed that the

proposed method was competitive to state of the art methods.

◃ Chapter 1 — We reviewed the basic concept of a non-parametric approach called

kernel regression (KR) for image processing. The advantage of the non-parametric

approach is that it is capable of finding missing pixels and smoothing noise-

ridden pixels no matter how the pixels are spaced out. Hence, KR is applicable

to a wide variety of tasks, including, denoising, upscaling, interpolation, deblur-

ring, and super-resolution. However, the classic kernel regression estimates a

155

pixel value by a spatially adaptive (but linear) combination of its nearby pixels.

◃ Chapter 2 — In order to improve the performance of the kernel regression, we

proposed a data-adaptive alternative to the classic kernel regression approach,

where we learn the optimal filter coefficients from not only the spatial distances

between the pixel of interest and its neighbors but also the radiometric distances

(differences in pixel intensity). The resulting approach smooths pixels along the

local orientation structure. In this chapter, we generalized the bilateral filter [7, 8]

by the bilateral kernel regression (BKR), and proposed the steering kernel regres-

sion (SKR) and its iterative implementation which improves the filtering per-

formance further. We showed the effectiveness of the proposed iterative SKR

for denoising, interpolation, and multi-frame superresolution tasks comparing

to the state of the art method in each task.

◃ Chapter 3 — The blurring effect is one of the significant degradation factors in

imaging systems. In this chapter, using the data model in matrix form involving

the blurring operator, we proposed a regularized deblurring estimator, where we

derived both the likelihood term and regularization term based on the kernel re-

gression approach. Using the steering kernel weights, the proposed deblurring

estimator implicitly sharpens parts of the image where there is any structure so

that it suppresses both noise and ringing effects effectively. The experimental re-

sults show that it is superior to state of the art deblurring methods. Furthermore,

we demonstrated that the proposed method is still applicable to upscaling by

replacing the deblurring operator by the downsampling operator.

◃ Chapter 4 — We extended the 2-D data-adaptive method into two different 3-D

156

methods. The 3-D methods enhance the resolution of video in both space and

time. The first extension is the motion-assisted steering kernel (MASK) method

where we explicitly estimate local motion trajectories and construct a set of 2-

D (spatial) steering kernels along the trajectories to obtain 3-D kernels (MASK).

Since the MASK method relies on motions, its performance strongly depends on

the accuracy of the motion estimation. To reduce the negative impact from the

motion errors, we compute the reliability of the local motions and penalize the

neighboring frames. Moreover, in order to reduce the computational load, we

used a look-up table to obtain the steering matrix of each pixel without singular

value decomposition, and proposed an adaptive regression order method. It au-

tomatically set the regression order to zero in flat areas and compute the second

order kernel weights in closed form in textured areas.

The other approach, 3-D SKR, is a direct extension of 2-D SKR. The ad-

vantage of the 3-D SKR method is that it relies on 3-D local orientation informa-

tion. The 3-D orientation is a combination of spatial and temporal local orien-

tations, where the temporal orientation can be regarded as motion trajectories.

Thus, we can avoid motion estimation to subpixel accuracy, although rough mo-

tion compensation is unavoidable when the motion is large. Furthermore, similar

to the 2-D SKR approach, we implement this 3-D SKR approach with an iterative

scheme to improve its performance.

Both MASK and 3-D SKR work well for simulated and real videos, and

their performance are competitive to the existing video super-resolution meth-

ods. In addition, our proposed methods, MASK and 3-D SKR, are capable of

increasing the temporal resolution as well as the spatial resolution unlike the ex-

157

isting methods which are limited to either spatial or temporal upscaling.

◃ Chapter 5 — Motion blur is another electromechanical limitation of the camera

which significantly degrades the visual quality of videos. In Chapter 4, although

we ignored the motion blur effect, the temporal upscaling capability of our 3-

D approach enables us to reduce the motion blur without motion estimation or

scene segmentation, unlike the existing motion deblurring methods.

First, we reviewed the existing motion deblurring methods in the litera-

ture, and found that most of them deal with the motion blur as a spatial blur.

A practical approach is to estimate motions and then construct a 2-D motion

blur kernel based on the estimated motions. When there are multiple motions in

the scene, image segmentation is necessary to deblur segment-by-segment with

different 2-D motion blur kernels. Another practical approach is the blind de-

blurring method where the 2-D motion blur kernel and the deblurred image are

estimated at the same time. However the blind approach is limited to the case

where the blur is uniform across the entire region.

Although many existing motion deblurring methods are spatial in na-

ture, the motion blur is, in fact, a temporal shift-invariant blur. After temporally

upscaling the input video by 3-D SKR, we can reduce the motion blur by deblur-

ring with a shift-invariant 3-D blur kernel. Therefore, neither motion estimation

nor scene segmentation is necessary at the deblurring stage.

158

Table 6.1: Choices of possible kernel functions

Name Kernel Functions

Epanechnikov Kh(xi −x) =
 3

4

(
1− ∥xi−x∥2

2
h2

)
for ∥xi−x∥2

h < 1

0 otherwise

Biweight Kh(xi −x) =
 15

16

(
1− ∥xi−x∥2

2
h2

)2
for ∥xi−x∥2

h < 1

0 otherwise

Triangle Kh(xi −x) =
{

1− ∥xi−x∥2
h for ∥xi−x∥2

h < 1

0 otherwise

Laplacian Kh(xi −x) = 1
2h exp

(
− ∥xi−x∥2

h

)

6.2 Future Directions

The future directions we discuss below are mainly categorized into (i) how to

improve the visual quality of the outputs, (ii) how to reduce the computational com-

plexity, and (iii) other problems to which our proposed approach can be applied.

6.2.1 The Choice of Kernel Function

In kernel density estimation [11], there are several choices for the kernel func-

tion K (xi − x), other than Gaussian kernel function which we used in this work. For

image processing, not only improving the numerical performance, but also the visual

quality of the output images are of importance. Table 6.1 shows some possible choices

of the kernel function, and Figure 6.1 illustrates the possible kernel functions in 1-D

comparing to Gaussian kernel function. Figures 6.2 and 6.3 show the visual com-

parison of different kernel functions for image upscaling. In this examples, we down-

sampled the original Lena (512×512) and Parrot (256×256) images with a factor of 2:1

without applying any filter or adding noise. Figures 6.2(a) and 6.3(a) show the selected

159

−1.5 −1 −0.5 0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

1

1.2

x
i
 − x

K
h (

x i −
 x

)

Epanechnikov (h=1.0)
Biweight (h=1.0)
Triangle (h=1.0)
Laplacian (h=0.4)
Gaussian (h=0.4)

Figure 6.1: A comparison of the possible kernel functions.

part of the original images. Then, we upscaled the downsampled image by the second

order classic kernel regression with different kernel functions. The upscaled results us-

ing Epanechnikov, biweight, triangle, Laplacian, and Gaussian functions are shown in

Figures 6.2(b)-(f) and 6.3(b)-(f), respectively. In these image upscaling examples with

classic kernel regression, although Laplacian kernel function numerically outperforms

the other kernel functions, there are some staircase artifacts around edges. It would

be interesting to examine these kernel functions in the data-adaptive kernel regression

approach in terms of the numerical and visual performance.

160

(a) Original (b) Epanechnikov, RMSE = 6.04 (c) Biweight, RMSE = 6.03

(d) Triangle, RMSE = 6.23 (e) Laplacian, RMSE = 5.22 (f) Gaussian, RMSE = 5.53

Figure 6.2: The performance comparison of a vaerity of kernel functions for image upscaling.
In this example, we downsampled the original Lena image shown in (a) with the factor of
2:1, and then upscale the downsampled image with the factor of 1:2. The upscaled images
by Epanechnikov, biweight, triangle, Laplacian, and Gaussian kernel functions are shown in
(b)-(f), respectively. The smoothing parameters are optimized by the cross-validation method.

6.2.2 The Choice of Distance Metric

Having introduced the possible choices for kernel function in Table 6.1, we see

that all the kernel functions are defined in terms of the distance between two vectors

(i.e. xi −x). In this section, we discuss a possibility of improving the performance of

kernel regression by the choice of the distance metric. A starting point can be found in

pattern classification/recognition [115, 116], where the choice of the distance metric is

an important issue, e.g., for the classification task. Table 6.2 shows some representative

161

(a) Original (b) Epanechnikov, RMSE = 13.03 (c) Biweight, RMSE = 13.21

(d) Triangle, RMSE = 12.57 (e) Laplacian, RMSE = 12.00 (f) Gaussian, RMSE = 12.11

Figure 6.3: The performance comparison of a vaerity of kernel functions by image upscaling.
In this example, we downsampled the original Parrot image shown in (a) with the factor of
2:1, and then upscale the downsampled image with the factor of 1:2. The upscaled images
by Epanechnikov, biweight, triangle, Laplacian, and Gaussian kernel functions are shown in
(b)-(f), respectively. The smoothing parameters are optimized by the cross-validation method.

distance metrics in pattern recognition with related image restoration methods, where

d(υi ,υj) represents the distance between two vectors υi and υj . The distance metrics

are categorized into two types: non-adaptive and adaptive. Euclidean, Manhattan,

and Minkowski (L2, L1, and Lp-norm, respectively) are categorized as non adaptive

distance metrics. These metrics are typically most effective when their choice matches

the statistical distribution of the data being treated. For instance, when the data are

corrupted by white Gaussian noise, Euclidean distance is an appropriate choice. It

should be noted that, in our steering kernel approach, we compute the weight values

162

based on the distances between pixels measured by a data-adaptive metric.

Standardized Euclidean, Mahalanobis, and Bhattacharyya metrics are cate-

gorized as adaptive distance metrics. Standardized Euclidean distance can take local

noise variance into account. Mahalanobis distance is one of the frequently used metrics

in pattern recognition, and it measures the distance between samples with the scatter

(covariance) matrix. The scatter matrix tells that how the given samples distribute and

it is helpful in classifying when the scatter matrix of a cluster is similar to the other

clusters’. If that is not the case, Bhattacharyya distance is more effective, since it takes

the differences of the scatter matrices into account. Thus, when we compute the dis-

tance between two vectors which belong to different clusters, Bhattacharyya distance

becomes large.

Bilateral kernel function (2.2) and steering kernel function (2.9) are closely

related to standardized Euclidean distance and Mahalanobis distance, respectively.

When we use Gaussian function for the both radiometric and spatial kernels, the bilat-

eral kernel function can be expressed with standardized Euclidean distance as

Khs (xi −x j)Khr (yi − yj) = exp

(
−∥xi −x∥2

2

h2
s

)
exp

(
−

∣∣yi − yj
∣∣

h2
r

)
= exp

{
− (

υi −υj
)T D−1 (

υi −υj
)}

= exp
(
−d 2

s (υi ,υj ;D)
)
, (6.1)

where υi = [yi ,xT
i]T and D = diag

{
h2

r ,h2
s ,h2

s

}
. For steering kernel regression, unlike the

Mahalanobis distance with a fixed scatter matrix shown in Table 6.2, we compute the

scatter matrix Σ of Mahalanobis distance for each pair of pixels by the covariance ma-

trix of local gradient vectors. For instance, using the same definition υi = [yi ,xT
i]T , the

163

Table 6.2: Representative Distance Metrics and Related Image Restoration Methods

Metric Definition Note Related methods

Euclidean dL2(υi ,υj) =
∥∥∥υi −υj

∥∥∥
2

L2-norm

Classic KR [3],

NLM [57],

UINTA [117]

Manhattan dL1(υi ,υj) =
∥∥∥υi −υj

∥∥∥
1

L1-norm Total varia-
tion

Minkowski dLp (υi ,υj) =
∥∥∥υi −υj

∥∥∥
p

Lp -norm

Standardized
Euclidean

d2
S (υi ,υj) = (υi −υj)T D−1

i (υi −υj)

Di ∈RM×M is a diagonal matrix given

by diag{var(υ1), · · · ,var(υM)} where

{υm }M
m=1 are the elements of υi .

Bilateral
filter [7, 8],
OSA [118]

Mahalanobis d2
M (υi ,υj) = (υi −υj)T Σ−1(υi −υj)

Σ ∈ RM×M is the scatter (covariance)

matrix given by 1
P

∑
ℓ(υℓ −υ)(υℓ −υ)T

with ℓ for all the given sample where

υ is the mean vector of
{
υℓ

}P
ℓ=1.

Steering KR

Bhattacharyya
d2

B (υi ,υj) = 1
8 (υi−υj)T

(
Σi +Σ j

2

)−1
(υi−υj)

+ 1
2 ln

∣∣∣∣Σi +Σ j
2

∣∣∣∣√
|Σi ||Σ j |

Σi and Σ j are the within-cluster scat-

ter matrices of the clusters that the

vectors υı and υj belong respectively.

2-D steering kernel function can be expressed as

KHi (xi −x j) = 1

2π
√

detHi

exp

{
−1

2

(
xi −x j

)T HT
i Hi

(
xi −x j

)}
= 1

2π
√

detHi

exp

{
−1

2
d 2

M(υi ,υj ;Σi)

}
, (6.2)

where

Σi =

 0 0

0 HT
i Hi

 . (6.3)

Therefore, the proposed steering kernel function can be regarded as one of the many

other possible combinations of the kernel functions in Table 6.1 and the distance met-

rics in Table 6.2.

164

Noisy data
Gradient Est.

Smoothting
Kernel Reg.y

H(0)
i β̂

(1)
1

ẑ(1)

(a) Initialization

H(ℓ+1)
i β̂

(ℓ+1)
1

ẑ(ℓ+1)

β̂
(ℓ)
1

(b) Iteration

ẑ(ℓ)

Initial
Matrix Est.

Steering

(B.2) (2.8) (2.12)

Smoothting
Matrix Est.

(2.8)
Kernel Reg.

Steering

(2.12)

β̂
(0)
1

y
Noisy data

Figure 6.4: Block diagram representation of iterative steering kernel regression: (a) the initial-
ization process, and (b) the iteration process where we apply SKR to the given noisy data.

6.2.3 Iteration Filtering Scheme

We proposed an iterative filtering algorithm in Figure 2.12, where we update

the steering kernel weights and apply SKR to the previous estimate, in order to im-

prove the smoothing performance. The iterative filtering algorithm is just one way

to improve the estimate, and there are more possible iterative implementations (e.g.

[119]). Figure 6.4 shows a possible iterative filtering algorithm where we update the

steering kernel weights and apply SKR to the original noisy data in each iteration.

Although the iterative filtering algorithms shown in Figures 2.12 and 6.4 are similar,

their numerical behaviors are very different. Using a selected region of Lena image

shown in Figure 2.15(a), we analyze their behavior with respect to MSE, bias, and vari-

ance by Monte-Carlo simulations for the task of image denoising with three different

smoothing parameters for each iterative filtering algorithm. In this experiment, we

added white Gaussian noise with σ = 25 to the cropped Lena image. The MSE, vari-

165

1 2 3 4 5 6 7 8 9 10 11 12

20

40

60

80

100

120

140

160

180

200

220

The number of iterations

M
ea

n
S

qu
ar

e
E

rr
or

, S
qu

ar
ed

 B
ia

s,
 V

ar
ia

nc
e

MSE (h=2.50)

Bias2 (h=2.50)
Var (h=2.50)
MSE (h=2.75)

Bias2 (h=2.75)
Var (h=2.75)
MSE (h=3.00)

Bias2 (h=3.00)
Var (h=3.00)

Figure 6.5: An example of the behavior of mean square error, variance, and bias of the iterative
steering kernel regression proposed in Figure 2.12 with three different smoothing parameters
h = 2.5,2.75, and 3.0.

ance and squared bias of both iterative filtering algorithms are shown in Figures 6.5

and 6.6. The MSE value of the iterative filtering algorithm of Figure 2.12 decreases in

the first several iterations and then starts increasing. The iterative filtering asymptot-

ically produces a flat image unless we stop the iteration. On the other hand, the MSE

value of the alternative iterative filtering algorithm of Figure 6.4 also decreases in the

first few iterations, but the MSE value converges to a constant value. There are two

interesting properties in both iterative filtering algorithms: (i) for each case, even as we

vary the smoothing parameter (h), the minimum MSE value is about the same, and (ii)

the MSE value becomes the smallest when the variance and the squared bias are equal.

166

1 2 3 4 5 6 7 8 9 10 11 12
20

40

60

80

100

120

140

160

180

200

The number of iterations

M
ea

n
S

qu
ar

e
E

rr
or

, S
qu

ar
ed

 B
ia

s,
 V

ar
ia

nc
e

MSE (h=3.5)

Bias2 (h=3.5)
Var (h=3.5)
MSE (h=4.0)

Bias2 (h=4.0)
Var (h=4.0)
MSE (h=4.5)

Bias2 (h=4.5)
Var (h=4.5)

Figure 6.6: An example of the behavior of mean square error, variance, and bias of the iterative
steering kernel regression shown in Figure 6.4 with three different smoothing parameters h =
3.5,4.0, and 4.5.

Correspondingly, in the case where the variance and squared bias become asymptot-

ically parallel (the curve for h = 3.5 in Figure 6.6), then the corresponding MSE value

approaches a minimum only after infinitely many iterations.

The questions that one needs to address in the iterative filtering approach are

the following: (i) what would be the preferable behavior of the MSE, variance, and

bias? (it worth noting that in the limited experiments we showed above, the iterative

filtering scheme in Figure 2.12, consistently produces a smaller MSE value than the one

in Figure 6.4), and (ii) how do we optimize the number of iterations to reach the lowest

MSE? One possible way to optimize the number of iterations is to measure the quality

167

House image (256×256) (b) Centroids of the clustered LSKs and the corresponding pixels

Figure 6.7: A quantization example of local steering kernel (LSK): (a) the original House image,
and (b) centroids of the clustered LSKs by K-means method and the corresponding pixels.

of the estimated image after each iteration by, for example, metric Q [95]. If the image

quality becomes worse than the previous estimate, we stop the iteration.

6.2.4 Quantization of Local Steering Kernel

In order to reduce the computational load, in Section 4.2.4.3, we generate a

compact look-up table of the steering matrices and select a steering matrix from the

table for each sample. Although the singular value decomposition of the local gradient

vectors is avoided, we still need to compute the local steering kernel weights Wi in

(2.12). A more desirable way would be to select a set of local steering kernel (LSK)

weights directly from a look-up table using the steering kernel parameters (i.e. the

scaling, elongation, and angle parameters) or the naive covariance matrix of the local

gradient vectors (2.10) as the parameters.

168

Figure 6.8: A diagram of the steering kernel regression with a look-up table of local steering
kernel weights.

A desired look-up table is compact, but it produces high quality output im-

ages. Of course we could create a general look-up table of LSKs for any images, but it

would be better to take the content of the underlying image into account in terms of

the visual quality of the output images. Figure 6.7 shows a possible way to learn an

efficient set of LSKs where we first compute the LSKs for all the pixels of the House

image and then classify the LSKs. In this example, we classified the LSKs into 9 clusters

by the k-means algorithm. The centroid of each cluster is a learned LSK. Figure 6.7(b)

illustrates the learned LSKs and the pixels with the corresponding LSKs. For example,

when we treat the flat area (i.e. the sky of the house image), the LSK equally spreading

to every direction is an appropriate choice.

Now, the 9 LSKs are the entries of the look-up table. Using the look-up table,

Figure 6.8 shows a diagram of the SKR with learned LSKs. For example, when smooth-

ing a pixel located on a vertical structure, first we compute its steering parameters or

the naive covariance matrix of the local gradient vectors. Using them as the parame-

ters, we select a suitable LSK from the look-up table. Once we have LSK weights, the

weighted average of the neighboring pixels {yi } with the LSK is our pixel estimate ẑ(x).

169

Advantages of the LSK quantization by classification are (i) the quantization

is helpful in generating a stable set of LSKs; when the given image carries strong noise

or is missing many pixels, it is difficult to have good estimates of orientations, and

(ii) we could avoid updating the LSKs in the iterative filtering. Once the stable set of

LSKs is available, we can use them again. The questions that we need to address in

this LSK quantization are (i) how to optimize the parameter to compute LSK for each

pixel and (ii) how to classify the LSKs so that we have an efficient and low complexity

representation of the set.

6.2.5 Kernel Regression for Vector Functions

When processing color images, we applied SKR to the three color channels

separately, while using YCbCr coordinates in order to reduce color artifacts. However,

since one color pixel is a vector quantity, i.e. it consists of three values:

z(xi) =

zR (xi)

zG (xi)

zB (xi)

 , or

zY (xi)

zCb (xi)

zCr (xi)

 , (6.4)

the data model should be

yi = z(xi)+εi (6.5)

for color images. Using the local approximation between the color pixel of interest and

its neighbors by Taylor series, we have the kernel regression for the vector function

ẑ(x) = argmin
z(x)

∑
i

[
yi −z(x)

]2 KHi (xi −x), (6.6)

where

z(x) = z(xi)− ∂T z(x)

∂x

∣∣∣∣
x=xi

(xi −x)−·· · . (6.7)

170

Now, since the color pixels are vector quantities, we could compute the dissimilarity

between vectors yi and z(x) by the cross product (i.e. yi ×z(x)). In [120, 47], Keren et al.

and Farsiu et al. proposed an intercolor dependency which smooths the pixel of interest

with its neighboring pixels minimizing the cross products of the pixel of interest and

its neighbors. We can regard their approach as the zeroth order kernel regression with

the cross product distance measure, and the kernel regression for vector function (6.6)

is a generalization and probably a more appropriate way to process color images.

171

Appendix A

Equivalent Kernels

Study of (1.33) shows that XT KX is a (N + 1)× (N + 1) block matrix, with the

following structure:

XT KX =

a11 a12 a13 · · ·

a21 a22 a23 · · ·

a31 a32 a33 · · ·
...

...
...

. . .

, (A.1)

where alm is an l ×m matrix for the 2-D case. The block elements of (A.1) for orders up

to N = 2 are as follows:

a11 =
P∑

i=1
KH(x1 −x), (A.2)

a12 = aT
21 =

P∑
i=1

(x1 −x)T KH(x1 −x), (A.3)

a22 =
P∑

i=1
(x1 −x)(x1 −x)T KH(x1 −x), (A.4)

a13 = aT
31 =

P∑
i=1

vechT{
(x1 −x)(x1 −x)T }

KH(x1 −x), (A.5)

172

a23 = aT
32 =

P∑
i=1

(x1 −x)vechT{
(x1 −x)(x1 −x)T }

KH(x1 −x), (A.6)

a33 =
P∑

i=1
vech

{
(x1 −x)(x1 −x)T }

vechT{
(x1 −x)(x1 −x)T }

KH(x1 −x). (A.7)

With the above shorthand notations, the equivalent kernel functions Wi (·) in (1.35) for

up to N = 2 are given by

Wi (K ,H, N =0,xi −x) = KH(xi −x)

a11
, (A.8)

Wi (K ,H, N =1,xi −x) =
{

1−a12a−1
22 (xi −x)

}
KH(xi −x)

a11 −a12a−1
22 a21

,

Wi (K ,H, N =2,xi −x) = (A.9)[
1−A12A−1

22 (xi −x)−A13A−1
33 vech

{
(x1 −x)(x1 −x)T

}]
KH(xi −x)

a11 −A12A−1
22 a21 −A13A−1

33 a31
(A.10)

with

A12 = a12 −a13a−1
33 a32, A22 = a22 −a23a−1

33 a32,

A13 = a13 −a12a−1
22 a23, A33 = a33 −a32a−1

22 a23. (A.11)

173

Appendix B

Local Gradient Estimation

In this appendix, we formulate the estimation of the direct gradient β1 of the

second order kernel regressor (N = 2). Note that direct gradient estimation is useful

not only for the iterative steering kernel regression, presented in Section 2.1.3, but also

for many diverse applications such as estimating motion via gradient-based methods

(e.g., optical flow) and dominant orientation estimation.

In the solution of the optimization of kernel regression (1.32), the second and

third element of b̂ give the estimate of local gradient:

∇ẑ(x) = β̂1 =

 eT
2

eT
3

(
XT KX

)−1
XT K y, (B.1)

where e2 and e3 are column vectors with the second and third elements equal to one,

and the rest equal to zero. Using the notations of (A.3)-(A.7) in Appendix A, the local

quadratic gradient estimator is expressed as

∇ẑ(x) =
P∑

i=1
B−1 [−B21B−1

11 + (xi −x)−B23B−1
33 vech

{
(xi −x)(xi −x)T }]

KH(xi −x) yi , (B.2)

174

where

B11 = a11 −a13a−1
33 a31, B21 = a21 −a22a−1

33 a31,

B23 = a23 −a21a−1
11 a13, B33 = a33 −a31a−1

11 a13,

B= a22 −B21B−1
11 a12 −B23B−1

33 a32. (B.3)

175

Appendix C

Kernel-Based Deblurring Estimator

Differentiating the cost function of the kernel-based deblurring method (3.19),

we have
∂C (UN)

∂UN

= ∂CL(UN)

∂UN

+λ
∂CR(UN)

∂UN

. (C.1)

Using (3.14) and (3.18), the terms in the right hand side are

∂CR(UN)

∂UN

=
ζ∑

ν1=−ζ

ζ∑
ν2=−ζ

∂

∂UN

∥∥∥ {Wu(ν)}
1
q
(
E0UN −Sν1

x1
Sν2

x2
IN UN

)∥∥∥q

q

=
ζ∑

ν1=−ζ

ζ∑
ν2=−ζ

(
E0 −Sν1

x1
Sν2

x2
IN

)T Wu(ν)
{

sign
(
u−Sν1

x1
Sν2

x2
IN UN

)⊙ ∣∣u−Sν1
x1

Sν2
x2
IN UN

∣∣q−1
}

(C.2)

∂CL(UN)

∂UN

=
ζ∑

ν1=−ζ

ζ∑
ν2=−ζ

∂

∂UN

∥∥∥{Wz (ν)}
1
2

(
y−Sν1

x1
Sν2

x2
GN UN

)∥∥∥2

2

=
ζ∑

ν1=−ζ

ζ∑
ν2=−ζ

GT
N

S−ν1
x1

S−ν2
x2

Wz (ν)
(
y−Sν1

x1
Sν2

x2
GN UN

)
, (C.3)

where ⊙ is the element-by-element multiplication operator for two vectors, and E0 is

a block matrix with identity matrix for the first block and zero matrices for the rest,

i.e. E0 = [I,0, · · · ,0] and u = E0UN . We also note that the transpose of the shift operator is

equivalent to the shift back operator, i.e.
{

Sν1
x1

}T = S−ν1
x1

.

176

Appendix D

Motion Estimation

For motion estimation between two images (an anchor frame and the target

frame), taking into account that the forward (from the anchor frame to the target frame)

and the backward motion (from the target frame to the anchor frame) should be equal

in magnitude and opposite in direction, we define the brightness consistency equation

(BCE) [91] as

J m+ Jt = 0, (D.1)

where m = [m1,m2] is the translational motion vector of interest, and

J =

 z(n)
x1

z(n)
x2

z(n′)
x1

z(n′)
x2

 , Jt =

 zt

zt

 (D.2)

with z(n)
x1

is the gradients of the n-th frame in column-stack vector form and zt is the

temporal gradient (difference); zt = z(n) −z(n′). We use least square estimator to find the

motion parameter m1 and m2:

m̂ = argmin
m

∥J m+ Jt∥2
2, (D.3)

177

Figure D.1: The block diagram representation of our motion estimation.

which yields the motion estimator

m̂ =−(
JT J

)−1
JT Jt . (D.4)

Since the BCE (D.1) becomes a more accurate expression when the amplitude

of the motion vector is smaller, we estimate accurate motions iteratively with the mul-

tiscale technique as shown in Figure D.1. First, we downscale the anchor and target

frames (z(n) and z(n′)) to build a multiscale pyramid, and then start motion estima-

tion from the coarse resolution layer because the motion becomes smaller in the coarse

layer. Next, in order to make the displacement between the frames even smaller, we

warp the anchor and the target frames by 0.5m̂(ℓ) and −0.5m̂(ℓ), respectively, where

m̂(ℓ) is the previous motion estimate (m̂(0) = 0), using the second order classic kernel

regression (1.35). We warp both the anchor and target frames with the same amount

of subpixel displacements so that the influence of the blur effects, caused by the inter-

polator (1.35), can be reduced for the motion estimation. After warping, we compute

the spatial gradients of the warped frames by (B.1) and estimate the leftover motion

178

components by (D.4). We scale the estimated leftover motion by 0.7 (a damping factor)

to stabilize the iteration process, and then update the previous motion estimate. The

iteration process continues until the estimated motion converges1. Then we begin the

iteration process in a finer resolution layer initializing the motion vector m̂(0) to the es-

timated motion vector at the previous layer. When estimating local motions, we apply

the iterative motion estimation to the frames block-by-block.

1In case the iteration process may not converge, we set the maximum number of iterations in order not
to repeat the process forever.

179

Appendix E

3-D Steering Kernel Parameters

Using the (compact) SVD (4.30) of the local gradient vector Ji (4.27), we can

express the naive estimate of steering matrix as:

Ĉnaive
i = JT

i Ji = Vi ST
i Si VT

i

= Vi diag
{

s2
1 , s2

2, s2
3

}
VT

i

= s1s2s3Vi diag

{
s1

s2s3
,

s2

s1s3
,

s3

s1s2

}
VT

i

= Qγi [v1,v2,v3]diag
{
ϱ1,ϱ2,ϱ3

}
[v1,v2,v3]T

= Qγi

3∑
q=1

ϱq vq vT
q , (E.1)

where

ϱ1 = s1

s2s3
, ϱ2 = s2

s1s3
, ϱ3 = s3

s1s2
, γi = s1s2s3

Q
, (E.2)

and Q is the number of rows in Ji . Since the singular values (s1, s2, s3) may become

zero, we regularized the elongation parameters (ϱq) and the scaling parameter (γi) as

shown in (4.29) from being zero.

180

Bibliography

[1] T. F. Chan and J. Shen, “Nontexture inpainting by curvature-driven diffusions,”

Journal of Visual Communication and Image Representation, vol. 12, no. 10, pp. 436–

449, May 2001.

[2] S. Farsiu, D. Robinson, M. Elad, and P. Milanfar, “Fast and robust multi-frame

super-resolution,” IEEE Transactions on Image Processing, vol. 13, no. 10, pp. 1327–

1344, October 2004.

[3] M. P. Wand and M. C. Jones, Kernel Smoothing, ser. Monographs on Statistics and

Applied Probability. London; New York: Chapman and Hall, 1995.

[4] P. Yee and S. Haykin, “Pattern classification as an ill-posed, inverse problem: a

reglarization approach,” Proceeding of the IEEE International Conference on Acous-

tics, Speech, and Signal Processing, ICASSP, vol. 1, pp. 597–600, April 1993.

[5] H. Knutsson and C. F. Westin, “Normalized and differential convolution - meth-

ods for interpolation and filtering of incomplete and uncertain data,” Proceedings

of IEEE Computer Society Conference on Computer Vision and Pattern Regocnition

(CVPR), pp. 515–523, June 1993.

[6] T. Q. Pham, L. J. van Vliet, and K. Schutte, “Robust fusion of irregularly sampled

data using adaptive normalized convolution,” EURASIP Journal on Applied Signal

Processing, Article ID 83268, 2006.

181

[7] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” Pro-

ceeding of the 1998 IEEE International Conference of Compute Vision, Bombay, India,

pp. 836–846, January 1998.

[8] M. Elad, “On the origin of the bilateral filter and ways to improve it,” IEEE Trans-

actions on Image Processing, vol. 11, no. 10, pp. 1141–1150, October 2002.

[9] X. Li and M. T. Orchard, “New edge-directed interpolation,” IEEE Transactions

on Image Processing, vol. 10, no. 10, pp. 1521–1527, October 2001.

[10] N. K. Bose and N. Ahuja, “Superresolution and noise filtering using moving least

squares,” IEEE Transactions on Image Processing, vol. 15, no. 8, pp. 2239–2248, Au-

gust 2006.

[11] B. W. Silverman, Density Estimation for Statistics and Data Analysis, ser. Mono-

graphs on Statistics and Applied Probability. London; New York: Chapman

and Hall, 1986.

[12] W. Hardle, Applied Nonparametric Regression. Cambridge [England] ; New York:

Cambride University Press, 1990.

[13] W. Hardle, M. Muller, S. Sperlich, and A. Werwatz, Nonparametric and Semipara-

metric Models, ser. Springer Series in Statistics. Berlin ; New York: Springer,

2004.

[14] W. Hardle, Smooting Technique : with Implementation in S, ser. Springer Series in

Statistics. New York: Springer-Verlag, 1991.

[15] E. A. Nadaraya, “On estimating regression,” Theory of Probability and its Applica-

tions, pp. 141–142, September 1964.

[16] D. Ruppert and M. P. Wand, “Multivariate locally weighted least squares regres-

sion,” The Annals of Statistics, vol. 22, no. 3, pp. 1346–1370, September 1994.

182

[17] M. G. Schimek, Smoothing and Regression -Approaches, Computation, and

Application-, ser. Wiley Series in Probability and Statistics. New York: Wiley-

Interscience, 2000.

[18] M. Unser, “Splines: A perfect fit for signal and image processing,” IEEE Signal

Processing Magazine, vol. 16, no. 6, pp. 22–38, November 1999.

[19] J. E. Gentle, W. Hadle, and Y. Mori, Handbook of Computational Statistics: Concepts

and Methods. Berlin ; New York: Springer, 2004, pp. 539–564 (Smoothing: Local

Regression Techniques).

[20] C. de Boor, A Practical Guide to Splines. New York: Springer-Verlag, 1978.

[21] R. L. Eubank, Nonparametric Regression and Spline Smoothing, 2nd ed., ser. Statis-

tics, Textbooks and Monographs. New York: Marcel Dekker, 1999.

[22] L. Piegl and W. Tiller, The NURBS Book. New York: Springer, 1995.

[23] M. Arigovindan, M. Suhling, P. Hunziker, and M. Unser, “Variational image re-

construction from arbitrarily spaced samples: A fast multiresolution spline so-

lution,” IEEE Transactions on Image Processing, vol. 14, no. 4, pp. 450–460, April

2005.

[24] N. S. Jayant and P. Noll, Digital coding of waveforms : principles and applications to

speech and video, ser. Pretice Hall signal processing. New Jersey: Englewood

Cliffs: Prentice Hall, 1984.

[25] M. J. Black, G. Sapiro, D. H. Marimont, and D. Heeger, “Robust anisotropic dif-

fusion,” IEEE Transactions on Image Processing, vol. 7, no. 3, pp. 421–432, March

1998.

[26] Y. You and M. Kaveh, “Fourth-order partial differential equations for noise re-

moval,” IEEE Transactions on Image Processing, vol. 9, no. 10, pp. 1723–1730, Oc-

tober 2000.

183

[27] L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal

algorithms,” Physica D, vol. 60, pp. 259–268, November 1992.

[28] S. M. Kay, Fundamentals of Statistical Signal Processing - Estimation Theory -, ser.

Signal Processing Series. Englewood Cliffs, N.J.: PTR Prentice-Hall, 1993.

[29] R. C. Gonzalez and R. E. Woods, Digital Image Processing. Upper Saddle River,

N.J.: Prentice Hall, 2002.

[30] J. Fan and I. Gijbels, Local Polynomial Modelling and its Applications, ser. Mono-

graphs on Statistics and Applied Probability. London ; New york: Chapman

and Hall, 1996.

[31] C. K. Chu and J. S. Marron, “Choosing a kernel regression estimator (with dis-

cussion),” Statistical Science, vol. 6, pp. 404–436, 1991.

[32] ——, “Comparison of two bandwidth selectors with dependent errors,” The An-

nals of Statistics, vol. 4, pp. 1906–1918, 1991.

[33] W. Hardle and P. Vieu, “Kernel regression smoothing of time series,” Journal of

Time Series Analysis, vol. 13, pp. 209–232, 1992.

[34] V. Katkovnic, K. Egiazarian, and J. Astola, Local Approximation Techniques in Signal

and Image Processing. Washington: SPIE – The International Society for Optical

Engineering, 2006.

[35] K. Fukunaga and L. D. Hostetler, “The estimation of the gradient of a density

function, with applications in pattern recognition,” IEEE Transactions of Informa-

tion Theory, vol. 21, pp. 32–40, 1975.

[36] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward feature space

analysis,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24,

no. 5, pp. 603–619, May 2002.

184

[37] S. M. Smith and J. M. Brady, “Susan – a new approach to low level image pro-

cessing,” International Journal of Computer Vision, vol. 23, no. 1, pp. 45–78, 1997.

[38] X. Feng and P. Milanfar, “Multiscale principal components analysis for image

local orientation estimation,” Proceedings of the 36th Asilomar Conference on Signals,

Systems and Computers, Pacific Grove, CA, November 2002.

[39] R. Mester and M. Muhlich, “Improving motion and orientation estimation using

an equilibrated total least squares approach,” Proceedings of IEEE International

Conference in Image Processing, pp. 929–932, 2001.

[40] R. Mester, M. Hotter, and R. B. GmbH, “Robust displacement vector estimation

including a statistical error analysis,” Proceedings of Fifth International Conference

on Image Processing and its Applications, pp. 168–172, 1995.

[41] K. V. Mardia, J. T. Kent, and J. M. Bibby, Multivariate Analysis. London ; New

York: Academic Press, 1979.

[42] A. Edelman, “Eigenvalues and condition numbers of random matrices,” SIAM

Journal on Matrix Analysis and Aplications, vol. 9, pp. 543–560, 1988.

[43] H. Seo and P. Milanfar, “Training-free, generic object detection using locally

adaptive regression kernels,” To appear in IEEE Transactions on Pattern Analysis

and Machine Intteligence, 2010.

[44] M. Aharon, M. Elad, and A. Bruckstein, “The k-svd: An algorithm for design-

ing of overcomplete dictionaries for sparse representation,” IEEE Transactions on

Signal Processing, vol. 54, no. 11, pp. 4311–4322, November 2006.

[45] K. Dabov, A. Foi, V. Katkovnic, and K. Egiazarian, “Image denoising by sparse

3D transform-domain collaborative filtering,” IEEE Transactions of Image Process-

ing, vol. 16, no. 8, pp. 2080–2095, August 2007.

185

[46] J. Portilla, V. Strela, M. Wainwright, and E. P. Simoncelli, “Image denoising using

scale mixtures of Gaussians in the wavelet domain,” IEEE Transactions on Image

Processing, vol. 12, no. 11, pp. 1338–1351, November 2003.

[47] S. Farsiu, M. Elad, and P. Milanfar, “Multiframe demosacing and super-

resolution of color images,” IEEE Transactions on Image Processing, vol. 15, no. 1,

pp. 141–159, January 2006.

[48] F. R. Hampel, E. M. Ronchetti, and P. J. Rousseeuw, Robust Statistics: The Approach

Based on Influence Functions. New York: Wiley, 1986.

[49] P. J. Huber, Robust Statistics. New York: Wiley, 1981.

[50] M. J. Black and P. Anandan, “The robust estimation of multiple motions: Para-

metric and piecewise-smooth flow fields,” Computer Vision and Image Understand-

ing, vol. 63, no. 1, pp. 75–104, January 1996.

[51] H. Knutsson and C.-F. Westin, “Normalized and differential convolution: Meth-

ods for interpolation and filtering of incomplete and uncertain data,” Proceedings

of Computer Vision and Pattern Recognition (Proceedings of IEEE Computer Society

Conference on Computer Vision and Pattern Recognition’93), pp. 515–523, June 16-19

1993.

[52] H. Takeda, S. Farsiu, and P. Milanfar, “Kernel regression for image processing

and reconstruction,” IEEE Transactions on Image Processing, vol. 16, no. 2, pp. 349–

366, February 2007.

[53] V. Katkovnic, K. Egiazarian, and J. Astola, “A spatially adaptive nonparamet-

ric regression image deblurring,” IEEE Transactions on Image Processing, vol. 14,

no. 10, pp. 1469–1478, October 2005.

[54] A. N. Tikhonov, A. Goncharsky, V. V. Stepanov, and A. G. Yagola, Numerical Meth-

186

ods for the Solution of Ill-Posed Problems. Dordrecht, The Netherlands: Kluwer

Academic Publishers, 1995.

[55] S. Osher and L. I. Rudin, “Feature-oriented image enhancement using shock fil-

ters,” SIAM Journal on Numerical Analysis, vol. 27, no. 4, pp. 919–940, August

1990.

[56] T. F. Chan, S. Osher, and J. Shen, “The digital TV filter and nonlinear denoising,”

IEEE Transactions of Image Processing, vol. 10, no. 2, pp. 231–241, February 2001.

[57] A. Buades, B. Coll, and J. M. Morel, “A review of image denosing algorithms,

with a new one,” Multiscale Modeling and Simulation, Society for Industrial and Ap-

plied Mathematics (SIAM) Interdisciplinary Journal, vol. 4, no. 2, pp. 490–530, 2005.

[58] H. Takeda, S. Farsiu, and P. Milanfar, “Higher order bilateral filter ant its prop-

erties,” Proceedings of the SPIE Conference on Computational Imaging, San Jose, CA,

January 2007.

[59] R. Neelamani, H. Choi, and R. Baraniuk, “ForWaRD: Fourier-wavelet regular-

ized deconvolution for ill-conditioned systems,” IEEE Transactions on Signal Pro-

cessing, vol. 52, no. 2, pp. 418–433, February 2004.

[60] P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-

resolution scanning x-ray diffraction microscopy,” Science, vol. 321, pp. 379–382,

July 2008, issue 5887.

[61] X. Li and M. T. Orchard, “New edge-directed interpolation,” IEEE Transactions of

Image Processing, vol. 10, no. 10, pp. 1521–1527, October 2001.

[62] D. P. Mitchell and A. N. Netravali, “Reconstruction filters in computer graphics,”

Computer Graphics, vol. 22, no. 4, pp. 221–228, August 1988.

[63] W. T. Freeman, T. R. Jones, and E. C. Pasztor, “Example-based super resolution,”

IEEE Computer Graphics, vol. 22, no. 2, pp. 56–65, March/April 2002.

187

[64] S. Kanumuri, O. G. Culeryuz, and M. R. Civanlar, “Fast super-resolution recon-

structions of mobile video using warped transforms and adaptive thresholding,”

Proceedings of SPIE, vol. 6696, p. 66960T, 2007.

[65] M. Elad and Y. Hel-Or, “A fast super-resolution reconstruction algorithm for

pure translational motion and common space-invariant blur,” IEEE Transactions

on Image Processing, vol. 10, no. 8, pp. 1187–1193, August 2001.

[66] H. Fu and J. Barlow, “A regularized structured total least squares algorithm for

high-resolution image reconstruction,” Linear Algebra and its Applications, vol.

391, pp. 75–98, November 2004.

[67] M. Irani and S. Peleg, “Super resolution from image sequence,” Proceedings of

10th International Conference on Pattern Recognition (ICPR), vol. 2, pp. 115–120,

1990.

[68] M. K. Ng, J. Koo, and N. K. Bose, “Constrained total least squares computations

for high resolution image reconstruction with multisensors,” International Journal

of Imaging Systems and Technology, vol. 12, pp. 35–42, 2002.

[69] P. Vandewalle, L. Sbaiz, M. Vetterli, and S. Susstrunk, “Super-resolution from

highly undersampled images,” Proceedings of International Conference on Image

Processing (ICIP), pp. 889–892, September 2005, Genova, Italy.

[70] N. A. Woods, N. P. Galatsanos, and A. K. Katsaggelos, “Stochastic methods for

joint registration, restoration, and interpolation of multiple undersampled im-

ages,” IEEE Transactions on Image Processing, vol. 15, no. 1, pp. 201–213, January

2006.

[71] A. Zomet, A. Rav-Acha, and S. Peleg, “Robust super-resolution,” Proceedings of

the International Conference on Computer Vision and Pattern Recognition (CVPR),

2001, Hawaii.

188

[72] R. Hardie, “A fast image super-resolution algorithm using an adaptive Wiener

filter,” IEEE Transactions on Image Processing, vol. 16, no. 12, pp. 2953–2964, De-

cember 2007.

[73] S. Park, M. Park, and M. Kang, “Super-resolution image reconstruction: A tech-

nical overview,” IEEE Signal Processing Magazine, vol. 20, no. 3, pp. 21–36, May

2003.

[74] S. Fujiwara and A. Taguchi, “Motion-compensated frame rate up-conversion

based on block matching algorithm with multi-size blocks,” Proceedings of In-

ternational Symposium on Intelligent Signal Processing and Communication Systems,

pp. 353–356, December 2005.

[75] A. Huang and T. Q. Nguyen, “A multistage motion vector processing method for

motion-compensated frame interpolation,” IEEE Transactions on Image Processing,

vol. 17, no. 5, pp. 694–708, May 2008.

[76] S. Kang, K. Cho, and Y. Kim, “Motion compensated frame rate up-conversion

using extended bilateral motion estimation,” IEEE Transactions on Consumer Elec-

tronics, vol. 53, pp. 1759–1767, November 2007.

[77] B. Choi, J. Han, C. Kim, and S. Ko, “Motion-compensated frame interpolation

using bilateral motion estimation and adaptive overlapped block motion com-

pensation,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 17,

no. 4, pp. 407–416, April 2007.

[78] J. van de Weijer and R. van den Boomgaard, “Least squares and robust estimation

of local image structure,” Scale Space. International Conference, vol. 2695, no. 4, pp.

237–254, 2003.

[79] K. S. Ni, S. Kumar, N. Vasconcelos, and T. Q. Nguyen, “Single image super-

resolution based on support vector regression,” Proceedings of IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), vol. 2, May 2006.

189

[80] M. Protter, M. Elad, H. Takeda, and P. Milanfar, “Generalizing the non-local-

means to super-resolution reconstruction,” IEEE Transactions on Image Processing,

vol. 16, no. 2, pp. 36–51, January 2009.

[81] M. Protter and M. Elad, “Super-resolution with probabilistic motion estimation,”

IEEE Transactions on Image Processing, vol. 18, no. 8, pp. 1899–1904, August 2009.

[82] A. Danielyan, A. Foi, V. Katkovnik, and K. Egiazarian, “Image and video super-

resolution via spatially adaptive block-matching filtering,” Proceedings of Interna-

tional Workshop on Local and Non-Local Approximation in Image Processing (LNLA),

August 2008, Lausanne, Switzerland.

[83] A. Gersho and R. M. G. and, Vector Quantization and Signal Compression. Boston:

Kluwer Academic Publishers, 1992.

[84] B. Lucas and T. Kanade, “An iterative image registration technique with an ap-

plication to sterio vision,” Proceedings of DARPA Image Understanding Workshop,

pp. 121–130, 1981.

[85] C. Stiller and J. Konrad, “Estimating motion in image sequences - a tutorial

on modeling and computation of 2d motion,” IEEE Signal Processing Magagine,

vol. 16, pp. 70–91, July 1999.

[86] M. Ozkan, M. I. Sezan, and A. M. Tekalp, “Adaptive motion-compensated filter-

ing of noisy image sequences,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 3, no. 4, pp. 277–290, August 2003.

[87] R. M. Haralick, “Edge and region analysis for digital image data,” Computer

Graphic and Image Processing (CGIP), vol. 12, no. 1, pp. 60–73, January 1980.

[88] K. Q. Weinberger and G. Tesauro, “Metric learning for kernel regression,” Pro-

ceedings of the Eleventh International Workshop on Artificial Intelligence and Statistics,

pp. 608–615, 2007, (AISTATS-07), Puerto Rico.

190

[89] J. J. Gibson, The Perception of the Visual World. Boston: Houghton Mifflin, 1950.

[90] D. N. Lee and H. Kalmus, “The optic flow field: the foundation of vision,” Philo-

sophical Transactions of the Royal Society of London Series B-Biological Sciences, vol.

290, no. 1038, pp. 169–179, 1980.

[91] B. K. Horn, Robot Vision. Cambridge: MIT Press, 1986.

[92] J. Wright and R. Pless, “Analysis of persistent motion patterns using the 3d struc-

ture tensor,” Proceedings of the IEEE Workshop on Motion and Video Computing,

2005.

[93] S. Chaudhuri and S. Chatterjee, “Performance analysis of total least squares

methods in three-dimensional motion estimation,” IEEE Transactions on Robotics

and Automation, vol. 7, no. 5, pp. 707–714, October 1991.

[94] H. Takeda, H. Seo, and P. Milanfar, “Statistical approaches to quality assessment

for image restoration,” Proceedings of the International Conference on Consumer Elec-

tronics, January 2008, Las Vegas, NV, Invited paper.

[95] X. Zhu and P. Milanfar, “Automatic parameter selection for denoising algorithms

using a no-reference measure of image content,” submitted to IEEE Transactions

on Image Processing.

[96] G. Farnebäck, “Polynomial expansion for orientation and motion estimation,”

Ph.D. dissertation, Linköping University, Sweden, SE-581 83 Linköping, Sweden,

2002, dissertation No 790, ISBN 91-7373-475-6.

[97] S. Zhu and K. Ma, “A new diamond search algorithm for fast block-matching

motion estimation,” IEEE Transactions on Image Processing, vol. 9, no. 2, pp. 287–

290, February 2000.

[98] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. Freeman, “Removing

191

camera shake from a single photograph,” ACM Transactions on Graphics, vol. 25,

pp. 787–794, 2006.

[99] Q. Shan, J. Jia, and A. Agarwala, “High-quality motion deblurring from a single

image,” ACM Transactions on Graphics, vol. 27, pp. 73:1–73:10, 2008.

[100] M. Ben-Ezra and S. K. Nayar, “Motion-based motion deblurring,” IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, vol. 26, no. 6, pp. 689–698, June

2004.

[101] Y. Tai, H. Du, M. S. Brown, and S. Lin, “Image/video deblurring using a hybrid

camera,” Proceedings of IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), June 2008, Anchorage, AK.

[102] S. Cho, Y. Matsushita, and S. Lee, “Removing non-uniform motion blur from im-

ages,” Proceedings of IEEE 11th International Conference on Computer Vision (ICCV),

October 2007, Rio de Janeiro, Brazil.

[103] A. Levin, “Blind motion deblurring using image statistics,” The Neural Informa-

tion Processing Systems (NIPS), 2006.

[104] P. Milanfar, “Projection-based, frequency-domain estimation of superimposed

translational motions,” Journal of the Optical Society of America: A, Optics and Image

Science, vol. 13, no. 11, pp. 2151–2162, November 1996.

[105] ——, “Two dimensional matched filtering for motion estimation,” IEEE Transac-

tions on Image Processing, vol. 8, no. 3, pp. 438–444, March 1999.

[106] D. Robinson and P. Milanfar, “Fast local and global projection-based methods

for affine motion estimation,” Journal of Mathematical Imaging and Vision (Invited

paper), vol. 18, pp. 35–54, January 2003.

[107] ——, “Fundamental performance limits in image registration,” IEEE Transactions

on Image Processing, vol. 13, no. 9, pp. 1185–1199, September 2004.

192

[108] H. Ji and C. Liu, “Motion blur identification from image gradients,” Proceedings

of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2008,

Anchorage, AK.

[109] S. Dai and Y. Wu, “Motion from blur,” Proceedings of IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2008, Anchorage, AK.

[110] J. Chen, L. Yuan, C. Tang, and L. Quan, “Robust dual motion deblurring,” Pro-

ceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

June 2008, Anchorage, AK.

[111] E. Borissoff, “Optimal temporal sampling aperture for HDTV varispeed acquisi-

tion,” SMPTE Motion Imageging Journal, vol. 113, no. 4, pp. 104–109, 2004.

[112] E. Shechtman, Y. Caspi, and M. Irani, “Space-time super-resolution,” IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, vol. 27, no. 4, pp. 531–545,

April 2005.

[113] B. Wilburn, N. Joshi, V. Vaish, M. Levoy, and M. Horowitz, “High-speed videog-

raphy using a dense camera array,” Proceedings of IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pp. 294–301, 2004, Washington, DC.

[114] A. Huang and T. Nguyen, “Correlation-based motion vector processing with

adaptive interpolation scheme for motion-compensated frame interpolation,”

IEEE Transactions on Image Processing, vol. 18, no. 4, pp. 740–752, April 2009.

[115] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification (2nd edition). New

York, NY: Wiley Interscience, 2001.

[116] S. Theodoridis and K. Koutroumbas, Pattern Recognition (4th edition). San Diego,

CA: Academic Press, 2009.

[117] S. P. Awate and R. T. Whitaker, “Unsupervised, information-theoretic, adaptive

193

image filtering for image restoration,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 28, no. 3, pp. 364–376, March 2006.

[118] C. Kervrann and J. Boulanger, “Optimal spatial adapation for patch-based image

denoising,” IEEE Transactions on Image Processing, vol. 15, no. 10, October 2006.

[119] M. Charest and P. Milanfar, “On iterative regularization and its application,”

IEEE Transactions on Circuits and Systems for Video Technology, vol. 18, no. 3, pp.

406–411, March 2008.

[120] D. Keren and M. Osadchy, “Restoring subsamled color images,” Machine Vision

and Applications, vol. 11, no. 4, pp. 197–202, December 1999.

194

