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ABSTRACT

Mobile Edge Computing (MEC) provides computing/storage
offloading and resource virtualization to mobile devices
at the network edge. A load balancer is a necessary net-
work function to determine the destination MEC host of
each packet from a mobile device, for such virtualization.
Due to the new characteristics of MEC, such as resource
limitation and high dynamics, existing solutions of cloud
load balancer cannot be directly applied to MEC. This
paper presents a new design of a Scalable and Dynamic
Load Balancer, called SDLB, that satisfies the require-
ments of MEC. The core algorithm of SDLB is minimal
perfect hashing, which provides two perfect features as
a load balancer. Evaluation results show that SDLB is
faster by 4x to 10x and uses much less (< 50%) memory,
than a widely-used load balancer design for cloud.
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1 INTRODUCTION

Although mobile hardware continues to improve, it is still
relatively resource-constrained compared to static computing
hardware. To provide resource of computation, storage, and
bandwidth to massive mobile computing devices such as
those of the Internet of Things (IoT), strong back-end servers
in a remote cloud is a common solution. However, many
modern applications such as augmented reality (AR) and real
time monitoring/control are latency-sensitive and may suffer
the long round-trip delay to the cloud. Hence, Mobile Edge
Computing (MEC) has been proposed to shift computing and
storage capacities from the remote cloud to the network edge
[9, 17]. The nodes that provide resource to mobile devices are
called MEC hosts. Fog Computing is a computing paradigm
with a similar objective of MEC [3, 24, 26], where the nodes
providing resource are called Fog nodes. MEC and Fog may
differ in specific characteristics. For example, most MEC
hosts are deployed by the mobile service provider while Fog
nodes may be network devices or terminals belonging to
different users. MEC and Fog are close in their network
models and most characteristics [2]. In this work, we study
with a generalized network model which can be applied to both
MEC and Fog Computing.

We consider a MEC network consisting of mobile devices
and a number of MEC hosts as shown in Fig. 1. The MEC
hosts provide various types of resource to mobile devices,
such as CPU, memory, and disk, for difference application
requirements including computation, storage, and optimiza-
tion. The MEC hosts communicates with a remote cloud for
further processing or storage if necessary. For example, an
IoT sensing device collects the environment data and trans-
mits the data to one of the MEC hosts [9]. The MEC hosts
aggregates the data, conducts initial analysis, and transmits
aggregated data to the remote cloud. For example, a video
analytics application running on MEC hosts may detect spe-
cial events from the date reported by video cameras, such as
a lost child or an intruder, and then reports these events to
a control center [17]. As another example, for an AR appli-
cation running on a smartphone or tablet, the MEC host is
able to provide local object tracking and local AR content
caching with short latency for the mobile device [17].

MEC provides resource virtualization to mobile devices. In
fact, a mobile device has no information about which MEC
host is actually providing its requested resource. An MEC
network deals with the data traffic from mobile devices to
MEC hosts, serving various applications and purposes. In the
network layer, we classify the packets from mobile devices
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Figure 1: Network model

to MEC hosts into two groups. 1) Stateful packets. A packet
is stateful means one of the MEC hosts stores its state, i.e.,
some existing information related to the packet. The packet
has to be forwarded to that particular MEC host. The state
can be in the device level, application level, or flow level.
For example, device-level state can be some data reported by
the same device of this packet. Application-level state can be
some data generated by the same application of this packet.
Flow-level state can be the previous packets of a same flow
of this packet. 2) Stateless packets. A stateless packet can be
forwarded to any MEC host, which can be a query/write to
a distributed database, a request of computation offloading,
or the first packet of a flow.

A MEC load balancer (MEC-LB) is a network function
deployed between the mobile devices and MEC hosts, which
assigns a MEC host as the destination for every packet from
a mobile device. A MEC-LB must serve the following two
properties. P1: For every stateful packet, the MEC-
LB performs a lookup to get the designated MEC
host based on the packet ID. P2: For every state-
less packet, the MEC-LB selects one of the available
MEC hosts according to capacity of the hosts. Differ-
ent MEC hosts are assigned with different probabilities based
on their capacities.

Due to the new characteristics of MEC, existing solutions
of cloud load balancers [6, 10, 11] cannot be directly applied
to MEC-LB. We summarize the desired requirements of a
MEC-LB with comparison to a cloud load balancer as follows.

1. Scalable. A MEC-LB should be fast and scalable to
process massive amount of packets from a large number of
mobile devices. A cloud load balancer has a similar require-
ment [6, 10].

2. Software based. Compared to the hardware load balancer-
s in a cloud [10, 11] which is a fixed amount of extra financial
cost, a MEC-LB implemented in software is more flexible
and cost-efficient for MEC. It can be deployed as a virtual
network function running on a MEC host or a component of
a router/switch.

3. Memory-efficient. With small memory cost, a MEC-LB
is easier to fit with fast (and hence expensive) memory such
as cache. Unlike a resource-rich cloud, which can use a server
cluster for its software load balancer [6], a MEC network has
limited resource to host a MEC-LB.

4. Adaptive to MEC changes. MEC hosts are heterogeneous
[24]: each carrying different amount of physical resource avail-
able to mobile devices. Since many MEC hosts are built
on existing devices or terminals deployed for other purpos-
es [26, 27], they may join/leave the network depending on
their own needs. A MEC host may run out of its capacity
for its own applications and hence becomes unavailable to
mobile devices. In contract, servers in a cloud are mostly
homogeneous and more stable in the network.

5. Portable. The MEC-LD should be a portable solution
which does not rely on any special hardware platform. It is
because a MEC-LD may be deployed at any network device
or terminal. The packet ID can be arbitrary, such as 5-tuple
[29], MAC address, or any network names in new Internet
proposals [14, 21].

This paper presents a new design of a Scalable and Dy-
namic Load Balancer for MEC, called SDLB, that satisfies
the above requirements. SDLB is built on a new data struc-
ture named POG [28]. POG applies the theoretical studies
on minimal perfect hashing [1, 16]. Different from the the-
ory studies, POG supports network dynamics. In addition,
it takes the advantage of the Software Defined Networking
(SDN) paradigm [18, 19] which has been widely applied in
enterprise and organization networks. By using POG, SDLB
uses very small memory and has an important feature which
is a perfect fit of a MEC load balancer: to process a packet
with an ID, if the ID-host relationship is specified in SDLB,
it quickly returns the host ID to which the packet should be
forwarded; if no ID-host relationship is specified, it quickly
returns a random host ID, and the probability distribution
of host IDs can be specified and adjustable according to the
host capacity.

Evaluation results show that SDLB is faster and uses less
memory, than a widely-used load balancer design (hash table
+ consistent hashing) which is the core algorithm in Google’s
cloud load balancer Maglev [6]. SDLB is also adaptive to
network dynamics.

The rest of this paper is organized as follows. We present
the system design in Section 2. We show the evaluation results
in Section 3. We discuss possible future work in Section 4
and present related work in Section 5. Finally we conclude
this work in Section 6.

2 SYSTEM DESIGN

2.1 System overview

The key idea of using SDN for SDLB is as follows. Since the
data plane of a load balancer is resource limited, we let the
data plane of SDLB only include the packet processing com-
ponent and is optimized for memory efficiency and processing
speed. The construction and update components of SDLB are
moved to an LB controller, which uses more memory to keep
the data plane consistent to network changes. The data plane
of SDLB (called SDLB-DP) is able to fit to fast memory such
as cache to achieve better processing speed. Since network
changes are much less frequent than the incoming packet
rate, the LB controller can be implemented with relatively
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Figure 2: SDLB structure

slow memory such as RAM. Upon network dynamics, the
controller computes the updated SDLB-DP and sends the
modification to SDLB-DP similar to existing SDN APIs [19].

We consider the SDLB-DP as a key-value query structure
as well as a deterministic randomizer. Every packet carries
an ID and is processed by the SDLB-DP. 1) For a stateful
packet, SDLB-DP takes the packet ID as the key and returns
a MEC host ID as the value. The MEC host specified by the
value should be the host that includes the state of this packet.
Here the SDLB-DP servers as a key-value query structure.
2) For a stateless packet, SDLB-DP returns a random MEC
host ID depending on the packet ID and the probability
distribution of this random selection should be adjustable.
Here it serves as a deterministic randomizer. In the following.
we introduce the data structure that can achieve these two
functions simultaneously.

2.2 Data structure and algorithms

As an overview, SDLB-DP is in a two-level structure as shown
in Fig. 2. The first level provides a many-to-one mapping
from a packet ID 𝑘 to an 𝑙-bit value 𝜏(𝑘), the data structure
is called POG, and the second level is a many-to-one mapping
from 𝜏(𝑘) to a MEC host ℎ, called the MEC host table (HT ).

2.2.1 First level: POG. We present the data structure
POG , a data structure that applies the theoretical results
of MWHC perfect hashing [16] in the SDN scenario.

The 𝑙-POG data structure maintains a mapping function 𝜏 .
Let 𝑆 be a set of keys (in our application, IDs of all stateful
packets). Let 𝑈 be the universal set (all possible valid packet
IDs). 𝑆 ⊂ 𝑈 . For any key 𝑘 ∈ 𝑈 , a query on the POG returns
an 𝑙-bit integer 𝜏(𝑘). POG serves as a key-value store for
keys 𝑘 ∈ 𝑆. It supports the following operations.

∙ add(𝑘, r): Insert 𝑘 to 𝑆 and specify 𝜏(𝑘) = r. This
operation does not change the 𝜏 value of any other 𝑘 ∈ 𝑆.
∙ delete(𝑘): Remove 𝑘 from 𝑆; after this operation, the
𝜏(𝑘) value may change in the future.

The underlying mechanism of POG is that it maintains
two arrays of 𝑙-bit integers, 𝐴 and 𝐵. The length of these
two arrays 𝑚𝑎 and 𝑚𝑏 satisfies 2.67𝑛 ≤ 𝑚𝑎 +𝑚𝑏 < 4𝑛. POG
also maintains two hash functions ℎ𝑎, ℎ𝑏 to map keys to the
corresponding indexes in 𝐴 and 𝐵. The query result 𝜏 is
computed by

𝜏(𝑘) = 𝐴[ℎ𝑎(𝑘)]⊕𝐵[ℎ𝑏(𝑘)].

Here ⊕ is the exclusive or operation. In order to determine the
values of 𝐴 and 𝐵, the POG control structure, running on the
controller, maintains an acyclic bipartite graph 𝐺 = (𝑈, 𝑉,𝐸).
Each edge in 𝐸 represents a key. There is a edge (𝑢𝑖, 𝑣𝑗) ∈ 𝐸
connecting nodes 𝑢𝑖 ∈ 𝑈 and 𝑣𝑗 ∈ 𝑉 if and only if there
is a key 𝑘 ∈ 𝑆 such that ℎ𝑎(𝑘) = 𝑖 and ℎ𝑏(𝑘) = 𝑗. We
prove that the expected time to construct an POG control
structure with 𝑛 = |𝑆| names is 𝑂(𝑛) and the expected
time to add/delete/alter a name is 𝑂(1). The detailed data
structure and algorithm design of POG can be found in [28].

2.2.2 Second level: MEC host table (𝐻𝑇 ). SDLB also main-
tains an array in the data plane as the MEC host table (𝐻𝑇 ).
𝐻𝑇 contains 2𝑙 elements. 𝑙 = 16 is sufficiently big for SDLB.
After computing the value 𝜏(𝑘) from the POG, SDLB-DP
returns the value stored in 𝐻𝑇 [𝜏(𝑘)] as the MEC host ID.
Since 0 ≤ 𝜏(𝑘) < 216, the table 𝐻𝑇 is very small and is able
to fit into fast memory.

When SDLB-DP gets a packet with key 𝑘, it returns a par-
ticular value 𝐻𝑇 [𝜏(𝑘)]. This value is deterministic and hence
SDLB guarantees to forward all packets with a particular
packet ID to the same host.

2.2.3 Property as a deterministic randomizer. An important
property of POG is that when 𝑘 /∈ 𝑆, 𝜏(𝑘) returns an arbitrary
value. The property was considered a weakness of a key-value
table. However, it is a perfect feature that can be used for a
load balancer. We show that it is possible to create a POG
such that the result is uniformly random.

Let 𝑘′ ∈ 𝑈 be an arbitrary key randomly chosen from the
key universe. 𝑖′ = ℎ𝑎(𝑘

′) and 𝑗′ = ℎ𝑏(𝑘
′) can be considered

as uniform random values. Then, for any 𝑙-bit value r, query
on the POG returns r with probability

𝑃r = Pr[𝜏(𝑘) = r] =
1

𝑚𝑎𝑚𝑏

2𝑙−1∑︁
𝑡=0

𝐸𝐴(𝑡)𝐸𝐵(𝑡⊕ r)

Here, 𝐸𝐴(𝑡) is the number of elements with value equal to
𝑡 in array 𝐴, and 𝐸𝐵(𝑡⊕ r) is that of 𝑡⊕ r in array 𝐵.

Rebalance operation: One useful property of the 𝑙-POG is
that although it is a memory-efficient data structure, there
is a certain level of redundancy in the encoding of the query
results. Consider a subset of keys 𝐶 = {𝑘1, 𝑘2, · · · , 𝑘𝑡} ⊂ 𝑆,
where their corresponding edges form a connected component
in 𝐺. For all 𝑖 and 𝑗 values where 𝑖 = ℎ𝑎(𝑘), 𝑗 = ℎ𝑏(𝑘) for
some 𝑘 ∈ 𝐶, and an arbitrary 𝑙-bit integer 𝑥, execute this
operation: Let 𝐴[𝑖] ← 𝐴[𝑖] ⊕ 𝑥 and 𝐵[𝑗] ← 𝐵[𝑗] ⊕ 𝑥. After
such operation, the 𝜏(𝑘) value is not changed for any 𝑘 ∈ 𝐶.
This is to say that we are able to modify the values in 𝐴
and 𝐵, while not changing the 𝜏(𝑘) values for any 𝑘 ∈ 𝑆.
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Figure 3: Histogram of 𝜏(𝑘) occurrence frequency for
100𝑀 random queries and 212 possible values. Curve:
normal distribution with parameters 𝜇 = 25𝐾 and
𝜎 = 830.

In addition, some 𝐴[𝑖] and 𝐵[𝑗] elements are not associated
with any 𝑘 ∈ 𝑆 (we call them isolated elements), and we are
able to modify them without changing 𝜏(𝑘) values for 𝑘 ∈ 𝑆.

Hence, we are able to adjust the distribution of 𝜏(𝑘′) for
arbitrary queries (in our application, 𝑘′ is the ID of a stateless
packet). We are able to rebalance the 𝑃r ratios by assigning
all isolated elements in 𝐴 and 𝐵 as some random values, and
execute the above operation for all connected components in
𝐺 with arbitrary random 𝑥 values. We call this a rebalance
operation on the POG. The actual distribution of 𝑃𝑟 values
depends on what sort of random number is used in such
operation. We can use different random number generators to
get different 𝜏(𝑘′) distributions. For example, when uniform
random 𝑙-bit integers are used in such operation, it generates
a distribution as if 𝜏(𝑘′) is a uniform random 𝑙-bit integer.
This is shown in Figure 3, where we compute 𝜏(𝑘′) values
for 100𝑀 random keys on a 12-POG that is “rebalanced”
using random 12-bit integers. The curve shows a normal
distribution with parameters 𝜇 = 25K and 𝜎 = 830. The very
small standard deviation 𝜎 suggests 𝜏(𝑘′) can be treated as
a random number, although the 𝜎 value is larger than the
theoretical value.

2.3 SDLB update

We may deal with multiple types of network dynamics in-
cluding: 1) Flow addition and leave of the network. 2) MEC
host capacity change. MEC hosts are heterogeneous and may
be resource-limited. Hence the capacity of a MEC host to
serve mobile packets may change frequently. 3) MEC host
join and leave. MEC hosts may be built on existing devices
or terminals deployed for other purposes [26, 27]. Hence their
churn rate is much higher than that of cloud servers. 4) S-
tate migration. When a MEC host runs out of capacity or
intends to leave the network, the state stored on it need to
be migrated to other hosts.

In case 1), if there is arrival of new flows, SDLB-DP does
not need to be updated to include the new flow information
to guide the processing of the future packets of these flows.
It is because the result 𝜏(𝑘) is deterministic for a same
packet ID. However, when a MEC host creates state for a
flow/application/device, it will notify the SDLB controller.
The controller will maintain the packet ID to MEC host
relationship according to the state.
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Figure 4: Update efficiency of SDLB

We start to introduce update mechanisms by introducing
the “merge” operation on the SDLB-DP. We assume 2𝑙 is
far greater than the number of MEC hosts. Consider any
two packets 𝑘1 and 𝑘2 with 𝜏(𝑘1) ̸= 𝜏(𝑘2) but they are
assigned to the same host, i.e., 𝐻𝑇 [𝜏(𝑘1)] = 𝐻𝑇 [𝜏(𝑘2)]. We
can execute an update on the POG so that 𝜏 ′(𝑘2)← 𝜏(𝑘1).
This operation “releases” the element 𝐻𝑇 [𝜏(𝑘2)]. After such
operation, changing the value of 𝐻𝑇 [𝜏(𝑘2)] will not affect any
stateful packets. Hence, 𝐻𝑇 [𝜏(𝑘2)] can be used as a buffer
for future SDLB-DP updates.

Case 2) can be treated by modifying the 𝐻𝑇 table. To
arrange more packets to a host, SDLB assigns more elements
in 𝐻𝑇 to the corresponding host ID. This can be achieved
by changing the values of the “released” elements in 𝐻𝑇 and
it does not affect any stateful packets.

For case 3), in addition to assign the capacities, when a
host leave, it may requests to migrate packets with key 𝑘 to
another host, which results in case 4). To modify the host
assignment of a particular packet with key 𝑘, SDLB modifies
the POG value so that 𝜏 ′(𝑘) points to a “released” element
in the 𝐻𝑇 and assigns 𝐻𝑇 [𝜏 ′(𝑘)] to the new host ID.

3 EVALUATION

In this section, we evaluate the performance of the SDLB. We
compare SDLB with a widely-adopted approach for network
load balancer. That approach first perform a lookup in a
hash table that maintains the ID to host mapping for stateful
packets. If the lookup fails then the load balancer knows the
packet is stateless and uses consistent hashing to assign a
host for it. We measure the memory size, update speed, and
data plane throughput of SDLB and the compared approach
(referred as HashTable in the following). In our implemen-
tation, we use HashMap that uses a self-balancing binary
search tree. In our experiments we assume the packet IDs are
64-bit values while the MEC Host IDs are 16-bit integers.

3.1 Memory efficiency

We compute the memory space used by SDLB-DP and the
HashTable approach in Table 1. We show three typical types
of packet IDs: (1) HashValue, in which the load balancer
computes a hash value as the digest of the metadata (e.g,
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Figure 5: Data plane throughput vs. Number of s-
tateful IDs.

URL). (2) 5-tuple, it refers to the src/dst IP addresses and
port numbers, and protocol number of a IP packet. (3) Open-
Flow matching fields, which is a 356-bit value. SDLB-DP
uses much smaller memory space than HashTable does. Note
that the POG data structure does not maintain a copy of the
keys in its memory, while the HashTable must maintain a
copy of the keys to identify hash conflicts. Hence, the memory
space of SDLB-DP grows approximately in proportion to the
number of stateful packet IDs. As a comparison, the space
size of the HashTable grows with both the number of stateful
IDs and the length of the keys.

Table 1: Memory size comparison

ID type
# stateful
entries

SDLB HashTable

HashValue (64b) 96K 640K 1.41M
5-tuple (104b) 256K 1.63M 5.25M

OpenFlow (356b) 1M 6.13M 72M

3.2 Update speed of SDLB

Wemeasure the update speed of SDLB and show it in Figure 4.
In each experiment, we randomly execute update operations
on the SDLB controller. The numbers of stateful packet
addition and deletion are set equal. The blue curve shows the
throughput of SDLB updates. SDLB is able to support
about one million update requests per second. We
observe the update throughput varies against the number of
stateful packet IDs. SDLB reaches higher throughput when
the number of packets are close to values like 2𝑛 or 3× 2𝑛

for some integer 𝑛. This is in consent with the properties of
the POG data structure discussed in [28].

We also measure the efficiency of the “rebalance” operation
discussed in Section 2.2.3. The red curve in Figure 4 shows
that the time used to rebalance the SDLB grows linearly to
the number of packet IDs. It takes less than one second to
rebalance when there are 2M stateful IDs.
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Figure 6: Data plane throughput vs. Fraction of s-
tateful ID queries.

3.3 Data plane throughput

We compare the data plane throughput of SDLB and HashTable.
In Fig. 5, we vary the number of stateful IDs maintained by
SDLB and the HashTable and measure the query throughput
of both approaches. Experimental result shows that SDLB-
DP has a ¿10x higher throughput than the HashTable when
the number of stateful IDs is less than 300K. It still reaches
at least 4x better throughput when the number of stateful
IDs grows. The throughput of both approaches decreases as
there are more IDs. This is because the experiment is carried
on a commodity desktop computer, and the size of both data
structures grows linearly to the number of stateful IDs. With
1000K names, SDLB is able to fit into the L3 cache of the
CPU. HashTable fails to fit into the cache for 500K names.
In summary, SDLB is much faster than HashTable. We also
measure the data plane throughput under different types of
traffic. We fix the number of stateful IDs as 600K and vary
the fraction of stateful queries. Fig 6 shows that such fraction
does not affect the query throughput of SDLP.

4 DISCUSSION

Each MEC host needs to know its working load because of
two reasons. 1) Each MEC host needs to provide provable
and controllable resource/performance isolation between the
original applications and mobile devices. 2) The SDLB con-
troller needs the information to set the weight of the MEC
host adaptively according to the available resources. The
vanilla solution by analyzing resource consumptions for all
MEC traffic through existing monitoring APIs (e.g. Intel
Performance Counter Monitor API [25]) is expensive and not
scalable. Meanwhile, empirical studies [12, 13, 20] have shown
that the network traffic is dominated by a small fraction of
elephant flows. We argue that tracking elephant flows on the
MEC host is one cheap and efficient method for load estima-
tion. Elephant flow detection can be achieved very efficiently.
For instance, Myopia [12] leverages count-min sketch [4] to
measure flow sizes for its provable tradeoff between space and
accuracy of flow size estimation. If the size of a flow exceeds
a threshold, an elephant flow is identified. Moreover, since
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the set of elephant flows substantially overlap stateful flows,
the elephant flow information can be further exploited for
coarse-grained tasks such as state migration in the presence
of overloading.

5 RELATED WORKS

MEC and Fog. The idea of shifting storage and computing
from clouds to the edge of the network has been proposed by
many similar concepts such as mobile edge computing (MEC)
[9, 17], fog computing [3, 24, 26], edge computing [23] and
mobile cloud computing (MCC) [7]. Fog and edge computing
have interchangeable definitions, both of which allow het-
erogeneous devices on the path to the remote cloud to offer
storage and computing resources. MEC on the other hand
relies on servers owned by mobile providers (e.g. Cloudlet [5])
behind Radio Access Network (RAN). MCC focuses more
on the federation of the cloud, proximate mobile computing
entities and a plethora of mobile devices.
Software Load Balancer. HAProxy [8] and Linux Virtual
Server (LVS) [15] are the mostly used open-source software
load balancers. Since HAProxy operates on Layer 7, it is able
to perform complicated tasks on traffic flows such as SSL
authentication and traffic regulation. The proposed SDLB
and LVS focus on Layer 4. Due to its simplicity, LVS is cheap
and extremely fast. Meglev [6] has been used as Google’s
network load balancer since 2008, which is able to achieve
line-rate throughput. Compared to Meglev, LVS is not as
optimized in term of performance because it is designed for
portability. Maglev relies on a server cluster hence cannot be
applied to MEC/Fog. In contrast, SDLB is general-purpose
and portable. Duet [22] is a hybrid software and hardware
load balancer with all the benefits of software load balancers
as well as enjoys low latency and high throughput. Duet relies
on the recently provided APIs for fine-grained control over
ECMP and tunneling functionality on commercial switches.
It cannot be run at general-purpose platforms.

6 CONCLUSION

We present the design of a fast and dynamic software load
balancer for MEC and Fog, called SDLB. SDLB is built on a
new data structure named POG whose core algorithm is min-
imal perfect hashing. Experimental results show that SDLB
is faster by 4x to 10x and uses less than 50% memory com-
pared to existing solutions. In addition SDLB provides fast
updates. We believe POG has the potential to become a fast
and memory-efficient solution for software-based networking
in future applications.
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