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Abstract. We propose near-optimal overlay networks based on d-regular expander graphs to
accelerate decentralized federated learning (DFL) and improve its generalization. In DFL a massive
number of clients are connected by an overlay network, and they solve machine learning problems
collaboratively without sharing raw data. Our overlay network design integrates spectral graph
theory and the theoretical convergence and generalization bounds for DFL. As such, our proposed
overlay networks accelerate convergence, improve generalization, and enhance robustness to clients
failures in DFL with theoretical guarantees. Also, we present an efficient algorithm to convert a
given graph to a practical overlay network and maintaining the network topology after potential
client failures. We numerically verify the advantages of DFL with our proposed networks on various
benchmark tasks, ranging from image classification to language modeling using hundreds of clients.
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1 Introduction Federated Learning (FL) is a machine learning (ML) setting where
a massive number of entities (clients) solve an ML problem collaboratively without
transferring raw data, under the coordination of a central server [28, 15]. FL trains ML
models by exchanging the model parameters between clients and the central server;
in each communication round, the central server distributes parameters to clients and
aggregates the updated parameters from clients. FL decouples the model training
from the need for collecting or direct access to the private training data; therefore, FL
significantly reduces privacy and security risks. Many algorithms have been developed
for FL, such as FedAvg [28], SCAFFOLD [16], FedProx [19], FedPD [52], FedSplit
[33], and FedOpt [36]. Compared to many distributed optimization settings [30, 27,
2, 51, 34, 10, 37], FL gains tremendous advantages in communication efficiency. We
can mathematically formulate FL as solving the following optimization problem

(1.1) min
w∈Rd

f(w) :=
1

N

N∑
i=1

fi(w),

where fi(w) = E(x,y)∼DiL(g(x,w), y) with (x, y) be a data-label pair sampled from

the data distribution Di on the ith client, and g(·,w) is the ML model. As shown in
Fig. 1 (a), in the ith communication round, FedAvg [28], one of the most popular FL
algorithms, iterates as follows: the server (node 1) sends the current parameters wi to
a small fraction of selected clients {kj |kj ∈ {1, 2, · · · , N}, for j = 1, 2, · · · ,m}. Each
selected client then updates wi for T iterations by using its local data and stochastic
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gradient-based algorithms. The server then aggregates these locally updated parame-
ters to get the updated model after the current communication round. The existence
of central server raises several concerns about FL: 1) the communication cost between
the server and clients can be excessive since a large number of clients are involved in a
practical FL system, 2) the failure of the server would disrupt the training process of
all clients, and 3) the privacy of the whole FL system can be fragile since the central
server is exposed to adversaries.

(a) FL (b) Ring (c) Erdös-Rényi (d) Expander

Fig. 1: Illustration of the network topology for federated learning and decentralized
federated learning with Ring, Erdös-Rényi, and expander graphs.

Decentralized Federated Learning (DFL) replaces the server-clients communica-
tion with client-client (peer-to-peer) communication, which significantly reduces the
communication burden and privacy risks [3, 11, 32, 43, 42, 48, 24, 29, 21, 5, 23, 44,
47, 22, 1, 41]. In DFL, all clients are connected by an overlay network, e.g. Fig. 1 (b)
Ring, (c) Erdös-Rényi, and (d) d-regular expander graphs. The clients update in the
same way as that in FL, and each client only sends its locally updated model to its
topological neighbors and aggregates the updated models from its neighbors. Network
topology has a profound impact on the convergence, generalization, and robustness of
DFL. In this paper, we focus on designing efficient network topologies that guarantee
fast and accurate DFL, and resilient to client failures.
1.1 Our contribution Based on the theoretical convergence rate [49, 40, 41] and
our first established generalization bound of DFL, where each client trains ML models
using stochastic gradient descent with momentum, we design near optimal network
topology to connect clients to train ML models collectively. In particular, leveraging
the random graph theory, we propose d-regular expander graphs for the network
topology, which is provably to be near-optimal. The major advantages of leveraging
d-regular expander graphs for the overlay networks design are threefolds:
• DFL with d-regular expander graphs converges remarkably faster and generalizes

better than DFL using other sparse graphs, including Ring and Erdö-Rényi graphs.
• Expander graph connects each node with d neighbors, resulting in low communica-

tion cost in the decentralized federated learning.
• DFL with d-regular expander graphs enables robust decentralized federated learning

with respect to potential node failures.
1.2 Additional related works

Network Design. Chow et al. [6] have designed expander graphs for decentralized
optimization using deterministic local optimization algorithms. In [26], the authors
use theory of the max-plus linear systems and design efficient topology for cross-
silo FL, in which close-by data silos can exchange information faster with the central
server. We focus on designing efficient networks for cross-device DFL that are scalable
to a massive amount of devices.
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Analysis of DFL/FL algorithms. The convergence properties of FedAvg or local
SGD have been studied extensively [45, 39, 14], mainly focusing on the IID case.
Non-IID convergence for FL has been shown in [14, 52, 49, 20]. Convergence analysis
of DFL has been shown in [46, 41]. While convergence analysis for the myriad of
problem setups has been provided, generalization guarantees have been more elusive.

Convergence analysis of DFL hinges on connectedness properties of the underlying
graph topology, captured in the spectral properties of the associated mixing matrix
(see Section 2). The authors of [45] discuss how different versions of local SGD
correspond to different graph topologies and [46] provides an efficient decomposition
of graph topology for improved communication costs.

Practical network construction. Building overlay networks have been studied ex-
tensively in previous works. However, in the past, overlay networks are mainly used
for peer-to-peer file sharing [25], online social networks [13], and routing infrastruc-
tures [17, 35]. For peer-to-peer file-sharing networks, existing studies have proposed to
utilize random walks to achieve distributed d-regular expander graphs with assuming
each node could choose d neighbor at random [9, 18]. However, such assumption does
not hold in DFL because no node can uniformly choose d neighbors among existing
nodes at random since there is no central coordinator. However it is possible to build
an expander graph with tight connectivity if the global information are given such as
maintaining distributed Delaunay triangulation graphs for wireless sensor networks
[17], metro Ethernet [35], random regular graphs for data center networks [50], and
memory interconnection networks [31].
1.3 Notations We denote scalars by lower or upper case letters; vectors and
matrices by lower and upper case boldface letters, respectively. For a vector x =
(x1, · · · , xd)> ∈ Rd, we use ‖x‖ := (

∑d
i=1 |xi|2)1/2 and ‖x‖∞ := maxdi=1 |xi| to de-

note its `2- and `∞-norm, respectively. We denote the vector whose entries are all 0s
as 0. For a matrix A, we use A>, A−1, and ‖A‖ to denote its transpose, inverse,
and spectral norm, respectively. We denote the identity matrix as I. For a function
f(x) : Rd → R, we denote ∇f(x) as its gradient. Given two sequences {an} and {bn},
we write an = O(bn) if there exists a positive constant C such that an ≤ Cbn.
1.4 Organization We organize this paper as follows: In Section 2, we present the
theoretical results for DFL on convergence rate and generalization bound. Based on
these theoretical results we present our network topology design and its practical im-
plementation in Sections 3 and 4, respectively. We verify the efficiency and robustness
to the potential node failures of DFL with the designed network topology on various
benchmarks in Section 5. Technical proofs are provided in the appendix.
2 Theory of DFedAvg An important notion in DFL is the mixing matrix, which
is associated with an undirected connected graph G = (V, E), with vertex set V =
{1, 2, · · · , N} := [N ] and edge set E ⊂ V × V, and the edge (i, j) ∈ E represents a
communication channel between clients i and j.

Definition 2.1 (Mixing matrix). A matrix M = [mi,j ] ∈ RN×N is a mixing
matrix, if it satisfies 1. (Graph) If i 6= j and (i, j) /∈ E, then mi,j = 0, otherwise,
mi,j > 0; 2. (symmetry) M = M>; 3. (Null space property) null{I−M} = span{1}
where I ∈ RN×N and 1 ∈ RN are the identity matrix and the vector whose entries are
all 1s; 4. (Spectral property) I �M � −I, where I �M means I −M is positive
semi-definite and M � −I stands for M + I is positive definite.

Given the adjacency matrix of a network, its maximum-degree matrix and metropolis-
hastings matrix are both mixing matrices [4]. The symmetric property of M indicates
that its eigenvalues are real and can be sorted in the non-increasing order. Let λi(M)
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denote the ith largest eigenvalue of M , then we have λ1(M) = 1 > λ2(M) ≥ · · · ≥
λN (M) > −1 based on the spectral property of the mixing matrix. The mixing
matrix also serves as a probability transition matrix of a Markov chain. An important
constant is λ = λ(M) := max{|λ2(M)|, |λN (M)|}, which describes the speed of the
Markov chain, induced by the mixing matrix M , converges to its stable state.

We consider DFL using the following update on client i

(2.1) wt,k+1
i = wt,k

i − ηt∇fi(w
t,k
i ; ξt,ki ) + β(wt,k

i −wt,k−1
i ),

where t is the communication round, k is the local iteration, and ξt,ki = (xt,ki , yt,ki ) ∼
Di. After the Kth local iteration, communication happens according to the graph
topology of the mixing matrix, M ; that is, we have for each i ∈ [N ]:

wt+1,0
i =

N∑
`=1

mi,`w
t,K
` .

To ensure well-defined iterations, we set wt,−1
i = wt,0

i for each i. These iterations are
referred to as DFedAvgM (Decentralized Federated Averaging with Momentum) [41].

To guarantee convergence of generalization of DFedAvgM, we collect below the
necessary assumptions on the local functions fi and global function f :

Assumption 1 (L-smooth). f1, . . . , fm are all L-smooth, i.e. fi(w) ≤ fi(v) +
〈∇fi(v),w − v〉+ L

2 ‖w − v‖22 for all w,v.

Assumption 2 (Bounded Local Gradient Variance (BLGV)). Let ξti := (xt,ki , yt,ki )

be sampled from the ith device’s local data Di uniformly at random. Then for all
i ∈ [N ]: E‖∇fi(wt,k

i ; ξt,ki ) − ∇fi(wt,k
i )‖22 ≤ σ2, i.e. the stochastic gradients have

bounded variance.

Assumption 3 (Bounded Global Gradient Variance (BGGV)). The global vari-
ance is bounded, i.e. ‖∇fi(w)−∇f(w)‖2 ≤ ζ2.

Assumption 4 (Bounded Local Gradient Norm (BLGN)). At each node i ∈
{1, . . . ,m}, the norm of the gradients is uniformly bounded, i.e. maxw ‖∇fi(w)‖ ≤ B.

While convergence guarantees for FL and DFL have been studied extensively [45,
39, 14, 41], we provide stability analysis for DFedAvgM to give generalization guar-
antees under Assumptions 1-4. Along with related convergence guarantees, our work
here elucidates the importance of beneficial graph topology design.
2.1 Convergence of DFedAvgM We state convergence results for DFedAvgM
and highlight the effect of graph topology on convergence rates in DFL. This result
analyzes the convergence of the sequence {w̄t}Tt=1 over the T communication rounds,

where w̄t := 1
N

∑N
i=1 w

t
i is the averaged weight vector over all the nodes. The follow-

ing result comes from [41].

Theorem 2.2 (General nonconvexity [41]). Let the sequence {w̄t
i}t≥0 be gener-

ated by the DFedAvgM for each i = 1, 2, . . . , N , and suppose Assumptions 1-3 hold.
Moreover, assume the constant stepsize η satisfies 0 < η ≤ 1/8LK and 64L2K2η2 +
64LKη < 1, where L is the Lipschitz constant from Assumption 1 and K is the
number of local updates before communication. Then,

(2.2) min
1≤t≤T

E‖∇f(w̄t)‖2 ≤ 2w̄1 − 2 min f

γ(K, η)T
+ α(K, η) +

Ξ(K, η)

(1− λ)2
,

where T is the total number of communication rounds and γ(K, η), α(K, η), and
Ξ(K, η) are constants, and the detailed forms are given in the appendix.
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In this result we clearly see the convergence of the auxiliary sequence depends on
the value of λ ∈ (0, 1); namely, the closer that λ is to 1, the worse the convergence
bound of the final term of (2.2). In [49], a similar dependence on this graph-dependent
value λ appears in their convergence result for a slightly different version of DFL with
momentum. All this motivates selecting a graph topology that will minimize the value
of λ.
2.2 Generalization of DFedAvgM In this section, we will establish a general-
ization bound of DFedAvgM. Given an algorithm A that acts on data D with output
A(D), the generalization error is given by εgen := ED,A[F (A(D)) − FD(A(D))], where
F (x) = Eξ∼Df(x; ξ) is the “true” risk and FD(x) =

∑N
i=1 f(x; ξ)/N is the empirical risk

of the machine learning model for input x with loss function f . Uniform stability is
a useful property used to bound the generalization error εgen, see e.g. [12, 7].

Definition 2.3. A randomized algorithm A is ε-uniformly stable if for any two
data sets D,D′ with N samples each that differ in one example we have

sup
ξ

EA[f(A(D); ξ)− f(A(D′); ξ)] ≤ ε.

With this definition in hand, it has been proven that uniform stability implies bounded
generalization error:

Lemma 2.4 ([12]). Let A be ε-uniformly stable, then it follows that

|ED,A[F (A(D))− FD(A(D))]| ≤ ε.

Therefore, to ensure the generalization bound of a given random algorithm A, we
simply compute the uniform stability bound ε. To establish this result, we additionally
require Assumption 4, i.e. boundedness of the local gradients.

The following theorem summarizes our result of uniform stability for DFedAvgM
given the assumptions stated previously; the proof can be found in the appendix.

Theorem 2.5 (Uniform stability). Under Assumptions 1-4, we have that for
any T if the step size ηt ≤ c

t and c is small enough, then DFedAvgM satisfies uniform
stability with

(2.3) ε ≤ T
cLK

1+cLK

(
(sup f)K(cLK)

1
1+cLK

n
+

2σB
NL

(cLK)
cLK

1+cLK

)
+
B(σ +B) (cK + 2Cλ)

cLK
,

where sup f < ∞ is the uniform bound on the size of the non-negative global loss
function f , n is the local data set size, and

Cλ := 2λ2 + 4λ2 ln
1

λ
+ 2λ+

2

ln 1
λ

is a constant depending on the graph topology.

Per Lemma 2.4, we have that the generalization error for DFedAvgM is bounded
by the same constant that bounds the uniform stability, ε. Again, we note here the
explicit dependence of the generalization error on the corresponding value of λ for the
mixing matrix M of the graph topology. Cλ is an increasing function of λ ∈ (0, 1)
which implies that the bound in (2.3) improves with smaller λ.
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3 Network Topology Design The results of Section 2 show that the network
topology has a profound impact on both optimization and generalization of DFe-
dAvgM. According to Theorems 2.2 and 2.5, the closer λ is to 1 the slower DFe-
dAvgM converges (Theorem 2.2) and the worse it generalizes (Theorem 2.5). To
improve DFedAvgM, we propose a theoretically efficient and practical sparse network
topology whose λ is far away from 1.

For the sake of notation, we recall graph definitions and properties to introduce
network construction. Given an undirect, connected graph G = (V, E) we define the
graph Laplacian L = D − A, where A = [ai,j ] (with ai,j = 1 if (i, j) ∈ E) is the

adjacency matrix and Di,i =
∑N
j=1 ai,j is the diagonal degree matrix of G. Since G

is undirected, we have that both A and L are symmetric. Note that L is positive
semidefinite, with a trivial eigenvalue of 0 occurring with multiplicity reflecting the
number of connected components in G. As we assume that G is connected, this means
that only the first eigenvalue λ1(L) = 0, and we can order the rest of the eigenvalues
as 0 = λ1(L) < λ2(L) ≤ λ3(L) ≤ . . . ≤ λN (L). Define the reduced condition number
of L as

(3.1) κ(L) :=
λN (L)

λ2(L)
,

which is a measure of graph connectivity because a smaller κ(L) corresponds to a
graph with higher connectivity. This is an important constant that allows us to quan-
tify how useful a given graph topology is for the purposes of improving convergence
and generalization of DFedAvgM.

We apply the mixing matrix used in [6]

M = I − 2

(1 + θ)λN (L)
L, θ ∈ [0, 1),

which allows us to quantify the associated value of λ. The eigenvalues of this mixing
matrix M have a straightforward relationship with eigenvalues of L:

λi(M) = 1− 2

(1 + θ)λm(L)
λi(L).

Then it is clear that

λ = max{|λ2(M)|, |λm(M)|}

= max

{∣∣∣∣1− 2

(1 + θ)λm(L)
λ2(L)

∣∣∣∣ , ∣∣∣∣1− 2

(1 + θ)λm(L)
λm(L)

∣∣∣∣}

= max


∣∣∣1 + θ − 2

κ(L)

∣∣∣
1 + θ

,
1− θ
1 + θ

 .

For a fixed κ(L), we can view λ as a function of θ that can be optimized to lead to
the lowest value of λ. In Fig. 2, we have plotted the function |λm(M)| = (1−θ)/(1+θ)
along with |λ2(M)| = |1 + θ− 2/κ(L)|/(1 + θ) for two values of κ(L). For each fixed
κ(L), the corresponding lowest value of λ(θ) occurs when |λ2(M)| = |λm(M)|, shown
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Fig. 2: Plot of λ for the expander graph as a function of θ. The stars indicate the
optimal choice of θ = θ∗(κ), given the value of κ(L). Lower κ leads to a higher value
of θ∗(κ), which in turn leads to a lower value of λ, which is desired.

in Fig. 2 as stars; that is, when θ = θ∗(κ(L)). It is clear that

|λ2(M)| = |λm(M)|

⇐⇒
1 + θ∗(κ(L))− 2

κ(L)

1 + θ∗(κ(L))
=

1− θ∗(κ(L))

1 + θ∗(κ(L))

⇐⇒ θ∗(κ(L))− 2

κ(L)
= −θ∗(κ(L))

⇐⇒ θ∗(κ(L)) =
1

κ(L)
,

as long as 2/κ(L)− θ∗(κ(L)) ≤ 1, which is reasonable since most κ(L) ≥ 2.
It is straightforward then that choosing a graph structure with a smaller value

of κ(L) gives G better connectivity properties. Somewhat in competition with this
connectivity is the communication cost of a given graph topology; that is, better
connectivity of a graph structure generally corresponds to more edges in the graph
which increases the communication cost. Each node sends its updated model to each
of its neighbors, and so an increased number of edges results in more communication
that must happen between nodes.

We propose using d-regular expander graphs to balance this connectivity commu-
nication tradeoff. A d-regular graph has a fixed number degree d for each node; i.e.
d(i) = d for all i. Expander graphs are sparse graphs that have strong connectivity
properties, of which d-regular expander graphs (and the special case of Ramanujan
graphs) are in a sense “optimal” graph connectivity structures (captured in the con-
stant κ(L)) with fixed communication cost. While Ramanujan graphs are not known
for every value of total nodes N and degree d, with high probability most d-regular
graphs are approximately Ramanujan for large enough N [6].

For d-regular graphs, there exists a convenient upper bound for κ(L). This bound
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involves the first non-trivial eigenvalue, λ1(A), of the corresponding adjacency matrix

κ(L) ≤ d+ λ1(A)

d− λ1(A)
.

If the d-regular graph in question is Ramanujan, then we can bound κ(L) as

(3.2) κR(L) ≤ d+ 2
√
d− 1

d− 2
√
d− 1

.

As the right-hand side of (3.2) is a decreasing function of d, this would suggest
to choose larger d in order to minimize κR(L). However, increasing d will incur
greater communication costs. One can in practice choose the value of d according to
a prescribed bound on the total communication cost.
3.1 Comparison to Ring and Erdös-Rényi graphs We show that other graph
topologies are in a sense suboptimal for the purposes of DFedAvgM, highlighting
two common examples: Ring and Erdös-Rényi graphs. We emphasize that using d-
regular Ramanujan graphs are in a sense “optimal” by possessing strong connectivity
properties in the graph topology while requiring low communication cost for local
node neighborhood communication (i.e. sparsity).

Ring graphs – poor connectivity. Ring graph is an extremely sparse, but still
connected, 2-regular graph structure where the graph structure constitutes a ring
(see Fig. 1 (b)). While a very simple and sparse topology to impose on the nodes
of the graph, ring graphs possess poor connectivity properties that we can directly
compare with d-regular Ramanujan graphs.

It is well-known that the eigenvalues of the graph Laplacian Lring of the ring
graph on N nodes are given by

{λk(Lring)}
N
2

k=0 =

{
2− 2 cos

(
2πk

N

)}N
2

k=0

,

each with geometric multiplicity 2, except for the first eigenvalue µ0(Lring) = 0
which has geometric multiplicity 1; if N is even, the last eigenvalue λN/2(Lring)
has multiplicity 1 as well. Therefore, we can straightforwardly see that the reduced
condition number for a Ring graph on N nodes is

κring(Lring) =
λN/2(Lring)

λ1(Lring)
=

2− 2 cos
(
2πN
2N

)
2− 2 cos

(
2π
N

)
=

4

2− 2 cos
(
2π
N

) ≥ 4

2− 2
(

1− 1
2

(
2π
N

)2) =
4N2

4π2
=
N2

π2
.

Therefore, we see that with this lower bound for the Ring graph has a κ(Lring)
grows quadratically with the size N of the graph! The corresponding value for λ
approaches 1 for increasing values of N , which implies slower convergence rates (The-
orem 2.2) and worse generalization bounds (Theorem 2.5). It is clear then that

κR(L) ≤ d+ 2
√
d− 1

d− 2
√
d− 1

� N2

π2
≤ κring(Lring),

which shows superior convergence properties of Ramanujan expander graphs com-
pared to the sparse Ring graph structure.
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Erdös-Rényi graph – high communication cost. Another type of graph topology
one could impose for DFedAvgM is an Erdös-Rényi (ER) random graph structure,
wherein each edge (i, j) ∈ V×V is sampled independently and indentically distributed
with probability p ∈ (0, 1). It is well-known that as long as p = O(lnN/N), then the
resulting graph G is connected with high probability [8].

While the connectivity properties of ER graphs are nearly guaranteed to be better
than d-regular Ramanujan graphs (with d is relatively small), the communication cost
of ER graphs is prohibitively large for large network size N . To see this, the expected
degree di of a node i ∈ V in an ER graph with large enough edge probability p is
simply d̄ = Np = O(lnN), which grows with the size of the graph N . This incurs a
much larger communication cost than the constant cost of d-regular expander graphs
as it is assumed that d� N , with d < lnN as N is large.

In Section 5, we empirically verify the superior connectivity-communication cost
balance exemplified by the d-regular expander graph structure compared to Ring and
ER graphs for DFedAvgM. These d-regular expander graphs have better connectiv-
ity properties than Ring graphs while at the same time being sparser (i.e. lower
communication costs) than ER graphs.
4 Practical network design In this section, we discuss how to convert a given
graph to a practical overlay network topology for DFL. We illustrate our proposed
d-regular network topology in Fig. 3: for d-regular graph suppose d is even and let
L = d/2, we assign for each node a set of virtual coordinates represented by a L-
dimensional vector 〈x1, x2, ..., xL〉, where each element xi is a randomly generated
real number 0 ≤ xi < 1, as shown in Fig. 3 (a). There are L virtual ring spaces such
as the two shown in Fig. 3 (b). In the ith space, a node is virtually placed on a ring
based on the value of its ith coordinate xi. Coordinates in each space are circular,
and 0 and 1 are superposed. For each space, a node will connect to the two adjacent
nodes, for example, B connects to A and C in Space 1 and G and F in Space 2. Hence
each node has at most d = 2L neighbors. A neighbor of a node may happen to be
adjacent to it in multiple spaces, such as A and D. In such case, A can connect to
another node in the same situation, such as E. In the end, the equivalent network
topology is shown in Fig. 3 (c).

Node ID Coor. 1 Coor. 2
A 0.05 0.17
B 0.13 0.62
C 0.23 0.91
D 0.36 0.53
E 0.42 0.42
F 0.51 0.58
G 0.63 0.73
H 0.78 0.26
I 0.91 0.97

A
B

C

D
EF

G

H

I

Space 1 Space 2

A

B

I

E
D

F

G
H

C A
B

C

D

EF

G

H

I

(b) Virtual spaces(a) Coordinates (c) Actual topology
Fig. 3: DFL network topology in working systems. Each node generates a set of
coordinates and the network is generated in a distributed manner by allowing each
node to execute the proposed protocols locally.

The proposed network is a close proximal construction for a random d-regular
network [50]. Note that in practice there does not exist a perfect construction of a
random d-regular graph [38], and there is no way for a network node to verify whether
the entire network is Ramanujan only based on its local information.

The construction of a correct topology can be achieved by allowing each node
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to maintain the two closest nodes on each virtual ring. When a new node joins the
network, it can always succeed to find the two closest nodes on each virtual ring by
recursive queries [17].
4.1 Network recovery from node failures To maintain a correct DFL topology
for a dynamic set of nodes, protocols should be designed to recover errors from node
failures and leaves. Here an error is defined as a node that has a wrong neighbor set
compared to a correct DFL network topology. If a node x fails from the network, in
each virtual space i, its adjacent nodes yi and zi should remove x from their neighbors
and add each other as a new neighbor. To recover from such single-node failure, the
proposed recovery protocol allows each node to store the IP addresses of the two-hop
neighbors. Hence if a node is detected to fail, its two adjacent nodes can directly
connect as new neighbors.
5 Experimental Results
5.1 Convergence and generalization We evaluate the communication round
versus training loss, test loss, test accuracy, and the communication cost for Ring,
Erdös-Rényi, fully-connected, and the proposed expander graphs. We pick d = 3
regular expander graphs (called Ramanujan). The communication cost could be es-
timated by the model size. In all experimental settings, the topology is generated
by a central server before the training starts and stored in each user, but the central
host are not involved in the actual training process. The expander graph is generated
by adding an extra edge on top of the Ring graph. The Erdös-Rényi graph is gener-
ated by selecting random edges from all possible edges with the probability p = lnN

N ,
where N is the total number of expander graphs result in faster convergence and bet-
ter generalization of DFedAvgM in training different models on different datasets. To
conduct more comprehensive and solid experiments and testing, both the real network
settings and the simulation are used in our evaluation. To exclude other factors no
tuned optimization and data compression algorithms are used in the experiments. In
the evaluation, fully-connected graphs are shown as a baseline but it is hardly prac-
tical in real world applications considering the communication cost and availability.
Ring topology is easy to implement and widely used in previous works, so it is also
shown as a baseline. Because of the randomness of the Erdös-Rényi graph, the ex-
perimental results are inconsistent when there are relatively few nodes; and so we do
not include the Erdös-Rényi graph in all MNIST experiments below.

MNIST IID. We randomly split the MNIST dataset without any biases into 10
different subsets. Each user owns a local multilayer perceptron (MLP) model with
one hidden layer of size 200. Each user only has access to only one local subset as
its training set. We train the local model with the batch size of 20 and use the
cross entropy as the loss function. We use SGD with the learning rate 0.01 and the
momentum 0.9. After 3 epochs of local training, all the local nodes communicate with
the topological neighbors and average all the parameters of the MLP model. After
each communication round, the test accuracy, test loss, and training loss of each user
are recorded and averaged in Fig. 4. Based on our experiments, in this IID settings
the fully-connected and expander graph converge at round 16 which have advantage
over 26 rounds of the Ring graph. According to the test accuracy shown in Fig. 4, the
fully-connected graph has the best test accuracy of 98.2% while the expander graph
reaches a similar 98.0% with only one third of its communication cost. The Ring
graph reaches 97.7% accuracy due to the ideal distribution of the data.

MNIST Non-IID. All the settings are similar to the IID settings except each node
owns a local dataset consisting of only one label (one digit in MNIST). The distribution
is extremely unfavorable to the generalization. The test dataset is balanced sampled
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Fig. 4: The test accuracy, test loss, and communication cost of the Ring/3-regular
expander (Ramanujan)/Fully connected graphs on IID MNIST. All of the graphs
reach over 92% accuracy but the expander graph starts to converge at round 12 while
the Ring graph starts to converge at round 20.

from the original dataset as the IID settings. As shown in Fig. 5 the expander graph
reaches 88.8% accuracy and much higher than the Ring graph (73.68%). The fully
connected graph reaches the best accuracy of 94%. Although the expander graph’s
accuracy is lower than the fully connected graphs’ but with 33% of its communication
cost. After each communication round, the training and test loss, and test accuracy
of each user are recorded and averaged (Fig. 5). The expander graph could achieve a
faster convergence and better generalization than the Ring graph and the performance
is close to the fully connected graph but with a more manageable communication cost.
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Fig. 5: The test accuracy, test loss, and communication cost of the Ring/3-regular
Ramanujan/Fully connected Graph on non-IID MNIST. The expander graph reaches
88.79% accuracy, which is higher than the Ring graph’s 73.68%. The communication
cost of the expander graph is only one third of the fully connected graphs’.

Language modeling. We further conduct the simulation to evaluate the effect of
different topology to the language models. First, we split the Shakespeare dataset [28]
into 100 subsets (with some overlaps). Then we create 100 LSTM models (each one
with 256 hidden units and 2 layers). In this Non-IID sampling scenario, the underlying
distribution of data for each node is consistent with the raw data. Since we assume
that data distributions vary between users in the raw data, we take this setting as
Non-IID. We use cross entropy as the loss function. Then we train each LSTM with
the corresponding local Non-IID dataset with the learning rate 0.5 and momentum
0.9. After 3 epochs of local training, all local nodes communicate with the neighbors
through which is similar to the previous method employed by the MNIST experiment
and average all the parameters of the LSTM model. After each communication round,
the training loss, test loss, and test accuracy of each user are recorded and averaged in
Fig. 6. The Erdös-Rényi graph have an accuracy of 45.3% which is close to the fully
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connected graph’s 45.8%. The expander graph reach an accuracy of 40.4% and the
Ring graph only reaches 36.2%. In this unfavorable data distribution, the Ring graph
generalize worse than the expander graph. The Erdös-Rényi graph has better test
accuracy and test loss than the expander graph because it needs significantly more
degrees to ensure the connectivity of the graph. Thus it has a higher communication
cost. Also, DFedAvgM with the expander graph converges faster than the Ring graph.
In this case, we could see that the communication cost for the complete graph is 16
times higher than the expander graph. With some moderate communication cost,
expander graph could generalize better and has the similar convergence to the fully
connected graph.
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Fig. 6: The test accuracy, test loss, and communication cost of the Ring/3-regular
Ramanujan/Erdös-Rényi/Complete graph on non-IID Shakespeare dataset. Erdös-
Rényi graph have an accuracy rate of 45.3%. The expander graph reach a accuracy
rate of 40.4% and the Ring graph only reaches 36.2%.

5.2 Robustness to client failures To test the robustness of DFedAvgM with
different network topology to client failures, we drop 10% and 20% of clients during
the communication and compare the performance of Ring, expander, Erdös-Rényi,
and fully-connected graphs. In the language modeling, we mask the input of the
dropped nodes to simulate the communication failure. All the dropped nodes are
randomly selected and excluded from the final results.

0 20 40
Commnication Round

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y

Non-IID MNIST 10% fail

complete
ramanujan
ring

0 20 40
Commnication Round

0.05

0.10

Te
st

 L
os

s

Non-IID MNIST 10% fail
ring
ramanujan
complete

0 20 40
Commnication Round

0.4

0.6

Te
st

 A
cc

ur
ac

y

Non-IID MNIST 10% fail

complete
ramanujan
ring

0 20 40
Commnication Round

0.00

0.05

0.10

Te
st

 L
os

s

Non-IID MNIST 20% fail

ring
ramanujan
complete

Acc 10% failure Loss 10% failure Acc 20% failure Loss 20% failure

Fig. 7: The test accuracy and test loss of the Ring/3-regular Ramanujan/Complete
graphs on non-IID MNIST with client failures.

MNIST Non-IID. As shown in Fig. 7, the communication failure not only cause
the loss of corresponding training samples globally, but also breaks the connection
of the topology. With the weakest connectivity, the Ring graph degrades to 51.3%
accuracy when 20% of the nodes are dropped. The clients are partitioned when
multiple nodes fail in a Ring graph. The expander graph reaches 65.3% of accuracy
due to its high connectivity and no partition.

Language Modeling. In Fig. 8, we have a similar situation as Fig. 7. With the
weakest connectivity, the Ring graph degrades to 33.7% accuracy when 20% of the
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Fig. 8: The test accuracy and test loss the of the Ring/3-regular Ramanu-
jan/Complete/Erdös-Rényi graphs on non-IID MNIST with client failures.

nodes are dropped. The clients are partitioned when multiple nodes fail in a Ring
graph. The expander graph reaches 41.5% of accuracy due to its merits. Additionally,
although the Erdös-Rényi graph performs slightly better than the expander graph
with a 10% client failures, it become worse than the expander graph with a 20%
client failure because of its weaker connectivity property.
6 Concluding Remarks In this paper, we presented the theoretical advantages
of expander graph-based overlay networks and their practical construction. We nu-
merically verified the efficacy in accelerating training, improving generalization, and
enhancing robustness to client failures of decentralized federated learning by using
expander graph-based overlay networks on various benchmarks. How to establish the
theoretical robustness guarantees of the expander graph-based overlay networks to
the node failure is an interesting future direction.

Appendix A. Technical Proofs.

Theorem A.1 (General nonconvexity [41], (Theorem 2.2 restate)). Let the se-
quence {wt

i}t≥0 be generated by the DFedAvgM for each i = 1, 2, . . . , N , and suppose
Assumptions 1-3 hold. Moreover, assume the constant stepsize η satisfies 0 < η ≤
1/8LK and 64L2K2η2 +64LKη < 1, where L is the Lipschitz constant from Assump-
tion 1 and K is the number of local updates before communication. Then,

(A.1) min
1≤t≤T

E‖∇f(w̄t)‖2 ≤ 2(w̄1)− 2 min f

γ(K, η)T
+ α(K, η) +

Ξ(K, η)

(1− λ)2
,

where T is the total number of communication rounds and the constants are given as

γ(K, η) :=
η(K − β)

1− β
− 64(1− β)L2K4η3

K − β
− 64LK2η2

α(K, η) :=

(
(1−β)L2K2η3

K−β + Lη2
)(

8Kσ2 + 32K2ζ2 + 64K2β2(σ2+B2)
(1−β)2

)
η(K−β)
1−β − 64(1−β)L2K4η3

K−β − 64LK2η2

Ξ(K, η) :=

(
64(1− β)L4K4η5

K − β
+ 64L3K2η4

)
×

(
8Kσ2 + 32K2ζ2 + 32K2B2 + 64K2β2

(1−β)2 (σ2 +B2)
)

(
η(K−β)
1−β − 64(1−β)L2K4η3

K−β − 64LK2η2
)


Theorem A.2 (Uniform stability (Theorem 2.5 restate)). Under Assumptions 1-

4, we have that for any T is the step size ηt ≤ c
t and c is small enough, then DFedAvg
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satisfies uniform stability with

εstab ≤ T
cLK

1+cLK

(
(sup f)K(cLK)

1
1+cLK

n
+

2σB
NL

(cLK)
cLK

1+cLK

)
+
B(σ +B) (cK + 2Cλ)

cLK
,

where sup f <∞ is the uniform bound on the size of the non-negative loss function.

Proof. Assume that each node i has access to local datasets Di = {(x`i , y`i )}
ni
`=1

of size ni = n, and denote be D = ∪Ni=1Di be the set of Nn datapoints over the whole
graph. Assume then that the datasets D, D̃ differ by only one point; that is, there
exists exactly one i∗ ∈ {1, . . . , N} such Di and D̃i differ in exactly one point. Define
the random variables

ξt,ki ∼ Unif(Di),

where {ξt,ki }Kk=1 are sampled IID (with replacement). We denote the collection of

random variables sampled from D at all N nodes in the graph as Ξ(t,k) := {ξt,ki }Ni=1.

Likewise, define Ξ̃(t,k) = {ξt,ki }Ni=1 to be the collection of samples from D̃ at all N
nodes in the graph.

Now define w̄t, v̄t to be the averages generated by DFedAvgM with training data
D, D̃, respectively; that is,

w̄t =
1

N

N∑
i=1

wt,0
i , v̄t =

1

N

N∑
i=1

vt,0i .

Further, define the matrices

X(t,k) := [wt,k
1 wt,k

2 . . . wt,k
N ], Y (t,k) := [vt,k1 vt,k2 . . . vt,kN ]

and the gradient matrices

G(t,k)
(
X(t,k); Ξ(t,k)

)
:= [∇f1(wt,k

1 ; ξt,k1 ) ∇f2(wt,k
2 ; ξt,k2 ) . . . ∇fN (wt,k

N ; ξt,kN )],

G(t,k)
(
Y (t,k); Ξ̃(t,k)

)
:= [∇f1(vt,k1 ; ξ̃t,k1 ) ∇f2(vt,k2 ; ξ̃t,k2 ) . . . ∇fN (vt,kN ; ξ̃t,kN )].

We have that by definition of the DFedAvgM iterations

wt,k+1
i −wt,k

i

= −ηt∇fi(wt,k
i ; ξt,ki ) + θ(wt,k

i −wt,k−1
i )

= −ηt∇fi(wt,k
i ; ξt,ki ) + θ

(
−ηt∇fi(wt,k−1

i ; ξt,k−1i ) + θ(wt,k−1
i −wt,k−2

i )
)

= . . .

= −ηt

(
k∑
s=0

θk−s∇fi(wt,s
i ; ξt,si )

)

and that

wt,k+1
i −wt,k

i = −ηt∇fi(wt,k
i ; ξt,ki ) + θ(wt,k

i −wt,k−1
i )

=⇒ wt,K
i −wt,0

i =

K−1∑
k=0

−ηt∇fi(wt,k
i ; ξt,ki ) + θ(wt,k

i −wt,k−1
i )
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=

K−1∑
k=0

−ηt∇fi(wt,k
i ; ξt,ki ) + θ(wt,K−1

i −wt,0
i )

=⇒ wt,K
i −wt,0

i =
−ηt

1− θ

K−1∑
k=0

∇fi(wt,k
i ; ξt,ki )− θ

1− θ
(wt,K

i −wt,K−1
i )

=
−ηt

1− θ

K−1∑
k=0

∇fi(wt,k
i ; ξt,ki )− −ηtθ

1− θ

K−1∑
k=0

k∑
s=0

θk−s∇fi(wt,s
i ; ξt,si )

=
−ηt

1− θ

(
K−1∑
k=0

∇fi(wt,k
i ; ξt,ki )− θ

K−1∑
k=0

∇fi(wt,k
i ; ξt,ki )

K−k−1∑
s=0

θs

)

=
−ηt

1− θ

K−1∑
k=0

(
1− θ − θK−k+1

1− θ

)
∇fi(wt,k

i ; ξt,ki )

=
ηt

(1− θ)2
K−1∑
k=0

(1− 2θ + θK−k+1)∇fi(wt,k
i ; ξt,ki ).(A.2)

Then by A.2 we can write

X(t,K) −X(t,0) =
ηt

(1− θ)2
K−1∑
k=0

pk(θ)G(t,k)(X(t,k); Ξ(t,k)),

Y (t,K) − Y (t,0) =
ηt

(1− θ)2
K−1∑
k=0

pk(θ)G(t,k)(Y (t,k); Ξ̃(t,k)),

where we have defined pk(θ) = 1− 2θ + θK−k+1.
Letting 1 ∈ RN denote the vector of all ones, then the mixing matrix W satisfies

W 1

N = 1

N . Then we have with probability
(
n−1
n

)K
the random variables {Ξ(t,k)}Kk=1 =

{Ξ̃(t,k)}Kk=1 are exactly the same:

w̄t+1 − v̄t+1

(A.3)

= X(t,K)W
1

N
− Y (t,K)W

1

N

=
(
X(t,0) +

(
X(t,K) −X(t,0)

))
1

N
−
(
Y (t,0) +

(
Y (t,K) − Y (t,0)

))
1

N

=

(
X(t,0) − Y (t,0) +

ηt

(1− θ)2

(
K−1∑
k=0

pk(θ)G(t,k)(X(t,k); Ξ(t,k))−
K−1∑
k=0

pk(θ)G(t,k)(Y (t,k); Ξ(t,k))

))
1

N

=
((

X(t,0) − Y (t,0)
)

(I − P ) +
(
X(t,0) − Y (t,0)

)
P
)
1

N

+
ηt

(1− θ)2

(
K−1∑
k=0

pk(θ)
[
G(t,k)(X(t,k); Ξ(t,k))−G(t,k)(w̄t

1
T ; Ξ(t,k)) + G(t,k)(w̄t

1
T ; Ξ(t,k))

])
1

N

−
ηt

(1− θ)2

(
K−1∑
k=0

pk(θ)
[
G(t,k)(Y (t,k); Ξ(t,k))−G(t,k)(v̄t1T ; Ξ(t,k)) + G(t,k)(v̄t1T ; Ξ(t,k))

])
1

N

=
ηt

N(1− θ)2

N∑
i=1

K−1∑
k=0

pk(θ)
[(
∇fi(w̄t; ξt,ki )−∇fi(wt,k

i ; ξt,ki )
)
−
(
∇fi(v̄t; ξt,ki )−∇fi(vt,ki ; ξt,ki )

)]
︸ ︷︷ ︸

=:A1
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+
1

N

N∑
i=1

(
w̄t −

ηt

(1− θ)2

K−1∑
k=0

pk(θ)∇fi(w̄t; ξt,ki )

)
−
(
v̄t −

ηt

(1− θ)2

K−1∑
k=0

pk(θ)∇fi(v̄t; ξt,ki )

)
,

(A.4)

where we note that (I − P ) 1N = 0. Now, we have that since θ ∈ [0, 1), then
|pk(θ)| = pk(θ) ≤ pK−1(θ) = (1− θ)2 for each k = 0, 1, . . . ,K − 1. This means we can
calculate

‖A1‖

≤ ηt
N

N∑
i=1

K−1∑
k=0

‖∇fi(w̄t; ξt,ki )−∇fi(wt,k
i ; ξt,ki )‖+ ‖∇fi(v̄t; ξt,ki )−∇fi(vt,0i ; ξt,ki )‖

≤ ηtL

N

N∑
i=1

K−1∑
k=0

‖w̄t −wt,k
i ‖+ ‖v̄t − vt,ki ‖

≤ ηtL

N

K−1∑
k=0

N∑
i=1

(
‖w̄t −wt,0

i ‖+ ‖v̄t − vt,0i ‖
)

+
ηtL

N

K−1∑
k=1

N∑
i=1

(
‖wt,0

i −wt,k
i ‖+ ‖vt,0i − vt,ki ‖

)
≤ ηtL√

N

K−1∑
k=0

(
‖X(t,0)(I − P )‖F + ‖Y (t,0)(I − P )‖F

)
+

η2tL

N(1− θ)2
N∑
i=1

K−1∑
k=1

k−1∑
s=0

ps(θ)
(
‖∇fi(wt,s

i ; ξt,si )‖+ ‖∇fi(vt,si ; ξt,si )‖
)

≤ ηtL√
N

K−1∑
k=0

(
‖X(t,0)(I − P )‖F + ‖Y (t,0)(I − P )‖F

)
+
η2tL

N

N∑
i=1

K−1∑
k=1

k−1∑
s=0

(
‖∇fi(wt,s

i ; ξt,si )‖+ ‖∇fi(vt,si ; ξt,si )‖
)
.

Then, we have

1

N

N∑
i=1

‖∇fi(wt,s
i ; ξt,si )‖ ≤ 1

N

N∑
i=1

‖∇fi(wt,s
i ; ξt,si )−∇fi(wt,s

i )‖+ ‖∇fi(wt,s
i )‖

≤ 1√
N

(
N∑
i=1

‖∇fi(wt,s
i ; ξt,si )−∇fi(wt,s

i )‖2
) 1

2

+B

=⇒ E
1

N

N∑
i=1

‖∇fi(wt,s
i ; ξt,si )‖ ≤ 1√

N

(
N∑
i=1

E‖∇fi(wt,s
i ; ξt,si )−∇fi(wt,s

i )‖2
) 1

2

+B

≤ 1√
N

(
Nσ2

) 1
2 +B = σ +B,

so that with applying the Lemma A.3

‖A1‖ ≤ 2ηtLK(σ +B)

 t∑
j=1

ηt−jλ
j

+ 2η2tL(σ +B)

K−1∑
k=1

k
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= 2ηtLK(σ +B)

 t∑
j=1

ηt−jλ
j

+ η2tL(σ +B)K(K − 1)

≤ ηtLK(σ +B)

2

t−1∑
j=1

ηt−jλ
j + ηtK

 .

Now, noticing that with each fi being L-smooth, we can calculate∥∥∥∥∥w̄t − ηt
(1− θ)2

K−1∑
k=0

pk(θ)∇fi(w̄t; ξt,ki )−

(
v̄t − ηt

(1− θ)2
K−1∑
k=0

pk(θ)∇fi(v̄t; ξt,ki )

)∥∥∥∥∥
≤ ‖w̄t − v̄t‖+ ηt

K−1∑
k=0

∥∥∥∇fi(w̄t; ξt,ki )−∇fi(v̄t; ξt,ki )
∥∥∥

≤ (1 + ηtLK)‖w̄t − v̄t‖.

Plugging everything into (A.3)

E‖w̄t+1 − v̄t+1‖ ≤ (1 + ηtLK)‖w̄t − v̄t‖+ ηtLK(σ +B)

2

t−1∑
j=1

ηt−jλ
j + ηtK

 .

Now, with probability 1−
(
n−1
n

)K
, we have that the random variables {Ξ̃(t,k)}Kk=1

might be different from {Ξ(t,k)}Kk=1 in the draws from node i∗. We calculate, similarly
to the previous case,

w̄t+1 − v̄t+1

=
ηt

N(1− θ)2

N∑
i=1

K−1∑
k=0

pk(θ)
[(
∇fi(w̄t; ξt,ki )−∇fi(wt,k

i ; ξt,ki )
)
−
(
∇fi(v̄t; ξ̃t,ki )−∇fi(vt,ki ; ξ̃t,ki )

)]

+
1

N

N∑
i=1

(
w̄t −

ηt

(1− θ)2

K−1∑
k=0

pk(θ)∇fi(w̄t; ξt,ki )

)
−
(
v̄t −

ηt

(1− θ)2

K−1∑
k=0

pk(θ)∇fi(v̄t; ξ̃t,ki )

)

which allows us to conclude by performing the same calculations we did on A1

=⇒ E‖w̄t+1 − v̄t+1‖ ≤ ηtLK(σ +B)

2

t−1∑
j=1

ηt−jλ
j + ηtK


(A.5)

+ E

∥∥∥∥∥∥∥∥∥∥∥
1

N

N∑
i=1

(
w̄t −

ηt

(1− θ)2

K−1∑
k=0

pk(θ)∇fi(w̄t; ξt,ki )

)
−
(
v̄t −

ηt

(1− θ)2

K−1∑
k=0

pk(θ)∇fi(v̄t; ξ̃t,ki )

)
︸ ︷︷ ︸

=:A2

∥∥∥∥∥∥∥∥∥∥∥
.

(A.6)

Now, turning our attention to the term A2, we can calculate

A2 =
1

N

N∑
i=1

[
w̄t − v̄t +

ηt

(1− θ)2

K−1∑
k=0

pk(θ)
(
∇fi(w̄t; ξt,ki )−∇fi(v̄t; ξ̃t,ki )

)]

= w̄t − v̄t +
ηt

N(1− θ)2
∑
i 6=i∗

K−1∑
k=0

pk(θ)
(
∇fi(w̄t; ξt,ki )−∇fi(v̄t; ξt,ki )

)
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+
ηt

N(1− θ)2

K−1∑
k=0

pk(θ)
(
∇fi∗ (w̄t; ξt,ki∗ )−∇fi∗ (v̄t; ξ̃t,ki∗ )

)

=⇒ ‖A2‖ ≤ ‖w̄t − v̄t‖+
ηtLK(m− 1)

N
‖w̄t − v̄t‖+

ηt

N

K−1∑
k=0

‖∇fi∗ (w̄t; ξt,ki∗ )−∇fi∗ (w̄t)‖

+
ηt

N

K−1∑
k=0

‖∇fi∗ (w̄t)−∇fi∗ (v̄t)‖+ ‖∇fi∗ (v̄t)−∇fi∗ (v̄t; ξ̃t,ki∗ )‖

=⇒ E‖A2‖ ≤
(

1 +
ηtLK(m− 1)

N

)
E‖w̄t − v̄t‖+

ηtK

N

(
2σ + LE‖w̄t − v̄t‖

)
= (1 + ηtLK)E‖w̄t − v̄t‖+

2ηtσK

N
,

where in the second to last line we have used the fact that by Jensen’s inequality

E
(
‖z‖2

) 1
2 ≤

(
E‖z‖2

) 1
2

combined with the assumption of bounded variance of stochastic gradients.
Recalling the definition δt := ‖w̄t−v̄t‖, then we can combine both cases to obtain

E(δt+1|δt0 = 0)

≤
(
n− 1

n

)K (1 + ηtLK)E(δt|δt0 = 0) + ηtLK(σ +B)

2

t−1∑
j=1

ηt−jλ
j + ηtK


+

(
1−

(
n− 1

n

)K)ηtLK(σ +B)

2

t−1∑
j=1

ηt−jλ
j + ηt(K + 1)


+

(
1−

(
n− 1

n

)K)(
(1 + ηtLK)E(δt|δt0 = 0) +

2ηtσK

N

)

= (1 + ηtLK)E(δt|δt0 = 0) + ηtLK(σ +B)

2

t−1∑
j=1

ηt−jλ
j + ηtK


+

(
1−

(
n− 1

n

)K)
2ηtσK

N
.

With a similar result to bound the sum
∑t−1
j=1 ηt−jλ

j to that of [41], if we set

ηt ≤
c

t
,

then we should be able to calculate

E(δt+1|δt0 = 0) ≤
(

1 +
cLK

t

)
E(δt|δt0 = 0) +

cLK

t
(σ +B)

(
2
Cλ
t

+
cK

t

)
+

(
1−

(
n− 1

n

)K)
2cσK

Nt

≤
(

1 +
cLK

t

)
E(δt|δt0 = 0) +

2cKσ

N︸ ︷︷ ︸
=:C1

1

t
+ cLK(σ +B) (cK + 2Cλ)︸ ︷︷ ︸

=:C2

1

t2
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≤ exp

(
cLK

t

)
E(δt|δt0 = 0) +

C1

t
+
C2

t2
.

Unraveling this recursion, we obtain

E(δT |δt0 = 0) ≤
T∑

t=t0+1

exp

(
cLK

T∑
k=t+1

1

k

)(
C1

t
+
C2

t2

)

≤
T∑

t=t0+1

exp

(
cLK ln

T

t

)(
C1

t
+
C2

t2

)

= T cLK

(
T∑

t=t0+1

1

tcLK+1

(
C1 +

C2

t

))

≤ T cLK
(

C1

cLKtcLK0

+
C2

(cLK + 1)tcLK+1
0

)
≤
(
T

t0

)cLK
1

cLK

(
C1 +

C2

t0

)
.

Plugging in the definitions of C1, C2 we get

E(δT |δt0 = 0) ≤
(
T

t0

)cLK
1

cLK

[
2cKσ

N
+
cLK(σ +B) (cK + 2Cλ)

t0

]
=

(
T

t0

)cLK [
2σ

NL
+

(σ +B) (cK + 2Cλ)

t0

]
,

which gives by Lemma A.4

E|f(w̄T ; Ξ)− f(v̄T ; Ξ)| ≤ t0(sup f)

(
1−

(
n− 1

n

)K)

+B

(
T

t0

)cLK [
2σ

NL
+

(σ +B) (cK + 2Cλ)

t0

]
≤ t0K

n
(sup f) +

(
T

t0

)cLK [
2σB

NL
+
B(σ +B) (cK + 2Cλ)

t0

]
.

The right hand side is approximately minimized if we choose

t0 = T
cLK

1+cLK (cLK)
1

1+cLK ,

which we can ensure is less than n for c sufficiently small. We then can calculate

E|f(w̄T ; Ξ)− f(v̄T ; Ξ)| ≤ (sup f)K(cLK)
1

1+cLK

n
T

cLK
1+cLK +

2σB
NL

(cLK)
cLK

1+cLK

T
cLK

1+cLK

+
B(σ +B) (cK + 2Cλ)T cLK(
(cLK)

1
1+cLK T

cLK
1+cLK

)cLK+1

= T
cLK

1+cLK

(
(sup f)K(cLK)

1
1+cLK

n
+

2σB
NL

(cLK)
cLK

1+cLK

)
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+
B(σ +B) (cK + 2Cλ)

cLK
,

as desired.

Lemma A.3. Under Assumptions 1-4 and on the mixing matrix W , we have that

‖X(t,0)(I − P )‖F ≤ K
√
N(σ +B)

t−1∑
j=1

ηt−jλ
j ,

where σ,B and λ are constants from our assumptions and K is the number of local
updates performed before aggregation via the graph topology.

Proof. Let the vector w̄t,k =
∑N
i=1 w

t,k
i /N be the average parameter vector dur-

ing intermediate, local updates. Then, let the matrix of “true gradients” of the global
objective function f be

∇F (X(t,k)) := [∇f(w̄t,k) ∇f(w̄t,k) . . .∇f(w̄t,k)],

obtained by horizontally concatenating the true gradient vector ∇f(w̄t,k). Recalling
that pk(θ) ≤ (1− θ)2 for k = 0, . . . ,K − 1, we have

‖X(t,0)(I − P )‖F

=

∥∥∥∥∥
t∑

j=1

ηt−j
(1− θ)2

K−1∑
k=0

pk(θ)G(t,k)(X(t,k); Ξ(t,k))
(
W j − P

)∥∥∥∥∥
F

≤
t∑
j=1

ηt−j

∥∥∥W j − P
∥∥∥
F

K−1∑
k=0

∥∥∥G(t−j,k)(X(t−j,k); Ξ(t,k))−∇F (X(t−j,k)) +∇F (X(t−j,k))
∥∥∥
F

≤
t∑
j=1

ηt−jλ
j
K−1∑
k=0

(
N∑
i=1

‖∇fi(wt−j,k
i ; ξt−j,ki )−∇fi(wt−j,k

i )‖2
) 1

2

+

(
N∑
i=1

‖∇fi(wt−j,k
i )‖2

) 1
2

≤
t∑
j=1

ηt−jλ
j
K−1∑
k=0

( N∑
i=1

‖∇fi(wt−j,k
i ; ξt−j,ki )−∇fi(wt−j,k

i )‖2
) 1

2

+B
√
N

 ,

=⇒ E‖X(t,0)(I − P )‖F

≤
t∑

j=1

ηt−jλ
j
K−1∑
k=0

( N∑
i=1

E‖∇fi(wt−j,k
i ; ξt−j,ki )−∇fi(wt−j,k

i )‖2
) 1

2

+B
√
N


≤

t∑
j=1

ηt−jλ
j
K−1∑
k=0

[
σ
√
N +B

√
N
]

= K
√
N(σ +B)

t∑
j=1

ηt−jλ
j ,

where in the third line from the bottom we have used Jensen’s inequality, since the
square root function is concave.

Lemma A.4. Assume that the loss function f(·; Ξ) is nonnegative and B-Lipschitz
for all Ξ. Let D, D̃ be two samples of size Nn differing in only a single example. Let
w̄T , v̄T denote the output of DFedAvgM after T steps with the dataset samples D and
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D̃, respectively. Then, for every Ξ and every t0 ∈ {0, 1, . . . , n}, under the random
selection rule, we have

E|f(w̄T ; Ξ)− f(v̄T ; Ξ)| ≤ t0(sup f)

(
1−

(
n− 1

n

)K)
+BE(δT |δt0 = 0).

Proof. Our proof closely follows that of [12], just with a small distinction. After
obtaining the inequality

E|f(w̄T ; Ξ)− f(v̄T ; Ξ)| ≤ BE(δT |δt0 = 0) + P{Ec}(sup f),

where the event E denotes the event that δt0 = 0, we similarly need to bound P{Ec}.
Defining the random variable I to assume the index of the first time step in which
DFedAvg uses the example ξ∗, which occurs at node i∗ ∈ [N ] and is located in the
j∗ ∈ [n] entry of D̃i∗ . We have

P{Ec} = P{δt0 6= 0} ≤ P{I ≤ t0} ≤
t0∑
t=1

P{I = t}.

Now since the draws at each round t of DFedAvgM are sampled uniformly at random
across both the nodes and the local datasets (that is ξt,ki ∼ Unif(Di) with replacement
across iterations k), then we have that

P{I = t} = 1− P{I 6= t} = 1−
(
n− 1

n

)K
,

from which we conclude the proof.

Lemma A.5. If ηt ≤ c
t for t = 1, 2, . . ., then

t∑
j=1

ηt−jλ
j ≤ Cλ

t

where

Cλ := min

{
2λ,

1

ln 1
λ

λ
1

ln 1
λ

}
+min

{
4λ ln

1

λ
,

4

ln 1
λ

λ
2

ln 1
λ

}
+min

{
2λ,

1

ln 1
λ

λ
1

ln 1
λ

}
+

2

ln 1
λ

.

Proof.

t∑
j=1

ηt−jλ
j(A.7)

=

t∑
j=1

ηjλ
t−j ≤ λt

t∑
j=1

λ−j

j

= λt + λt
t∑

j=2

λ−j

j

≤ λt + λt
t∑

j=2

∫ j

j−1

λ−x

x
dx(A.8)

= λt + λt
∫ t

1

λ−x

x
dx = λt−1 + λt

(∫ t/2

1

λ−x

x
dx+

∫ t

t/2

exp(x ln( 1
λ ))

x
dx

)
,(A.9)
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which with λ < 1 we have that ln(1/λ) > 0 and so we can simplify the integrals as∫ t/2

1

λ−x

x
dx ≤ 2

t

∫ t/2

1

λ−xdx =
2

t ln 1
λ

(
λ−t/2 − λ−t

)
≤ 2λ−t/2

t ln 1
λ

and ∫ t

t/2

exp(x ln( 1
λ ))

x
dx

=

∫ t/2

1

1

x

∞∑
k=0

(ln 1
λ )kxk

k!
dx

=

∫ t/2

1

1

x
dx+ (ln

1

λ
)

∫ t/2

1

1dx+

∞∑
k=2

(ln 1
λ )k

k!

∫ t/2

1

xk−1dx

= 1− 4

t2
+

1

2
(t− 2) ln

1

λ
+

∞∑
k=2

(ln 1
λ )k

(k)k!

((
t

2

)k
− 1

)

≤ 1− 4

t2
+

1

2
(t− 2) ln

1

λ
+

1

2

∞∑
k=2

(ln 1
λ )k

k!

((
t

2

)k
− 1

)

= 1− 4

t2
+

1

2
(t− 2) ln

1

λ
+

1

2

(
1

λt/2
− 1 +

t

2
ln

1

λ
−
[

1

λ
− 1 + ln

1

λ

])
= 1− 4

t2
+

1

2
(t− 2) ln

1

λ
+

1

2

(
1

λt/2
− 1

λ
+

1

2
(t− 2) ln

1

λ

)
= 1− 4

t2
+

3

4
(t− 2) ln

1

λ
+

1

2λt/2
− 1

2λ
.

Plugging this result into (A.9), we obtain

t∑
j=1

ηt−jλ
j ≤ λt−1 + λt

(
1− 4

t2
+

3

4
(t− 2) ln

1

λ
+

1

2λt/2
− 1

2λ
+

2λ−t/2

t ln 1
λ

)

=
λt−1

2
+ λt

(
1− 4

t2
+

3

4
(t− 2) ln

1

λ

)
+ λt/2

(
1

2
+

2

t ln 1
λ

)
≤ 1

t

[
λt
(
t+ ln

1

λ
t2
)

+ λt/2
(
t+

2

ln 1
λ

)]
,(A.10)

where in the last line we have used that t− 1 ≥ t/2 for t ≥ 2.
Seeking a uniform bound over t = 2, 3, . . ., we bound each of the last two terms

of the right hand side of the above equation. It is easy to check that

tλt ≤ min

{
2λ2,

1

ln 1
λ

λ
1

ln 1
λ

}
,

t2λt ≤ min

{
4λ2,

4(
ln 1

λ

)2λ 2

ln 1
λ

}
,

tλt/2 ≤ min

{
2λ,

1

ln 1
λ

λ
1

ln 1
λ

}
,
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where we have noted that each of these functions are decreasing functions of t. There-
fore, our bound becomes:

t∑
j=1

ηt−jλ
j

≤ 1

t

[
min

{
2λ2,

1

ln 1
λ

λ
1

ln 1
λ

}
+ min

{
4λ2 ln

1

λ
,

4

ln 1
λ

λ
2

ln 1
λ

}
+ min

{
2λ,

1

ln 1
λ

λ
1

ln 1
λ

}]
+

2

t ln 1
λ

=
1

t

[
2λ2 + 4λ2 ln

1

λ
+

2

ln 1
λ

+ min

{
2λ,

1

ln 1
λ

λ
1

ln 1
λ

}]
=:

Cλ
t
.

We note that all terms of Cλ except for 2/ ln 1
λ are uniformly bounded on λ ∈ (0, 1).

It is true that 2/ ln 1
λ →∞ as λ→ 1−, but for each λ < 1 this bound Cλ is valid.
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