
VERID: Towards Verifiable IoT Data Management

Xin Li
University of California Santa Cruz

xinli@ucsc.edu

Minmei Wang
University of California Santa Cruz

mwang107@ucsc.edu

Shouqian Shi
University of California Santa Cruz

sshi27@ucsc.edu

Chen Qian
University of California Santa Cruz

cqian12@ucsc.edu

ABSTRACT

Ensuring the authenticity and integrity of the sensing data that are

stored in a third-party cloud is a crucial task for the correctness

and safety of many IoT applications. Although verifiable data out-

sourcing has been studied for over a decade, current solutions are

not fully suitable for IoT systems, due to the hardware constraints,

deployment features, and application requirements of IoT. This pa-

per presents VERID, a verifiable data management system designed

for IoT applications. VERID enables important ranged selection and

aggregate queries of sensing data while imposing minimal overhead

for resource-constraint IoT devices. Our important innovation is

a computational and space-efficient authentication data structure

called PrefixMHT which fits into resource-constrained IoT devices

and supports both range and aggregate queries. We design a new

signature aggregation scheme called Condensed Bilinear Pairing

to further improve the efficiency. The experiments using real IoT

datasets show that VERID is able to provide authenticity, integrity,

and completeness of data queries while achieving substantial ad-

vantages in computation, memory, and communication efficiency

than possible methods.

CCS CONCEPTS

• Information systems→Data management systems; • Secu-

rity and privacy→ Security protocols; • Networks→ Cloud

computing; Cyber-physical networks.

KEYWORDS

the Internet of Things; Verifiable Data Outsourcing

1 INTRODUCTION

The Internet of Things, or IoT, is gaining increasing public atten-

tions and continuously reshaping the world in various aspects

[20, 30, 34, 35, 57, 58]. Equipped with sensors, large groups of IoT

devices perceive the physical environment or monitor conditions

of target objects or human beings and therefore generate massive

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6283-2/19/04. . . $15.00
https://doi.org/10.1145/3302505.3310074

Figure 1: Overview of IoT data framework in VERID

sensing data during their operation. Even though IoT devices dif-

fer vastly in external form, ranging from tiny wearables to larger

industrial devices, most of them are embedded devices with lim-

ited cost, resources and size. Storing the sensing data at a cloud is

the most popular paradigm for IoT data management as adopted

by both recent proposals [33, 34, 41] and industrial practices [5].

The data consumers such as intelligent analytics programs retrieve

data from the cloud to make decisions accordingly. They might

also be IoT devices. With tampered or erroneous data, IoT appli-

cations may make wrong decisions and cause economic and even

human-life losses [55]. The sensing data are stored in a third-party

cloud, which may not be fully trusted. The query result could be

corrupted by outside attackers, malicious cloud employees [42],

transmission failures, or storage loss [3]. According to a survey

of 1400 IT decision-makers conducted by McAfee [10], 25% cloud

tenants have experienced data theft from the public cloud and 20%

cloud tenants have experienced an advanced attack against their

public cloud infrastructure.

The canonical IoT-cloud communication model is shown in Fig. 1.

Hence a critical task of IoT data management is to allow the data

consumers to verify the correctness of the sensor data retrieved

from the cloud. The “correctness” here includes two requirements:

1) Authenticity and integrity: the data should be collected from

the sensing devices and not be tampered by any third party; 2)

Completeness: the data consumer should receive all and only the

data satisfying the conditions in its query. An IoT data management

method is verifiable if a data consumer can verify the correctness

of the received data.

The general problem of verifiable database outsourcing has been

studied for over a decade [15, 21, 36, 39, 48, 64, 65]. A common

approach is that a data publisher also uploads an Authentication

Data Structures (ADS) to the cloud and keeps updating it. An ADS is

a data structure signed by the IoT device using its private key. When

1

118



IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada X. Li, et al.

a Data Consumer (DC) receives the data from the cloud, it also gets

a number of Verification Objects (VOs) which are constructed by the

cloud from the ADS and can be used to verify the data correctness.

However, existing solutions are not fully suitable or optimized for

the IoT. Existing work mainly focuses on general-purpose resource-

rich platforms such as servers with infrequent updates.

We identify the communication pattern, the hardware constraints,

deployment features and application requirements of IoT that de-

mand a new design of verifiable data management.

Append-only updates. IoT devices send sensing data to the

cloud for storage. Therefore, appending is the only operation needed

for updating. Without considering modifying or deleting history

data, the design of ADS could be optimized towards append-only

updates.

Computation efficiency. IoT devices are usually limited in

computation power. In addition energy efficiency may be another

top concern for them. Hence solutions based on computation-

intensive cryptographic operations [8, 64, 65] are not appropriate

for IoT applications. Even though the performance of IoT CPUs

increases significantly over the years, public crypto operations are

still slow from one recent field test [41] which showed that it takes

the IoT device, which is built atop one popular IoT platform with

ARM Cortex@72MHz, 0.1 second on average to finish one 1024-bit

RSA encryption operation.

Memory efficiency. IoT devices are constrained by memory ca-

pacity as well. Even crypto operations themselves do not consumer

too much memory space, the data structure to support verifiable

queries do! Solutions based on multi-way trees [21, 39] are not

efficient on disk-less IoT devices with limited available memory.

For dynamic database outsourcing schemes using memory-friendly

ADSes [48, 65], these ADSes however grow fast with #update.When

the ADS exceeds memory limit, it will be signed and then flushed to

the cloud. In this case a query may result in a jumbo VO constructed

from an overwhelming number of ADSes.

Communication efficiency. Communication of IoT devices

is often more power-consuming than computation by orders of

magnitude [27, 28]. Therefore, the sizes of updates from IoT devices

to the cloud is an important metric. Multiway-tree based schemes

such as AAR-tree [39] configure the ADS node size to that of a page.

When the IoT device updates its ADS, entire stale nodes (nodes

different from the previous version) are transmitted to the cloud

even with a small modification, which are in large size.

Multiple data publishers. Multiple homogeneous IoT devices

being deployed to collectively monitor the physical environment

is an unique feature of IoT applications. These homogeneous IoT

devices form a task group. For example, one dataset [13] provides

the outdoor temperature of areas in Rome collected by 289 taxicabs

over 4 days.

We summarize our contributions in this paper as follows.

1) We design and implement a verifiable IoT data management

system, VERID, considering all requirements of IoT discussed above.

It is a holistic design taking into account verifiable data com-

munication, storage and verification altogether.

2) Our important innovation is a computational and space-efficient

ADS called PrefixMHT which fits into resource-constrained IoT

devices and supports both range and aggregate queries. PrefixMHT

is optimized for append-only updates.

3) We build an efficient data management system in the cloud. It

novelly exploits spatial locality among IoT devices to reduce disk

I/O.

4) We design a signature scheme, CBP-VERID, to significantly

reduce both communication and computation costs especially in

the sparse setting. Even though CBP-VERID are not fundamentally

different from other pairing-based signature schemes in terms of

cryptography, CBP-VERID are specially designed to fit the needs of

sparse IoT applications. To the best of our knowledge, CBP-VERID

is the first signature scheme that enables signature aggregation in

both spatial and temporal dimensions.

5)We also investigate the problem of shared budget constraint for

a group of IoT devices and extend VERID to resolve this problem. It

is a novel and important problem that no existing data outsourcing

solutions have consider it.

The rest of this paper is organized as follows. The related work is

discussed in Sec. 2. We present the problem statement in Sec. 3. We

describe the system design details in Sec. 4. We present the digital

signature scheme and its security and cost analysis in Sec. 5. The

experimental results are presented in Sec. 6. Further discussions

are presented in Sec. 7. Sec. 8 concludes this paper.

2 RELATEDWORK

Verifiable database outsourcing have been studied for over a decade

and two broad categories of approaches are exerted towards this

goal. General verifiable delegation of computation can handle any

query on outsourced data. Circuit-based solutions [8, 17, 23, 26,

29, 53] require the data owner to compile the entire dataset into

an arithmetic circuit. Circuit-based systems incur excessive proof

construction overhead. A very recent work vSQL [64] improves

the performance of this approach by combining an information-

theoretic interactive proof system [25] and a polynomial-delegation

protocol [50]. However, the overhead of vSQL is still high for prac-

tical uses. Another line of research efforts [12, 52] to realize general

verifiable computation over authenticated data are based on homo-

morphic signature, which are also of theoretical interests only.

On the other side, numerous prior works aim at verifying one

or multiple specific data query types, including range query [15,

21, 48, 49, 65], data aggregation [36, 39], join [48, 62, 66], search

over encrypted data [61], etc.. VERID falls into this category. We

conduct the following literature review of the methods in the series

of work and use Table 1 to show an qualitative comparison between

representative database outsourcing schemes.

Chained Signature Approach [48]. The ADS is an authenti-

cated and unforgeable linked list ordered by one dimension (such

as time, temperature) over the dataset where each node contains

the cryptographic hashes of its predecessor and successor. At query

execution, all nodes falling in the query range are lined up to form

the VO. The data consumer verifies authenticity and completeness

of the results by sequentially checking the signatures of the nodes

in the VO. For data publishing, the newly inserted node along with

its two neighbors are updated, re-signed and then uploaded to the

cloud by the data publisher. Chained signature approaches perform

three signing operations per data insertion which would be inef-

ficient on IoT devices. This approach does not support aggregate

queries such as SUM or multi-dimensional queries.

2

119



VERID: Towards Verifiable IoT Data Management IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada

Table 1: Qualitative comparison of representative database outsourcing schemes. �: efficient; �: inefficient; ��: inefficient in

some situations/metics.

Scheme Category Memory Computation Log ADS update Multi-dimension Comments

BAS [48] Signature-based �� � � � inefficient for aggregate

APS-tree [36] Prefix Sum � �� � � coarse granularity

IntegriDB [65] Set operation � � � � crypto heavy

vSQL [64] Circuit-based � � � � computational intensive

AAR-tree [39] Multiway-tree �� � � � large VO size

VKD-tree [21] Binary-tree �� � � � unbalanced tree

CorrectDB [15] Hardware-aid � � � � trusted hardware

VERID (this work) Binary-tree � � � � holistic design for IoT

Prefix Sum. APS-tree [36] uses Prefix Sum for efficient valida-

tion of aggregate operations, specially on SUM. The basic idea is

to pre-process the data at the data publisher’s side such that the

aggregated value could be easily assembled by those pre-processed

values. Compared to signature-based approaches, Prefix Sum re-

duces the communication cost of aggregate queries to O(1). Prefix
Sum however suffers from inefficient update: A single update may

trigger conducting pre-processing over the whole dataset in the

worst case.

Authenticated SetOperations. Some priorworks [49, 65] achieve

authentication of set operations including union, intersection, and

set-difference, which are powerful building blocks to compute multi-

dimensional range queries. However they are very inefficient in

computation. Each data publisher needs 1) computing q exponents

with up to the sq th powers where s is secret value and q is a big

integer, and future ranged queries are limited to those whose results

have cardinality less than q; 2) O(log |r |) encryptions per insertion
(|r | denotes #rows of the relation).

Tree-basedApproaches.Tree-based approaches employMerkle

Hash Tree (MHT) [43] or its variants (e.g. Merle B+-tree [32, 38],

Merkle R*-tree [39, 62]) as the core ADSes. During a query phase,

the cloud traverses the tree to identify the query results and con-

struct the tree traversal path as the proof to the data consumer.

Based on the received proof information, the data consumer recon-

structs and replays the path to verify the correctness of the query

results. Most tree-based approaches employ disk-based multi-way

search tree such as B+ tree and R* tree as the indexing structure.

The node size of one Multiway-tree is configured to that of a page

whose minimum size is 4KB on most architectures. When the IoT

device updates the multi-way tree, the entire stale nodes are trans-

mitted to the cloud even only a small fraction inside a stale node is

modified.

Trusted Hardware Aided Approaches. CorrectDB [15] and

EnclaveDB [22] rely on the specialized trusted hardware Intel SGX

[6] inside the cloud to conduct the heavy-lifting tasks in database

outsourcing. VERID does not depend on any special hardware.

3 PROBLEM STATEMENT

3.1 Data Communication Model

The life cycle of IoT sensing data is demonstrated in Figure 1. The

communication model consists of three different kinds of entities:

IoT devices are resource-constraint devices that generate sens-

ing data. Programs running on the IoT devices should abide strin-

gent resource limits in computation, memory, and power resources.

IoT devices do not require perfect synchronization, but we do as-

sume one synchronization protocol available to loosely synchronize

clocks on different IoT devices with bounded drift. At the end of

each interval, called an epoch, devices send all generated data within

the epoch to the cloud. We define all IoT devices collaboratively

perform a monitoring task as a task group. We assume that all data

from one single group follow a common schema.

Cloud is a third-party storage provider who has rich resources.

It stores the sensing data from IoT devices and exposes a SQL-like

interface for Data Consumers (DCs) to make queries.

Data Consumers (DCs) are a vast variety of software systems,

devices and human clients that retrieve the IoT sensing data for

analysis purposes. DCs may also be IoT devices.

IoT sensing data can be classified into two types: time series data

and event data [63]. Time series data, generated periodically, are

used to describe continuously changing environment parameters

such as temperature. Event data are generated whenever a certain

type of events occurs, such as a door with one smart lock being

opened. Note time series data can be viewed as a special case of

event-based data driven by clocks. Hence this paper uses event-

based data in the model for generalizability.

3.2 Supported Operations

VERID supports many SQL-style range selection and aggregation

operations including AVG, MAX, MIN, COUNT, SUM and MEDIAN.

VERID does not support JOIN at this point and would be our fu-

ture work. VERID follows the relational data model, in which the

query/operation can be expressed by the relational algebra [24].

For a relation r , VERID supports:

1) Selection (σ ). σC (r ) = {t ∈ r |C(t)}. A selection operation

σC (r ) over relation r returns all the tuples in the relation r meeting

the conditionC .C can be used to specify the range of a range query

on indexed attributes (dimensions).

2) Aggregate (G). Aggregate function f maps a set of values

into a single value. Common aggregate functions include AVG,

MAX, MIN, COUNT, SUM. In addition, VERID supports MEDIAN

and its generalization p-th percentile.

3

120



IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada X. Li, et al.

3.3 Threat Model

There is an increasing concern about the security of outsourced

data in the cloud [41, 55, 59]. The query result could be corrupted

by outside attackers, malicious cloud employees [42], transmission

failures, or storage loss [3].

We assume only IoT sensing devices and data consumers are

trustworthy and any entities in between including the cloud are

subject to attack or may perform functionalities in a dishonest way.

The correctness of range selection are two-folded:

(1) Each data item in the query result should be from the in-

tended database and not tampered by any third party. This

property is called as authenticity and integrity.

(2) Each data item in the result must satisfy the query predicates

and all data items satisfying the query predicates must be

included in the result. This second requirement is denoted

as completeness.

Likewise, the aggregate query correctness means the aggregated

value is computed from the data items satisfying the above proper-

ties.

VERID does not address the issue of privacy and confidentiality in

this paper. They are orthogonal to the database query correctness

and there are exiting works [40, 51, 56] on solving these two aspects

of data outsourcing.

The cloud can claim that it stores no data to a data consumer.

However this cheating is relatively easy to audit and detect. As long

as the cloud claims it stores sensing data, the returned data to a DC

must be correct and complete.

Even if IoT devices are likely to be compromised, different IoT

devices are isolated in terms of trust. The compromising of one IoT

device does not propagate to others. There is some literature [14, 60]

to detected compromised IoT devices, which is complimentary to

the content of this paper. On the other hand, the cloud impacts

the whole systems and it is out of the control of IoT applications.

To make the system robust against device compromise, each IoT

device hosts and uses its own private key. The paper assumes the

existence of a well-functioning PKI which manages the distribution

of the public keys. The asynchronous IoT-cloud communication is

protected by the digital signature and man-in-the-middle attack is

hard if digital signatures are certified by PKI.

There is also an external mechanism for the data consumer to get

the relation schema and the names of all collaborative IoT devices

in the task groups of interest.

4 SYSTEM DESIGN

4.1 Overview

We dissect VERID into steps and depict the design overview in

Figure 2. We will explains the procedures in this subsection about

how different entities interact to achieve verifiable data query in

the IoT scenario. Multiple IoT devices are sending data to the

cloud simultaneously, but we only demonstrate one IoT device in

the picture for ease of presentation.

Authentication Data Structure (ADS) is an indexing data structure

whose operations can be carried out by an untrusted cloud and

the result could be verified by data consumers. Each IoT device

maintains and updates one ADS in accordance with the sensor

readings during its entire life cycle. In VERID, the ADS is a new

data structure PrefixMHT, which is essentially a binary search tree

(BST) and can be authenticated similar to the Merkle Hash Tree

(MHT) [43] (see details in Section 4.3). Therefore, VERID falls in the

broad category of tree-based method. Upon new sensor readings,

the IoT device inserts the value into PrefixMHT as a normal BST

insertion except that all visited nodes are marked as stale. (Step 1).

VERID updates the latest ADS to the cloud at a fixed time interval

called epoch. Therefore, each PrefixMHT node includes an epoch

attribute to indicate the epoch when the node is updated. The

epoch attribute together with the node value can uniquely identify

a PrefixMHT node over time and thus are collectively defined as

the NodeID. The epoch attribute is the key enabler for VERID to

perform queries on historical data. At the end of each epoch, the

IoT device updates the digests of the PrefixMHT by recomputing

the hash of stale nodes from bottom up like all other MHT variants.

As such, the hash of the root summarizes the whole PrefixMHT

and therefore is also referred as the digest of the PrefixMHT. (Step

2). Afterwards, the IoT device signs the root node using its own

private key (Step 3). Thanks to the tree structure of the PrefixMHT,

the IoT device sends to the cloud only the stale nodes along with

the new signature instead of the entire PrefixMHT (Step 4). Since

BST insertion starts from the root, the root node for every epoch is

always stale and included in every PrefixMHT update. To maintain

the tree structure when serializing PrefixMHT nodes, the NodeIDs

of both left and right children are explicitly included in each node.

When the PrefixMHT update is received, the cloud first stores

the root NodeID as well as the signature in one structure for main-

taining ADS meta-data. ADS meta-data are used at the data query

procedure described later (Step 5). All other parts of the ADS up-

date, i.e. the stale nodes, are stored at the leaf nodes of one B+ Tree,

which indexes PrefixMHT nodes by their NodeIDs. Since the cloud

has all the incremental updates history (i.e. PrefixMHT updates

from all proceeding epochs), it is able to reconstruct the complete

PrefixMHT of any epochs hitherto from PrefixMHT nodes stored

in the B+ tree. As a result, multi-version logical PrefixMHTs embed

in the B+ tree to answer data queries.

Steps 1-6 run repetitively during the whole lifecycle of the IoT

device. On the other hand, one round of Steps 7-c are stimulated

when the data consumer issues an data query to the cloud through

the query interface described in this paper. The query may span

multiple epochs across the IoT sensing devices. The same search

criteria will be applied to all IoT devices in the same task group

(Step 7). Upon receiving and parsing the data query request, the

cloud uses (DeviceID, epoch) as the key to retrieve from ADS meta-

data the root NodeIDs and the signatures of interest (Step 8). Given

the root node, the logical PrefixMHT, basically a binary search tree,

is traversed according to the search criteria specified by the data

consumer. The PrefixMHT nodes on the search path in the logical

PrefixMHTs are assembled as an unforgeable Verification Object

(VO), which will be used by the data consumer later to verify the

query result. The VO consists of one or multiple partial PrefixMHTs

which have already signed by the IoT device (Step 9). The query

result, together with the VO and associated signatures, are returned

to the data consumer (Step a). Following the signatures verification

with the public key of the IoT device (Step b), the data consumer

4

121



VERID: Towards Verifiable IoT Data Management IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada

Figure 2: VERID design overview

replays the searching path embedded in the VO to verify the query

result (Step c).

4.2 Design of Prefix Tree

We first introduce a new design called Prefix Tree which enables

efficient aggregation queries. Operations in a Prefix Tree are moti-

vated by the idea from Prefix Sum [36] but are further extended to

handle dynamic updates. We then design an ADS which embeds

Prefix Tree in Merkle Hash Tree (MHT) called PrefixMHT.

Prefix Sum [36] performs the SUM operation over static dataset

with low overhead. Given an integer array nums, Prefix Sum can

efficiently find the sum of the elements between any two indices.

The basic idea is to pre-process the array such that range sum

query could be easily assembled by pre-processed values. The pre-

fix sum PS of array M is an array and each element is: PS [i] =∑i
j=0M [j]. Given the prefix sum, the range sum can be computed

as: Sum([l ,h]) = PS[h] − PS[l], where l and h denote the exclu-

sive lower bound and inclusive upper bound of the range query

respectively. To apply Prefix Sum in IoT applications to answer

the question like "show the number of temperature readings be-

tween 5 and 13 degree", the sensor readings are bucketized and an

array M is initiated to maintain the number of readings in each

bucket. Obviously the number of buckets hence space complex-

ity determines the query precision. More significantly, Prefix Sum

suffers from inefficient update: A single update may trigger conduct-

ing pre-processing over the whole dataset in the worst case. The

situation is even worse for IoT applications which usually feature

high write/read ratios. Additionally, Prefix Sumwastes considerable

space when the array itself is sparse, which is a common situation

in IoT applications if the distribution of some sensor readings are

highly skewed.

Prefix Tree thus is proposed to handle the dynamic updates

while achieving the efficiency on aggregation queries. Prefix Tree

does not suffer from space-precision dilemma. Each interval node of

Prefix Tree maintains four attributes: key, cardinality, sub-tree count

and sub-tree sum. The key attribute stores the searchable sensor

reading value (e.g. temperature) and is used as the search key. All

data items are sorted along the tree based on the key attribute. All

future range and aggregate queries should be on the key attribute

dimension. We will show how this method can be extended to

support multi-dimensional range queries in Sec. 4.6. Cardinality

refers to #elements having the associated value. Sub-tree counts and

sums summarize the corresponding sub-trees (including the node

itself) which are analogous to the element of Prefix Sum array PS .
Since the operations of the both aggregated values are similar, we

concentrate on the sub-tree count only for the following discussion.

Prefix Tree enables efficient prefix count queries, like "show the

number of temperature readings below 13 degree". Figure 3 gives an

illustrative example to accomplish the query "SELECT COUNT(*)

FROM value ≤ 13". In Figure 3, the two numbers inside each node

attribute to the value and its cardinality respectively. For instance,

10(3) inside N01 indicates three instances of value 10. The numeric

aside the link summarizes the total number of instances under the

subtree: the sub-tree count attribute of lower node of this link. The

prefix-count query starts from the root and traverses the Prefix

Tree like a normal BST. Count is initialized to 0 in the beginning.

On delving into the right child, count is increased by the difference

of the sub-tree count of the parent node and that of the right-child

node. Take Figure 3 for instance. On traversing from Nroot to N1

the count is increased from 0 to 14− 7 = 7, meaning that number of

instances equal or smaller than 11 is exactly 7. On traversing from

N1 to N10, the count does not change. When the leaf node N10 is

reached, its cardinality is then added to the count if its value equals

to the higher searching bound. In particular, the query result of

the aforementioned example is 7 + 2 = 9. Range sum query can be

conducted similarly (sub-tree sum is not shown in Figure 3).

Upon insertion, only nodes on the path from the newly inserted

node to the root are updated. Therefore, the insertion complexity

is O (logn), where n is #nodes in the Prefix Tree. Prefix Tree is far

more efficient than Sum Prefix in dynamic settings.

4.3 Design of PrefixMHT

We design the ADS based on Prefix Tree called PrefixMHT which

allows a Prefix Tree to be authenticated in a fashion similar to a

Merkle Hash Tree (MHT). PrefixMHT ensures query correct-

ness of both selection and aggregation queries.

Each PrefixMHT node is composed of the following attributes:

key, cardinality, sub-tree count, sub-tree sum, epoch, lchild NodeID,

5

122



IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada X. Li, et al.

Figure 3: Intuition on PrefixTree

rchild NodeID, lchild hash and rchild hash. The first four attributes

are consistent to those of the Prefix Tree. The epoch attribute indi-

cating when the node is updated which is indispensable to recon-

structing multi-version ADSes in the cloud. In addition, PrefixMHT

node stores the NodeIDs of its two children to enable logical tree

traversal in the cloud. Note again that one NodeID is a tuple of the

node value and the epoch.

In order to explain lchild (rchild) hash, we first introduce the

concept of node hash. Node hash encompasses all aforementioned

attributes in the PrefixMHT node and is used for authentication

at node level. The attribute lchild (rchild) hash is simply the node

hash of its left (right) child. Therefore the node hash recursively

summarizes the whole subtree. The root node hash is referred as

the digest of the whole PrefixMHT and is signed by the private key

to create the digital signature. The authentication of PrefixMHT

can therefore be conducted in a top-down approach starting from

the root node.

The IoT device does not create a PrefixMHT from scratch for

every individual epoch. PrefixMHT incrementally accumulates car-

dinality, sub-tree count and sum over time. The directly impacted

nodes due to insertion and nodes on their paths to the root are

collectively defined as stale nodes because they all contribute to

the incremental update. The prefix count PC[k, t], for instance, can
be interpreted as accumulated #insertions whose key values are

smaller than or equal to k from epoch 0 to epoch t . As such, the
answer for range count across multiple epochs are modified to:

Count([l ,h], [tb , te ])

=PC[h, te ] − PC[l−, te ] − PC[h, tb − 1] + PC[l−, tb − 1]
(1)

The two inclusive key search bounds are denoted as l and h. Let tb
and te be the inclusive start and end epochs.

4.4 Efficient PrefixMHT Update

Upon the end of an epoch, the IoT device updates PrefixMHT ac-

cording to the sensing data generated at that epoch. The root node

is always marked with the new epoch even if no insertion occurs

in that epoch; otherwise the cloud may discard data without being

detected. The hash of the root node summaries a snapshot of the

whole PrefixMHT, which is signed at every epoch by the IoT device

using its own private key. We will discuss in detail the signing

procedure in Section 5. Stale nodes and the PrefixMHT signature

are transmitted in JSON format [7] to the cloud for storage.

4.5 Storage in the Cloud

As shown in Figure 2 PrefixMHT updates are stored at the leaves

of a B+ tree in the cloud. Most prior tree-based methods let the

cloud create individual B+ trees, one for each IoT device, since

different IoT devices host their own private keys. VERID however

takes the opposite way: PrefixMHT updates from the a same task

group are stored one per-group B+ tree. In the per-group B+ tree,

a PrefixMHT node in an update is uniquely identified by a tuple

of (DeviceID,key,Epoch), where DeviceID is augmented upon the

node arriving at the cloud and key is the key field of the PrefixMHT

node. How the updates are sorted in the B+ tree have a profound

impact on the I/O cost. We discover through excessive experiments

that the three attributes prioritized as Epoch > key > DeviceID
exhibits the best I/O performance. Basically, Epoch preserves least

locality because the query can specify arbitrary starting and ending

epochs. On the other hand, since the same query range is applied

to all IoT devices in the same task group, clustering together all

PrefixMHT nodes associated with the same key values exploits

the spatial locality. Thus, DeviceID possesses the lowest priority

among the three constitutional attributes of the node identification.

Buffer management is an integral part of VERID, which caches

the content of disk reads in thememory to reduce I/O cost. The basic

management unit is one page, a fixed-length contiguous disk block

(e.g. 4KB). In VERID, its buffer management uses Clock replacement

algorithm [54] for its simplicity.

4.6 Extending to Multi-dimensional Data

The previously discussed PrefixMHT is a binary search tree which

can only handle one-dimensional data. However, most IoT devices

carry multiple sensors and as a result, IoT data are mainly high-

dimensional. VERID rests on Space-filling Curves (SFCs) to map a

high dimensional data point to a one 1-D value. Notable examples of

SFC include C-curve, Z-curve (a.k.a. Morton order) [45] and Hilbert

curve [44]. Therefore, by utilizing SFC, one high-dimensional range

is transformed to one or multiple 1-D segments which can be com-

puted efficiently using the divide & conquer strategy [47]. With

the help of SFC, validation of one range query is converted to

authenticating its corresponding end points in the SFC space.

Clustering number [44] is proposed to capture #segments during

range query processing. From the viewpoint of VERID, smaller

clustering number leads to shorter VO size. For IoT applications,

the range query usually exhibits some constraints or patterns. For

example, in geographical IoT applications, each query zone (e.g.

from citywide to street block) is bounded to one 2-D query range

with fixed length and width. As a result, we leverage the query-

aware QUILTS [46] as the space-filling curve on VERID. QUILTS

is a framework optimizing clustering number by choosing one

SFC from a family of Bit-Merging Curves [46] based on the query

pattern. IoT devices are also in favor of QUILTS over other SFC

such as Hilbert curve [44] due to the low computational overhead

to map the multi-dimensional data point to 1-D QUILT point.

Moreover, VERID is also able to amend multi-modal dataset,

as long as these data are associated with some searchable meta

data. For instance, one dimension to describe sound is its volume.

VERID supports search the sound based on its volume. In this way,

6

123



VERID: Towards Verifiable IoT Data Management IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada

multi-modal data could be viewed as ordinary multi-dimensional

data.

5 SIGNATURE SCHEME FOR VERID

The ultimate goal of this section is the introduction of CBP-

VERID which significantly reduces communication cost in

sparse settings. In this section, we first give the preliminaries to

understand the signature scheme. After that, Hash Fusion Signa-

ture (HFS) generated at the IoT device side is described in Section

5.2. The signature aggregation scheme, Condensed Bilinear Pairing

(CBP) and its verification are discussed in Section 5.3. Even though

the working scenarios of CBP is limited, the introduction of CBP

makes audiences understand CBP-VERID more easily. CBP-VERID

is illustrated in Section 5.4.

5.1 Preliminaries

5.1.1 Notations. Let λ denote the security parameter. υ(·) rep-
resents a negligible function, which means ∃L ∈ N, such that

υ(x) < 1/f (x) for any x > L and any polynomial function f (·).
x ←R S means assigning x a uniformly dawn value from set S .
If A(·) is a probabilistic algorithm, y ← A(x) means A return its

output to x . PPT is a shorthand for Probabilistic Polynomial-Time.

{0, 1}∗ represents the set of string of any length. Concatenation

is written as | |. Pr [E] means the probability of the occurrence of

event E.

5.1.2 Bilinear Pairing. CBP is based on an algebraic structure,

namely bilinear pairing. Suppose G1 and G2 are two cyclic mul-

tiplicative groups of prime order p with the cyclic generators д1
and д2 respectively. GT is another cyclic multiplicative group of

the prime order p. A bilinear pairing is a map e: G1 × G2 �→ GT
satisfying 1) Bilinearity: ∀u ∈ G1,∀v ∈ G2,∀a,b ∈ Zp , e(u

a ,vb ) =

e(ua ,v)b = e(u,vb )a = e(u,v)ab . 2) Non-degeneracy: e(д1,д2) � 1.

3) Computability: An algorithm exists to compute the mapping

efficiently. Bilinearity and non-degeneracy imply another two im-

portant property:

e(u1u2,v) =e(u1,v)e(u2,v) ∀u1,u2 ∈ G1,∀v ∈ G2 (2)

e(ψ (u),v) =e(ψ (v),u) ∀u,v ∈ G2 (3)

Hereψ is an efficient computable isomorphism functionψ : G2 �→

G1 such thatψ (д2) = д1. The 7-tuple bp := (p,G1,G2,GT , e,д1,д2)
defines a bilinear pairing.

5.2 Hash Fusion Signature

We start with the building block of our signature scheme, called

Hash Fusion Signature (HFS) which is used by each IoT device to sign

data. HFS is a variant of BGLS signature scheme [19] which is con-

structed based on bilinear pairing. Even though HFS could be

easily derived from BGLS, their definitions of unforgeabil-

ity are different. HFS is defined as a tuple (KeyGen, Siд,Ver )

consisting of three algorithms. Assume an algorithm BilGen(1λ) is
available to setup the public parameters of bilinear paring, which is

used as a subroutine in KeyGen. bp := (p,G1,G2,GT , e,д1,д2) ←

BilGen(1λ), where λ is the security parameter and p is a λ-bit prime.

Let H: {0, 1}∗ → G1 be a full domain hash function modeled as a

random oracle [16]. The message to be signed are composed of two

sub-strings, i.e. −→m =m1 | |m2.
−→m[i] represents the ith component of

−→m , i ≥ 1.

Definition 5.1 (HFS). Hash Fusion Signature (HFS) is a tuple of

three algorithm (KeyGen, Siд,Ver ) as described below.

KeyGen(1λ): bp ← BilGen(1λ), pick a random secrete s ←R Z
∗
p

and compute дs2 . Set the public key pk ← (дs2 ) and the private key

sk ← s . The public parameter is pp ← (bp,pk).

Siд(−→m, sk): for message −→m = m1 | |m2, let h ← H (m1) ∗ H (m2).

The signature is σ ← hs . Return α ← (−→m ,σ ,pk).

Ver(−→m,σ,pk): for message −→m =m1 | |m2, leth ← H (m1)∗H (m2).

Check e(дh1 ,д
s
2 )

?
= e(σ ,д2). If the two terms are equal, return 1; other-

wise return ⊥.

In the case of VERID,m2 is the epoch andm1 represents other

content of PrefixMHT root node. The purpose to isolate epoch is

to align the signature scheme with the highly structured communi-

cation pattern of IoT applications where only the epoch increases

and other part stays unchanged most of the time. This design is the

key enabler to reduce communication and computation complexity

of sparse settings described in Section 5.4.

The security of HFS is captured by a standard notation, Existential

Unforgeability under Chosen Message Attack (EU-CMA) [31]. EU-

CMA of HFS is defined by an experiment where the advantage

of any PPT adversary A is negligible. In this experiment, A is

provided with a signing oracles HFS .Siдsk (·). The signing oracle

HFS .Siдsk (·) returns the signature of the input under private key sk .
A can adaptively choose the messages as the input to the signing

oracle, but it can only query the signing oracles for up to poly(λ)
times, where poly(·) can be any polynomial function and λ denotes

the security parameter. A finally returns a forgery (−→m∗,σ∗) under

pk , whereA did not query the signing oracle on −→m∗ before.A wins

iffVer (σ ∗,−→m∗,pk) = 1. EU-CMA of HFS can be expressed formally

as:

Definition 5.2 (EU-CMA of HFS). HFS is Existential Unforgeable

Secure under Chosen Message Attack if the following formula holds.

Pr

⎡⎢⎢⎢⎢⎣
(sk,pk) ← HFS .KeyGen(1λ)

(m∗,σ∗) ← AHFS .Siдsk (·)(pk)
1 ← HFS .Ver (σ∗,m∗,pk)

⎤⎥⎥⎥⎥⎦ < υ(λ)
At first glance, EU-CMA of HFS is directly implied by the BGLS

which has shown its provable unforgeability in [19], because a HFS

signature can be viewed as the aggregation of two BGLS signatures

from a same user. However, the definition of unforgeability of BGLS

is slightly different from that of HFS. EU-CMA of HFS focuses on

m1 | |m2 as a whole whereas the notion of unforgeability in BGLS

captures individual parts.

5.3 Condensed Bilinear Pairing

We propose to aggregate multi-user HFS signatures to save the

bandwidth consumption as well as computational-intensive bilin-

ear pairings. We strive to reduce the bandwidth consumption by

exploiting the fact that some IoT devices only send default messages

in some extreme cases. Imagine a fire alarm system with thousands

of sensors deployed in the forest. Individual sensor sends an alarm

only when detecting hazardous situations. If high temperature

never occur in the forest, the sensor periodically generates default

7

124



IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada X. Li, et al.

messages indicating safety, i.e. a PrefixMHT node with sub-tree

count = 0. Since the content of the default message has been known

priori, sending default messages on the network is not necessary.

The epoch attribute is the same across sensors. In the case of most

sensors sending default messages, Condensed Bilinear Pairing (CBP)

can accelerate the verifying speed and save communication cost.

Definition 5.3 (CBP). Condensed Bilinear Pairing (CBP) is a tuple

of six algorithms (KeyGen, Siд,Ver , PkAдд, SiдAдд,VerAдд). The
default message is denoted asM | |t whereM is the static content and

t is the epoch. SiдAдд and VerAдд are only applicable to messages

from the same epoch, and hence identical epoch value. KeyGen, Siд
and Ver have already been formalized in Definition 5.1. SiдAдд and

VerAдд are described below.

PkAдд(pk1,pk2, · · ·,pkn): given public keys for every IoT device

in a task group, the aggregated public key is apk =
∏n

i=1 pki
SiдAдд(αi,αj): for any two HFS signatures, αi = (−→m i ,σi ,pki )

and α j = (−→m j ,σj ,pkj ), if
−→m i [2] �

−→m j [2], return ⊥. We define Γ̃i =

(−→m i [1],pki ) if
−→m[1] � M ; otherwise Γ̃i = ∅. Γ̃j is defined similarly.

The aggregated signature is α = (Γ̃i � Γ̃j ,σi ∗ σj ,
−→m i [2]), where �

represents the merging operation.

VerAдд(α,apk): let the aggregated signature be α = (Γ,σ , t)

where Γ = {(−→m1[1],pk1), · · · , (
−→mκ [1],pkκ )}. Define ãpk =

apk∏
κ

i=1 pki
.

Check e(σ ,д2)
?
= e

(
H (M), ãpk

)
∗
∏κ

i=1 e (H (mi ),pki )∗e (H (t),apk).

If the equation holds, return 1; otherwise return ⊥.

The following derivation provides the intuition on the correct-

ness of CBP.

e
(
H (M), ãpk

)
∗

∏
(mi ,pki )∈Γ

e (H (mi ),pki ) ∗ e (H (t),apk)

=e
(
(H (M) ∗ H (t)), ãpk

)
∗

∏
(mi ,pki )∈Γ

e ((H (mi ) ∗ H (t)),pki )

=e(σ ,д2)

The unforgeability of aggregated signature is different from

that of a single message, which requires that an adversary cannot

generate a signature indicating the authenticity of an unsigned

message, even if all other signers are dishonest.

Compared to the naïve method where the receiver verifies every

single timestamped default message separately, our newly proposed

scheme reduces both the communication cost and computation

cost from O(k) to O(1), where k is #sensors. Even if the assump-

tion thatmost sensors have not detected any events does not

hold, CBP can still work but is degenerated into BGLS signa-

ture scheme.

5.4 CBP-VERID

We identify that in the sparse setting, most of roots of PrefixMHT

remains untouched except for their monotonically increased epochs.

However, applying CBP directly does not work in general because

no default message is shared by most sensors in VERID. We make

minor changes to Condensed Bilinear Pairing in order to adapt

to VERID’s needs by leveraging the special structure of Bilinear

pairing.

If no event is detected between two epochs tb (begin epoch) and

te (end epoch), we can reach to:

e(σb/σe ,д2) = e

(
(H (M) ∗ H (tb ))

s

(H (M) ∗ H (te ))s
,д2

)
= e

(
H (tb )

H (te )
,дs2

)
(4)

By verifying the above equality, the data consumer is able to ensure

no new event being detected without knowing concreteM .

THEOREM 5.1. Given two HFS signatures (σb , σe ) and two epochs

(tb , te ), e(σb/σe ,д2) = e
(
H (tb )
H (te )

,дs2

)
indicates identical content at tb

and te except with negligible probability.

We could further aggregate the roots’ signatures even with dif-

ferentM value, because the two instances of H (M) at the denom-

inator and the numerator in Eq. (4) are canceled out. To this end,

we propose Condensed Bilinear Pairing-VERID (CBP-VERID) to

opportunistically aggregate HFS signatures.

Definition 5.4 (CBP-VERID). Condensed Bilinear Pairing-VERID is

a tuple of six algorithm (KeyGen, Siд,Ver , PkAдд, SiдAдд,VerAдд).
KeyGen, Siд, Ver and SiдAдд are exactly the same as those of CBP

presented in Definition 5.3. Inherent from CBP, SiдAдд and VerAдд
in CBP-VERID also require that the operated messages are from two

epoches only: the begin and the end. For ease of representation, we

define augmented signature α̂ � (mb , tb ,σb ,me , te ,σe ,pk) from a

single device, where the subscription b and e stands for begin epoch

and end epoch respectively.m, t are the two constructional components

of the PrefixMHT root: content and epoch value. Aggregated signature

is Σ = (Γ,σ , t), where Γ concatenates changing content, σ is the

product of individual signatures and t represents the epoch.

SiдAдд(α̂i, Σb , Σe ): for the input, α̂i = (mb
i , t

b
i ,σ

b
i ,m

e
i , t

e
i ,σ

e
i ,pki ),

If (tbi � Σb .t) ∨ (tei � Σe .t), return ⊥. We define
ˆ
Γbi = (mb

i ,pki ),

Γ̂ei = (me
i ,pki ) if m

b
i � me

i ; otherwise
ˆ

Γ
b(e)
i = ∅. The aggregated

signature is updated as follows. Σb(e).Γ = Σb(e).Γ �
ˆ

Γ
b(e)
i , Σb(e).σ =

Σb(e).σ ∗ σ
b(e)
i .

VerAдд(Σb , Σe,apk) : if (|Σb .Γ | � |Σe .Γ |), return⊥. Let Σb(e).Γ =

{(m
b(e)
1 ,pk1), · · · , (m

b(e)
κ ,pkκ )} Define ãpk =

apk∏
κ

i=1 pki
. Then check

e
(
σb/σe ,д2

)
?
= e

(
H (tb )/H (te ), ãpk

)
∗
∏κ

i=1 e
(
H (mb

i )/H (me
i ),pki

)
.

If the equation holds, return 1; otherwise return ⊥.

To speed up the computation of ãpk whenmore than half devices

contribute Σ, ãpk can alternatively calculated as the product of their

signatures.

THEOREM 5.2. Condensed Bilinear Pairing-VERID is EU-CMA se-

cure with the assumption of Computational Co-CDH hardness under

random oracle model.

The experiment to define EU-CMA and the corresponding proof

are omitted for brevity.

6 EVALUATION

We implement a prototype of VERID including all parts: the work-

ing programs on sensing devices, cloud, DCs and coordinators. The

cloud and DC instances run on one quadcore@3.40GHz Linux desk-

top with 32GB memory and each sensing device instance runs on a

M3 Open Node [9] equipped with a 32-bit ARM Cortex M3@72MHz

8

125



VERID: Towards Verifiable IoT Data Management IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada

Table 2: Summary of the Two Datasets

IntelLab Rome

#Devices 54 289

#Original readings 370667 4992

#Injections 387 110719

#Total readings 371054 115711

as well as one 16-MByte external Nor flash. We conduct extensive

experiments driven by real datasets.

6.1 Evaluation Methodology

We leverage two publicly available IoT datasets:

(1) IntelLab [1]: 54 Mica2Dot sensors with weather board de-

ployed in the Intel Berkeley Research Lab collecting timestamped

temperature, light, etc. once every 31 seconds. In the experiments,

timestamp and temperature (in Fahrenheit) information is extracted

to represent 1-D dataset. The queries for experiments are synthetic.

We use 100 randomly generated aggregation count queries. For the

synthetic queries, the lower temperature bound is a float number

uniformly drawn from [0, 200]. The upper bound is set to always

20 degrees higher than the lower bound.

(2) Rome [13]: 289 taxicabs in Rome occasionally report out-

door temperature readings together with the GPS coordinates (i.e.

longitude and i.e. latitude). The dataset spans 4 days and the tu-

ple (lonдitude, latidues, temperature) forms multi-dimensional

sensing readings. VERID utilizes QUILT to map individual multi-

dimensional readings into 1-D points. The temperature is repre-

sented by one 16-bit integer. Synthetic count queries are generated

to simulate those from geographic information system applications,

where the spatial range is displayed in different hierarchical lev-

els: from city-wide to street block level. Our experiments have 24

levels of hierarchical spatial query ranges. Given level l , the entire
region in a 224 × 224 grid, is partitioned into l2 square areas with

each being 224−l × 224−l . To synthesize one spatial range query, we

first uniformly generate one hierarchical level l and then choose a

spatial range from the l2 square areas at random. The temperature

range [0, 216 − 1] is evenly partitioned into 16 sub-ranges and each

synthetic query specified one sub-range to explore.

For both datasets, one epoch is set to 15 minutes and all exper-

iments driven by the data are from the first 400 epochs, which

is approximately 4 days. To make sure every epoch is signed, we

artificially inject one dummy message indicating an empty epoch

into the epochs that do not possess any sensor reading. For the two

sets of synthetic queries, the start and end epochs are randomly

drawn from [1, 400]. We summarize the datasets details in TABLE

2. Rome represents one sparse setting as can be inferred from the

large injection to reading ratio. IntelLab obviously posits at the

opposite side. The purpose to set the epoch to 15 minutes is to

create two data traces representing dense setting and sparse setting

respectively. If the epoch during is much longer than 15 minutes,

say 4 days, both IntelLab and Rome would representing the dense

setting because every epoch from every IoT device encompasses

data.

Methods to comparewith.We compare VERIDwith two other

state-of-art works, Authenticated Aggregation R-tree (AAR-tree)

[39] and IntegriDB [65]. We select these two works among a large

number of existing methods because 1) they support both aggre-

gation and selection queries; and 2) they are relatively recent and

demonstrate good performance compared to other methods. Infact,

IntegriDB supports more operations (e.g. JOIN) than VERID does at

extra cost. To the best of our knowledge, our paper first discusses

and measures its performance in IoT scenarios for reference. For

VERID and AAR, we set the capacity of the buffer pool to host 1000

frames of size 4KB. IntegriDB has a parameter q which determines

the largest possible cardinality of verifiable query result. In our

experiment, q is set to 1000.

More recent papers [15, 22] on this topic leverage special hard-

ware such as Intel SGX[6]. VERID, AAR and IntegriDB all do not

assume special hardware.

Cryptographic algorithms to use. SHA-256 [4] in OpenSSL

[11] are used as the cryptographic hash function for all the three

works in our experiments. For both VERID and IntegriDB, the

bilinear pairing for signature is Ate-paring [2, 18] on a 254-bit

elliptic curve which is estimated to offer 128-bit security. Since

the encryption scheme to generate signatures is not specified in

the original paper of AAR, in our experiments we specify it to be

BGLS [19] on a 254-bit elliptic curve rather than the classic RSA

[37] for fair comparison. From our own measurement in generating

signatures, BGLS is nearly 30X faster than RSA with 3072-bit keys

which also approximately offers 128-bit security.

Methodology and Metrics. The prototype experiments on

IoT devices are conducted on one M3 open node board. The data

trace contributed by each individual device is feed into the VERID

prototype program at full speed. The timestamp from the trace

drives the program to update the PrefixMHT digest and generate a

signature when one epoch ends as indicated by the timestamp. The

output of the program, i.e. what should be transmitted to the cloud,

is stored locally at the flash drive.Wemeasure the followingmetrics:

1) Average time to process one insertion captures the computation

costs at the IoT device side, which is denoted as the insertion time.

2) The ADS update cost reflects the amortized communication cost

which is computed by the size of all updates (excluding original

data and signatures) divided by #insertions. 3) The memory is an

average memory usage of IoT devices. These three metrics for AAR

and IntegriDB are measured on the M3 open node in the same way.

After the M3 open node experiments, the generated ADS updates

and signatures along with original data are directly restored in

the Linux desktop to study all other parts of VERID. Therefore,

we avoid the impact of varying networking environments in our

experiments. The synthetic queries are applied to all devices. VERID

(or AAR/IntegriDB) constructs the VO when receiving the query

request. We measure both 4) the VO construction time and 5) the

VO size. The verification procedure starts in the same program

immediately after the query result and its VO are produced. 6) The

verification time captures the computation efficiency at the data

consumer’s side.

9

126



IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada X. Li, et al.

Intel Rome
0

20

40

60

80

In
s
e
rt

io
n
 t

im
e
 (

m
s
)

1.1

20.8

42.8

22.0
16.1

51.3VERID

AAR

IntegriDB

(a) Insertion time

Intel Rome
0

1

2

3

4

5

6

7

8

9

A
D

S
 u

p
d
a
te

 (
K

B
)

0.15 0.14

1.27

5.44

5.37
5.12

VERID

AAR

IntegriDB

(b) ADS update size

Intel Rome
0

100

200

300

400

500

600

M
e
m
o
ry

 (
K

B
)

216.22

2.81

283.05

12.97

16395 9043

VERID

AAR

IntegriDB

(c) Memory

Intel Rome
0

100

200

300

400

500

V
O

 C
o
n
s
tr

u
c
ti

o
n
 t

im
e
 (

m
s
)

18.99

41.75

15.90

123.48

322.39
787

VERID

AAR

IntegriDB

(d) VO construction time

Intel Rome
0

200

400

600

800

1000

V
O

 s
iz

e
 (

K
B

)
340.44

430.72

411.81

242.64

564.45

4311

VERID

AAR

IntegriDB

(e) VO size

Intel Rome
0

200

400

600

800

1000

1200

V
e
r
if
ic
a
t
io
n
 t

im
e
 (

m
s
)

58.91

220.84

90.05

745.00

1528 21762

VERID

AAR

IntegriDB

(f) Verification time

Figure 4: Aggregation query performance results

6.2 Aggregation Queries

We demonstrate the aggregation queries performance results for

IntelLab and Rome in Figure 4. Particularly, the aggregation queries

are requesting for SUMs. Since COUNT is just a special case of SUM

and other aggregate functions (i.e. AVG, MAX) can be derived from

COUNT and SUM, we do not evaluate aggregate functions other

than COUNT for brevity.

From the IoT devices’ perspective, VERID outperforms AAR and

IntegriDB in terms of computation (insertion time), communication

(ADS update) and memory consumption for both datasets. Par-

ticularly, for VERID the insertion time in IntelLab experiments is

smaller than that of Rome (Fig. 4a) becausemore insertions amortize

the signature generation time at each epoch. When the insertion is

rare as in Rome dataset, the time to generate signatures dominates

the computation cost and this explains the comparable insertion

time for VERID and AAR in the experiment using Rome dataset.

For AAR, the amortized insertion time increases in the IntelLab

experiments due to excessive time spent on computing hashes of 4-

KB tree nodes. The long insertion time for IntegriDB is mainly due

to excessive cryptographic operations. Since PrefixMHT of VERID

is operated at fine grain, the ADS update size is much smaller than

that of AAR which needs to update the whole stale 4-KB nodes

(Fig. 4b). The update size of AAR is worse when rare insertions

amortize the update cost, as can be validated from the results of

Rome. The average ADS size for VERID in the Rome experiments is

slightly smaller than in the IntelLab experiments due to the lower

PrefixMHT height. VERID is memory efficient and acquires ad-

ditional memory space when a new PrefixMHT node is inserted

(Fig. 4c). On the other hand, AAR allocates memory at per-page

basis. If the dataset is small, no enough readings are available to

fill up the allocated memory space. Therefore, the memory usage

gap between VERID and AAR is huge for Rome. Even if IntegriDB

updates ADS at fine grain like VERID, its ADS node size is much

larger hence ADS update size and memory footprint.

The mechanisms to construct VO for VERID and AAR are sim-

ilar: recording the searching path on the ADS. The experiments

conducted at the Linux desktop involves all devices collectively. For

example, the VO construction time is the total time to find ADS

paths for all 54 (387) devices in the IntelLab (Rome) experiments.

VERID spends slightly more time to construct the VO than AAR

does in the IntelLab experiments but the situation reverses in the

Rome experiments where the data exhibit higher locality hence

faster searching speed (Fig. 4d). The VO size of AAR is smaller

than that of VERID for Rome (Fig. 4e), because the ADS of AAR

is extended from R* tree, which is originally designed for GIS ap-

plications. VERID outperforms AAR regarding verification time

for both datasets (Fig. 4f) because the AAR data consumers need

to compute excessive hashes to verify the query results. Another

contributing factor is our signature scheme which avoids some

bilinear pairing evaluations. IntegriDB constructs and verifies VO

by doing complicated cryptographic operations, which consume

considerable time.

6.3 Selection Queries

We also conduct experiments to evaluate the performance of differ-

ent works under selection queries. Since AAR and IntegriDB are not

aware of raw signal data, we only consider readings consisting of

indexable values for fair comparison. Each selection query requests

for data from a specific epoch, which represents the scenario where

the data consumer retrieves data from latest epoch for further anal-

ysis. We generate the selection queries by modifying the range

queries described in the experiment setup: The range exception for

the epoch attribute stays the same and the epoch of interest is set to

the upper epoch bound from the corresponding aggregation query.

10

127



VERID: Towards Verifiable IoT Data Management IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada

Intel Rome
0

100

200

300

400

500

V
O

 C
o
n
s
tr

u
c
ti

o
n
 t

im
e
 (

m
s
)

4.16
19.08

47.98

357.12
131450 227460

VERID

AAR

IntegriDB

(a) VO construction time

Intel Rome
0

200

400

600

800

1000

1200

V
O

 s
iz

e
 (

K
B

)

24.98 51.04

589.21
612.33

647.53

3383

VERID

AAR

IntegriDB

(b) VO size

Intel Rome
0

200

400

600

800

1000

1200

V
e
ri

fi
c
a
ti

o
n
 t

im
e
 (

m
s
)

15.51
83.19

101.10

809.65

4110 17460

VERID

AAR

IntegriDB

(c) Verification time

Figure 5: Selection query performance results

The VO construction time, VO size and verification time are

reduced compared to the results from aggregation experiments

as shown in Fig. 5. VO only contains one ADS path according to

Proposition 4.1. Each range query requires 4 ADS paths as indicated

by Eq.(1). On the other hand, the performance of AAR and IntegriDB

downgrades significantly. The ADS of AAR relies on the R* tree.

The range query within a single epoch can be geometrically viewed

as a “long strip”. R* tree is not good at processing “long strip” range

queries. For IntegriDB, themechanism of selection query is different

from that of count queries.

6.4 Comparison of Signature Schemes

For VERID, validating signatures dominates the verification time at

the data consumer’s side: 99% and 98% verification time are spent

on signature validation for IntelLab and Rome datasets respectively.

Our signature scheme noticeably reduces the signature validation

time for sparse settings. For Rome dataset, our signature scheme

totally avoids 8143 out of 38700 PrefixMHT traversals in the cloud

and bilinear pairing evaluations at the data consumer’s side. We

evaluate the performance gain from our signature scheme by com-

paring it with BGLS [19]. The verification time is 307.19ms for BGLS

and 220.84ms for VERID, an approximately 28% reduction. The

VO construction time is reduced from 48.10ms (BGLS) to 41.75ms

(VERID). Similarly, the VO size experiences a 19.8% decrease. In

IntelLab dataset, nearly all devices have insertions for all epochs.

Only 8/5400 PrefixMHT traversals thus are avoided in this case. As

a result, there are no apparent changes on construction and veri-

fication time as well as VO size. Note that the proposed signature

scheme is a variant of BGLS and thus the comparison highlights

our contribution; otherwise the comparison is not fair because the

performance advantage may come from BGLS.

6.5 Disk I/O at Cloud Storage

VERID leverages the special query pattern of IoT application to

build per-group B+ tree to store PrefixMHT nodes instead of using

individual per-device B+ trees. We measure the I/O cost, i.e. #disk

reads for both IntelLab and Rome datasets. Per-group B+ tree greatly

reduce the I/O cost as as illustrated in Table 3. Hence we use per-

group B+ tree in VERID.

7 DISCUSSIONS

There are two ways to deploy VERID in the cloud. The application

could rent raw storage and virtual machines from the cloud to run

Table 3: I/O Cost Comparison

#disk I/O times IntelLab Rome

Per-device B+ tree 20051 10125

Per-group B+ tree 5610 1209

the VERID cloud-side protocol. In this case, the cloud is Infrastruc-

ture as a Service (IaaS). The other way is to build the cloud-side

protocol atop existing platforms. The incremental updates could

be installed in the database and then lambda function computing

components are leveraged to traverse the database to compute the

query result as well as VO. In this case, the cloud is leveraged as

Platform as a Service (PaaS).

This paper mainly focus on verifiable orthogonal range queries

(i.e. the searching boundaries are aligned with coordinate axes)

do not directly support the k-nearest neighbors (k-NN) algorithm

which has a wide range of applications in machine learning and

spatial database. VERID can be easily extended to support verifiable

k-NN query. Suppose a user search on a remote spatial database for

the k most nearest restaurants from his (her) location. VERID can

first invoke an external method to get the coordinates of kth nearest

restaurant, all QUILT segments encompassed by the searching circle

then are sent the user to prove the query result.

This paper assumes that 1) There is an external mechanism for

the data consumers to get the names and public keys. 2) All IoT

devices in a task group are homogeneous. However, these assump-

tions may not be valid all the time. For instance, in the case where

IoT devices are statically deployed in different geographic locations,

the data consumer may only request for data from the IoT devices in

a specific region. In our future work, we plan to build a full-fledged

verifiable rational database above VERID for the data consumer to

query for the names and public keys of the IoT devices of interest.

The task group owner is responsible for uploading the correct IoT

device meta-data, including various attributes and public keys.

8 CONCLUSION

Due to the lack of studies of verifiable data management for IoT

applications, VERID is designed to satisfy the unique properties and

requirements. VERID is designed to resolve the unique requirements

of IoT systems. Our innovations include a new authentication data

structure PrefixMHT and a novel signature aggregation scheme

Condensed Bilinear Pairing. Experimental results show that VERID

11

128



IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada X. Li, et al.

is much more efficient in memory, update, and time cost than prior

works on both sensing devices and data consumers.

ACKNOWLEDGMENTS

The authors are supported by National Science Foundation Grant

CNS-1743064, CNS-1717948, CNS-1750704. The authors also thank

anonymous IoTDI reviews for their constructive comments and

suggestions.

REFERENCES
[1] 2004. Intel Lab Data. http://db.csail.mit.edu/labdata/labdata.html.
[2] 2015. https://github.com/herumi/ate-pairing.
[3] 2015. The 10 Biggest Cloud Outages Of 2015. http://www.crn.com/slide-shows/

cloud/300077635/the-10-biggest-cloud-outages-of-2015-so-far.htm/pgno/0/2.
[4] 2015. Secure Hash Standard. http://csrc.nist.gov/publications/fips/fips180-4/

fips-180-4.pdf.
[5] 2018. https://www.opensensors.io/.
[6] 2018. Intel SGX. https://software.intel.com/en-us/sgx.
[7] 2018. Introducing JSON. https://www.json.org/.
[8] 2018. libsnark. https://github.com/scipr-lab/libsnark.
[9] 2018. M3 Open Node. https://www.iot-lab.info/hardware/m3/.
[10] 2018. Navigating a Cloudy Sky: Practical Guidance and the State of Cloud Se-

curity. https://www.mcafee.com/enterprise/en-us/assets/executive-summaries/
es-navigating-cloudy-sky.pdf.

[11] 2018. OpenSSL. https://www.openssl.org/.
[12] J. H. Ahn, D. Boneh, J. Camenisch, S. Hohenberger, A. Shelat, and B. Waters. 2015.

Computing on authenticated data. Journal of Cryptology 28, 2 (2015).
[13] Mohannad A. Alswailim, Hossam S. Hassanein, and Mohammad Zulkernine.

2015. CRAWDAD dataset queensu/crowd_temperature (v. 2015-11-20): derived
from roma/taxi (v. 2014-07-17). Downloaded from https://crawdad.org/queensu/
crowd_temperature/20151120. https://doi.org/10.15783/C7CG65

[14] M. Ambrosin, M. Conti, A. Ibrahim, G. Neven, A. Sadeghi, and M. Schunter. 2016.
SANA: secure and scalable aggregate network attestation. In Proc. of ACM CCS.

[15] S. Bajaj and R. Sion. 2013. CorrectDB: SQL engine with practical query authenti-
cation. Proc. of the VLDB Endowment.

[16] M. Bellare and P. Rogaway. 1993. Random oracles are practical: A paradigm for
designing efficient protocols. In Proc. of ACM CCS.

[17] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza. 2013. SNARKs for
C: Verifying program executions succinctly and in zero knowledge. In CRYPTO.

[18] J. Beuchat, J. González-Díaz, S. Mitsunari, E. Okamoto, F. Rodríguez-Henríquez,
and T. Teruya. 2010. High-speed software implementation of the optimal ate
pairing over Barreto–Naehrig curves. In International Conference on Pairing-Based
Cryptography.

[19] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. 2003. Aggregate and verifiably
encrypted signatures from bilinear maps. In In Proc. of EUROCRYPT.

[20] A. J. Brush, J. Jung, R. Mahajan, and F. Martinez. 2013. Digital neighborhood
watch: Investigating the sharing of camera data amongst neighbors. In Proc. of
ACM CSCW.

[21] W. Cheng, H. Pang, and K. Tan. 2006. Authenticating multi-dimensional query
results in data publishing. In IFIP Annual Conference on Data and Applications
Security and Privacy.

[22] Manuel C. Christian P., Kapil V. 2018. EnclaveDB: A Secure Database using SGX.
In Proc. of IEEE S&P.

[23] K. Chung, Y. T. Kalai, F. Liu, and R. Raz. 2011. Memory delegation. In Crypto.
[24] E. F. Codd. 1970. A relational model of data for large shared data banks. CACM

13, 6 (1970).
[25] G. Cormode, M. Mitzenmacher, and J. Thaler. 2012. Practical verified computation

with streaming interactive proofs. In Proc. of ACM ITCS.
[26] C. Costello, C. Fournet, J. Howell, M. Kohlweiss, B. Kreuter, M. Naehrig, B. Parno,

and S. Zahur. 2015. Geppetto: Versatile verifiable computation. In Proc. of IEEE
S&P.

[27] K. Fan, S. Liu, and P. Sinha. 2006. Scalable data aggregation for dynamic events
in sensor networks. In Proc. of the ACM SenSys.

[28] J. Gao, L. Guibas, N. Milosavljevic, and J. Hershberger. 2007. Sparse data aggre-
gation in sensor networks. In Proc. of ACM IPSN.

[29] R. Gennaro, C. Gentry, and B. Parno. 2010. Non-interactive verifiable computing:
Outsourcing computation to untrusted workers. In Cryptology.

[30] M. Gerla, E. Lee, G. Pau, and U. Lee. 2014. Internet of vehicles: From intelligent
grid to autonomous cars and vehicular clouds. In Proc. of IEEE WF-IoT.

[31] S. Goldwasser, S. Micali, and R. L. Rivest. 1988. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM J. Comput. 17, 2 (1988).

[32] M. T. Goodrich, R. Tamassia, and N. Triandopoulos. 2008. Super-efficient verifi-
cation of dynamic outsourced databases. In CT-RSA.

[33] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami. 2013. Internet of Things
(IoT): A vision, architectural elements, and future directions. Future Generation
Computer Systems 29, 7 (2013).

[34] T. Gupta, R. P. Singh, A. Phanishayee, J. Jung, and R. Mahajan. 2014. Bolt: Data
management for connected homes. In Proc. of USEIX NSDI.

[35] J. Han, C. Qian, Y. Yang, G. Wang, H. Ding, X. Li, and K. Ren. 2018. Butterfly:
Environment-Independent Physical-Layer Authentication for Passive RFID. In
Proc. of ACM UbiCom.

[36] C. Ho, R. Agrawal, N. Megiddo, and R. Srikant. 1997. Range queries in OLAP
data cubes. In Proc. of ACM SIGMOD.

[37] J. Jonsson, K.Moriarty, B. Kaliski, andA. Rusch. 2016. PKCS# 1: RSACryptography
Specifications Version 2.2. https://tools.ietf.org/html/rfc8017. (2016).

[38] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin. 2006. Dynamic authenticated
index structures for outsourced databases. In ProcACM SIGMOD.

[39] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin. 2010. Authenticated index
structures for aggregation queries. ACM TISSEC 13, 4 (2010), 32.

[40] J. Li, L. Zhang, J. K. Liu, H. Qian, and Z. Dong. 2016. Privacy-Preserving Public
Auditing Protocol for Low-Performance End Devices in Cloud. IEEE Transactions
on Information Forensics and Security 11, 11 (2016).

[41] X. Li, M. Wang, H. Wang, Y. Yu, and C. Qian. 2019. Toward Secure and Efficient
Communication for the Internet of Things. IEEE/ACM ToN (2019).

[42] Prince Mahajan, Srinath Setty, Sangmin Lee, Allen Clement, Lorenzo Alvisi,
Mike Dahlin, and Michael Walfish. 2011. Depot: Cloud Storage with Minimal
Trust. ACM Trans. Comput. Syst. 29, 4, Article 12 (Dec. 2011), 38 pages. https:
//doi.org/10.1145/2063509.2063512

[43] R. C. Merkle. 1987. A digital signature based on a conventional encryption
function. In Proc. of CRYPTO.

[44] B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz. 2001. Analysis of the
clustering properties of the Hilbert space-filling curve. IEEE TKDE 13, 1 (2001).

[45] G. M. Morton. 1966. A computer oriented geodetic data base and a new technique
in file sequencing. (1966).

[46] S. Nishimura and H. Yokota. 2017. QUILTS: Multidimensional Data Partitioning
Framework Based on Query-Aware and Skew-Tolerant Space-Filling Curves. In
Proc. of ACM SIGMOD.

[47] J. A. Orenstein and T. H. Merrett. 1984. A class of data structures for associative
searching. In Proc. of ACM PODS.

[48] H. Pang, J. Zhang, and K. Mouratidis. 2009. Scalable verification for outsourced
dynamic databases. In Proc. of the VLDB Endowment.

[49] D. Papadopoulos, S. Papadopoulos, and N. Triandopoulos. 2014. Taking authenti-
cated range queries to arbitrary dimensions. In Proc. of ACM CCS.

[50] C. Papamanthou, E. Shi, and R. Tamassia. 2013. Signatures of correct computation.
In Theory of Cryptography.

[51] R. Ada Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan. 2011. CryptDB:
protecting confidentiality with encrypted query processing. In Proc. of ACM
SOSP.

[52] L. Schabhüser, J. Buchmann, and P. Struck. 2017. A Linearly Homomorphic
Signature Scheme from Weaker Assumptions. In IMA International Conference
on Cryptography and Coding.

[53] S. Setty, B. Braun, V. Vu, A. J. Blumberg, B. Parno, and M.Walfish. 2013. Resolving
the conflict between generality and plausibility in verified computation. In Proc.
of ACM Eurosys.

[54] A. J. Smith. 1978. Sequentiality and prefetching in database systems. ACM TODS
3, 3 (1978).

[55] C. Wang, Q. Wang, K. Ren, and W. Lou. 2009. Ensuring Data Storage Security in
Cloud Computing. In Proc. of IEEE IWQoS.

[56] C. Wang, Q. Wang, K. Ren, and W. Lou. 2010. Privacy-preserving public auditing
for data storage security in cloud computing. In Proc. of IEEE INFOCOM.

[57] G. Wang, H. Cai, C. Qian, J. Han, X. Li, H. Ding, and J. Zhao. 2018. Towards
Replay-resilient RFID Authentication. In Proc. of ACM Mobicom.

[58] G. Wang, J. Han, C. Qian, W. Xi, H. Ding, Z. Jiang, and J. Zhao. 2018. Verifiable
smart packaging with passive RFID. IEEE TMC (2018).

[59] H. Wang, X. Li, Y. Zhao, Y. Yu, H. Yang, and C. Qian. 2016. SICS: Secure In-Cloud
Service Function Chaining. arXiv preprint arXiv:1606.07079 (2016).

[60] M Wang, X. Li, S. Shi, and C. Qian. 2019. Collaborative Validation of Public-Key
Certificates for IoT by Distributed Caching. In Proc. of IEEE INFOCOM.

[61] Z. Xia, X. Wang, X. Sun, and Q.Wang. 2016. A secure and dynamic multi-keyword
ranked search scheme over encrypted cloud data. IEEE TPDS 27, 2 (2016).

[62] Y. Yang, D. Papadias, S. Papadopoulos, and P. Kalnis. 2009. Authenticated join
processing in outsourced databases. In Proc. of ACM SIGMOD.

[63] Y. Zhang, L. Duan, and J. L. Chen. 2014. Event-driven soa for iot services. In Proc.
of IEEE SCC.

[64] Y. Zhang, J. Katz, D. Genkin, D. Papadopoulos, and C. Papamanthou. 2017. vSQL:
Verifying Arbitrary SQL Queries over Dynamic Outsourced Databases. In Proc.
of IEEE S&P.

[65] Y. Zhang, J. Katz, and C. Papamanthou. 2015. IntegriDB: Verifiable SQL for
outsourced databases. In ACM CCS.

[66] Q. Zheng, S. Xu, and G. Ateniese. 2012. Efficient query integrity for outsourced
dynamic databases. In Proc. of ACM CCSW.

12

129


