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ABSTRACT

In [1], we derived an expression for the fundamental limit to

image denoising assuming that the noise-free image is avail-

able. In this paper, we propose an estimator for the bound on

the mean squared error given only the noisy image and noise

characteristics. To do this, we make use of an assortment

of independently collected noise-free images from which

prior information about the noisy image is learned. We show

that even for reasonably low input signal-to-noise levels, our

method can predict the denoising bound with accuracy.

Index Terms— Image denoising, estimation, Bayesian

Cramér-Rao lower bound, mean squared error.

1. INTRODUCTION

Image denoising has been a well studied problem in the image

processing community. Recently published methods perform

denoising quite well, even in the presence of high levels of

noise. Camera manufacturers rely on these methods to at-

tenuate the effects of noise, especially for images captured

in unfavorable lighting conditions. However, not much effort

has been made to study the fundamental performance lim-

its of image denoising. Recently, Treibitz et al. [2] studied

the recovery limits for particular objects or regions in an im-

age under pointwise degradation. Voloshynovskiy et al. [3]

briefly analyzed the performance of MAP estimators for the

denoising problem. However, neither of these works study

the general image denoising problem. In [1], we developed

bounds on the mean squared error (MSE) of patch-based de-

noising methods. This enabled us to identify how well the

current state-of-the-art methods performs when compared to

the theoretical limits of performance. The bounds there were

computed assuming knowledge of the noise-free image.

In this work, we propose a method of estimating the

bounds given only a noisy observation. If built into a camera,

such a method will make it possible to predict if a captured

image, once denoised, will be of acceptable quality. This can

be useful to photographers who can then tune camera param-

eters accordingly, manually or automatically. In the absence
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Fig. 1. Example of geometric clustering: (a) Noise-free house im-

age, (b)-(e) few clusters based on geometric structure of patches.

of the ground truth, we make use of a collection of noise-free

images that is processed offline to infer information about

the noisy image. We also use a modified patch similarity

measure to determine patch redundancy in the noisy image.

The bound estimation process is detailed in Sec. 3. However,

we first provide a brief overview of our bounds formulation

in the next section. In Sec. 4, we validate our method pro-

posed in this paper through various experiments that amply

illustrate that the bounds can be accurately estimated from

images corrupted by varying levels of noise. We conclude in

Sec. 5 where we identify directions for future research.

2. LOWER BOUND ON THE MSE

In [1], we studied the fundamental limits of image denoising

where the problem is to estimate the original image patches

zi from their noisy observations

yi � zi � ηi, i � 1, 2, . . . ,M (1)

where M is the number of patches in the image, and ηi de-

notes a noise patch. An expression for the Bayesian Cramér-

Rao lower bound on theMSE for any given imagewas derived

by an independent analysis of various geometric structures in

the image. The motivation for such an approach was that, un-

der the assumption of the noise being independent of pixel

intensity, denoising difficulty is proportional to the level of

detail present in the underlying image patch. Thus, the (noise-

free) image patches were segmented into clusters of geometri-

cally similar patches (Fig. 1), irrespective of their pixel inten-

sities, using normalized steering kernel features developed for

denoising in [4, 5]. This allowed us to model patches zi in any

given cluster (Ωk) as realizations of some random variable z

sampled from some (unknown) probability density function
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(pdf) pkpzq. The MSE bound for each patch within a cluster

was then derived as
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(2)

where Ji is the Fisher information matrix (FIM) andCz is the

covariance of z from pdf pkpzq. Cz captures the cluster com-

plexity in terms of variation between member patches while

the FIM depends on the noise characteristics and the number

(Ni) of similar patches that exist for each patch (zi). For zero

mean Gaussian noiseN p0, σ2Iq, the FIM takes the form

Ji � Ni

I

σ2
(3)

where I denotes the identity matrix. Ni is determined patch-

wise for each zi by searching for the number of patches zj in

the entire image that satisfy the condition

zj � zi � εij such that }εij}2 ¤ γ (4)

where γ is a patch size dependent threshold. The bound for a

cluster Ωk can then be computed as
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for all zi P Ωk with cluster cardinality Mk. Note that the

expression for the bound does not require knowledge of entire

pkpzq but just its first and second order moments, which are

estimated using a bootstrapping mechanism [6]. However,

in [1], the moments and the Ni values were estimated from

the noise-free image that was assumed to be available. In

practice, one may need to estimate the bound given only the

noisy image and some knowledge of the noise characteristics.

We propose a way of estimating the bound for such cases in

the next section.

3. LOWER BOUND FROM NOISY IMAGE

As previously mentioned, the bound estimation process in [1]

relies on information accurately gathered from the noise-free

image. However, given a noisy image, the estimation of the

covariancematrix in each cluster and the performance of clus-

tering are affected by the presence of noise. Also dependent

on the presence of the noise-free image is the estimation of

the Ni values for each patch in the image. In our present ap-

proach, we estimate the required information, namelyCz and

Ni values, using an approach graphically outlined in Fig. 2.

We describe each step below.

3.1. Estimating the Covariance Matrix

In the presence of noise, the image patches can no longer

be clustered without noticeable clustering error. Such errors

Fig. 2. Block diagram of our proposed bound estimation method.

automatically reduce the accuracy of the covariance esti-

mate. Moreover, even if perfect clustering was possible,

noise would adversely affect the estimation of the second

moment from the noisy image samples.

To circumvent such adverse effects of noise, we make

use of a collection of noise-free images (not containing the

target underlying image) that is processed offline. Extract-

ing patches from such images, we compute the steering ker-

nels for each noise-free patch using the method outlined in

[4, 5]. These steering kernels capture the underlying patch

structure and are used as features for clustering the noise-free

patches across all images in the database. We use the K-

Means method [7] to group the noise-free patches into a large

number (K) of clusters (denoted byΩk). Along with the clus-

tering, K-Means also estimates the cluster centers (swk). Once

the clusters are formed, we can expect patches of similar ge-

ometric structure to be grouped together (Fig. 1), irrespective

of the (noise-free) image that they belong to. A bootstrapping

mechanism [6] is then used to estimate the covariance matrix

for each cluster. Once this is done, we only retain the clus-

ter centers and the associated Cz matrices to form a look-up

table. This forms the preprocessing step of our method, as

shown in Fig. 2.

Now, given any noisy image, we obtain an estimate of

the covariance matrix for each noisy patch by identifying the

cluster of noise-free patches that it is most likely to belong to.

This is done by computing the steering kernel featureswi for

each patch in the noisy image and associating with each noisy

patch some cluster Ωκ with center swκ from the precomputed

look-up table such that

κ � argmin
k
}wi � swk}. (6)

From the learned cluster membership information, the corre-

spondingCz matrix is associated with each noisy patch. This

we denote as pCzi
. Hence, we estimate a covariance matrix

for each patch, thereby avoiding the need to perform cluster-

ing or having to directly estimate Cz from the noisy image

patches. Later, in Sec. 4, we show that using such a method,



we can learn the patchwise pCzi
matrix accurately enough to

predict the denoising bound for any given noisy image.

3.2. Estimating the FIM

The other term that needs to be estimated to compute the

bound is the FIM. Assuming that the corrupting noise is ad-

ditive white Gaussian (AWG) with a known (or estimated)

pixelwise standard deviation (σ), we need to estimate only

the Ni values for each patch to estimate the FIM having the

form of Eq. 3. In [1], this was estimated using the similar-

ity measure of Eq. 4. However, this cannot be directly used

for the noisy case. Nor is it possible to use the noise-free im-

age database since we need to estimate the number of patches

within the given noisy image that are similar to each noisy

patch. A possible solution could be to use a denoised version

of the noisy image to computeNi. However, such an estimate

would depend largely on the denoising algorithm. Moreover,

the denoised image may well be over-smoothed and lack finer

details making the estimation of Ni inaccurate. Thus we re-

strict ourselves to search for similar patches directly from the

given noisy image. In such a case, the measure of similarity

between noisy patches needs to be refined. This can be done

by extending Eq. 4 as

zj � zi � εijñ yj � ηj � yi � ηi � εijñ yj � yi � �
ηj � ηi � εij

�loooooooomoooooooonrεij

, (7)

where }rεij}2 � }εij}2 � }ηj � ηi}2 � 2ε
T
ijpηj � ηiqñ Er}rεij}2s � Er}εij}2s � 2σ2n, (8)

since εij is independent of the noise, and n is the number of

pixels in each patch. Thus, any noisy patch yj can be said to

be similar to yi if }rεij}2 ¤ γ � γη, (9)

where γ is defined in Eq. 4 and γη � 2σ2n depends on the

noise variance. Thus, by design, the new threshold for iden-

tifying similar patches across the image has a part γ that ac-

counts for the difference in patches in the (unknown) original

image and another γη for the difference arising due to noise

corruption.

Once we have a mechanism of estimatingNi (denoted by

N̂i) and pCzi
for each patch in the noisy image, we compute

the bound on the MSE for the entire image as
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In the next section we provide experimental verification of

our proposed method for estimating the bound.

(a) Some database images (b) Test images

Fig. 3. Few representative images from the database along with the

test images that we will use to validate the proposed bounds estima-

tion method.

4. EXPERIMENTAL RESULTS

In this section we show experimental results that illustrate

how well the bound can be predicted from a noisy image for

various levels of AWG noise. As explained in Sec. 3, to es-

timate pCzi
we make use of a database of noise-free images.

Naturally, the test images used in our experiments (Fig. 3(b))

are not included in the noise-free image database. In each

case, the bounds estimated using the proposed approach is

compared to the bounds computed from the noise-free image

(ground truth), as outlined in [1].

As a first step of verification, we use a restrictive case

where the images in the database belong to the same class as

the noisy image. That is to say that if we are given a noisy im-

age of a human face, we use only other face images to form

our database. This has the advantage of making an accurate

estimation of the bound while using patches from fewer im-

ages to form the database. We can also make use of fewer

clusters (we use K � 10), resulting in a speedier estimation.

However, this comes at the cost of human intervention in se-

lecting some group of images similar in content to the given

noisy image.

Hence it is more practical to use a generic database con-

sisting of images from a vast variety of image classes. Fig.

3 shows a few representative images from which patches are

used to make up our image database. The patches are pre-

clustered into K � 25 clusters and Cz is computed for each

cluster. Note that another advantage of using a vast repository

of patches is that it allows us to use a large K while also en-

suring the presence of enough patches within each cluster to

be able to computeCz stably.

We first evaluate how well the covariance matrix is esti-

mated for the noisy image patches. For this, we compute the

bounds using the estimated pCzi
for each patch in the noisy

image. However, theNi values are calculated from the noise-

free image. Thus the differences in the predicted bounds are



purely due to errors in learning the covariance matrix. Fig. 4

shows experimental results for the face and mountain images

for various signal-to-noise ratios (SNR) where the noise is

AWG. There it can be seen that the bound estimated using the

learned covariances are numerically similar to those estimated

from the noise-free image, even for lower input SNRs. This

is true irrespective of our choice of the noise-free database,

that is, when the database is made up of fewer same class im-

ages as well as for the more generic database composed of

a wider variety of images. This proves that using a database

of noise-free images allows us to learn the covariances quite

accurately.

Next we consider estimating both pCzi
and Ni as outlined

in Sec. 3. Fig. 4(a) shows the bound estimated for various

input SNR levels of the face image corrupted by AWG noise.

There we can see that even for quite low input SNR (22 dB)

the bound is estimated quite accurately in comparison to the

bound computed from the noise-free face image. Good esti-

mates for the bounds are obtained for both types of databases,

although the generic database seems to perform better. A sim-

ilar result can be seen in Fig. 4(b) where we compare the

bounds estimated from the noisy mountain image to those es-

timated from the noise-free one. There too one can see that

the bound estimation is quite accurate, even for a low SNR of

22dB (which corresponds to σ � 15). However, for stronger

noise, the estimation is not consistent with the noise-free one

due to difficulty in correctly estimating Ni values. This can

be inferred from the no noise plots where the bound estimates

whenNi values are estimated from noise-free images are very

similar to the ones obtained entirely from the noise-free im-

age. As a result, the bounds estimated for input SNR below

22dB are much larger than what is predicted from using the

ground truth. Thus, although our bounds estimation scheme

predicts an accurate bound from the noisy image for reason-

able noise levels, it cannot be used if the noise is too strong.

5. CONCLUSIONS

In this paper we introduced a mechanism of estimating the

bounds on the MSE that can be expected in denoising any

given noisy image. We estimated the bound by treating it

as two separate problems of estimating the parameters of the

bounds formulation, namely the covariance matrix and the

measure of redundancy for each patch. We showed, through

experimental verification, that estimation of the bound is quite

accurate when reasonable levels of noise are considered. Our

results also illustrate that while the patchwise covariance ma-

trix can be estimated robustly through the use of a collec-

tion of noise-free images, estimating patch redundancy (Ni)

across the image is difficult for low SNR. This leads to inac-

curate bound estimates when the corrupting noise is strong.

Use of a partially denoised image to estimate the Ni values

may possibly alleviate this problem. We consider this to be a

direction for our continuing research.

(a) Face image

(b) Mountain image

Fig. 4. Bounds (in 10 log
10

scale) estimated using a noise-free im-

age database. The noisy bounds are those obtained using the pro-

posed method; the no noise plots represent the case when Ni values

are estimated from the noise-free image but pCzi
is estimated from

the look-up table; and ground truth denotes bounds estimated from

the noise-free image [1].
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