Low-Complexity Multi-Resource Packet Scheduling
for Network Functions Virtualization

Xin Li and Chen Qian
Department of Computer Science, University of Kentucky
Email: xin.li@uky.edu, gian@cs.uky.edu

Abstract—Network functions are widely deployed in modern
networks, providing various network services ranging from intru-
sion detection to HTTP caching. Various virtual network function
instances can be consolidated into one physical middlebox.
Depending on the type of services, packet processing for different
flows consumes different hardware resources in the middlebox.
Previous solutions of multi-resource packet scheduling suffer
from high computational complexity and memory cost for packet
buffering and scheduling, especially when the number of flows
is large. In this paper, we design a novel low-complexity and
space-efficient packet scheduling algorithm called Myopia, which
supports multi-resource environments such as network function
virtualization. Myopia is developed based upon the fact that most
Internet traffic is contributed by a small fraction of elephant
flows. Myopia schedules elephant flows with precise control and
treats mice flows using FIFO, to achieve simplicity of packet
buffering and scheduling. We will demonstrate, via theoretical
analysis, prototype implementation, and simulations, that Myopia
achieves multi-resource fairness at low cost with short packet
delay.

I. INTRODUCTION

Network functions (NFs), also known as middleboxes, play
an important role in modern computer networks. According
to a recent survey [25], NF deployments are ubiquitous: on
par with the number of L3 infrastructures. In large-scale
enterprise and data centers networks, performance-improving
appliances (e.g. WAN optimizers, proxies, and application
gateways) become more and more significant, and hence
are deployed widely. In addition, security appliances (e.g.
firewalls, IDS/IPS) are common in various networks.

On the other hand, the deployment of hardware-based NFs
incurs high expenses for physical equipments. When networks
continue to grow in both scale and variety, hardware update
and replacement also raise big concerns in both laboring and
financial cost. To address these challenges, Virtual Network
Functions (VNFs), also known as software-centric middlebox-
es, have been built for general-purpose computing platforms
[4] [24]. A wide variety of VNFs [16] could be incorporated
into one software middlebox, ranging from intrusion detection
to HTTP caching, with high variance of hardware-resource
requirements. For example, the resource bottleneck of the
intrusion detection task is usually the CPU, but the basic
forwarding task is bottlenecked at the network card. In this
paper, we focus our discussion on VNF processing in a
software middlebox.

Flow isolation is desired in middleboxes to provide pre-
dictable services, which means a flow is guaranteed to receive

its share of service regardless of the demand of other flows.
Flow isolation has been studied extensively, and various packet
scheduling algorithms have been proposed to fairly share
bandwidth, such as WFQ [9], GPS [20], SFQ [15], and VC
[36]. However, these algorithms cannot be applied to VNFs
directly, because packet processing in a middlebox needs
multiple types of resources, such as CPU, NIC card, and GPU
[26]. Ghodsi et al. [12] proposed a new multi-resource fair
share policy, called Dominant Resource Fairness Queueing
(DRFQ) to schedule packets in software middleboxes. Though
providing flow isolation, DRFQ incurs high computational
complexity and memory space cost. First, DRFQ scheduling
algorithm needs to find the flow with the minimum timestamp,
whose time complexity is O (log n), where n is the number of
backlogged flows. Second, each flow should maintain a per-
flow buffer to store arriving packets. When the number of flows
is large, classification of newly arrived packets and buffering
also bring non-trivial time and memory cost. More importantly,
the number of per-flow buffers grows linearly with the number
of flows. Under the current implementation of fix-sized buffer
allocation [12], a big number of buffers waste a large fraction
of allocated memory. As a result, the performance of NF
processing will be degraded with the increasing number of
flows. MR? [29] and GMR? [30] are proposed to reduce the
scheduling time, but the remaining problems have not been
resolved.

In this paper, we develop a space-efficient and low-
complexity packet scheduling algorithm called Myopia, which
supports multi-resource environments such as VNFs. Myopia
is developed based upon the fact that Internet flow sizes follow
power law distribution [32] [17] [23], which indicates that
most traffic is contributed by a small fraction of elephant
flows. We analyze four recent and typical Internet traffic traces
and validate the power law distribution of flow sizes. Myopia
achieves resource fairness by maintaining the flow state and
buffers of elephant flows and scheduling them with precise
control. Myopia schedules the majority mice flows using the
simple FIFO policy, because their limited traffic will not
affect the overall fairness. We resolve two main challenges
in Myopia: identifying elephant flows and coordinating the
scheduling of elephant and mice flows. Our theoretical analysis
shows the resource sharing fairness among elephant and mice
flows. We implement a Myopia prototype on the Click modular
router [18] and evaluate its real processing speed. We also
compare Myopia with DRFQ [12] and MR? [29] using both

©
©

=
[S)
N
o

c ——San Jose I3 p XN ——San Jose
£ ——Chicago = ——Chicago
& 2 S -2 i R - - -Day
510 107 N - - Night
£ s | RPN -
2 2
=107 = 4
210 510
S 2
o 2
a T
. §
10 10
10° 100 100 10° 10*° 10° 10° 10° 10° 10° 10° 10" 10°
Packets Bytes
(a) in packet numbers (b) in bytes
Fig. 1. Flow size distribution of the Internet traffic (in logarithm)

real implementation on Click and simulations on NS3, to
demonstrate the advantages of Myopia in processing time,
fairness, and throughput.

The rest of this paper is organized as follows. We introduce
the background of flow size distribution and multi-resource
fair sharing algorithms in Sec. II. We give the details of the
Myopia design in Sec. III and theoretically analyze its fairness
in Sec. IV. We conduct experiments via prototyping on Click
and event-driven simulations on NS3 in Sec. V and Sec. VI,
respectively. Finally, Sec. VII concludes this paper.

II. BACKGROUND
A. Power law distribution of flow sizes

Many “power laws” have been discovered in network phe-
nomena, including Internet flow sizes [32] [17] [23], packet
inter-arrival time [21], web traffic [7], and the node outdegrees
and neighborhood sizes in Internet topologies [11]. Myopia is
developed based on the fact that most traffic is generated by a
small fraction of flows. Although the power low distribution of
Internet flow sizes has been reported by many existing works
such as [32] [17] [23], we still provide the analysis of recent
Internet traffic data to validate this observation.

The probability density function (pdf) of a power law
distribution could be represented mathematically as follows:

Cx % |
0)

where o is called the power law exponent. According to the
normalization of probability, the integration of Eq. (1) equals
1. Consequently, the constant C is fixed once o is determined:
C=(a—1)x% 1.

Taking the logarithm operation at the both sides of Eq. (1):
In(P[X =x]) = —aln(x) +In(C) (2)

Eq. (2) is used to detect power law distribution: it appears
as a straight line when the pdf and x are plotted in logarithmic
scale.

We analyze four sets of real Internet traffic traces to
illustrate the flow size distribution. We find that power law
distribution fits these traces very well.

The first two sets of data are anonymized passive traffic
traces from equinix-chicago and equinix-sanjose monitors on
high-speed Internet backbone links in 2013, provided by
CAIDA [1], denoted as San Jose and Chicago respectively
in this paper. The other two sets of data were captured in the
campus network of a U.S. public university at one day in early

X 2 Xpin
X < Xpmin

PX =x] = (1)

[

o
©

o
o

e

—San Jose
—— Chicago
---Day

- --Night

Cumulative traffic
IN
n

I
N

Cumulative Traffic

==l

0.2 04 06
Top largest flows

0
0.8 1 0

(a) in packet numbers

0.2

(b) in bytes

0.4 0.6
Top largest flows

0.8

Fig. 2. Cumulative distribution of Internet flow sizes

ato in packet num in bytes
San Jose | 0.9187+0.0016 | 0.9398 £0.0002
Chicago | 0.9182+0.0015 | 0.9400=+0.0003

Day 0.8556+£0.0153 | 0.9107+0.0036

Night 0.87094+0.0143 | 0.917740.0037

TABLE 1
THE EXPONENT 0, AND ERROR G OF THE TRACES

June of 2014. Both traces were captured for 4 hours, one in
the day time and one in the night. The two traces are denoted
as Day and Night, respectively.

Fig. 1 demonstrates the flow size distribution of these four
traces. We measure these traces from two perspectives: in
packet numbers, as depicted in Fig. 1(a), and in bytes, as
shown in Fig. 1(b). All curves in Fig. 1 can be approximately
fitted as straight lines. Therefore the flow sizes of these four
traces can be modeled in power law distribution.

The parameter oo of a power law can be calculated via
maximum likelihood estimation [19]. !

n

a=1+n[Y) In—]"! 3)
i—1 Xmin
The corresponding statistical error ¢ of Eq. (3) is:
L ; oa—1
o= yn[Y Int) =2)

Jn

We calculate the values of o and ¢ of the four traces using
maximum likelihood estimation and list them in TABLE 1. We
can find that more skewed traffic corresponds to smaller value
of a. In all four traces, the values of o are very close and the
values of ¢ are very small. We believe these four traces can be
considered as representative Internet traffic data, considering
both WAN and LAN, both day and night.

Fig. 2 further illustrates the heavy-tail nature of the flow
size distributions in the four traces. More than 80% of the
total packets are generated by the top 20% largest flows in
all four traces. In the Day trace, more than 90% of the total
packets are generated by the top 10% largest flows in all four
traces. In all four traces, more than 90% of the total traffic in
bytes is generated by the top 10% largest flows.

In summary, we demonstrate that today’s Internet traffic
still approximately follows power law distribution and a small
fraction of flows contribute to most traffic. We use elephant
flows to denote the flows that contribute to most of the
traffic and mice flows to denote the remaining ones. Following

i—1 Xmin

!Extracting o directly from the tangent in the logarithmic plot using least
square fitting would introduce systematic error [14].

Algorithm Time Complexity | Space Complexity
Linear Search O(N) O(N)
Hierarchy Tries ow9) O(NdW)
Tuple Space Search O(N) O(N)
TCAM (Hardware) o(1) O(N)
TABLE II

SOME CLASSIC CLASSIFICATION ALGORITHMS ON A CLASSIFIER WITH N
FLOWS AND d W-BIT WIDE DIMENSIONS.

[8], elephant and mice flows can be determined by a given
threshold, which is further discussed in Sec. III-A.

B. Multi-Resource Scheduling and Current Problems

Network Function Virtualization (NFV) is a recently devel-
oped technique that are widely used in ISP networks [27], data
center networks [3], [5], [34], and wide-area networks [22].
Dominant Resource Fairness (DRF) was proposed by Ghodsi
et al. to generalize max-min fairness to multiple resources in
space domain [13]. DRF computes the share of each resource
allocated to one user. The maximum share among all resources
is called the user’s dominant resource. Under DREF, the users
receive dominant resource in max-min fair fashion. DRFQ is
the extension of DRF in the time domain [12]. For a packet
P, the dominant resource refers to the resource that p requires
most processing time. Motivated by SFQ [15], DRFQ uses
virtual time to mimic each flow’s resource usages. For DRFQ,
one per-flow buffer with a fixed capacity is maintained for
each flow. A newly arrived packet will be classified first, and
then be stored at the corresponding per-flow buffer. In the
meantime, a timestamp is attached to the packet. For each
processing opportunity, DRFQ dequeues the packet with the
smallest timestamp among those at the head of each per-flow
buffer.

As reported by recent work [31] [30], the volume of traffic
and number of flows through middleboxes keep increasing.
Although providing fair sharing for multi-resource settings,
DRFQ (and its variants) still suffers from several efficiency
problems when facing a large number of flows.

Classification. A classifier is desired to match a newly ar-
rived packet to its per-flow buffer. Table II lists the spatial and
computational complexity of some well-known classification
techniques. For all of these techniques, the growing number of
flows could impose a challenge for the space and time. Since
fast memory such as SRAM and TCAM is expensive and
power-hungry, the memory capacity is very limited. People
need to either pay more for the hardware or use relatively
slow memory to implement the classifier.

Buffering. Fix-sized per-flow buffers are preferred over dy-
namic buffers, for the following reasons: (1) fix-sized buffers
are simpler and faster to access compared to a linked chain of
dynamic buffers. Therefore most current implementations of
buffer allocation use fix-sized buffering [12] [18]; (2) dynamic
buffer allocation requires prediction of flow sizes, which may
incur extra complexity and unfairness; (3) each dynamic buffer
needs a pointer field, which introduces extra overhead. Worse
still, in the fair sharing environment, the longest queue needs to
drop packets when the memory space run out [28]. When the

MRFQ Sub-System

Per-flow Buff 1

Elephant flow
table
io. | Address

Index

1
Not Match Add Rule

I
I

SCM
Sketch

FIFO

Fig. 3.

The framework of Myopia

number of flows are large, finding longest queue is expensive.
In fact fix-sized per-flow buffering is used in DRFQ. We know
that sizes of flows vary significantly according to the analysis
in II-A. Therefore allocated memory space could be wasted a
lot because most flows are mice flows.

Scheduling complexity. It is clear that O(logn) time is
needed to find the smallest timestamp before dequeue a
packet, where n is the number of backlogged flows. Alternative
algorithms, such as MR [29] and GMR? [30] try to use round-
robin to schedule packets in O(1) time. Nevertheless, their
performance may be bottlenecked at the stage of classification
and buffering because round-robin also requires per-packet
classification and per-flow buffering.

III. MYOPIA DESIGN

The basic idea of our Myopia design is to avoid per-packet
classification and per-flow buffering, and hence avoiding the
scalability problems in time and space cost as analyzed in Sec.
II-B. Myopia takes the advantage of the fact that most of the
traffic in a network is contributed by only a very small fraction
of flows, which we have demonstrated in Sec. II-A. In Myopia,
we propose to precisely schedule the packets of elephant flows
to achieve dominant resource fairness among most packets,
while let mice flows be scheduled in FIFO. In this way, the
resources in a middlebox are still shared fairly while the space
and time cost are significantly reduced. Although the idea is
straightforward, there are still a number of challenges of the
Myopia design, such as identifying the elephant flows and
coordinating the scheduling of elephant and mice flows.

The framework of Myopia is shown in Fig. 3. Myopia stores
all identified elephant flows in a table using fast memory
such as TCAM. It uses a count-min sketch [6] to estimate
and size of each flow and identify elephant flows. Packets
belonging to an elephant flow will be queued in the per-flow
buffer of the flow. Elephant flows are scheduled to satisfy
dominant resource fairness. Mice flows are put into a single
FIFO buffer. We will explain the details of the Myopia design
in the remaining parts of this section.

A. Detecting Elephant Flows

In Myopia, we utilize the count-min sketch (CM Sketch) [6]
as the tool to detect elephant flows, for its provable tradeoff
between space and accuracy of flow size estimation. We further

[[»
e m—
Packet ha h pl Depth
he T,
™A
I
Width

Fig. 4. The CM Sketch update illustration

extend the current CM Sketch design to a shielded count-min
sketch (SCM Sketch) that results in less over-estimation.

The CM Sketch is a compact probabilistic data structure to
summarize a streamed data, implemented as a two-dimensional
array. A CM Sketch is parameterized by two constants, € and
d, which determine the probabilistic error and space cost of the
CM Sketch. With given € and 8, the width of the CM Sketch
w and the depth of the CM Sketch d can both be determined
asw=[g] and d = (ln%] Also, d pairwise-independent hash
functions h;, i =1,2,...,d, are associated with each row in the
array. In Myopia, a packet is hashed using its flow ID IDy,
which is usually defined as the 5-tuple in its IP packet header,
i.e., <SrclP, SrcPort, DstIP, DstPort, Prtcl>.

hi:{ID;} = {1,2,...,w},i=1,2,...d (5)

Initially, all entries in the array are Os. When a new packet
p comes, as shown in Fig. 4, the CM sketch update its count
as follows for Vi, 1 <i<d:

countli][h;(p.flowID)] < count|i][h;(p.flowID)|+A (6)

where A is the traffic amount of this packet in Myopia. If the
network traffic is measured in packet numbers, A = 1. If the
network traffic is measured in bytes, A is the packet size in
bytes.

One can query the CM Sketch for the current size of a given
flow f. The query response is calculated as

4y = min countfijiy (1)) ()
If the size of a flow exceeds a threshold, we identify the flow
as an elephant flow.

Like other probabilistic data structures such as the Bloom
filter, a CM Sketch only provides approximate results. Over-
estimation may occur. The most important feature of the CM
Sketch is that there is a provable tradeoff between space cost
and accuracy [6]. The estimated query of flow f, g, has the
following guarantee with the probability at least 1 —9:

dr<ar+e) qy
feF

®)

where I denotes all flows the middlebox encounters and gy
denotes the exact flow size.), gy could be interpreted as the
€F
total traffic passing through {he middlebox. From Eq. (8), the
query error of the CM Sketch will monotonically increase over
time when the traffic is steadily coming. Thus in Myopia arrays
of the CM Sketch should be reset periodically. As a result, the
long-live flows (e.g. heartbeats) with few packets would never

be recognized as elephant flows. In addition, we propose two
techniques to improve the accuracy of the CM Sketch using the
same memory space cost, namely shielding and conservative
update. The extended tool is called the shielded count-min
sketch (SCM Sketch).

Shielding. When a flow is identified as an elephant flow,
there is no need for it to be processed by the SCM Sketch
and update the counts in the array. Myopia directly add this
flow into a list as shown in Figure 3. As will be described in
Sec. III-B, packets of this flow will match the elephant flow
table and be directly queued into its per-flow buffer. Packets
of identified elephant flows will skip the SCM Sketch step.
By shielding elephant flows, the overall over-estimate rate is
reduced significantly.

Conservative update. Estan and Varghese introduced the
idea of a conservative update [10], which basically means that
we endeavour to increment the entries in the array as small as
possible. When we need to update, the smallest entry updates
as usual; the other entries are set to the maximum of their old
value and the new value of the smallest entry. From Eq. (7),
we know that it is the smallest entry that matters the query
result. The conservative updates reduce their “contribution” to
other flows, thus lowering the overall query errors.

In order to determine elephant flows, the threshold T needs
to be specified. Every time a new packet arrives at the
middlebox, flow size query is conduct immediately after the
update process. If the query value is greater than T, the
corresponding flow is now recognized as an elephant flow.
Another advantage of the SCM Sketch is that §5 > g under all
conditions. As a result, all elephant flows would be recognized.

Adding a new component and hash operations may intro-
duce extra time cost. However, it has been reported in [33]
that the execution speed of the SCM Sketch using hardware-
implemented hash functions [4] [24] can be very fast, which
has little affection to packet scheduling and forwarding.

B. Packet scheduling algorithm

For a newly arrived packet p, it will first be checked by the
elephant flow table, where each entry is an identified elephant
flow. The index field in the table contains the pointer to the
corresponding per-flow buffer in the MRFQ sub-system. If
one entry matches the flow ID of p, p is directly stored in
the per-flow buffer of its flow and skip the SCM Sketch step.
The deployment of the elephant flow table yields two benefits:
(1) as discussed in the previous subsection it shields those
elephant flows from the SCM Sketch and lowers the query
error, as indicated by Eq. (8); (2) the memory and time cost
of checking this table is very low, because elephant flows only
consist of a small fraction of all flows.

Packets in the per-flow buffers are scheduled by the multi-
resource fair queueing (MRFQ) sub-system. Similar to DRFQ
[12], the MRFQ sub-system would use the virtual time to
mimic each flow’s resource usages. Suppose a packet p is
the kth packet of flow i buffered at the per-flow buffer. The
notations for the MRFQ sub-system are listed in TABLE III.
When packet p arrives, MRFQ computes its virtual start time

[Notations | Explanation |

p{-‘ k-th packet of flow i
af arrival time of packet p¥

sffj processing time of p{-‘ at resource j

S(p) virtual start time of packet p

F(p) virtual finish time of packet p

V(t) system virtual time at time t

S(p.j) virtual start time of packet p at resource

P(t) the set of packet being processing at time t

TABLE III
NOTATIONS IN THE MRFQ SUB-SYSTEM

and finish time as follows:

S(pi) = max{V (af),F(p{~")} ©)
k
max;{ss .
F(pt) =S(pi) + # (10)
The virtual time function is defined as follows:
_ J maxi{S(p,j)lpeP(t)} , P@)#0
V“)—{ 0 . Py=o0 D

When MRFQ dequeues a packet, it chooses one packet of
the smallest virtual start time among the packets at the heads
of all per-flow buffers.

If a packet p of flow f does not match any entry in the
elephant flow table, p will be processed by the SCM Sketch
and to check whether it belongs to an elephant flow. Once a
new elephant flow is identified, one available per-flow buffer
would be allocated for f and a new entry about f will be
installed in the elephant flow table. As expected, all incoming
packets of f will be queued into f’s per-flow buffer.

If p does not belong to any elephant flow, it will be put
into the FIFO buffer shared by all mice flows. We choose
FIFO here for mice flows because of its simplicity. Since the
traffic goes to the FIFO buffer is relatively small compared to
the traffic in per-flow buffers, it will not consume too much
resource of the middlebox. Suppose that the flow size is subject
to power law distribution with exponent o and the CM Sketch
threshold T. If o > 2, then the expected fraction D of traffic
going to the MRFQ sub-system is:

02
) 12)

D— Jr(x=T)PX=x]ldx 1 [T
B e, XPIX = x]dx o«

On the other hand, we define P(X > T), the expected fraction

of elephant flows, as P.

Xmin

P= /:P[X = x]dx = (i)*o‘+l

Xmin

13)
By eliminating ﬁ in Eq. (12) and Eq. (13), we can get:

p L pla-2/e (14)
o

By tuning the CM Sketch threshold 7', Myopia can determine

how much traffic goes to the FIFO buffer and how many flows

should be considered as elephant flows. The expected fraction

of traffic goes to the FIFO buffer is 1 —D.

In Myopia, all packets in the FIFO buffer have higher prior-
ity than those in the MRFQ sub-system. The most important
reason for us to choose this design is that it prevents out-
of-order packet delivery. For any elephant flow, before being
identified by the SCM Sketech, all its packets are queued
into the FIFO buffer first. It is possible that when a flow
is identified as an elephant flow, some of its packets are
still waiting in the FIFO buffer. Emptying the FIFO buffer
before starting to schedule packets in the MRFQ sub-system
guarantees the intra-flow order. Also, mice flows consume
much less resources compared to elephant flows, hence giving
them higher priority does not affect the overall fairness. More
importantly, preferentially serving the packets from the FIFO
buffer actually increases the overall throughput. Gong et al. in
[17] describe the background and motivation of the preference
to mice flows. Most of the mice flows use TCP for transferring
packets [17]. If these mice flows are served preferentially, the
congestion windows would increase dramatically. Therefore,
the throughput also increases. Our simulation using NS3 [2]
in Sec. VI-D will show that prioritizing the FIFO buffer does
not affect the fairness and improves the overall throughput.

In case the flow sizes do not follow power law distribution,
to prevent starvation of the MRFQ sub-system, a token bucket
for dominant resource usage is applied to the FIFO buffer
to shape its traffic. Upon arriving new packet, if there is
no enough tokens, the packet is discarded. Nevertheless, the
starvation is not likely to occur, since the fraction of traffic
going through the FIFO buffer is really small. The token
bucket has two parameters: the token bucket capacity b, and
the token rate r. The token bucket capacity b determines the
burst size of the FIFO buffer, and the token rate r will upper
bound the long term resource utilization of the packets from
the FIFO buffer. For example, if » = 0.3, the packets in the
FIFO buffer should not occupy the hardware resources for
more than 30% of the total time in average, thus the MRFQ
sub-system will not be starved. How the token rate r adaptively
changes according to the number of elephant and mice flows
will be our future work. We provide theoretical analysis in
Sec. IV about the token bucket algorithm, especially Theorem
5 and Theorem 6. In Sec. VI-C, experiments are conducted
to indicate the impact of r on the resource allocation between
the MRFQ sub-system and the FIFO buffer.

A merged buffer is used to store the packets with the
smallest timestamp from MRFQ sub-system.

Separated token buckets for different resources are also
used when we decide when to dequeue a packet to process.
Certain number of tokens are taken away from each type
of resource based on the packet’s processing time on that
resource. These token buckets can guarantee those resources
are not oversaturated.

C. Improvements of Myopia

Separating detecting and buffering. As we have described
in Sec. III-A, the CM Sketch needs to be reset periodically.
One challenge is that when we clear the array, there is
a great chance that not all per-flow buffers are empty. In

Myopia, we separate the elephant flow identification phase
and packet buffering phase, even though these two are highly
related. Only the SCM Sketch array is reset periodically. The
classification rules in the elephant flow table and the per-flow
buffer allocation remain the same. When the array is reset,
packets of elephant flows will skip the SCM Sketch, but the
SCM Sketch array will still be updated in the meantime, until
it is recognized as elephant flow again.

Elephant flow deallocation The number of per-flow buffers
is limited, so is the elephant flow table size. Without a
refreshing mechanism, the space of the per-flow buffers and
the elephant flow table will soon run out. While it is possible
to check FIN packets of TCP flows to determine the end of the
flow, it cannot be applied to UDP flows. One simple method
is used in Myopia to refresh elephant flows to accommodate
newly arrived ones. If a per-flow buffer becomes empty and no
packet is being processed, then this buffer will be deallocated
and the corresponding classification rule in the elephant flow
table will also be deleted. It is based on one observation: the
flow size of the elephant flow is also limited, and its packet
inter-arriving time is subject to the power law distribution [21].
An empty per-flow buffer usually indicates the end of the
flow. People may ask what if we deallocate an active flow.
Actually, Myopia can handle such situation very gracefully:
when a packet from that flow comes, Myopia can immediately
identify the flow as an elephant flow from the SCM Sketch.
Myopia then allocates a new per-flow buffer and installs the
classification rule again. We do not want this packet to go
through the FIFO buffer. That is why Myopia is designed to
continue to update the SCM Sketch after its resetting. Another
advantage of this design is that the timestamp of an elephant
flow is retained even if it is deallocated. Recalling from Eq.
(9), if the virtual time V(a¥) is greater than F(pf~!), the
timestamp is simply the virtual arrival time. And it is the case
when the per-flow buffer becomes empty.

IV. THEORETICAL ANALYSIS

A. Fairness among Elephant Flows

Let L; donate the maximum single-resource processing time

of the flow i, that is:
L; = max{s} ;} (15)
k,j ’

Lemma 1. For any backlogged elephant flow i at any time t,

0<s(p") =s(»") < Li

wi

(16)
where p?m denotes the packet of flow i at the head of its
per-flow buffer at time #; p') denotes the last packet that has
been scheduled before time ¢. Let S(-) be the timestamp of a
packet.

Proof: We proof Lemma 1 by contradiction. Assume that

N (P?(f)) _S(pl(t)) > i—'{ According to Eq. (10), S (pi}(t)) _

h(t)—1
(1) = mets

< %’[Then we could get S(pl(f)) _
h(t)—1
(v

h(r)—1

) <0, which means that ;" s sill in the per-flow

buffer, which contradict that p?(t) is at the head of the buffer.
||

Corollary 1.1. For any two backlogged elephant flows i) and
iy, at any time t

L L
(1) = (1) < mar (2 22)
wi, w,2
Proof: Without loss of generalization, we assume

o503 687) = &S S

()<l 02 s()] <5 0

is likewise when S p?l([) -5 pf-;([) < 0, thus we can arrive

a7)

at Corollary 1.1.

If the dominant resource of a flow does not change over
time, we call that flow monotonic flow. Let W;(t1,t;) donate
the total processing time consumed by flow i on its dominant
resource during [t1,%).

Lemma 2. For any backlogged dominant-resource monotonic
elephant flow i,

"Vi(;i;tZ) _g (p?(lz)) S(pfwm)

Proof: Since elephant flow i is monotonic, for any k,
max;{sk = sk 4» Where d; denotes the dominate resource of

flow i. As a result, W;(t1,50) = y ld According to
ke[h(t1),h(r2))

),
Eq. (9) and Eq. (10), S(p**!) - ()
)y

L S =s(h) = s
kelh(t1),h(t2))
Theorem 3. For any two backlogged dominant-resource
monotonic elephant flows i} and i,
Wi (t,2) Wy (t1,1)

Wi, Wi,

(18)

Then 7(2)
S (.

L, L
<2><max<”,’2> (19)

Wi, Wi,
Proof: Theorem 3 would be easily

Corollary 1.1 and Lemma 2. mlvit’_lm -

) s i) - [()—S()

induced by
VViz (tl 11‘2)

<
(i) s+ s() s -
2 X max Ly Ly |

g

This theorem indicates that all elephant flows fairly share the
dominant resource. The dominant resource usage difference
for any two elephant flows is bounded.

B. Fairness among Mice Flows

At first, the token bucket capacity b should be big enough
to accept all kinds of single packet. That is:

b > max{Ly 20

max{Ly} (20)

Let R(p,j) denote the processing time of packet p at

resource j and the dominant resource processing time of

packet p is denoted as p', that is p! = max;{R(p, j)}. Then
we can get Lemma 4.

Lemma 4. Assume packet p}[; is the head packet at the FIFO
buffer. And another packet p. is the latest packet to complete
processing. The maximum delay to start serving packet p}}‘F is
bounded by:

D(pk) < max{R(pc.)} = pi 1)

Proof: Suppose packet p, is lastly processed by resource
i. After R(p.,i)’s time, the bucket token for each resource
is ready, hence packet p. could start to be served. D(p}.) =

R(pe,i) < max;{R(pc, j)} = pe. m

Theorem 5. The maximum delay to start serving packet p
from the FIFO buffer is bound by token bucket capacity b:

D(p)<b (22)

Proof: Suppose there are n packets in front of packet

p in the FIFO buffer, which is denoted as p;,i = 1,2,...,n,

respectively. D(p) <YI , plT <b. [|

Since every flow, elephant or mice, would go through the

FIFO buffer first, the startup latency for each flow is also
bounded by the token bucket capacity b.

C. Relation between Elephant Flows and Mice Flows

Theorem 6. Assume token bucket rate is r. Packets from the
FIFO buffer will at most occupy r portion of the process time.

Proof: If the FIFO buffer is backlogged, then all resources
are serving the packets from the FIFO buffer. Suppose there
is a dummy packet p, after last real packet in the FIFO buffer.
The FIFO buffer occupation time is actually the process delay
of the pg. According to Lemma 4, D(p;) <YI, plT, where p;
denotes the ith packet in the FIFO buffer. For each unit time,
D(ps) <¥Y@™, piT <r on average. Thus, the FIFO buffer take
at most 7’s time in each unit time. Theorem 6 is proved. W

V. PROTOTYPE IMPLEMENTATION

We have implemented a prototype of Myopia on the Click
modular router [18]. The main purpose of this section is
to evaluate Myopia’s processing speed and demonstrate its
advantage in real hardware. We run Myopia on a quad-
core@3.40G desktop with 16GB memory. Our Click version
is 2.0.1, running in the user-level mode. In order to focus on
the bottleneck in the scheduling process, we configure Click
to transmit and receive packets within the same machine via
memory. That is to say, the real transmission speed is bounded
by the memory bandwidth. For the same reason, we skip the
packet’s real processing modules and the bucket r is set to
infinite. Packets are emulated to be serially processed by CPU
first then followed by NIC-card, as a multi-resource setting.
The CPU processing time of different services follows a simple
linear model, as provided by [29], which is listed in TABLE
IV. In this table, Bytes means the packet size in bytes. The
NIC-card processing time is proportional to the packet size,
and the output bandwidth of the middlebox is set to 500 Mbps
in our emulation.

Our implementation adds two new modules to Click: the
SCM Sketch module and MRFQ sub-system module. For the

Service CPU processing time (us)
Basic Forwarding 0.00286 x Bytes+6.2
Statistics Monitoring 0.0008 xBytes+12.1
IPSec 0.015xBytes+84.5
TABLE IV

CPU PROCESSING TIME FOR DIFFERENT SERVICES

of Packets | # of Flows
Synthetic 5,084 1,000
Day 135,661 2,294
Chicago 1,021,724 65,212
TABLE V

SOME STATISTICS OF THE 3 TRACES

SCM Sketch module, the array is set to 256 x 4 with MDS5 as
the hash function. The threshold is set to 13,000 Bytes.

Three different traces are used for experiments. They are
transferred using UDP in the emulation. Each flow is randomly
assigned one of the network services in TABLE IV. All flows
are transferred simultaneously. We manually generate 1,000
flows, the size of which is subject to power law, with o = 2.1
and x,,;; = 1,300 Byte. We call this trace Synthetic. The other
two traces are Day and Chicago that we have described in
Sec. II. Since Chicago is too big to be completely processed,
we only use part of it. The statistics of the three traces are
shown in Table V. We measure the running time of the above
mentioned traces using three different algorithms: Myopia,
DRFQ [12] and MR? [29]. Fig. 5 illustrates the results, where
the running time is normalized. It is obvious that with growing
number of flows, the relative speed of Myopia becomes better.
One thing needs to be pointed out is that the SCM Sketch
calculation time is included the Click emulation, but actually
we could implement SCM Sketch in hardware [4] [24] with
low cost whose processing time could be neglected [33].
Fig. 5(a) is the raw time comparison, including the overhead
from the SCM Sketch. Fig. 5(b) excludes such overhead. In
both figures, Myopia has the fastest processing speed. If we
consider the factor that Myopia could use SRAM instead of
DRAM, the performance of Myopia could be better.

VI. SIMULATION EVALUATION

We also implement Myopia on the NS3 simulator [2]. The
basic setup used in this section is the same as what we
described in Sec. V. However the traces used may be different
in different sets of experiments.

Il Viyopia

0
Synthetic Day

0
Synthetic Day

Chicago Chicago

(a) With CM Sketch overhead (b) Without CM Sketch overhead

Fig. 5. The speed comparison of the three algorithms.

1f j - - - Forwarding
IPSec
o 0.8F Monitor
S o6l
& O-
z 0.4f 1 :—
(&) - _l __________________
0.2 '|' _____
o . . .
o 0.1 0.2 0.3 0.4
Time (Sec)
P j - = = Forwarding A
= IPSec 1
8 0.81 ! Monitor 1 1
n ! 1
< 0.6 T B
< [} I 1
Ll)o 0.4 N ! 7
= 0.2 ! 1
o ! . .
o 0.1 0.2 0.3 0.4
Time (Sec)
<]
_‘:(: 1p===== - - - Forwarding -
L IPSec 1 i
g 0.8 : Monitor 1
Eo.ef [A J— - — — b
x 0.4t : l 4 E
= h
Eo2f ! 1
g o ‘
[=] [0} 0.1 0.3 0.4

0.2
Time (Sec)

Fig. 6. Dynamics of resource share over time

A. Flow isolation and fairness

This set of micro-scale experiments demonstrate that My-
opia can quickly respond to newly arrived flows and maintain
flow isolation and dominant resource fairness. The trace used
here consists of only three UDP flows for three different
services: basic forwarding, IPSec and statistical monitoring,
respectively. The traffic incoming rates for all three flows are
1,040 Mbps, all sending 1,300-byte packets. Note that the
basic forwarding flow is bottlenecked at the NIC-card, the
IPSec flow is CPU-bounded, and the monitoring flow requires
most processing time in the NIC-card.

These flows start and end at different time points. Fig.
6 illustrates the dynamics of the resource share over time.
Initially, the forwarding flow has 100% share of the NIC-
card but only about 50% of the CPU, because its dominant
resource is the NIC-card. When the second flow (IPSec) arrives
at 5,000 us, the forwarding flow experiences a dramatic drop
in the resource share and soon roared up to its fair share.
On the other hand, the dominant share of the IPSec flow is
near 100% at first and soon reached its fair share. The reason
is straightforward: Myopia has a preference towards newly
coming flows because it will be first placed to the FIFO buffer.
When the IPSec flow is identified as an elephant flow, the
dominant resource shares of the two flows are equalized. It
could be seen that the duration of such glitch is very short,
which would not cause serious problems. The join of the
monitoring flow has no significant impact to the dominant
resource share. Note that DRF is attained throughout this
simulation, even when flows come and leave. From the above
description, we know Myopia is able to quickly adapt to
traffic dynamics and achieve DRF across flows. We also find
that Myopia achieves good dominant resource fairness and
provides good flow isolation.

—— b=500us
—— b=1000us
—— b=2000us
—— b=4000ps
DRFQ

0.95 —b=500ps
—b=1000us
—b=2000ps
—b=4000ps
DRFQ

0.9

CDF

0.85

0.8

1000 2000 3000 0 500 1000 1500 2000
Per—packet delay greater than (us) Per-flow startup delay greater than (us)

(a) CDF of per-packet delay (b) CDF of per-flow startup delay

Fig. 7. CDF of per-packet delay and startup per-flow delay

B. Scheduling delay

In this set of experiments, we evaluate two metrics that
are widely used in the fair queueing literature to measure the
scheduling delay: per-packet delay [12] and per-flow startup
delay [29]. The first metric measures the delay from the time
when a packet arrives to the time when it finishes service on
all resource, and the second one measures how long it takes
for a inactive flow to receive service. The distribution of these
two delays is also an important indication for fairness. In our
simulation, we set the bucket capacity b to 500us, 1,000us,
2,000us and 4,000us, respectively. The token bucket rate r is
set to as high as 1, so that » will not be the bottleneck. Fig.
7(a) illustrates CDF of the per-packet delay for different token
bucket capacities. Myopia achieves shorter per-packet delay in
most cases compared to DRFQ. In Fig. 7(b), we compare the
per-flow startup delay of Myopia and that of DRFQ. Even
though DRFQ has a similar CDF curve as Myopia, it loses
in the top 1% percentile and the maximum startup delay for
DRFQ (13,236us) is much larger (10x) than that of Myopia.

C. FIFO Buffer V.S. MRFQ Sub-system

As discussed in Sec. IV-C, the FIFO buffer resource utiliza-
tion is bounded by the token rate r. The token bucket capacity
b is set to 1,000us. We show the FIFO resource utilization rate
in Fig. 8. The peak at the very beginning of both curves is due
to the token bucket capacity b to arrow the burst traffic. We can
see that a relatively large r does not have too much influence
on Myopia. In case the traffic does not follow power law, r is
set to prevent starvation of the MRFQ sub-system without the
token bucket.

D. Throughput

In this section, the token bucket capacity b is set 1000us
and rate r is set to 0.5.

Throughput of Myopia under UDP flows. A balanced
throughput for each flow is another important metric of
fairness. Fig. 9 illustrates the throughput of three algorithms:
Myopia, DRFQ and FIFO under UDP flows. FIFO is the worst
in fairness: a few elephant flows have very high throughput
but the other flows are blocked. One the other hand, DRFQ
and Myopia have similar performance. Most values of flow
throughput fall in the range of 5 MB/s and 60 MB/s. The
intra-flow difference is due to their flow-size variance.

Throughput of Myopia under TCP flows. We will see that
Myopia will even have a better performance than DRFQ under

[N

c 1 =
2 W
Sos 08 i‘.r" . |==FIFO
% & Myopia
5 0.6 L 06 !l' == DRFQ
5 a
@ 0.4] o 0.4 H
Q A
T 0.2h /
w U
(4] 0.2 .'l
= R
T % 02 _ 04 06 08 <
A : : 0 20 40 60 80
Time (Sec) Throughput Greater Than (MB/Sec)
Fig. 8. FIFO utilization Fig. 9. Per-flow thpt. (UDP)

TCP flows. The simulation is done in NS3 [2]. Simultaneously,
computer A sends 50 files to another computer B, via the
middlebox using TCP. The file size is subject to power law,
with a0 = 2.1, x;;, = 2,000 Bytes. The overall traffic (in bytes)
sent over time is plotted in Fig. 10 for both Myopia and DRFQ.
Regarding throughput, we can see that Myopia has a better
performance at the very beginning, followed by similar overall
throughput in the rest of time. The better performance of
Myopia at the beginning is mainly due to the preference to the
mice flows. The throughput of large flows over time is shown
in Fig. 11. It is clear that Myopia has a higher throughput for
the elephant flows at all time compared to DRFQ.

VII. CONCLUSIONS

We design a new multi-resource fair scheduling algorithm,
called Myopia, which aims at providing dominant resource
fairness at low time and space cost by taking the advantage of
the fact that Internet flow sizes follow the power law distri-
bution. By separating scheduling of elephant and mice flows,
Myopia only needs to maintain very few per-flow buffers and
state, thus reducing the computation and memory allocation
cost. Theoretical analysis, protoptype implementation, and
simulations show that Myopia achieves faster processing time,
better fairness, and higher throughput compared to existing
solutions. In future we plan to apply multi-resource scheduling
to other applications such as traffic measurement [35].

REFERENCES
[

—

The caida ucsd anonymized internet traces 2013 - 2014. mar. http:
/Iwww.caida.org/data/passive/passive_2013_dataset.xml.

NS3. http://www.nsnam.org/.

M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable, Commodity Data
Center Network Architecture. In Proc. of ACM SIGCOMM, 2008.

A. Anand, A. Gupta, A. Akella, S. Seshan, and S. Shenker. Packet caches
on routers: the implications of universal redundant traffic elimination.
In Proc. of ACM SIGCOMM, 2008.

T. Benson, A. Akella, and D. Maltz. Network traffic characteristics of
data centers in the wild. In Proc. of ACM IMC, 2010.

G. Cormode and S. Muthukrishnan. An improved data stream summary:
the count-min sketch and its applications. Journal of Algorithms,
55(1):58-75, 2005.

M. E. Crovella and A. Bestavros. Self-similarity in World Wide Web
traffic: Evidence and possible causes. Proc. of SIGMETRICS, 1996.
W. Cui and C. Qian. Difs: Distributed flow scheduling for adaptive
routing in hierarchical data center networks. In Proc. of ACM/IEEE
ANCS, 2014.

A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a
fair queueing algorithm. In Proc. of ACM SIGCOMM, 1989.

C. Estan and G. Varghese. New Directions in Traffic Measurement and
Accounting. In Proc. of ACM SIGCOMM.

M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships
of the internet topology. In Proc. of ACM SIGCOMM, 1999.

[2]
[3]

[4

=

[5]
[6]

700 12
2 600) " [—Myopia § 10
£ 500 ---DRFQ o g
2 400 =
° S 56
£ 300 ' 2
& El
o 200t [/ 3
100/, £ 2
0
0 20 40 60 80 % 0.05 0.1
Time (ms) Time (ms)

[12]

(13]

[14]

[15]

[16]

[17]
(18]
[19]

[20]

[21]
[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]
[31]

[32]

[33]
(34]
[35]

[36]

Fig. 10. Bytes sent (TCP) Fig. 11. Large flow thpt. (TCP)
A. Ghodsi, V. Sekar, M. Zaharia, and I. Stoica. Multi-resource fair
queueing for packet processing. In Proc. of ACM SIGCOMM, 2012.
A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica. Dominant resource fairness: fair allocation of multiple resource
types. In Proc. of USENIX NSDI, 2011.

M. L. Goldstein, S. A. Morris, and G. G. Yen. Problems with fitting
to the power-law distribution. The European Physical Journal B-
Condensed Matter and Complex Systems, 41(2):255-58, 2004.

P. Goyal, H. M. Vin, and H. Chen. Start-time fair queueing: a scheduling
algorithm for integrated services packet switching networks. In Proc. of
ACM SIGCOMM, 1996.

R. Guerzoni et al. Network functions virtualisation: an introduction,
benefits, enablers, challenges and call for action, introductory white
paper. In SDN and OpenFlow World Congress, 2012.

L. Guo and I. Matta. The war between mice and elephants. In Proc. of
IEEE ICNP, 2001.

E. Kohler. The Click Modular Router.
Institute of Technology, 2000.

M. E. Newman. Power laws, Pareto distributions and Zipf’s law.
Contemporary physics, 46(5):323-351, 2005.

A. K. Parekh and R. G. Gallager. A generalized processor sharing
approach to flow control in integrated services networks: the single-node
case. IEEE/ACM Transactions on Networking, 1(3):344-357, 1993.

V. Paxson and S. Floyd. Wide area traffic: the failure of Poisson
modeling. IEEE/ACM Transactions on Networking, 3(3):226-244, 1995.
C. Qian and S. Lam. ROME: Routing On Metropolitan-scale Ethernet
. In Proceedings of IEEE ICNP, 2012.

I. A. Rai, G. Urvoy-Keller, and E. W. Biersack. Analysis of LAS
scheduling for job size distributions with high variance. In Proc. of
ACM SIGMETRICS.

V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi. Design and
implementation of a consolidated middlebox architecture. In Proc. of
USENIX NSDI, 2012.

J. Sherry and S. Ratnasamy. A Survey of Enterprise Middlebox
Deployments. Technical report, EECS, UC Berkeley, 2012.

R. Smith, N. Goyal, J. Ormont, K. Sankaralingam, and C. Estan. Signa-
ture Matching in Network Processing Using SIMD/GPU Architectures.
In Proc. of IEEE ISPASS, 2009.

N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP topologies
with Rocketfuel. 2002.

B. Suter, T. V. Lakshman, D. Stiliadis, and A. Choudhury. Design
considerations for supporting TCP with per-flow queueing. In Proc.
of IEEE INFOCOM, 1998.

W. Wang, B. Li, and B. Liang. Multi-Resource Round Robin: A Low
Complexity Packet Scheduler with Dominant Resource Fairness. In
Proc. of IEEE ICNP, 2013.

W. Wang, B. Liang, and B. Li. Low Complexity Multi-Resource Fair
Queueing with Bounded Delay. In Proc. of IEEE INFOCOM, 2014.
Z. Wang, Z. Qian, Q. Xu, Z. Mao, and M. Zhang. An untold story of
middleboxes in cellular networks. In Proc. of ACM SIGCOMM, 2011.
W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson. Self-similarity
through high-variability: Statistical analysis of ethernet LAN traffic at
the source level. IEEE/ACM Transactions on Networking, 1997.

M. Yu, L. Jose, and R. Miao. Software defined traffic measurement with
opensketch. In Proc. of USENIX NSDI, 2013.

Y. Yu and C. Qian. Space shuffle: A scalable, flexible, and high-
bandwidth data center network. In Proceedings of IEEE ICNP, 2014.
Y. Yu, C. Qian, and X. Li. Distributed collaborative monitoring in
software defined networks. In Proc. of ACM HotSDN, 2014.

L. Zhang. Virtual clock: A new traffic control algorithm for packet
switching networks. In Proc. of ACM SIGCOMM, 1990.

PhD thesis, Massachusetts

