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Abstract—An important function of smart environments is
the ubiquitous access of computing devices. In public areas
such as hospitals, libraries, and airports, people may want to
interact with nearby computing systems to get information,
such as directions to a hospital room, locations of books, and
flight departure/arrival information. Touch screen based displays
and kiosks, which are commonly used today, may incur extra
hardware cost or even possible germ and bacteria infection.
This work provides a new solution: users can make queries and
inputs by performing in-air handwriting to an array of passive
RFID tags, named RFIPad. This input method does not require
human hands to carry any device and hence is convenient for
applications in public areas. Besides the mobile and contactless
property, this system is a cost-efficient extension to current RFID
systems: an existing reader can monitor multiple RFIPads while
performing its regular applications such as identification and
tracking. We implement a prototype of RFIPad using commercial
off-the-shelf UHF RFID devices. Experimental results show that
RFIPad achieves >91% accuracy in recognizing basic touch-
screen operations and English letters.

I. INTRODUCTION

Ubiquitous access and interaction to computing devices is
a fundamental task provided by smart environments. In public
areas such as clinics, hospitals, libraries, museums, parking
garages, and airports, people may want to interact with com-
puting systems in the environment to get important feedbacks,
including directions to clinic and hospital rooms, locations
of books, free slots in the garage, and flight departure/arrival
information. Legacy input methods such as keyboards, mice,
and touch screens are all contact-based: they require physical
contact from users. Limitations of contact-based input methods
in a public area include: 1) the devices are easily to be
overused by large volume of people and become broken.
Hence extra cost and timely device replacement are necessary;
2) they may incur possible germ and bacteria infection [18],
especially for clinics and hospitals where health protection is
in top priority.

Contactless input methods usually require users to perform
hand or body motions and recognize these motions to be
input information. One possible approach is the imagery-
based devices, e.g., Xbox Kinect [1]. However these devices
incur non-trivial cost and could be easily damaged in public
areas. In addition, they require line-of-sight and raise concerns
on user privacy. Another approach, which is our focus in
this paper, is to use radio frequency (RF) based sensing
techniques of wireless devices [17], [22], [26], [33]. Prior
works on RF-based motion estimation can be categorized into
two groups, device-binding methods and device-free methods.
Device-binding methods require every user to carry a sensing

Fig. 1. Top: (Left) Writing stroke “|”. (Right) Right turning motion. Bottom:
(Left) Real-time stroke illustration when writing “|”. (Right) Click motion.

device, such as wearable sensors [22] or RFID tags [26].
These solutions are not feasible to applications in public areas
because we shall not expect everyone visiting a public area
to carry a designated tag or sensor. Furthermore, existing
device-binding methods require rigorous constraints for better
accuracy performance, yielding costly and inflexible deploy-
ment in real applications. For example, RF-IDraw [26] and
Tagoram [33] should be equipped with 8 and 4 spatially-
separated antennas for motion recognition. On the other hand,
device-free methods become attractive due to releasing the
limit of carrying special devices, as well as the line-of-sight
constraint in imagery-based approaches. Existing device-free
approaches [5], [17], [23], however, are mainly depends on
dedicated devices and complex signal processing techniques,
limiting the widely adoption in public areas.

In those public environments we mentioned, an ideal con-
tactless input method should satisfy: 1) cost-efficient; 2) no
device-binding; and 3) realtime reaction and no training pe-
riod. No prior solution satisfies all requirements. This paper
proposes a cost-efficient solution for real-time and ubiquitous
human-computer interaction via RF based hand motion recog-
nition techniques. Radio Frequency Identification (RFID) has
been widely accepted and deployed in public areas for tracking
and monitoring objects. The proposed method RFIPad is a
cost-efficient extension to existing RFID systems. For public
areas where an RFID reader is already deployed, the extra
cost of RFIPad is only a few passive tags (in some cases an
extra antenna may be needed), which are extremely cheap (50
cents per tag) compared to imagery and other RF devices.
RFIPad is device-free and does not require training period.
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RFIPad is inspired by the following phenomena observed in
our experiments. If a person moves a hand over an ultra high
frequency (UHF) tag array, the signal backscattered from those
tags is disturbed significantly. For different hand motions, the
disturbance to those tags presents distinct profiles, in terms of
changes on both the phase and radio signal strength (RSS).
We realize that by combining with reported tag IDs and
timestamps, such differentiation can be utilized to correlate to
the moving trajectory of hands. In this way, we can identify
fine-grained movements of hands, i.e., in-air handwriting.

Our prototype of RFIPad is shown in Fig. 1. We deploy
an array of tags as a sensing plate. The user just moves one
of his/her hands above the plate to operate or write in air.
The induced disturbance of RF signals can be collected and
correlated to the motions/letters written by the user. RFIPad
does not require training of user behaviors and can react to
hand motions instantly. Another advantage of RFIPad is mini-
mal deployment cost by utilizing existing RFID infrastructure
and the full compatibility with industrial standards, i.e., EPC
Global C1G2 [11]. We implement a prototype of RFIPad using
COTS RFID devices.

Contributions. We make the following contributions:

• RFIPad is a device-free in-air hand motion recognition
scheme and a cost-efficient extension of existing RFID
systems by only adding very cheap components. It ex-
hibits several attractive merits, including the ability of
estimating the motion direction and resiliency to envi-
ronment changes.

• RFIPad achieves device-free fine-grained motion recog-
nition of hands using passive tags, without prior training
process. To our knowledge no other system can achieve
this goal.

• We demonstrate the feasibility and effectiveness of our
RFIPad via a prototype implementation of real COTS
RFID devices. The results show that it can detect different
motions with an accuracy of about 94% and recognize
English letters with an accuracy of 91%.

II. BACKGROUND AND OVERVIEW

In this section, we first discuss the background and im-
portant observations in our preliminary experiments, and then
present the overview of RFIPad.

A. Backscatter communication in RFID systems

Communication in passive RFID systems is based on
backscatter radio links. An RFID reader communicates with
passive tags in the full-duplex mode. It transmits continuous
waves (CW) and keeps listening to the tag signals, i.e.,
responses. The passive tags are usually not equipped with a
battery or radio transmitter. Instead, it harvests power from the
constant CWs and modulates its ID and other information for
responses to the reader.

B. Observations

In a typical passive RFID system, as the reader continuously
interrogates a set of tags, it can obtain the following informa-
tion about each tag: the tag’s ID and channel parameters. In
particular, the channel parameters include Doppler Frequency

Shift (Doppler), Phase, and Received Signal Strength (RSS).
Doppler depicts the relative movement between the reader
and the tag. Phase and RSS jointly reflect the RF situation
around the tag, sometimes they are used as a signature of
the ambient environment. We conduct preliminary experiments
for observing the channel parameters of tags. In those exper-
iments, we find that all parameters are nearly constant in the
static environment, as the black lines shown in Fig. 2. And
the most striking insight comes with above experiments is that,
when there is a hand-movement around the tag, its disturbance
triggers a significant variation in the tag’s channel parameters,
as shown by the red lines in Fig. 2. In particular, although
the variation in Doppler is indistinguishable (due to the large
noise) between the static and hand-movement cases, it shows
distinct difference between the two cases in both Phase and
RSS. With above insights, we attempt to utilize such variations
in Phase and RSS to identify fine-grained hand motions.

C. Our idea

To allow inputs of touch screen operations and English
letters, we define 7 basic hand motions, including “�”, “−”,
“|”, “/”, “\”, “⊂”, and “⊃” (Number #1 to #7). Three of them
(i.e., “�”, “−”, and “|”) support the basic operations of touch
screen. Specifically, � denotes a “push” towards a certain tag,
representing the “click” motion. Both “−” and “|” contain two
directions (e.g., “←”, “→”, “↑”, “↓”) and hence support page-
swiping and scroll-bar controlling respectively. On the other
hand, “−”, “|”, “/”, “\”, “⊂”, and “⊃” combine the basic
strokes of English letters [6], supporting the in-air handwriting
inputs. For example, the alphabet “H” is composed of 3
successive strokes, namely “|”, “−”, and “|”. If these discrete
strokes can be identified by recognizing hand-movements, it
would be possible to infer the corresponding letter.

We deploy our RFIPad system over a group of tags, which
are well-positioned to form an array. An RFID reader con-
tinuously collects the IDs and channel parameters of those
tags by keeping interrogations on them. As aforementioned,
when a human hand moves over the array, the movement will
influence some tags in sequence. RFIPad correlates the hand
positions to the tag positions, and identifies the corresponding
motion by analyzing the variations in the channel parameters
of those tags over time. Furthermore, after recognizing the
sequential strokes (motions) written in-air, RFIPad is able to
form the input letters accordingly.

III. RFIPAD DESIGN

In this section, we introduce the design of RFIPad. Our
approach consists of three components: basic motion/stroke
recognition, direction estimation, and English letter recogni-
tion.

A. Phase-based motion/stroke recognition

RFIPad proposes to utilize phase to conduct motion recogni-
tion. The reasons are twofold. Firstly, the phase value reported
by the reader has high resolution (i.e., 0.0015 radians, which
offers ≈ 320mm × 0.0014/(4 ∗ 3.14) = 0.038mm distance
resolution). Secondly, we have the following theoretical anal-
ysis.
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Fig. 2. Doppler, phase, and RSS values measured over time.
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Fig. 3. Theory model.

1) Theoretical analysis: In our system, the relative location
of the reader antenna and tags are constant, hence the signal
backscattered from each tag is nearly stable in the static
environment. When a human hand moves above the tag array,
certain RF signals are reflected from the moving hand to
the tags. Since the hand is near the tag, the influence of
reflections is a non-trivial contribution in the tag’s received
signal. Thus, the hand can be regarded as a powerful virtual
transmitter that generates the reflected signals [23]. As shown
in Fig. 3(a), suppose the hand moves over T1 (i.e., tag #1)
along the direction of x-axis. Its trail is from location A to
Z. The induced phase change of each individual tag during
this procedure shall strongly correlate to the wave path-
difference. We assume that at a certain time during above
movement, the hand moves to position B. Theoretically, the
phase difference of tag T1 and its adjacent tag T2 can be
represented respectively as:

ΔθT1 = (
2π

λ
×ΔdT1) mod 2π (1)

ΔθT2
= (

2π

λ
×ΔdT2

) mod 2π (2)

where ΔdT1 = d12 − d11, ΔdT2 = d22 − d21. As the relative
positions shown in Fig. 3(b), we further have

ΔdT1
=
√
h2 + (x0 − l)2 −

√
h2 + x2

0 (3)

ΔdT2
=
√
h2 + (x0 + s− l)2 −

√
h2 + (x0 + s)2 (4)

Since y =
√

h2 + (x− l)2 − √h2 + x2 is a monotonous
decreasing function, we have ΔdT1

> ΔdT2
. Hence ΔθT1

>
ΔθT2

. (Note that the periodicity of phase value reported by
the RFID reader may introduce error into the phase difference
comparison. Hence, the phase we use in our system is the un-
wrapped one after de-periodicity operation, which is detailed
in Section III-A3.)

Based on above analysis, considering the whole procedure
of hand-movement from A to Z, it is conceivably hypothesised
that ideally, the accumulative phase difference of T1 shall be

larger than T2, i.e.,
∑Z

A ΔθT1
>
∑Z

A ΔθT2
. The principle also

holds along y-axis, thus
∑Z

A ΔθT1
>
∑Z

A ΔθT6
. Following

above analysis, we propose to detect which tag the hand passes
through in a specific time duration by examining which tag is
with the maximum accumulative phase difference among all
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Fig. 4. Average phase value of differ-
ent tags in the static scenario.
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Fig. 5. Standard deviation of phase
measurements of different tags.

tags. Suppose there are N tags, we formulate above principle
as the following target function:

Ii = arg maxi

N∑
i=1

ΔθTi
(5)

To validate above theoretical analysis, we deploy a 5×5
tag array on a white board, as illustrated in Fig. 1. We ask
a volunteer to move his hand over the tags in the third
column in sequence and collect the phase values of each
tag. Unfortunately, the result calculated by Equation 5 is
inconsistent with our ideal hypothesis. The phase value of each
tag varies along different central values. Meanwhile, when the
hand passes through a tag, it is possible that another tag’s
accumulative phase difference is larger than that of this tag. We
conjecture two reasons emerged from above phenomena: tag
diversity and location diversity. The tag diversity (i.e., device
diversity) is introduced during the manufacture [33], and the
location diversity brings different multipath experiences to
different tags [24]. Hence, these two diversities jointly affect
the phase measurement of tags in the layout. We conduct
experiments to demonstrate the influence. We collect the signal
of tags in the 5×5 array. Each tag is interrogated for 100
times and there is no hand-movement during the collection.
The average phase value is reported in Fig. 4. The result proves
that the phase value of each tag irregularly distributes within
the range of [0, 2π], i.e., near different central values. We
also test the stability of each tag’s RF signal. Fig. 5 shows
the standard deviation of phase measurement derived from
multiple groups of experiments in static scenario. The result
shows that the phase value vibrates in different levels, i.e.,
the standard deviation of tags varies significantly (we call
it Deviation bias). These results together indicate that it is
necessary to suppress the diversities before conducting motion
recognition using the proposed hypothesis.
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2) Diversity suppression: Suppose the distance from the
reader to a tag is d. Thus, the RF signals sent from the
reader’s antenna traverse 2d in the backscatter communication.
The phase of those signals can be expressed as [16]: θ =
(2π 2d

λ + θT + θR+ θtag) mod 2π, where λ is the wavelength,
θT , θR, and θtag are the phase rotations introduced by the
reader’s transmission circuits, the reader’s receiver circuits,
and the tag’s reflection characteristic, respectively. Note that
θtag varies among tags due to hardware imperfection (i.e., tag
diversity).

RFIPad leverages sequential samplings on a tag’s RF signals
to compensate the tag diversity. Let θij denote the phase
measurements of tag i during the procedure the hand moves,
where j corresponds to the jth RF sample collection. Suppose

θ̃i is the average phase measurement of tag i in the static
environment, dij is the distance between the reader and tag i
at the time point of collecting the jth sample. We have:

θ̃i = (2π
2d̃i
λ

+ θT + θR + θtagi) mod 2π (6)

θij = (2π
2dij
λ

+ θT + θR + θtagi) mod 2π (7)

Subtracting Equation 7 from Equation 6, we have:

θ
′
ij = (4π

dij − d̃i
λ

) mod 2π, j = 1, 2, 3, ... (8)

From Equation 8, the parameters θT , θR, and θtag are nat-
urally wiped out. As a result, the impact of tag diversity is
suppressed. Meanwhile, by doing so, the phase value of each
tag shall vibrate around the same central value (i.e., around
zero).

On the other hand, RFIPad suppresses the location diversity
through two processes. We first estimate the Deviation bias of
each tag i (bi) in the array, and then formulate a weighting
function:

wi =
E(bi)∑N
i=1 E(bi)

(9)

where k = j + 1, j = 1, 2, ..,M − 1 (M is the number of
phase samples), E(bi) is the expectation of standard deviation
derived from each tag in static scenarios, and N is the number
of tags. Then, the accumulative phase difference of tag i can
be revised as:

I ′i = w−1
i

∑
(θ

′
ik − θ

′
ij) (10)

The principle of above weighting function is simple: a tag
with higher bi indicates that it will be more sensitive to the
ambient changes, and hence the phase measurements on this
tag (or at its location) should be appropriately weakened. In
contrast, a tag with lower bi indicates the influence caused by
the location diversity is lower, and the phase measurements on
this tag deserves a higher weight. With such adaptive tuning,
the location diversity can be effectively mitigated.

3) Motion recognition: An important step of RFIPad
is to correlate the phase measurements to different hand
motions/strokes. The process includes three components:
phase de-periodicity, accumulative phase difference calcula-
tion (Equation 10), and image-assisted motion recognition.

Phase de-periodicity. The phase value reported by RFID
readers variates periodically from 0 to 2π. As a result, it is
possible that the phase might present a sudden change in its
value from 0 to nearly 2π (Fig. 6(a)) or vice versa, which
will cause errors when calculating Equation 10. To tackle this
problem, we adopt the method proposed in [14] to unwrap the
phase value. As the example shown in Fig. 6(a) and (b), the
phase trend suffering a sudden phase change becomes smooth
and continuous after the unwrapping process.
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Fig. 6. Phase de-periodicity.

Image-assisted recognition. After above preprocessing, we
are able to calculate I

′
i for each tag i. For better illustra-

tion, we visualize I
′
i values in a grey-scale image and use

the OTSU’s algorithm [21], which performs clustering-based
image thresholding, to convert the image to a binary image.
Specifically, after OTSU’s algorithm the image only contains
two classes of pixels, foreground and background pixels (e.g.,
‘1’ and ‘0’). The ‘1’ pixels implies that the hand just moves
over the corresponding area. As a result, RFIPad can identify
the motion by simply estimating the ‘1’s in the tag (pixel)
array. The detail of OTSU’s algorithm can be referred in [21].

As an example, Fig. 7 shows the image generated when
a volunteer moves his hand across the third column in the
array. The whiter the pixel is, the larger I

′
i value the tag

bears. Fig. 7(a) and (b) are the results before and after the
process of diversity suppression, respectively. These results
show that the diversity interference is significantly weakened
when adopting our suppression algorithm. Then, we conduct
the OTSU’s algorithm on the image in Fig. 7(b). The result
is exhibited in Fig. 7(c). We can find that the hand-movement
area is explicitly outlined.

B. RSS-based direction estimation
Above building blocks provide a geometric representation

of the air-written stroke/motion. In practice, the direction can
bear useful information. Generally, two motions in a same
shape of trails but with opposite directions usually correspond
to opposite operations, like open and close. In the following,
we recognize the direction of the motion by estimating the
sequence of tags that the hand passes. For instance, we
distinguish whether the direction of hand-movement is ↓ or ↑
in Fig. 7(c). There are two options for achieving this objective,
through phase or RSS. Phase measurement depends on both
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(a) without diversity
suppression

(b) with diversity sup-
pression

(c) after OTSU algo-
rithm

Fig. 7. Illustration of motion identification when a volunteer moves his hand
across the third column in the array.

the location of the tag in the layout and the relative position
of moving hand to it. Hence, when moving the hand over
different tags, phase profiles could be totally different. As
demonstrated in Fig. 8, the phase trend might be monotonous,
axial symmetric, or circular symmetric. Thus, inconsistent
pattern in phase trend makes it difficult to infer the sequence of
tags. On the other hand, RSS profile is more distinguishable:
there will always be a distinct trough when the hand is mov-
ing perpendicularly over the tag. The principle of detecting
the tag ordering is simple but effective. By observing the
appearance order of the tags’ troughs, we can acquire the
sequence of tags influenced by the hand-movement. We obtain
the order of the influenced tags by employing a two-staged
RSS trough estimation solution. Due to space limit, we skip
the technical details.

C. Composing English letters
RFIPad also provides the capability of recognizing English

letters.
1) Segmentation: RFIPad first separates strokes from con-

tinuous phase streams. The stroke segmentation scheme is
based on the fact that people tend to take a short pause after
each stroke, in which the hand/arm will be raised/adjusted to
the starting position of next stroke. We term such a procedure
as the adjustment interval. RFIPad detects the adjustment
interval to separate strokes apart according to two insights:
• When there is a hand moving over the tag array, each tag

shall experience distinct variations in its phase values.
• In the adjustment interval, phase variations of all tags are

relatively small and stable.
To mitigate the possible interference from unevenly dis-

tributed sampling along time, we segment the phase streams
into non-overlapped frames. Each frame, denoted as f , is
100ms long. Then, we calculate the Root Mean Square (RMS)
of each frame:

rms(f) =
M∑
i=1

√∑n
j=1 p

2
ij

n
(11)

where M is the number of tags in the plane, n is the number of
phase samples in current frame, and pij denotes the j-th phase
sample of the i-th tag. Since a stroke (motion) may last for
seconds and cover several frames, it is difficult to determine
whether a stroke occurs or not merely based on the features
of a single frame. Therefore, several successive frames are
grouped as a window (w) and each window is treated as a
unit for processing. The default window size in RFIPad is
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Fig. 8. Symmetrical characteristic of phase trends. (a) monotonous (b) circular
symmetrical (c) axial symmetrical (d) axial symmetrical.

set to 0.5 second (i.e., 5 frames). To determine whether the
stroke occurs in (or during) a given window, we measure the
standard deviation of the window’s RMS, and see if it exceeds
a threshold value:

std(rms(w)) > thre (12)

where thre can be empirically determined. As an example,
Fig. 9 shows the average phase, RMS and Std(RMS) when a
volunteer writes letter ‘H’. We can see that in the adjustment
interval, the Std(RMS) is nearly 0, and during the stroke,
Std(RMS) values are much larger (Fig. 9(c)). Therefore, we
can effectively filter out the adjustment intervals and identify
the stroke windows for stroke detection.

2) Deducing letters: After the stroke/motion detection,
RFIPad composes identified strokes into letters. We adopt
the tree-structure grammar (shown in Fig. 10) proposed in
[6] to recognize letters. For instance, RFIPad observes two
strokes “ − ” and “|” in sequence. With the hint from tree-
structure grammar, these motions are identified as letter “T”.
Interestingly, RFIPad can naturally eliminate such ambiguities
as “D” and “P”, or “O” and “S”, although they are composed
by the same sequence of strokes. This is because that accord-
ing to the human writing habit and the property of letters,
when writing “D”, the last position of “ ⊃ ” is usually
overlapped with the bottom of stroke “|”. Such a physical
position information is useful for differentiating the letters
with similar stroke sequence. Fortunately, RFIPad can easily
obtain such position information of strokes by estimating the
corresponding tag IDs. Thus, RFIPad is able to explicitly
organize strokes into letters with no doubts, even for those
with the similar stroke sequence. For current implementation
we only focus on recognizing individual letter. We will leave
the recognition of a succession of letters as our future work.

IV. IMPLEMENTATION

A. System setup

Hardware: we implement the prototype of RFIPad using
COTS UHF RFID devices, including an Impinj Speedway
R420 reader, a Laird antenna model A9028R30NF, and a set of
passive tags (5 × 5). The size of antenna is 25.4cm × 25.4cm
× 3.8cm and with 8dBi gain. The whole system operates on
the frequency of 922.38MHz. The reader is connected to a
backend PC via an Ethernet cable. It continuously reports the
features of backscattered tag signal, such as ID, phase, and
RSS.

Software: the software of RFIPad is implemented using C#
and adopting the LLRP [12] protocol for communicating with
the reader. We modify the Octane SDK (an extension of LLRP
Toolkit) to enable the phase reporting. The software runs on

12681265451
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Fig. 11. Interference within a pair of tags.

a Lenovo PC, which is with an Intel Core i7-4600U 2.10GHz
CPU and 8GB RAM.

B. Deployment issues
In the backscatter communication, the radio signal sent

from the reader is converted by the tag antenna into currents.
The current is used to power up the tag’s IC to operate.
Meanwhile, it also affects the electric fields of nearby tags
[15]. Hence, before deploying the tag array, it is worth to
study the interference among tags.

1) Interference between a pair of tags: To test the inter-
ference within two tags adjacent to each other, we conduct a
series of experiments. As shown in Fig. IV(a), we put a single
tag, called target tag, 2m away from the reader antenna. Its
RSS is about -41bBm. When another tag, denoted as testing
tag, approaches, we observe the RSS change of the target tag.
In particular, we also check the situation when two tags are
placed very close (i.e., about 3cm, within the near-field region
λ/2π ≈ 5.2cm) and parallel to each other. With two tags’
antennas toward a same direction (Fig. IV(b)), the target tag’s
RSS experiences a significant decrease. It indicates that the
testing tag produces a shadow effect to the target tag, resulting
in a significant suppression of the target tag’s receiving power.
Even worse, if the receiving power is weakened below the
threshold that enables IC operations, the target tag will become
unreadable. The results of our extensive experiments suggest
two possible ways to mitigate above interference. One is to
select a proper antenna directions. Instead of putting them in
a same direction, we deploy the two tags opposite to each
other, as shown in Fig. IV(c). We find that the target tag’s
RSS value will become similar to that of testing tag, implying
that the receiving power of target tag is not suppressed too
much. Another possible way is to enlarge the distance between
the pair of tags. In particular, when the distance is larger than
12cm (e.g., the far-field region 2λ/2π), as shown in Fig. IV(d),
the interference from the testing tag to the target tag becomes
nearly negligible. Considering the constraint of the size of
the deployed tag array, we suggest to deploy adjacnet tags
with 6cm distance (i.e., the transition region between the near-
field and far-filed region) and with antennas facing opposite
directions.

2) Interference within the tag array: The interference be-
comes more complicated within a tag array. Each individual
tag will be severely affected by the shadow effect produced
by the tags around it. We examine this interference here. As
shown in Fig. 12(a), the reader antenna is 50cm from the plane
on which the array is deployed, and the tags in this array

are spaced 6cm lengthways and 6cm laterally. We vary the
type and the number of tags that are placed on the plane. In
particular, we test four kinds of commercial tags with different
manufacturers (e.g., Impinj and Alien) and different antenna
designs (Fig. 12(c)). In each test, we use the same type of
tags in the array. We treat another tag behind the array as
the target tag and observe the interference coming from other
tags. The results are plotted in Fig. 12(b). We have following
observations:

• When there is only one column of tags in the array,
with more tags in the column, the shadow effect becomes
larger (i.e., RSS of the target tag reduces gradually).

• When additional columns of tags are added in the array,
the RSS of the target tag is further reduced.

• The interference appears diverse among variant types
of tags. For example, three columns of Tag D reduces
the received power of the target tag by 20dBm. While
using Tag B in the three-columns array only reduces the
receiving power by 2dBm at the target tag on average.

Former two observations are straightforward. The third
observation can be explained by the finding proposed by
[10]. That is, the unmodulated Radar Scattering Cross-section
(RCS) determines the tag radiative efficiency as well as the
backscattered power. RCS is defined as the ratio of power
radiated by the tag to the power density incident on it.
Generally, a smaller antenna corresponds to a smaller RCS,
due to its higher reactive impedance and smaller radiation
resistance. Intuitively, the less radiated power it yields, the
less interference it injects to nearby tags. Hence, to mitigate
the tag scattering effects, the simplest approach is to use those
tags with a small RCS. This finding suggests that among these
four kinds of tags, Tag B (Impinj AZ-E53) is the best choice
for deploying the tag array.

3) Distance between the plane and reader antenna: In real
world implementation, it is necessary to set the minimum
distance from the reader antenna to the tag plane, for ensuring
that every tag is readable. It is known that typical passive
RFID systems are forward-link limited, i.e., tags require the
incident power sent from the reader sufficiently high to operate
their ICs. To this end, two essential factors deserve intensive
selection, the gain and read zone of the reader’s antenna. We
investigate the effective solution for determining the distance
from these two perspectives.

The gain of the directional antenna represents the maxi-
mized radiation intensity. Assume that the energy radiated by
the antenna is uniformly distributed with a solid angle (Ωs),
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Fig. 12. Measured RSS with various number of rows and columns in the plane populated with
tags, for four different commercial tag designs.
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Fig. 13. Idealized radiation pattern of a directional
antenna.

as shown in Fig. 13(a). Then, the gain (G) of the antenna can
be approximated as the ratio of the solid angle to the area of
the unit sphere (i.e., 4π):

G ≈

4π

Ωs
(13)

Above equality holds only if the antenna radiates all the power
it receives. In this case, the beam angle of the antenna can be
approximated as:

θbeam ≈

√
Ωs =

√
4π

G
(14)

Hence, a higher gain of the reader antenna results in a narrower
beam. According to Equation 14, the beam angle of reader
antenna in RFIPad’s prototype is about 72◦ (

√
4π/8 ≈ 72◦).

Ideally, a directional antenna exhibits an ellipsoidal radia-
tion pattern. In practice, the read zone of the reader’s antenna,
however, is hard to outlined, since it is influenced by many
factors, such as the sidelobes and the reflections introduced
by moving objects or environments. Fig. 13(b) shows an ideal
read zone. The zone can reach its longest distance along the
center beam of the antenna (e.g., Rmax), and become shorter
toward the edges. Here Rmax depends on the transmitted
power of the reader.

To ensure tags in the plane have balanced coverage from the
reader, we put the tag plane parallel to the antenna panel. In
this part, we show how to set the required minimum distance
(d) between the antenna and tag plane for RFIPad’s prototype.
According to the tag size (4.4cm) and interval between adja-
cent tags (6cm), the length of our tag plane (l) is about 46cm.

Based on trigonometric formula, d = l/2
tan 36◦ ≈ 31.7cm, which

is the minimum distance from the reader antenna to tag plane,
given that all tags are with the 3dB beam coverage. Although
RFIPad requires particular location and direction of a reader
antenna. There is no constraint of the location of the reader,
the most expensive component of an RFID system. A reader
can carry multiple antennas and connect them via wires.

V. EVALUATION

In this section, we evaluate the performance of RFIPad.

A. Experimental setups
We deploy a 5×5 tag array on a carton, with 6cm interval

between adjacent tags. The reader antenna is mounted in two
positions (as shown in Fig. 14). One is on the ceiling to simu-
late the LOS scenario (the left side of Fig. 14). In this case, the
hand will move across the line-of-sight (LOS) paths between

the antenna and certain tags. The other position is behind
the board to simulate the non-line-of-sight (NLOS) scenario,
in which the hand movement involves in the reflections. We
conduct the experiments in four different locations in a typical
office environment. Ten volunteers are invited to participate in
the experiments, moving their hands over the tag array closely
but without touch.

Ground truth collection. We use a Kinect to measure the
user’s motions. These measurements are actually the ground
truth for comparison. The Kinect device is placed behind the
user, facing the tag array plane so as to capture the infrared
images of his/her motions. We manipulate the Kinect using a
software development kit [2] and obtain the Kinect’s skeletal
output to track each volunteer’s hand trajectory.

Metrics. We mainly evaluate the performance of RFIPad
from the aspects of accuracy, False positive rate (FPR), and
False negative rate (FNR). In particular, FPR is the percentage
of falsely detected motions, and FNR is the percentage of
undetected motions.

B. Motion detection
Since the motion/stroke is the basis of RFIPad, supporting

both the touch screen like operations and English letters, we
mainly focus on the motion/stoke detection performance in the
evaluation part.

1) Reader antenna position: We first evaluate the influence
of the reader antenna positions to the accuracy. We deploy the
antenna at two positions (i.e., the LOS and NLOS scenarios
presented in Section V-A). The whole system operates on the
frequency of 922.38MHz. The reader transmitting power is
30dBm. The distance from the reader to the tag plane is sbout
32cm in the NLOS scenario (We treat above parameters as
default settings in the following). The volunteers are asked
to perform 13 strokes (stroke 2∼7 with two directions), 20
times for each. We run 3 groups of above experiments and
totally detect 780 hand motions. The results are shown in
Table I. Surprisingly, RFIPad achieves the average detection
accuracy of 94% for NLOS scenario, which is higher than
that of LOS scenario (say 88%). A reasonable explanation on

TABLE I
ACCURACY OF MOTION IDENTIFICATION

Case Group 1 Group 2 Group 3 Average
LOS 0.88 0.86 0.91 0.88

NLOS 0.94 0.92 0.96 0.94
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Fig. 15. Floorplan of the experimental
lab locations.
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Fig. 16. Detection accuracy v.s. dif-
ferent environments.
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Fig. 17. Detection accuracy v.s. dif-
ferent reader transmitting powers.
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Fig. 18. Accuracy v.s. reader-to-tag
angles.
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Fig. 19. Error rate v.s. reader-to-tag
distances.
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Fig. 21. Detection accuracy v.s. the
time to write the stroke.

this phenomenon is that the interference from human body,
e.g., arm, might introduce noises to the detection, because it is
highly possible that the volunteer’s arm also disrupts a number
of tags’ LOS paths to the reader. On the contrary, the arm’s
affect is much weaker in the NLOS scenario, since the hand
is always closer to the tags than the arm. In what follows, we
adopt the NLOS deployment mode in our experiments.

2) Evaluation in different environments: We run experi-
ments in different environments (i.e., four locations as shown
in Fig. 15) in our lab to examine the effectiveness of the
proposed diversity suppression algorithm. Similar to the pre-
vious experimental settings, each volunteers performs every
stroke 30 times in each location. Fig. 16 shows the accuracy
of RFIPad with and without the diversity suppression. The
results indicate that after performing the suppression algo-
rithm, the accuracy of RFIPad in all environments is improved
to some extent. Specifically, we observe the largest accuracy
improvement at location #4, i.e., from 75% to 93%. Referring
to Fig. 15, the tags at location #4 may experience the strongest
multipath reflections from nearby objects, such as walls and
tables, compared with the cases at other locations. Indeed,
this result demonstrates the effectiveness of our diversity
suppression algorithm.

3) Reader transmitting power: This group of experiments
is to investigate the impact of the reader’s transmitting
power on detection accuracy. We vary the power from 15
to 32.5dBm. Note that the commercial reader power cannot
exceed 32.5dBm according to the regulations. For each of the
power levels, we have the volunteer conduct the 13 motions,
30 times for each. We plot the average false positive rate and
false negative rate in Fig. 17. When the reader’s power is
32.5dBm, the error rates are merely around 5%. The error
rates gradually increase when reducing the power, and reach
around 20% when the power becomes 15dBm. This result can
be explained by the fact that the passive tags are battery-
free. Since the energy is harvested from the reader, when

the power level is high, the signal reflected from the hand
shall have more significant influence on the approached tag.
Hence, the data variation among tags tends to be more distinct.
The enriched distinction facilitates distinguishing the motions
that are unable to detect under a low reader’s power setting.
Therefore, we suggest to use larger reader transmitting power
in real applications.

4) Reader-to-tag angle: We conduct experiments to vary
the angle (including -30,0, 30,45) between the reader antenna
plane and the tag panel. In this series of experiments, we ask
a volunteer to perform the motions — and , over different
columns and rows of the tag panel, each for 10 times. The top-
view of the deployment and the average motion recognition
results are shown in Fig. 18. The results show that the
system achieves best performance at the angle of 0. As the
angle increases, the motion recognition accuracy decreases.
We recommend the 0 deployment for high accuracy. If the
already-deployed reader has an angle to the tag panel, we
may need preliminary signal processing or parameter tuning
to ensure the system efficiency.

5) Reader-to-tag distance: We then check the impact of
the reader-to-tag distance. In this trial of experiments, we
vary the distance from the reader antenna to the tag plane
from 20cm to 80cm. Other settings are consistent as default.
The average detection error rates are shown in Fig. 19. As
expected, shortening the distance can decrease the error rate.
For example, FPR and FNR of RFIPad is only about 5%
when the distance is 20cm. Further data analysis reveals that
a larger distance may involve more complex environmental
interference to the transmission from the reader and tags,
which introduces irregular variation to the tag backscattered
signals. Hence, we suggest that the reader-to-tag distance
should not be longer than 50cm.

6) User diversity: Then we examine the usability of the
system. We invite ten volunteers to stand at the front of our
prototype to perform different strokes, 20 times for each. We
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balance the diversity of volunteers in terms their gender (6
males and 4 females), age (ranging from 22 to 30), and other
physical conditions (158 ∼ 183cm in height, 45 ∼ 80kg in
weight, and 56 ∼ 70cm in the arm length, etc.). Note that
they are naturally moving their hands during the operation or
in-air writing. Fig. 20 shows the average accuracy and standard
deviations for all motions. We see that most volunteers show
comparable accuracy, and the median accuracy is above 90%.
However, for two volunteers, i.e., #6 and #9, the accuracy of
RFIPad experiences a slight degradation, but still keeps at a
high level (85%). We find that these two volunteers move their
hands in a relatively fast speed. This motivates us to further
investigate the impact from hand moving speed later. Overall,
the result implies that RFIPad scales well cross diverse users.

7) Motion speed: The motion speed is an essential factor
when performing the detection. Generally, different users
move their hands at different speeds. For each volunteer, we
record the time duration for successfully recognizing each
stroke/motion across 300 rounds of experiments. Fig. 21 plots
the cumulative distribution function (CDF) of the time used to
correctly recognize a letter. Although RFIPad spends relatively
a long time in recognizing a small portion of motions, 90
percent of recognitions can be completed within 2 seconds for
motions/stokes “click”, “−”, “|”, and “/”. Specifically, stroke
“⊂” takes a longer time than others, since the user needs
to move a longer distance to fulfill it. Generally speaking,
RFIPad prefers slow motions. This is consistent with the
findings in Blink[34], which showed that the system suffers
from undersampling when the hand moves at a high speed,
resulting in ineffective detection on hand motions.

C. Letter recognition

We evaluate the accuracy of letter recognition in two phases:
stroke segmentation and letter recognition. We first exam-
ine the stroke segmentation performance using two metrics:
insertion rate and underfill rate. The insertion rate is the
proportion of cases that our system detects a stroke within
the repositioning period. It reflects how resilient RFIPad
is when distinguishing the stroke data and the adjustment
interval. The underfill rate is the proportion of the cases that
the segmented stroke is incomplete. It indicates whether our
method is capable to accurately yet completely excavate the
entire data for a stroke. Fig. 22 shows the segmentation and
letter deduction performance over 5 representative letters (L,
T, Z, H, E), which incorporate 2 (L and T), 3 (Z and H),
and 4 (E) strokes respectively. We find that the underfill rate
is always lower than 0.07. The insertion rate is diverse for
different letters. For example, a letter with a larger number of
strokes experiences a larger insertion rate, which is consistent
to our intuition, i.e., recognizing it requires more times of
segmentation. In a nutshell, the segmentation operation has an
essential impact on letter deduction since it is the basis and first
step for letter recognition. For achieving better segmentation
performance, we suggest the user raises his/her arm when
adjusting to the starting position of next stroke.

Then we focus on the accuracy of recognizing letters. The
users are asked to write each of the 26 letters following the
instruction of Fig. 10. We show the experiment results of

recognizing letters in Fig. 23. They can be categorized into
four groups. Each represents a typical type of letters in terms
of the number of strokes. For instance, Group #1 includes “C”
and “I” which have only one stroke. The others are Group #2
{D,J,L,O,P,S,T,V,X}, Group #3 {A,B,F,G,H,K,N,Q,R,U,Y,Z},
and Group #4 {E,M,W}. From Fig. 23, we can see that the
average successful rate of recognizing a letter remains around
91%. This effectiveness of RFIPad’s letter recognition is also
confirmed by the ground truth data obtained from Kinect. For
instance, one volunteer writes the letter “Z”, and Fig. 25 shows
the Kinect’s skeletal points, the hand trajectories traced by
Kinect and RFIPad. The two trajectories are very consistent.

D. Latency
Short latency is important for most interactive applications.

We evaluate the latency of RFIPad through the response time
of motion recognition, i.e., the time between when a volunteer
finishes one motion (stroke) and when the motion is correctly
reported. For each motion, we randomly choose 50 records of
motions from 10 users and calculate the response time. Fig. 24
shows the average response time for all the motions. Except
two outliers for motion #5, the maximum response time across
all motions is less than 0.1s. In particular, the largest difference
of response time for each motion is less than 0.035s. This
demonstrates the excellent capability of RFIPad in supporting
online motion recognition.

VI. LIMITATION AND DISCUSSION

In the implementation of RFIPad, we encounter several
challenging issues deserved discussions.

Distance from the tag plane: Although RFIPad realizes
a “contactless” touch screen like interface, it still has a soft
constrain on the distance from the user’s hand to the tag plane.
Our prototype achieves satisfactory accuracy if this distance
is within 5cm. Beyond this range, the error would increase
with enlarging the distance. The reason is that passive tags
operate without an on-board power source, while they draw
energy from the RF waves emitted from the reader’s antenna.
If the user is far from the tag plane, the interference introduced
to the tags’ signals might not be distinct enough for fine-
grained gesture-sensing. As such, one of our future works is
to loosen this constraint by advancing both the hardware and
signal processing algorithm of RFIPad.

Low throughput: RFIPad prefers slow motion/hand-writing
which would result in low throughput. The reason is that
RFID system might suffer from under-sampling when the hand
moves at a high speed. We envision that the problem could be
mitigated by optimizing specific parameters involved in RFID
systems, such as reducing the tag packet length (e.g., reducing
the communication time of each tag), avoiding the readings of
tags out of our tag plane, and the like.

Compounding errors: For the current implementation, we
adopt the tree-based grammar to recognize letters, i.e., we
deduce the letter after identifying each stroke sequentially.
This would lead to compounding errors, e.g., first in the
segmentation, stroke recognition, then in the letter deduction.
One possible direction to mitigate this interference is to treat a
letter as a whole, and resort to image processing techniques for
identifying the whole letter after RFIPad’s OTSU operation.
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VII. RELATED WORK

RFIPad bears similarity to prior works proposed for mo-
tion/gesture recognition and indoor localization.

A. Motion/Gesture recognition

Existing motion and gesture recognition related research can
be classified into three categories.

Camera-based: Camera or vision based systems usually
make use of depth sensors (e.g., Wii [29]) or infrared cameras
(e.g., Kinect [1]) to trace fine-grained motions and enable 3-D
in-air [3] human computer interactions. The basic requirement
is the line-of-sight (LOS) guarantee between the device and
user. Unlike these solutions, RFIPad yet does not require the
dedicated hardware setup and LOS for operation.

Motion sensor-based: Sensor based systems rely on motion
sensors (e.g., accelerometer, gyroscope, and pressure sensor) in
smartphones [6], smartwatches [8], [32], rings [13], or wrist-
bands [22] to reveal human motions through machine learning
techniques. However, they always require the instrumentation
of users. In contrast, RFIPad achieves fine-grained motion
tracing in a device-free manner.

RF-based: Recently, using RF signals [4], [5], [9], [17],
[19], [20], [23], [28], [30] has shown the promising ability in
both the localization and motion detection. Although some
of those works provide attractive detection accuracy, most
of them depend on either customized hardware or dedicated
signal processing equipment, which are costly and inefficient
in real world applications. For example, the works proposed

in [4], [30] require GHz of bandwidth. In addition, several
of them [5], [17], [35] require a priori learning on the signal
patterns of certain predefined motions, which is the basis for
later recognition on the those gestures. Sometimes, wearable
devices are needed for supporting the accurate motion de-
tection. For example, RF-IDraw [26] requires users to wear
RFID tags on their fingers for tracking the trajectory of hand
movements.

B. Indoor localization

There are also a large spectrum of related works focusing
on the indoor localization [7], [26], [27], [31], [33], including
the RSS based [7], phased based [33], and AOA based [26]
techniques. The localization accuracy of those works ranges
from a few decimeters to centimeters. Recently, quite a few
approaches [25] adopt synthetic aperture radar (SAR) tech-
nique, which leverages moving antennas to form an antenna
array for localization. RFIPad differs from those prior works
in the aspect that it traces moving objects (hands) rather than
localizing static objects. Moreover, it is device-free so that
the traced object does not need to wear or carry any external
devices. Another major difference from prior works is that
RFIPad is fully compatible with current commercial RFID
infrastructure, and does not require any hardware modification.

VIII. CONCLUSION

This paper presents RFIPad, which transforms a tag plane
into a virtual touch screen, allowing a user to perform in-air
handwriting and touch screen operations in public areas. RFI-
Pad does not require the user to carry devices and introduces
minimal extra cost. We implement a prototype RFIPad using
COTS UHF RFID devices and conduct extensive experiments
for evaluating its performance. The results show that RFIPad is
fully compatible with existing industrial standard and exhibits
high accuracy and reliability in motion detection and English
letter recognition.
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