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Abstract—Today’s large-scale enterprise networks, data center
networks, and wide area networks can be decomposed into
multiple administrative or geographical domains. Domains may
be owned by different administrative units or organizations.
Hence protecting domain information is an important con-
cern. Existing general-purpose Secure Multi-Party Computation
(SMPC) methods that preserves privacy for domains are ex-
tremely slow for cross-domain routing problems. In this paper
we present PYCRO, a cryptographic protocol specifically de-
signed for privacy-preserving cross-domain routing optimization
in Software Defined Networking (SDN) environments. PYCRO
provides two fundamental routing functions, policy-compliant
shortest path computing and bandwidth allocation, while ensur-
ing strong protection for the private information of domains. We
rigorously prove the privacy guarantee of our protocol. We have
implemented a prototype system that runs PYCRO on servers in
a campus network. Experimental results using real ISP network
topologies show that PYCRO is very efficient in computation and
communication costs.

I. INTRODUCTION

Large-scale enterprise networks, data center networks, and

wide area networks (WANs) may be decomposed into multiple

administrative or geographical domains [4], [25], [16], [14],

[26], [34], [23], [1]. Multi-domain networks are deployed to

interconnect community networks, data centers, corporation

sites, and university campuses. In a multi-domain network

such as a WAN, different domains may belong to different

administrative units with an organization or different orga-

nizations [25], [16], [14], [23], [20], [1]. For example, a

number of organizations may own their own sub-networks,

and those subnetworks are mutually interconnected to form

a multi-domain network [1]. Hence individual domain may

have security and privacy concerns regarding revealing its

domain information to other domains. This paper focuses on

Enterprise-scale and Metropolitan-scale multi-domain WANs

that consist of around 10 domains. Internet-scale privacy-

preserving routing requires future study.

Routing optimization, such as finding policy-compliant

paths that have least routing cost or satisfy bandwidth de-

mands, plays a critical role of network management. Recent

advances of Software Defined Networking (SDN) has brought
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tremendous convenience to routing optimization by separating

the control plane from routers and allowing a central controller

to make routing decisions. Using centralized optimization,

the controller can efficiently and effectively find a desired

routing path for each flow and install forwarding rules on

corresponding switches. In this paper we refer to all net-

work forwarding units as “switches” for consistency to SDN

terminology. Although SDN simplifies routing optimization

in a single domain, privacy-preserving cross-domain routing

optimization is still a challenging problem. Suppose each do-

main has a centralized controller. The state-of-the-art approach

to route a cross-domain flow is using local optimization for

intra-domain path selection and BGP for inter-domain routing,

such as the design in Google’s SDN B4 [16] and DISCO

[23]. This approach protects the autonomy and privacy of

domains. However, it is obvious that local optimization plus

BGP may not find an network-wide optimized path and can

hardly provide bandwidth guarantee. Another solution is to

allow every controller to broadcast its domain information

to the entire network and maintains a network-wide map,

similar to a controller-level OSPF protocol. This approach

causes privacy and security concerns because every domain

has to expose its private information such as network topology,

link latencies, bandwidth, and routing policies. In fact, there

is no practical and privacy-preserving solution to the most

fundamental routing problem, i.e., computing shortest paths,

for multi-domain networks.

Privacy-preserving cross-domain network problems can be

modeled as secure multi-party computation (SMPC) [33],

[2], [4], [15], [18], [21]. However, general-purpose SMPC

solutions such as SEPIA [4] are extremely slow and may take

days to complete [9] [12]. Therefore, customized algorithms

are needed for the privacy-preserving cross-domain routing

problems.

In this paper, we present the first work for privacy-

preserving cross-domain routing optimization that has reason-

able efficiency in practical networks. We design and implement

a protocol named PYCRO (PrivacY-preserving Cross-domain

Routing Optimization) and its extensions to provide two fun-

damental routing functions, namely policy-compliant shortest

path computing and bandwidth allocation, while protecting the

private information of domains. PYCRO is executed on SDN

controllers in a distributed manner and does not rely on any

trusted third party. PYCRO is developed based on a novel
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cryptographic tool called Secure-If operations.

The properties of PYCRO can be summarized as follows.

• PYCRO can compute policy-compliant cross-domain

shortest paths and allocate bandwidth for flows while

protecting private information of domains. The privacy

guarantee of PYCRO is cryptographically strong. (Please

see Section VII for formal analysis of privacy.)

• PYCRO also preserves the autonomy and local policies of

domains. A domain can independently determine whether

and how to forward different flows and these preferences

are unknown to other domains.

• PYCRO is efficient in both computation and communi-

cation costs.

PYCRO is the first work of privacy-preserving cross-domain

routing optimization in SDN environments. We have imple-

mented a prototype system that runs PYCRO on machines in a

campus network. Experimental results using real ISP network

topologies show that PYCRO has reasonably good efficiency.

It spends < 30 seconds and < 700 KB messages in computing

a shortest path tree for networks consisting of thousands of

switches and links.

The rest of this paper is organized as follows. We review

the related work in Section II. In Section III, we introduce

the problem overview and background. We presenting the

PYCRO protocol in Section IV, and then introduce some op-

timization techniques in Section V. We design the bandwidth

allocation protocol with our PYCRO protocol in Section VI.

In Section VII, we justify the privacy-preserving property

of PYCRO. We evaluate the performance of our protocol in

Section VIII. Finally, we conclude our paper in Section IX.

II. RELATED WORK

Privacy-preserving cross-domain routing can be modeled

as a secure multi-party computation (SMPC) problem. Yao’s

seminal work [33] introduces the first algorithm, called Yao’s

garbled circuits, to allow two parties to compute an arbitrary

function with their inputs without revealing private infor-

mation. Since then, many studies about SMPC have been

conducted [2], [4], [15], [18], [21]. In [19], a secure two-

party computation system called Fairplay is introduced and

the system implements generic secure function evaluation.

FairplayMP proposed in [2] supplements the Fairplay sys-

tem. FairplayMP is a generic system for secure multi-party

computation while Fairplay only supports secure two-party

computation. SEPIA [4] is a recently proposed SMPC system

for general inter-domain network applications. A common

limitation of these SMPC solutions is that the computation

time can be way too long for practical applications. For

example, [9] shows that it takes thousands of days to track

cross-domain connectivity of a few domains using SEPIA [4].

An SMPC-based routing algorithm proposed to replace BGP

also experiences long execution time [12] which makes the

existing SMPC methods impractical for inter-domain routing.

Recently researchers have proposed custom privacy-

preserving algorithms for different network applications. Chen

et al. [6] use Bloom filters to combine access control

lists of multiple domains and determine network reachability

in a privacy-preserving manner. Djatmiko et al. [9] pro-

pose to apply counting Bloom filters for privacy-preserving

multi-domain connectivity tracking. STRIP [13] is a privacy-

preserving inter-domain routing protocol to replace BGP and

achieve fast convergence. To our knowledge, no existing

work in this category studies the privacy-preserving cross-

domain routing optimization problem. Route Bazaar [5] is a

contractual system that provides ASes with automatic means to

form, establish, and verify end-to-end connectivity agreements.

Compared to this work, Route Bazaar focuses on Internet

accountability which is very different from the objective of our

work, because Route Bazaar does not compute and optimize

routing paths.

III. PROBLEM OVERVIEW AND BACKGROUND

In the section, we formalize the problem in this paper and

then introduce a novel cryptographic tool we will use to solve

the problem.

A. Problem Formulation

We formalize the problem to be solve in this paper as

follows.

Consider a large network that consists of N domains: D1,

D2, . . . , DN , where each domain Di has a domain controller

Ci that makes routing decision and updates the forwarding

tables of switches in the domain. A domain controller can

access any information of its domain, including the network

topology, access control policies, link bandwidth, and authen-

ticated hosts. A domain controller can add, delete, and update

forwarding entries of switches in its domain. It communicates

with controllers in other domains via pre-established secure

channels.

For any two switches v, v′ ∈ Di (v �= v′), we use v ∼
v′ to denote that there is a link between v and v′ and we

denote its link cost by c(vv′). Clearly, each Ci should know

the topology of Di, and should also know all the link costs

within this domain: {c(vv′)|v, v′ ∈ Di, v �= v′}. We assume

that the intra-domain topology and the intra-domain link costs

are all private information of Ci. That is, any other domain

controller should not know anything about this topology or

these link costs. We assume different domains are managed by

different parties, such as ISPs, organizations, or departments

of a corporation. Parties do not share domain information. If

a party owns multiple physical domains or multiple domains

agree to share information with each other, all these domains

can be considered a single logical domain and our protocol

works correctly under this scenario.

There are some inter-domain links that connect switches

from different domains. We assume that information about an

inter-domain link is available of the two end domains, and

domains can share it with other domains. That is, for any inter-

domain link vv′ (where v ∈ Di, v
′ ∈ Dj and Di �= Dj), all

domain controllers could know the two endpoints v and v′, and

also Di and Dj—the domains they belong to. A switch that

is connected to switches in other domains is called a gateway
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switch. Clearly, information about the connectivity between

these gateway nodes can hardly be kept confidential. Hence

we assume gateway switches can be publicly known.

Suppose that there are a source switch vs, which belongs

to a domain Ds, and a destination switch vt, which belongs

to another domain Dt. Our objective is to design a private-

preserving optimized routing solution. Specifically, we need

to design a protocol that allows each domain controller Ci to

find the forwarding table T (v) for all v ∈ Di, where each

entry T (v)[vs, vt] is the next-hop switch of v on the optimal

routing path from the source vs to destination vt.
In this work, PYCRO focuses on two major routing opti-

mization problems.

1) Policy-compliant shortest path routing. Each link has an

associated routing cost (also known as link weight), represent-

ing a performance metric such as hop count, latency, or traffic

load [31], [24]. The routing object is to find a path from the

source to the destination that has the minimum sum of link

cost without violating policies of domains.

2) Bandwidth allocation. Bandwidth allocation has been

applied to practical traffic engineering solutions such as B4

[16]. Each flow has a bandwidth demand and link bandwidth

is allocated to different flows. When flows are competing for

bandwidth, a single flow may need multiple paths to satisfy its

bandwidth demand. The routing object is to find one or more

paths for a flow such that the flow bandwidth demand can

be satisfied. At this stage, we do not consider fairness among

flows [16], [17].

Security and Privacy Requirements. Due to security

concerns, a switch only allows its domain controller to install,

delete, or update forwarding table entries. Domains may not

wish to reveal their information including network topology,

link bandwidth, and routing policies. In addition, a domain

should have routing autonomy to determine whether and

how to forward a given flow. This preference should also

be made confidential to other domains. PYCRO is designed

to protect domain private information from the curiosity of

other domains and assumes there is no malicious software

installed in each domain. It is because in our problem the

involved entities are domain controllers. While they may be

curious about each other’s private information, it is very hard

to imagine that a domain controller could go further to deploy

malicious software in order to violate other domains’ privacy.

B. Cryptographic Tool

Here we introduce the cryptographic tool we will use in this

work, namely the Secure-If operation.

Secure-If operation. Our protocol depends on a cryp-

tographic technique developed by us, which we call the

Secure-If operation. This operation allows the protocol to

choose between two options Y and Z , based on whether a

particular condition X is satisfied. Denote by SecIf(X,Y, Z)
the Secure-If operation, and then we have

SecIf [X,Y, Z] =

{
Y, X is satisfied;

Z, otherwise.
(1)

Note that this operation is privacy preserving. It is infeasible

for anybody to decide whether the condition is satisfied or not,

i.e., which of the two options is actually chosen. For example,

suppose that X , Y , Z are ciphertexts; consider a condition

that “X is an encrypted 1”. This operation can return a

rerandomization of Y when the plaintext of X is indeed 1, and

return a rerandomization of Z otherwise. However, nobody

can learn whether the returned value is a rerandomization of

Y or a rerandomization of Z unless the result is decrypted. In

general, the privacy guarantee is that no knowledge about any

plaintext(s) involved is leaked to any party.

The involved conditions may be complicated and thus this

technique itself can depend on other cryptographic building

blocks. For instance, we may need to use the building block of

partial decryption. Suppose that the private key for a ciphertext

is shared among a number of parties using a secret sharing

scheme [27]. Partial decryption allows a party with a share of

the private key to partially decrypt a ciphertext. The partially

decrypted ciphertext does not leak any knowledge about the

plaintext. However, when a threshold number of parties apply

partial decryption one by one, the plaintext will finally be

revealed. Detailed implementation of Secure-If operations are

custom-built and depend on different algorithms.

Also notice that we will use a few variants of this technique

in this paper. Each of these variants is constructed in a distinct

way. Please see Section IV-D for the detailed constructions.

IV. DESIGN OF THE PYCRO PROTOCOL

In this section, we present the PYCRO protocol with three

steps:equivalent cost graph construction, privacy-preserving

shortest path tree protocol and path establishment. In the PY-

CRO protocol, we need two homomorphic encryption systems

E() and E′(), both of which must be semantically secure.

The difference between E() and E′() is that E() must be

additively homomorphic, while E′() must be multiplicative

homomorphic. Specifically, for two messages x and y,

E(x) + E(y) = E(x+ y)

E′(x) · E′(y) = E′(xy)

All E() and E′() encryption operations in this paper use a

public key whose corresponding private key is shared among

the domain controllers using (N, 2)-secret sharing. There exist

cryptosystems [10], [30], [28] that are both additively and mul-

tiplicatively homomorphic. However, we do not use them due

to efficiency considerations. We denote by D() and D′() the

corresponding decryption operations, respectively. In addition,

we allow both of them supports re-randomization operations,

and the rerandomization operation is denoted by R() and R′().
As mentioned earlier, another main cryptographic tool we use

in the PYCRO protocol is the Secure-If operation.

A. Equivalent Cost Graph Construction

In this subsetion, we show how to construct the equivalent

cost graph of a multi-domain network, as defined as follows.

As for nodes, we define a switch as a significant node if it

is the source switch or a gateway switch and the nodes of the

358



Ds

vt

vs

Dt

D2

D1

v2

v1

v3

v5

v4

v6

v7

(a) Equivalent cost graph of four domains:
dashed lines are intra-domain links and solid
lines are inter-domain links.

vt

vs

v2

v1

v3

v5

v4

v6

v7

link with min 

alpha value

c(vsv2)=1

c(v2v3)=2

(b) An iteration of PSPT construction

vt

vs

Dt

v2

v1

v3

v5

v4

v6

v7

PSPT rooted at vs

(c) PSPT and path establishment

Figure 1. An illustration of the PYCRO protocol.

equivalent cost graph are the significant nodes in the entire

network. We denote by Si the significant node set of domain

Di and we also denote by S the significant node set of all

domains.

As for links, for any two significant nodes v and v′ (v �= v′),
we distinguish two cases:

Case 1: If v, v′ ∈ Si, then link v ∼ v′ is in the equivalent

cost graph. In this case, the link is called intra-domain link

since two nodes are in the same domain. Note that a intra-

domain link does not necessarily correspond to a physical link,

and could be a multi-hop path between two switches. The path

from v to v′ is selected by Di in the best effort based on Di’s

local policies and is not necessarily the shortest path. If a

domain does not wish to forward the packets from the source

domain, it sets the path length as infinity or the pre-defined

path length upper limit. We use d(vv′) to denote the path

length assigned by Di.

Case 2: If v ∈ Si ∧ v′ ∈ Sj ∧ Si �= Sj ∧ v ∼ v′then link

v ∼ v′ is in the equivalent cost graph.In this case, the link

is called inter-domain link since two nodes are in different

domains. We use c(vv′) to denote the length of link v ∼ v′.
As an example, Figure 1(a) shows the equivalent cost graph

of a network consisting of four domains, in the view of the

controller Cs of the source domain Ds. The nodes of the graph

are the source switch vs and all gateway switches v1−7.

Clearly, Cs, the controller of the source domain, knows

the connectivity information of the equivalent cost graph.

Furthermore, for links in Case 2 above, Cs also knows the

link costs in the equivalent cost graph. For links in Case 1

above that are not in Ds, Cs does not know the link costs

in the equivalent cost graph, which are private information of

different domains.

B. Privacy-preserving Shortest Path Tree Protocol

This subsection describes how the source controller com-

putes a Privacy-preserving Shortest Path Tree (PSPT) on the

equivalent cost graph rooted at vs while providing strong

protection for the private information of other domains. We

use cmax to denote the maximum link cost and assume the

length of cryptographic keys in use is much greater than the

length of cmax.

Each domain controller Ci, except the source domain

controller Cs, encrypts all its link costs in Case 1 of the

equivalent cost graph, and sends them to Cs. Specifically, for

any two switches v and v′ in Di (Di �= Ds), Ci computes

e(vv′) = E(d(vv′)) and sends it to Cs. The source domain

controller Cs needs to encrypts all its link costs in Case

1 of the equivalent cost graph. Cs is also responsible for

encrypting the link costs in Case 2 of the equivalent cost

graph. Specifically, for any v in Di and v′ in Dj , if there is an

inter-domain link between these two nodes, then Ci computes

e(vv′) = E(c(vv′)). For any v, v′ ∈ Ds (v �= v′), if there is an

intra-domain link between these two nodes, then Ci computes

e(vv′) = E(c(vv′)).

For each node v in the equivalent cost graph, except the

source node itself, Cs computes three indicators: f(v) =
E′(2), g(v) = E(0), and h(v) = E′(φ). Here f(v) is an

encrypted indicator for node v, indicating whether it has been

added to the shorted path tree. We use an encrypted 2 to

represent “No”, and an encrypted 2−1 to represent “Yes”. The

plaintext of g(v) will be used for the length of the shortest path

from the source node to v, once v is added to the shortest path

tree. The plaintext of h(v) will be used to store the information

of the parent node of v in the shortest path tree, once v is added

to the shortest path tree. All these indicators are essential in

the computation of the shortest path tree.

For the source node, Cs computes the three indicators:

f(v) = E′(2−1), g(v) = E(0), and h(v) = E′(φ), because it

is the root of the tree. Then the source controller repeats the

two steps below for |S| − 1 iterations, where S is the set of

nodes in the equivalent cost graph. At each iteration, a node

with the minimum distance to the root among the remaining

nodes is added to the tree.

Step 1. For each link vv′ in the equivalent cost graph, Cs

uses a Secure-If operation (denoted as SecIf0) to compute

α(vv′). The condition here is that the plaintext of f(v) is

equal to the plaintext of f(v′). If this condition is satisfied,

α(vv′) = E(cmax|S| + 1); otherwise, α(vv′) = R(g(v) +
g(v′) + e(vv′))). If the condition is satisfied, it means either

v′ and v are both in the tree or neither in the tree. We just

let α(vv′) be a maximum value and do not consider it. If the

condition is not satisfied, one of v′ and v is in the tree and

the other is not. Then the plaintext of α(vv′) is the distance

from the node not in the tree to the root.

Step 2. For each link vv′ in the equivalent cost graph, Cs

uses a Secure-If operation (denoted as SecIf1) to re-compute
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f(v), f(v′), g(v), g(v′), h(v), h(v′). The condition is that the

plaintext of α(vv′) is the smallest among the α values of all

links in the equivalent cost graph. The node not in the tree

that corresponds to the smallest α should be added to the tree

and its three indicators should be updated.

If the condition in Step 2 is satisfied, then we use another

Secure-If operation (denoted as SecIf2) to decide how to

update the indicators. The condition of this new Secure-If

operation is that the plaintext of f(v) is equal to 2, i.e., whether

the node v is not in the tree.

• When the condition is satisfied (v is not in the tree),

f(v) = E′(2−1), g(v) = R(α(vv′)), h(v) = E′(v′). The

indicators of v′ are re-randomized.

• Otherwise, v′ is not in the tree, hence f(v′) = E′(2−1),
g(v′) = R(α(vv′)), h(v′) = E′(v). The indicators of v
are re-randomized.

If the condition in Step 2 is not satisfied, all indicators f(v),
f(v′), g(v), g(v′), h(v), h(v′) are just re-randomized based

on the original values.

We show an example of the above iteration in Figure 1(b).

vs, v1, and v2 are already in the tree. Since v3 is not in the

tree, we compute α(v2v3) = R(g(v2) + g(v3) + e(v2v3))) =
R(E(1) + E(0) + E(2)) = R(E(3)). Suppose the plaintext

of α(v2v3), i.e., 3, is the smallest α value. Then v3 should be

added to the tree. The indicators of v3 are updated as follows:

f(v3) = E′(2−1), g(v3) = R(E(3)), h(v) = E′(v2). The

indicators of v2 are all re-randomized.

The detailed algorithm specification of the PSPT construc-

tion protocol is not shown due to space limit. Once the

algorithm is completed, for each v in the equivalent cost

graph, Cs actually obtains the ciphertexts of g(v), the shortest

path length from vs to v, and h(v), the parent of v on

the PSPT. Figure 1(c) shows the constructed PSPT of the

network. With all the g(v) and h(v), we can construct the

path from vs to vt using the method proposed in the next

section (Section IV-C). Note that we use three types of Secure-

If operations (SecIf0, SecIf1 and SecIf2). We will describe

how they are implemented in detail in Section IV-D.

C. Path Establishment

After running the PSPT construction protocol, each domain

controller knows all its significant nodes’ values of g and h
from Cs. Using the values, we can construct the path P from

vt back to vs step by step (e.g., first vt, and then the parent

of vt, and then the parent of the parent of vt, until the source

vs).

After finishing computing the shortest path tree, Cs then

partially decrypts each g(v) and each h(v), and sends the

partial decrypted ciphertexts to the domain controller of node

v. The domain controller of v also applies partial decryption,

and thus obtains the plaintexts of g(v) and h(v), i.e., dg(v)
and dh(v). Since E() uses (N, 2)-secret sharing, the encrypted

indicators can be decrypted by partial decryption of two

domains.

For any destination vt, the shortest path and corresponding

forwarding table entries are constructed using Algorithm 1

with all plaintext indicators dg() and dh().
If vt is not a significant node, the domain controller Ct

of vt compares all the significant nodes in its domain, for

the sums of their distances from vs and to vt. Suppose the

significant node with the smallest distance sum is v. Then

the intra-domain path from v to vt is chosen as part of the

shortest path from vs to vt, and the forwarding table entries for

destination vt in this part of path are computed and installed

accordingly. The forwarding table entries in the other parts of

the path are computed in a way similar to vt being a significant

node presented below.

If vt is a significant node, the domain controller of vt
decides what to do based on the type of link between vt’s
parent dh(vt) on the shortest path tree and vt in the equivalent

cost graph.

• If the link represents an intra-domain path, i.e., dh(vt)
is another significant node in the destination domain, the

intra-domain path between dh(vt) and vt is picked as part

of the shortest path from vs to vt. The forwarding table

entries for destination vt in the destination domain are

installed by Ct accordingly.

• If the link is an inter-domain link, the link is added

directly as part of the shortest path from vs to vt. Ct

then sends a message to the domain controller of dh(vt)
and asks it to install a corresponding forwarding table

entry at switch dh(vt).

Next, the domain controller of the predecessor of the des-

tination domain on the selected shortest path computes the

forwarding table entries similarly. This process is repeated

until the source switch is reached and all forwarding table

entries for destination vt have been computed.

For the example of Figure 1(c), the destination controller

Ct selects v6 as part of the optimal path from vs to vt. It

then installs forwarding entries on switches between vt and

v6 and also notifies C1 to install a forwarding table entry at

v4, specifying that packets from vs to vt should be forwarded

to v6 by v4. The routing path can be established by repeating

this process.

Note that there is no need to perform the above process for

every source and destination pair. When a shortest path tree is

established, the shortest paths from the source to all possible

destinations can be obtained.

D. Implementation of Secure-If Operations

In this section, we will introduce the implementation of

the three Secure-If operations used in the PSPT construction

protocol.

First, we present a sketch of the Secure-If operation (See

Algorithm 2). Each Secure-If operation needs to construct

three parameters (t0, t1, t2) and a condition satisfied value x
as input. t0 is a condition while t1 and t2 are two options.

The output of Secure-If is t1 when condition is satisfied

(t0 = x); otherwise, the output is t2. Such operation is

achieved by an interactive process between two controllers,

say Cs and Ci. Cs first applies partial decryption to t0 and

sends the result PD(t0), together with t1 and t2, to any other
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Algorithm 1 Path Establishment Protocol

Input: All significant nodes’ g and h;

Source node vs and destination node vt;
Output: The shortest path P from vs to vt

1: Cs computes partial decryption PD(g(v)) and

PD′(h(v)), and then sends them to C, the controller of

v.

2: C partially decrypts PD(g(v)) and PD′(h(v)) and gets

the plaintext of g(v) and h(v): dg(v) and dh(v).
3: vt = vt
4: if vt �∈ S then

5: Let St be the significant node set of Dt

6: vmin = −1, dmin =∞
7: for all v ∈ St do

8: if dg(v) + d(vvt) < dmin then

9: dmin = dg(v) + d(vvt), vmin = v
10: end if

11: end for

12: Add the intra-domain path from vmin to vt to P .

13: Let vt = vmin

14: end if

15: Now we construct the path from vs to vt.
16: while vt �= vs do

17: if dh(vt) ∈ St {dh(vt) ∼ vt is an intra-domain link}
then

18: Add the intra-domain path from dh(vt) to vt to P .

19: end if

20: if dh(vt) �∈ St {dh(vt) ∼ vt is an inter-domain link}
then

21: Add dh(vt) ∼ vt to P .

22: end if

23: Let vt = dh(vt)
24: end while

domain controller Ci. Then Ci can fully decrypt t0 and get

the plaintext dt0 as the threshold of secret sharing is 2. Ci

verifies whether dt0 is equal to x and replies one of t1 and t2
(with re-randomization) to Cs. With the Secure-If operation

sketch, we need to show the construction of (t0, t1, t2) and x
when we introduce a Secure-If operation.

The PSPT construction uses three Secure-If operations

(SecIf0, SecIf1, and SecIf2). As the Secure-If operation

SecIf2 is used in SecIf1, our decryption is in the order of

SecIf0, SecIf2, and SecIf1.

Construction of SecIf0
x in SecIf0 is 1 and (t0, t1, t2) are constructed as follow.

With probability 1
2 , Cs computes t0 = ( f(v)

f(v′) )
r, where r is

a randomly picked exponent 1; t1 = E(cmax|S| + 1); t2 =
R(g(v)+g(v′)+e(vv′)). In this case if f(v) is equal to f(v′),
t0 = 1 = x, hence the function of SecIf0 can be achieved.

With the remaining probability 1
2 , Cs computes t0 =

1Assume the plaintext space and the ciphertext space are both the same
cyclic group. The value of r needs to be picked uniformly at random from
between 0 and the order of the group minus 1, including the two endpoints.

Algorithm 2 Secure-If Operation Sketch

Input:

x: value when condition is satisfied;

(t0, t1, t2): three parameters.

1: Cs randomly choose a domain controller Ci.

2: Cs computes PD(t0) and sends (PD(t0), t1, t2) to Ci.

{PD() is partial decryption operation}
3: Upon receiving (PD(t0), t1, t2), Ci do partial decryption

on PD(t0) and gets the plaintext dt0 of t0.

4: Ci sends

{
R(t1) if dt0 == x

R(t2) otherwise
back to Cs.

5: Cs gets the result.

( 1
f(v)f(v′) )

r, where r is a randomly picked exponent; t1 =

R(g(v) + g(v′) + e(vv′)); t2 = E(cmax|S|+ 1). In this case

if f(v) is not equal to f(v′), t0 = 1
2∗1/2 = 1 = x, hence the

function of SecIf0 can also be achieved.

The reason for that we use an uncertain calculation is to

protect privacy. If we only apply the first case, any attacker that

decrypts t0 and finds t0 = x can determine that f(v) = f(v′).
However, in the current implementation, even if an attacker

knows t0 = x, it cannot guess whether f(v) = f(v′) as

f(v) = f(v′) and f(v) �= f(v′) have equal probability.

Construction of SecIf2
x in SecIf2 is 2 and (t0, t1, t2) are constructed as follow.

With probability 1
2 , Cs computes t0 = R(f(v)).

Let t1, t2 be E′(2−1), R′(f(v)) for the SecIf2 of f(v);
R(α(vv′)), R(g(v)) for g(v); E′(v′), R′(h(v)) for h(v);
R′(f(v′)), E′(2−1) for f(v′); R(g(v′)), R(α(vv′)) for g(v′);
R′(h(v′)), E′(v) for h(v′).

With the remaining probability 1
2 , t0 = R( 1

f(v) ) and

the above values of t1 and t2 are swapped, i.e., t1, t2 be

R′(f(v)), E′(2−1) for f(v) and so on;

Construction of SecIf1

Here we show the construction of x and (t0, t1, t2) in

SecIf1. We first introduce a comparison protocol called osc
which is necessary in SecIf1.

The comparison protocol is designed by us based on the

secure comparison protocol proposed in [22]. The protocol

in [22] takes two ciphertexts of E() as input, and outputs

another ciphertext of E(). The output is E(1) if the first

input’s plaintext is greater than or equal to the second input’s;

otherwise, the output is E(−1). Based on this comparison

protocol, we design a new comparison protocol which can

distinguish not only two edges with different α but also two

edges with the same α by comparing their indexes. Denote the

original comparison operation by sc(). Assume that the two

edges’ α values are a and b and their indexes are aidx and

bidx.

The protocol we designed, osc(a, aidx, b, bidx), is actually

a Secure-If operation. Its x is 1 and (t0, t1, t2) are constructed

as the following paragraph. With x, (t0, t1, t2) and Secure-If

operation sketch, we get the new protocol osc.
First we compute θ = sc(a, b) + sc(b, a)− E(1). If a �= b,
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θ is E(−1); Otherwise θ is E(1). With probability 1
2 , Cs

computes t0 = θ; t1 is E(1) if aidx < bidx; Otherwise t1
is E(−1); t2 = sc(b, a). With probability 1

2 , Cs computes

t0 = −θ; t1 = sc(b, a); t2 is E(1) if aidx < bidx; Otherwise

t2 is E(−1).
With the secure comparison, Cs can compare each α value

(except α(vv′) itself) with α(vv′). Denote by βi the output of

the protocol. Suppose that there are ζ such outputs in total. Cs

computes γ =
∑

i βi, and uses the secure comparison protocol

again, to compare γ with E(ζ). Let ε be the output. With ε,
we can easily construct t0, t1, t2 of SecIf1.

V. PROTOCOL OPTIMIZATION

The complexity of the shortest path tree algorithm presented

in Section IV-B is mainly due to the number of calls of Secure-

If operations to select the smallest α(vv′) among the α values

of all links in the equivalent cost graph and the inefficiency

of the secure comparison operation. To reduce the number

of calls of Secure-If operations, we propose to use candidate

recommendation to let the other domain recommend potential

nodes that may have the smallest α value(i.e.,the smallest α
value in its domain). As for the inefficiency of the secure

comparison operation, we replace it with the Damgard-Geisler-

Kroigard (DGK) secure comparison protocol, a more efficient

protocol proposed in [8].2 Unlike the secure comparison we

used in Section IV-B, the input and output of the DGK protocol

are plaintexts. Suppose there are two parties A and B. A has

a number a and B has a number b. A and B can run the DGK

protocol to compare a and b without revealing a(b) to party

B(A).

After constructing the equivalent cost graph and adding the

source node vs into the shortest path tree with g(vs) = E(0).
The source domain controller Cs broadcasts vs and g(vs) to all

other domain controllers. Then, the domains repeat the three

interactive steps below for |S| − 1 times:

Step 1. Each domain Di finds its significant node that is

not in the shortest path tree and the path length to the root is

the shortest in Di. Di also records the node’s parent and its

path length. We call the node selected by Di a candidate node

vi. Besides, a domain controller C0 (specified by the source

controller Cs) sends the information g(v0) and h(v0) of its

candidate node v0 to Cs.

Step 2. The source controller Cs should then find out the

candidate node whose path length to vs is the shortest. Cs

temporarily sets v0 as the shortest-distance node u ← v0.

For each candidate node vi except v0: Controller Cs sends

a message including g(u) to vi’s controller Ci. Ci then runs

DGK secure comparison protocol to compare g(u) and the

path length of candidate node vi. Once the DGK protocol

finishes, Ci tells Cs the result of the comparison. According

to the result, if the plaintext of g(u) is less than that of g(vi),
Ci then updates u← vi.

Step 3. After the two steps above, the controller Cs get the

shortest-distance node u. Next, Cs requests the controller of

2Using DGK, we make a small sacrifice of privacy for efficiency. However,
it’s worth since only a little information is revealed.

u’s domain for the information of g(u) and h(u) and add u
into the shortest path tree under its parent. Cs broadcasts the

new shortest path tree with encrypted distance information to

the other domains.

After |S| − 1 iterations of the above loop, Cs finishes the

computing of the shortest path tree.

VI. BANDWIDTH ALLOCATION

Bandwidth allocation has been applied to practical traffic

engineering solutions such as B4 [16]. We solves a relatively

simple version of the bandwidth allocation problem. Before

we define the problem, we introduce some preliminaries.

Besides the link cost, every link vv′ also has a bandwidth

b(v, v′). b(v, v′) represents the maximum bandwidth that link

vv′ can provide. And the definition of the cost of a flow on a

path is:

Definition 1: Given a path p from node v to node v′ whose

length is lp, if a flow f consumes bandwidth bf on p, then

the cost of f on p is is c(f, p) = bf · lp.

A flow f has a bandwidth demand qf . However as link

bandwidth is limited, it may need multiple paths to satisfy a

flow’s bandwidth demand [16]. We assume a flow can be split

to multiple subflows to be transmitted on different paths. And

the cost of f is defined as:

Definition 2: The cost of f for bandwidth allocation is the

sum of path cost Σbf · lP for p ∈ P where P is the set of

paths that f is split on.

Given Definition 1 and Definition 2,we define the Band-

width Allocation problem as follows:

Definition 3: Bandwidth Allocation:for any flow f with

bandwidth demand qf , we should find k paths such that the

sum of allocated bandwidth of these paths to f is no less than

the bandwidth demand qf and the routing cost of f should be

minimized.

We design a bandwidth allocation protocol of PYCRO,

named PYCRO-BA, works in the following steps:

Step 1. During the construction of the equivalent cost graph,

each domain controller assigns an available bandwidth b(v, v′)
amount between two significant nodes v and v′, which is also

encrypted by a homomorphic encryption system.

Step 2. The source controller creates the shortest path tree

and finds the shortest path p from the source vs to destination

vt using the protocol presented earlier.

Step 3. The source controller determines the available

bandwidth bp on the shortest path, which is the minimum

value of b(v, v′) for all links (v, v′) on the paths. This process

is similar to the previous protocol to determine the minimum

cost candidate. We skip the protocol details here and have

implemented them in the experiments.

Step 4. If bp is smaller than the bandwidth demand q, Cs

computes a residual demand q − bp and find another path to

satisfy the demand.

Step 5. Cs deletes all links of p from the equivalent cost

graph, and repeats Steps 2-4 to find more paths until the

bandwidth demand is satisfied.
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The above bandwidth allocation protocol requires multi-

ple calls of the shortest path tree protocol. To improve its

efficiency, Cs may find multiple disjoint paths to different

gateways of the destination domain and suggest these paths

to the destination controller Ct. If Ct can also find multiple

disjoint paths from different gateways to vt, multiple paths

can be established by a single call of the shortest path tree

protocol. We plan to develop more sophisticated protocol to

optimize this process in future work.

VII. PRIVACY ANALYSIS OF PYCRO

We analyze the privacy-preserving property of PYCRO in

a standard cryptographic model, the semihonest model [11],

which is widely used in the literature (e.g., [32] and [3]).

In this model, all involved parties are assumed to follow

the protocol faithfully, although they may attempt to violate

privacy using the information they obtain. Note that such

an assumption is acceptable in our scenario of cross-domain

routing, because domain controllers usually have long-term

relationship with each other. Despite their curiosity about

others’ private information, it is uncommon for them to deviate

from the protocol just in order to violate others’ privacy.

The main result we get as shown in Proposition 4 below,

is that PYCRO only leaks to each domain controller its

significant nodes’ distances from the source node and parents

nodes in the shortest path tree. We stress that this leaked

distance information is about a small number of pairs of nodes

only. Any other information, including distances between other

pairs of nodes, are protected by PYCRO. Furthermore, our

protection is cryptographically strong, i.e., no partial knowl-

edge about the protected information is leaked by PYCRO.

In contrast, the performance cost we pay for the privacy

protection is very reasonable. The execution time varies among

different topologies, from seconds to tens of seconds (please

see Section VIII for details).

Proposition 4: PYCRO is weakly privacy preserving in the

semihonest model, in the sense that it reveals to each domain

controller no more than its significant nodes’ distances from

the source node and parent nodes in the shortest path tree.

The basic idea of our proof is to demonstrate a probabilistic

polynomial-time simulator according to the definition and

proof methodologies of cryptographic protocols discussed in

[11].

Proof Sketch: Due to limit of space, we only provide a proof

sketch. Some details are skipped.

Our proof is established by demonstrating a probabilistic

polynomial-time simulator according to the definition and

proof methodologies of cryptographic protocols discussed in

[11].

For each domain controller Ci, we construct a simulator for

its view, which takes as input its significant nodes’ distances

from the source node and parent nodes in the shortest path

tree. All coin flips in the view can be easily simulated, and

thus we focus on generating simulated messages below.

If Ci �= Cs, the simulator simulates the messages received

from Cs for each of its significant node, using two ciphertexts.

The first ciphertext is an encrypted distance of the significant

node from the source node, where the cryptosystem used is

E() and the key used is Ci’s own public key. The second

ciphertext is an encrypted identity of the significant node’s

parent node in the shortest path tree, where the cryptosystem

used is E′() and the key used is still Ci’s public key.

For C1, we add the following simulated messages. In

the Secure-If operation SecIf0, the messages from Cs is

simulated using three ciphertexts. The first of these three is

under E′(), with the plaintext being 1 with probability 1
2 , or a

uniformly random number with probability 1
2 . The remaining

two are encryptions of random plaintexts under E(). The

public key used for encryption of all these three is C1’s own

public key.

For the Secure-If operation SecIf1 and SecIf2, the simu-

lator goes as follows. For SecIf2, the messages from Cs are

simulated using 8 random ciphertexts under E′() and 4 random

ciphertexts under E(), and also another ciphertext under E′()
with the plaintext being 2 or 1

2 , each with probability 1
2 , where

the public key used for encryption is C1’s own public key. For

SecIf1, in addition to simulating the received messages in the

executions of secure comparison, the simulator simulates the

earlier round of message from Cs using three ciphertexts under

E(), with the first being an encrypted 1 or encrypted −1, each

with probability 1
2 , where the public key used for encryption

is C1’s own public key. The remaining two ciphertexts are

randomly generated. The simulator simulates the later round of

message from Cs using 8 random ciphertexts under E′() and

4 random ciphertexts under E(), and also another ciphertext

under E() being an encrypted 1 or encrypted −1, each with

probability 1
2 , where the public key used for encryption is C1’s

own public key.

For Cs, the simulator goes as follows. First, it simulates

the first round messages from other domain controllers using

random ciphertexts. For each pair of significant nodes in any

other domain, there should be a random ciphertext under the

cryptosystem E(). Then the simulator proceeds to simulate

the message received from C1 in the Secure-If operation

SecIf0. This should again be a random ciphertext under the

cryptosystem E().
The Secure-If operation SecIf1 and SecIf2 are more com-

plicated. For SecIf2, the messages from C1 can be simulated

by using 4 random ciphertexts under cryptosystem E′() and

2 random ciphertexts under cryptosystem E(). For SecIf1, in

addition to simulating the received messages in the executions

of secure comparison, the simulator simulates the earlier

message from C1 using a random ciphertext, being E(1)
with probability 1

2 and E(−1) with probability 1
2 . The final

messages from C1 are simulated using 4 random ciphertexts

under E′() and 2 random ciphertexts under E(). �

VIII. PERFORMANCE EVALUATION

The most significant concern of a privacy-preserving pro-

tocol is its computation and communication efficiency. In this

section, we conduct experiments to evaluate the efficiency of
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Table I
INFORMATION OF THE SEVEN ROCKETFUEL TOPOLOGIES

Network ID Network name # routers # links # gateways

I AS 1221 318 758 231

II AS 1239 604 2268 242

III AS 1755 172 381 61

IV AS 2914 960 2821 507

V AS 3257 240 404 89

VI AS 3967 201 434 110

VII AS 7018 631 2078 246

Table II
INFORMATION OF MULTI-DOMAIN TOPOLOGIES.

Topo ID # domains domains # inter-d links # gateways

1− 5 2 I,II 10− 100 21− 165
6− 10 3 I to III 10− 100 21− 158
11− 15 4 IV to VII 10− 100 21− 177
16− 20 5 I,III,V to VII 10− 100 21− 174
21− 25 6 I to VI 10− 100 21− 177
26− 30 7 I to VII 10− 100 21− 185

PYCRO protocols. We have implemented a prototype system

on seven Dell PowerEdge R720 servers with Linux operation

systems and Intel(R) Xeon(R) CPU E5-2650 0 @ 2.00GHz.

All servers are connected via a campus network. Each machine

runs a program to emulate a controller. If the controller

number is larger than seven, we may run multiple threads on

a single machine. We configure the controller placement such

that two neighboring controllers are in different machines. In

all experiments, cryptographical operations are implemented

using the Crypto++ library [7]. We choose ElGamal as the

multiplicative homomorphic encryption system E′() and an

variant of ElGamal as the additively homomorphic encryption

system E(). The key length in E′(), E(), and the secure-

comparison protocols are all in 512-bit.

We use the router-level topologies of seven real ISP net-

works collected by the Rocketfuel project [29]. The detailed

information of the seven networks can be found in Table I

and networks are identified as I to VII. Based on topology

analysis, we set a number of routers as gateways. Based on

the seven networks, we construct 30 multi-domain topologies

in six groups as shown in Table II. For example, topologies

1 to 5 are constructed using the same domains I and II, but

have different number of gateways and inter-domain links in

an increasing order. Gateways are randomly selected from the

gateways routers of the Rocketfuel networks.

Computation cost. We first conduct experiments to con-

struct shortest path trees on every topology. For each topology,

we randomly select 20 nodes and construct a shortest path tree

for each of them. By computing time, we mean the average

execution time of the protocol for one shortest path tree. We

find that the computing times for different nodes in a same

topology vary very little. It is because the execution time

mainly depends on the number of domains, number of inter-

domain links, and number of gateways. Figure 2 shows the

average execution time of PYCRO on different topologies.

The deviations are too small to be shown in the figure. We

find that, for topologies consisting of the same domains (e.g.,

topologies 1-5), the execution time increases linearly with the

number of inter-domain links and number of gateways. By

comparing topologies of different domains, the execution time

also increases linearly with the number of domains. In general

PYCRO is very efficient: it takes a short time to compute a

shortest path tree on a topology with thousands of switches

and links in a privacy-preserving manner. Since a shortest path

tree can be shared with multiple paths and the response to a

path query takes much less time. Specially, if we have got a

shortest path tree rooted at vs, the paths that start from vs to

any destination can be constructed easily and quickly using

the Algorithm 1.

We then conduct experiments to evaluate the execution time

of the bandwidth allocation protocol. We assign every link

a random capacity from 1 to 5. In each experiment, we set

the bandwidth demand as 20 and find multiple paths between

the sender and destination to satisfy the bandwidth demand.

This bandwidth demand can be considered as the aggregated

demand of all flows in the sender switch. For each topology

we perform 20 runs and compute the average. The results

are shown in Figure 3. We find that there is no strict linear

dependency of the execution time and number of inter-domain

links, because more inter-domain links also make it easier to

find multiple disjoint paths at a shortest path tree.

Communication cost. We then show the communication

cost of PYCRO in the average size of all messages per

domain and plot the results in Figures 4 and 5. We observe

that the communication cost also increases with the number

of domains, number of inter-domain links, and number of

gateways. Each domain spends less than 700 KB to compute a

shortest path tree and less than 1 MB to allocate bandwidth for

the largest topology. For other topologies the communication

cost is much less. In general, PYCRO is communication

efficient.

Comparison with other solutions. It is hard to find an

existing work achieving the same objectives as PYCRO. It is

non-trivial to apply existing secure multi-party computation

such as Fairplay [19] and SEPIA [4] to the problems of this

paper, because they were not designed for the same objectives

of PYCRO.

A cross-domain privacy-preserving protocol for quantifying

network reachability is proposed in [6]. From their experi-

mental results, we find that about 400 or 550 seconds offline

computation cost, about 5 or 25 seconds online computation

cost and about 450 or 2100 KB communication cost are

needed for every party on average in their synthetic data.

In our experiments of optimized protocol of PYCRO, even

the biggest network requires only 32.3/7 = 4.61 seconds

and 687.78/7 = 98.25 KB for each domain in average. In

[19] [2], a full-fledged system called Fairplay that implements

generic secure function evaluation is introduced. Their ex-

perimental results show that it takes 1.41 second to make

a comparison. In our optimized protocol, (|S| − 1)(n − 1)
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Figure 2. Average execution time
of PYCRO
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Figure 3. Average execution time
of PYCRO bandwidth allocation
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Figure 4. Communication cost of
PYCRO
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Figure 5. Communication cost of
PYCRO bandwidth allocation

comparison operations are needed in total, where |S| is the

significant node number (from tens to hundreds) and n is the

domain number(from 2 to 7). Hence, if we apply Fairplay to

our protocol, the average comparison operation time of each

domain is 1.41(|S|− 1)(n− 1) seconds. For a case |S| = 185
and n = 7, the average comparison time of each domain is

222.38 seconds while the average time that PYCRO consumes

in each domain is 4.61 seconds. Note that the computation

platform we used is no better than that in [2].

In summary, PYCRO can improve the time and bandwidth

efficiency by an order of magnitude for cross-domain routing

optimization, compared to existing solutions.

IX. CONCLUSION

In this paper we present PYCRO, the first privacy-

preserving cross-domain routing optimization protocol in SDN

environments. We develop a new cryptographic tool named the

Secure-If operation and apply it with homomorphic encryption

to compute the shortest cross-domain paths without revealing

private information. PYCRO also provides bandwidth allo-

cation, a fundamental traffic engineering solution. We have

implemented PYCRO in a prototype system and performed

real experiments to demonstrate its efficiency. Experimental

results show that PYCRO can improve the time and bandwidth

efficiency by an order of magnitude compared to general-

purpose solutions. In future we will design more complex

routing optimization functions based on PYCRO. We believe

our study may lead to useful discussion of the same problem

for the Internet.
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