IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017

3073

Joint Route Selection and Update Scheduling

for Low-Latency

Update in SDNs

Hongli Xu, Member, IEEE, Zhuolong Yu, Xiang-Yang Li, Fellow, IEEE, Liusheng Huang, Member, IEEE,
Chen Qian, Member, IEEE, ACM, and Taeho Jung, Member, IEEE

Abstract—Due to flow dynamics, a software defined net-
work (SDN) may need to frequently update its data plane so as to
optimize various performance objectives, such as load balancing.
Most previous solutions first determine a new route configu-
ration based on the current flow status, and then update the
forwarding paths of existing flows. However, due to slow update
operations of Ternary Content Addressable Memory-based flow
tables, unacceptable update delays may occur, especially in a
large or frequently changed network. According to recent studies,
most flows have short duration and the workload of the entire
network will vary significantly after a long duration. As a result,
the new route configuration may be no longer efficient for the
workload after the update, if the update duration takes too long.
In this paper, we address the real-time route update, which jointly
considers the optimization of flow route selection in the control
plane and update scheduling in the data plane. We formulate the
delay-satisfied route update problem, and prove its NP-hardness.
Two algorithms with bounded approximation factors are designed
to solve this problem. We implement the proposed methods on our
SDN test bed. The experimental results and extensive simulation
results show that our method can reduce the route update delay
by about 60% compared with previous route update methods
while preserving a similar routing performance (with link load
ratio increased less than 3%).

Index Terms—Route update, software defined networks,
low-latency, load balancing, rounding.

Manuscript received January 14, 2017; revised April 22, 2017; accepted
June 14, 2017; approved by IEEE/ACM TRANSACTIONS ON NETWORKING
Editor A. Ferragut. Date of publication July 3, 2017; date of current version
October 13, 2017. This work was supported in part by the NSFC under Grant
61472383, Grant U1301256, and Grant 61472385 and in part by the NSF
of Jiangsu in China under Grant BK20161257. The work of X.-Y. Li was
supported in part by China National Funds for Distinguished Young Scientists
under Grant 61625205, in part by the Key Research Program of Frontier
Sciences, CAS, under Grant QYZDY-SSW-JSC002, in part by the NSFC under
Grant 61520106007, and in part by the NSF under Grant ECCS-1247944,
Grant CMMI 1436786, and Grant CNS 1526638. The work of C. Qian was
supported by the NSF under Grant CNS-1701681. (Corresponding author:
Hongli Xu.)

H. Xu, Z. Yu, and L. Huang are with the School of Computer Sci-
ence and Technology, University of Science and Technology of China,
Hefei 230027, China, and also with the Suzhou Institute for Advanced
Study, University of Science and Technology of China, Suzhou 215123,
China (e-mail: xuhongli@ustc.edu.cn; yzl123@mail.ustc.edu.cn; Ishuang@
ustc.edu.cn).

X.-Y. Li is with the School of Computer Science and Technology, University
of Science and Technology of China, Hefei 230027, China, and also with the
Department of Computer Science, Illinois Institute of Technology, Chicago,
IL 60616 USA (e-mail: xiangyang.li@gmail.com).

C. Qian is with the Department of Computer Engineering, Univer-
sity of California at Santa Cruz, Santa Cruz, CA 95064 USA (e-mail:
cgian12@ucsc.edu).

T. Jung is with the Department of Computer Science and Engineering, Uni-
versity of Notre Dame, Notre Dame, IN 46556 USA (e-mail: tjung@nd.edu).

Digital Object Identifier 10.1109/TNET.2017.2717441

I. INTRODUCTION

OFTWARE-DEFINED networking (SDN) is a new par-

adigm that separates the control and data planes on
independent devices [1]. The controller provides centralized
and flexible control by installing forwarding rules in the data
plane, and the switches perform flow forwarding according
to the rules. As the controller can provide flexible control
over the entire network, it is possible for SDN to imple-
ment a wide variety of network applications ranging from
basic functions (e.g., routing and flow scheduling) to complex
applications (e.g., network function virtualization), etc. Due to
frequent flow dynamics in a network [2], the data plane needs
to be timely updated to avoid sub-optimal flow routes that
may cause network congestion. The controller should respond
to events such as shifts in traffic intensity, and new connection
from hosts, by pushing forwarding rules to flow tables on
the switches so as to achieve various performance require-
ments, such as load balancing and throughput maximiza-
tion. Thus, network updates (also called route updates) help
to significantly improve network performance and resource
utilization [3].

The speed of network updates is an important metric in
many application scenarios because it determines the agility of
the control loop. The effectiveness of network updates is tied to
how quickly they adapt to changing workloads. Slow network
updates will make network utilization lower and decrease the
route performance, such as imbalanced link utilization [1], [4].
The route update procedure consists of two main components:
route selection in the control plane and forwarding table
update in the data plane. Most existing update studies first
compute a new route configuration only based on the current
workload (or the collected flow intensity information) in a
wide area network [1] or data center [5]. To minimize the
update delay, these methods then schedule the data plane
updates from the current route configuration to the new one in
a fine-grained manner. For example, Hong er al. [1] divided
all flows into minimum number of sets, and updated the flows
in one set per round while avoiding the transient congestion.
In [6], the number of switch interactions was minimized for
consistent route update. Jin et al. [3] encoded the consistency-
related dependencies among updates at individual switches as
a graph, and dynamically scheduled these updates on different
switches.

However, the previous solutions [1], [3] do not pay attention
to the impact of route selection in the control plane, including

1063-6692 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

3074

how many flows the controller will update and which path a
flow will be updated to, on the update delay. Thus, they may
still result in a long update duration, especially in a large and
dynamic network. For example, in a moderate-size data center
network, the volume of flows arriving at a switch can be in the
order of 75k-100k flows/min for a rack consisting of 40 servers
and the same would be 1,300k for the servers hosting around
15 virtual machines per host [7], where k denotes one thou-
sand. At one time instant, assume that it requires to update
the routes of 8k flows (less than 1%) on one switch. The
update delay depends on two main factors: the total number
of rules that need to be updated or inserted, and TCAM’s
speeds for update operations (e.g., insertion or modification).
By testing on today’s commodity switches [3], it often takes
about 5ms and 10ms for each insertion and modification,
respectively, on the TCAM-based flow table. For the above
scenario, assume that there needs 4k insertion operations and
4k modification operations. A rule update on this switch will
hence last for at least 60s.

Unfortunately, a long update delay hurts the quality of route
selection. The existing studies [2] have presented the traffic
characteristics by testing in various data centers. We can make
several observations from existing measurement results [2]:
1) More than 80% flows last less than 10s. 2) Fewer than
0.1% flows last longer than 200s. 3) More than 50% bytes are
in flows lasting less than 25s. If a network-wide route update
takes a long duration (e.g., 60s), the selected routes may not be
useful because many flows have already terminated and many
new flows have arrived [8]. As the optimal route configuration
is usually derived according to the current workload [1], one
route configuration is efficient for the current workload, but
may be no longer efficient for another scheme after a long time
duration. In other words, route updates with a shorter duration
help to enhance the route performance. Therefore, low-latency
network update is necessary for an SDN.

In fact, besides update scheduling, route selection also
greatly impacts the update delay. First, when the controller
updates more flows, though the flow routes may be optimized,
the update delay will be increased significantly. Second, if only
a few flows are updated, the update delay is smaller. These
conclusions are also validated by testing on the SDN platform
in Section VI. So, there is a trade-off between route update
delay and flow path optimization. Different from these pre-
vious works, we will consider the performance trade-off by
Jjointly optimizing the route selection and update scheduling.
To satisfy low-latency requirements, we only update routes for
a subset of chosen flows, including selecting new routes for
these flows and scheduling the update operations. As a result,
the final route configuration can still achieve a close-to-optimal
route performance, such as load balancing, with update delay
constraint. One may say that we only update the routes of those
large flows (also called elephant flows [4], [5]). However, our
simulation results show that the update delay of this method
is still unacceptable under many network situations, especially
with a large number of (elephants) flows.

To address this challenge, we formulate the delay-satisfied
route update (DSRU) problem, and prove its NP-Hardness
by reduction from the classical unrelated processor

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017

scheduling (UPS) problem [9]. Due to its difficulty,
we design an approximation algorithm, based on the
randomized rounding method [10], to solve the low-latency
route update challenge through joint optimization of route
selection and update scheduling. We show that the proposed
algorithm can achieve the bi-criteria constant approximation
performance under most network situations. We implement
our proposed route update algorithm on a real SDN platform.
The experimental results on the platform and extensive
simulation results show that our algorithm can significantly
decrease the route update delay while achieving similar load
balance. For example, our method decreases the route update
delay by 60% compared with the previous method [3] while
preserving a close route performance (with link load ratio
increased less than 3%).

The rest of this paper is organized as follows. Section II
discusses the related works on the route update in an SDN.
Section IIT introduces the preliminaries and problem definition.
In Section IV, we propose an algorithm to deal with the DSRU
problem. We study the DSRU problem with variable update
delay in Section V. The testing results and the simulation
results are given in Section VI. We conclude the paper in
Section VII.

II. RELATED WORKS

The comprehensive survey of route update can be found
in [11]. Almost all the previous methods usually compute the
target route configuration based on the current workload, and
design different algorithms for route update from the current
route configuration to the target one. These studies can be
divided into several categories by their optimization objectives,
such as consistency-guarantee, and low update delay, etc.

The first category is to ensure the route consistency
during the network update. Loop-freedom is the most
basic consistency property and has been intensively studied.
Ludwig et al. [12] defined the problem of arbitrary route
updates, and transformed this presented problem as an
optimization problem in a very simple directed graph.
Reitblatt er al. [13] introduced two abstractions for net-
work updates: per-packet and per-flow consistency. These
two abstractions guaranteed that a packet or a flow were
handled either by the current route configuration before an
update or by the target route configuration after an update,
but never by both. Vissicchio et al. designed FLIP [14],
which combined per-packet consistent updates with order-
based rule replacements, in order to reduce memory overhead
for additional rules when necessary. Moreover, Hua et al. [15]
presented FOUM, a flow-ordered update mechanism that
was robust to packet-tampering and packet dropping attacks.
Dudycz et al. [6] studied how to jointly optimize the update of
multiple routing policies in a transiently loop-free yet efficient
manner. They aimed to devise loop-free update algorithms for
multiple policies in SDNs, such that the number of switch
interactions was minimized. An enhanced consistency property
was blackhole freedom, i.e., a switch should always had a
matching rule for any incoming packet, even when rules were
updated. This property was easy to guarantee by implementing
some default matching rule which was never updated [16].

XU et al.: JOINT ROUTE SELECTION AND UPDATE SCHEDULING FOR LOW-LATENCY UPDATE IN SDNs

Besides loop-freedom, some special consistency require-
ments are also studied for route update. Katta et al. [17] intro-
duced a generic algorithm for implementing consistent updates
that traded update time for rule-space overhead. They divided
a global policy into a set of consistent slices and updated to
the new policy of one slice at a time. By increasing the number
of slices, the rule-space overhead on the switches could
be reduced, and the route update delay could be increased.
Mahajan and Wattenhofer [18] highlighted the inherent trade-
off between the strength of the consistency property and
dependencies it imposed among rules at different switches.
zUpdate [19] provided a primitive to manage the network-
wide traffic migration for all the datacenter network updates.
Given the end requirements of a specific datacenter network
update, zUpdate would automatically handle all the details,
including computing a lossless migration plan and coordi-
nating the changes to different switches. Canini er al. [20]
studied a distributed control plane that enabled concurrent
and robust policy implementation. They introduced a formal
model describing the interaction between the data plane and
a distributed control plane, and formulated the problem of
consistent composition of concurrent network policy updates.
Since scalability was increasingly becoming an essential
requirement in SDNSs, the authors of [21] proposed to use
time-triggered network updates to achieve consistent updates.
The proposed solution required lower overhead than existing
update approaches, without compromising the consistency
during the update. It provided the SDN programmer with
fine-grained control over the tradeoff between consistency and
scalability.

The second category is to minimize the update delay while
satisfying other performance requirements, such as congestion-
free and consistency-conservation, etc. Hong et al. [1] tried
to minimize the number of rounds for congestion-free update
through flow splitting. They formulated the route update
problem into a linear program, solved it in polynomial time,
and analyzed the possibly maximum round (or delay) for route
update. Jin et al. [3] described Dionysus, a system for fast,
consistent network updates in SDNs. Dionysus encoded as a
graph the consistency-related dependencies among updates at
individual switches, and it then dynamically scheduled these
updates based on runtime differences in the update speeds of
different switches. McClurg et al. [22] presented an approach
for synthesizing updates that were guaranteed to preserve
specified properties. They formalized network updates as a
distributed programming problem and developed a synthesis
algorithm based on counterexample-guided search and incre-
mental model checking. Mizrahi et al. [23] presented a prac-
tical method for implementing accurate time-based updates,
TIMEFLIPs, which could be used to implement atomic bundle
updates, and to coordinate network updates with high accuracy.
A TIMEFLIP was a time-based update that was implemented
using a timestamp field in a TCAM entry. TIMEFLIPs could
be used to implement atomic bundle updates, and to coor-
dinate network updates with high accuracy. Clad et al. [24]
studied the more general problem of gracefully modifying
the logical state of multiple interfaces of a router, while
minimizing the number of weight updates. They presented

3075

efficient algorithms that computed minimal sequences of
weights enabling disruption-free router reconfigurations. The
paper [20] studies a distributed SDN control plane that
enabled concurrent and robust policy implementation. Our
earlier work [25] studied low-latency route update by joint
optimization of route selection and update scheduling in
an SDN.

Almost all the previous works update the network from
the old route configuration to a new one, which is derived
only based on the current workload. Though some works [3]
have designed different algorithms to decrease the route
update delay with consistency-guarantee, due to low-speed
of TCAM operations, it may still result in a longer delay
for route updates, especially in a large-scale or dynami-
cally changed network. In most situations, the workload in
a network has changed significantly after a certain period,
e.g., 20-60s [7]. If the route update takes a longer delay,
the final route configuration may be inefficient for the work-
load after update. So, we need a low-latency route update for
an SDN, so as to achieve the trade-off between update delay
and route performance.

III. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we will introduce the network and TCAM
update models in an SDN, describe two update requirements
for congestion freedom and route consistency, define the delay-
satisfied route update problem, and prove its NP-Hardness.

A. Network Model

An SDN typically consists of two device sets: a controller,
and a set of switches, V' = {vy,...,v,}, with n = |V|. The
controller determines the routes of all flows, and the switches
forward packets based on the centralized route control. Thus,
the network topology can be modeled by G = (V,E),
where E' is a set of links connecting switches. When a flow
arrives at a switch, if there is a matched flow entry for the
header packet, the switch takes the action specified in the
entry, such as forwarding packets to a certain port. Otherwise,
the switch reports the header packet to the controller by the
standard interface, such as the Packetln interface in Openflow.
Then, the controller determines the route path for this flow,
and deploys flow entries on all switches through this path.
Similar to many previous works [3], [13], we also adopt the
unsplittable flow mode for its simplicity in this paper.

B. Delay Model for TCAM Updates

We introduce the delay model of TCAM updates, including
insertion and modification, on a switch. The delay for each
entry operation usually consists of two main parts. One is
the delay for sending a control command from the controller
to a switch. For example, each flow entry needs 88 bytes
using the HP ProCurve 5406z1 switch [26]. Then, it takes
less than 0.01ms for sending a command through the control
link with a bandwidth of 100Mbps. The other is delay for
TCAM updates, which often take about 5-15ms on flow tables
of the current commodity switches [3]. Thus, the delay for

3076

Fig. 1. An example of route update. Each link has 10 units of capacity.
To avoid transient congestion, vo should apply the update for moving 3
before v2 moves ~y2. Otherwise, link v v5 will be congested. (a) Current
Route Configuration. (b) Target Route Configuration.

sending a control command can be ignored compared with
the delay for TCAM updates. More specifically, Jin et al. [3]
have shown that the delay for inserting/modifying flow entries
is almost linear with the number of being inserted/modified
flow entries if all flow entries have the same priority level.
In fact, most flows have the unique priority level in many
practical applications [27]. Even though in some applications
with microflow and macroflow rule schemes [28], they have
two different priority levels, the higher one for macroflows
and the lower one for microflows. Since we only update some
selective macroflows (or elephant flows), all of them have
the unique priority level. Thus, it is reasonable to assume
that the operation delay for insertion/modification of each
flow entry is a constant. Let ¢; and ¢,, denote the required
delays for the insertion and modification operations of a flow
entry, respectively. For example, by testing on the practical
commodity switches [3], £,,, may be 10ms or more on some
switches due to low-speed of TCAM updates. The values
of two constants t; and t,, mainly depend on the hardware
capacity. To be more practical, we will discuss how to deal
with the various latency of TCAM updates in Section V.

C. Congestion-Free Route Updates [1]

We illustrate the downside of static ordering of rule updates
with the example in Fig. 1. Each link has a capacity of 10 units
and the size of each flow is marked. The controller wants to
update the network from the current route configuration (a) to
the target one (b) in Fig. 1. If we update all switches in one
shot (i.e., send all update commands simultaneously), since
different switches will apply the updates at different times,
such a strategy may cause transient congestion on some links.
For instance, if vo applies the update for moving flow ~s after
v9 Moves o, the transient traffic load on link vovs may reach
54 8 = 13, which will be congested. Thus, it requires us to
carefully schedule the updates for congestion freedom.

D. Packet/Flow Consistent Route Updates [13]

When network updates are triggered, the packet/flow con-
sistency guarantee persists: each packet (or flow) is for-
warded either using the configuration in place prior to the
update, or the configuration in place after the update, but
never a mixture of the two [13]. This strong requirement is
important for some applications such as HTTP load balancers,
which need to ensure that all packets in the same TCP
connection reach the same server replica to avoid breaking
connections. Among many previous algorithms, the two-phase

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017

update mechanism [3], [13] has been proposed and widely
used, because it can provide a simple, consistent and efficient
route update way. Thus, our route update is also built on this
method. To guarantee packet/flow consistency, the two-phase
update mechanism should satisfy the following constraint.

Definition 1 (Consistent Update Order): Given a flow,
assume that its final path after the update is vg ... v,,, with
m > 1. vy is the ingress switch, and others are the internal
switches. The controller should start the route update on the
ingress switch of this flow after the route updates are finished
on all the internal switches. We call this as consistent update
order.

The reader can refer [3] and [13] for the detailed procedure
of the two-phase update method.

E. Definition of Delay-Satisfied Route Update (DSRU)

This section defines the delay-satisfied route update (DSRU)
problem. In an SDN, since the header packet of each new-
arrival flow will be reported to the controller, the controller
saves the information of each flow. Thus, it is reasonable to
assume that we know the current flow set, denoted by I' =
{71,...,7} withr = |T'|, in the network. After a flow entry is
setup for flow ~ on one switch, this switch can count the traffic
size of this flow. By collecting the flow statistics information
from switches, the controller knows the size (or intensity) of
each flow 7 as s(v). In some scenarios, the intensity of each
flow may vary dynamically [27]. Thus, it is difficult to master
the accurate intensity of each flow. We will discuss how to
deal with the more practical case without accurate intensity
information of each flow in Section IV-E. Each flow v will be
assigned a set P, of feasible paths, and be routed through one
feasible path in P,. We will further discuss P, in the next
section when we present our route update algorithm.

The route update procedure can be divided into route selec-
tion and update scheduling. To obtain the trade-off optimiza-
tion among route performance and update delay, we should
consider the joint optimization of route selection and update
scheduling. Assume that the current route configuration is
denoted by R¢, in which the route of flow under this route
configuration is denoted by R¢(v). To support low-latency
update, we will determine a subset of flows, denoted by I'“,
and select a feasible path as the target route of each flow. That
is, the controller just updates the routes of flows in I'*. Assume
that the target route configuration is denoted by R, in which
the route of flow 7 is denoted by Rf (). The route update
from R to R/ should satisfy the following three constraints:

o The congestion-free constraint: During the route update,
there is no transient congestion in a network, illustrated
in Fig. 1, by proper update scheduling.

o The packet/flow-consistency constraint: For each flow
v € I'*, the consistent route update should be guaranteed.
That is, the flow entry modification on the ingress switch
should start after flow entries have been setup at all
internal switches on the final route of this flow.

o The low-latency constraint: The maximum delay of route
update on all the switches should not exceed Tj, where
Ty is the tolerated delay.

XU et al.: JOINT ROUTE SELECTION AND UPDATE SCHEDULING FOR LOW-LATENCY UPDATE IN SDNs

After route update, we measure the traffic load on each
link e as I(e) = X cr cers(y)S(7) < A-c(e), where A
is the maximum link load factor and c(e) is the capacity of
link e. To provide more flexible routes for new-arrival flows,
our objective is to achieve the load balancing in a network,
by minimizing \.
Theorem 1: The DSRU problem is NP-hard.

We will show that the unrelated processor scheduling (UPS)
problem [9] is a special case of the DSRU problem. The
detailed proof has been relegated to the Appendix .

IV. REAL-TIME ROUTE UPDATE ALGORITHM

Due to NP-hardness, it is difficult to optimally solve the
DSRU problem. This section first gives a simplified version of
the DSRU problem, and explores the quantitative relationship
between DSRU and its simplified version (Section IV-A).
Then, we present a rounding-based route selection
and update (RRSU) algorithm for the DSRU problem
(Section IV-B), and analyze the approximation
performance (Section IV-C). We give the complete version of
the RRSU algorithm so as to satisfy both the update delay
and link capacity constraints (Section IV-D). Finally, we give
some discussion on our algorithm (Section IV-E).

A. Preliminaries

Since the DSRU problem requires to ensure the congestion-
free and consistent update constraints for all flows, it makes
problem formulation and algorithm design difficult. Thus,
we first consider a simplified version of the DSRU problem,
in which the controller sends all update commands and all
switches execute the route updates of all flows simultaneously.
This is also called Oneshot in [5]. Next, we formulate the
simplified version, called S-DSRU, into an integer linear
program as follows. Let variable yb € {0, 1} denote whether
the flow « selects the feasible path p € P, or not in the
target route configuration R/. We use t(v,v,p) to express
the necessary delay of flow-entry operation on switch v as the
route of flow y is updated to the target path p. Note that, if the
route of flow v does not change from the start configuration
to the target one, i.e., R°(y) = p, t(v,v,p) = 0. According to
the two-phase update procedure [13], the constant t(v, 7y, p)
is expressed as follows: If switch v is the ingress switch
of path p, v will take the modification operation for route
update of flow ~, and t(v,v,p) = t,. If v is the internal
switch of path p, this switch will take an insertion operation.
So, t(v,7v,p) = t;. Otherwise, t(v,v,p) = 0. We should
note that two constants ¢; and t¢,, have been defined in
Section III-B. It follows

t(v,7,p)
tm, V is the ingress switch of path p (# R°(7))
= t;, v is one of internal switches on p (# R¢(7))

, otherwise.
(1)

To pursue the low-latency feature, we expect that the route
update in a network can be finished in a tolerated delay.

3077

Let variable \ be the maximum link load factor. S-DSRU
solves the following problem:
min A

dowr=1,

pEP

Vyel

St. Z’YEF ZUEp:pE’P yg “t(v,y,p) <Ty, YweV
el L—~eeppeP, yh-s(y) < A-cle), Ve€ E
yb € {0,1}, .y
2)

The first set of equations means that each flow will be
forwarded through one feasible path from a source to a des-
tination. The second set of inequalities denotes that the route
update delay on each switch should not exceed a threshold,
Ty for the S-DSRU problem. The third set of inequalities
expresses that the traffic load on each link e after update does
not exceed A - ¢(e), where A is the maximum link load factor.
Our objective is to achieve the load balance, i.e., min A.

We use AP(T) and A¥(T) to denote the optimal load-
balance factors for the DSRU and S-DSRU problems under
the delay constraint 7', respectively. We have:

Lemma 2: For any delay constraint T, \¥(T) < AP(T).

Proof: Assume that a set of flows I'* can be updated
within a delay constraint 7' so as to achieve the minimum
load-balance factor for the DSRU problem. Since it permits
to update all flows simultaneously, the total delay on each
switch for S-DSRU should not exceed T if the routes for
the same flow set are updated. In other words, we can at
least update a flow set I'* within delay constraint 7" for the
S-DSRU problem. As a result, the optimal load balance factor
for the S-DSRU problem will not be worse than that for
the DSRU problem under the same delay constraint. That is,
A(T) < NP(T), ¥ T. O

B. Rounding-Based Route Selection and Update

We describe a rounding-based route selection and
update (RRSU) algorithm for low-latency route update with
consistency and congestion-free guarantee in an SDN. Due to
difficulty of the DSRU problem, the first step obtains the frac-
tional solution for the simplified DSRU problem. In the second
step, we choose one feasible path for each flow using the
randomized rounding method [10], and obtain the target route
configuration. Finally, we schedule the update operations of all
flows on different switches so as to guarantee the congestion-
free and consistency. Following [1] and [29], we assume that
the controller has pre-computed a set of feasible paths between
each pair of switches. These feasible paths may simply be
the shortest paths, which can be found by depth-first search,
between two switches. Given a flow «, we use P, to be the
set of feasible paths. There might be an exponential number
of feasible paths between a source and a destination for each
flow. Cohen et al. [30] have shown that polynomial number of
feasible paths are enough for performance optimization. Thus,
we assume that each set P, includes polynomial number of
feasible paths for flow ~.

To solve the problem formalized in Eq. (2), the algorithm
constructs a linear program as a relaxation of the S-DSRU

3078

problem. More specifically, S-DSRU assumes that the traffic
of each flow should be forwarded only through one feasible
path. By relaxing this assumption, traffic of each flow ~ is
permitted to be splittable and forwarded through a path set P,
We formulate the following linear program LP;.

min A

=1,

PEP
Z’YEF ZUG[)';DE’P yg : t(va’)/vp) < TO, YveV
: y

2 er 2 Pos(y) < A-cle), VeeE

yb >0,

Vyel

S.t.

e€cp:pEP,
Vp, v
3)

Note that, variable y! is fractional in Eq. (3). Since LP;
is a linear program and contains polynomial number of vari-
ables, we solve it in polynomial time with a linear program
solver. Assume that the optimal solution for L is denoted
by 4%, and the optimal result is denoted by X. As LP; is
a relaxation of the S-DSRU problem, \ is a lower-bound
result for S-DSRU. Intuitively, the larger the variable yﬁ is,
the more probability the path p will be selected for this
flow ~. Thus, one may say that we just select the feasible
path with maximum weight for each path. However, it may
lead to congestion on some links in the worst-case. To give
the performance guarantee, we use the randomized rounding
method for route selection to avoid the link congestion as
possible. More specifically, variable yh, with p € P}\is set
as 1 with the probability of 3% while satisfying > peP, yh =1,

Vy eT. If y§ = 1, Ip € P, this means that flow ~ selects p
as its route.

Algorithm 1 RRSU: Rounding-Based Route Selection-Update
1: Step 1: Solving the Simplified S-DSRU Problem
: Construct a linear program in Eq. (3) as Relaxed S-DSRU
: Obtain the optimal solution y%
: Step 2: Selecting Routes Using Randomized Rounding
: Derive an integer solution ¢4 by randomized rounding
: for each flow v € " do

for each feasible path p € P, do

if 45 =1 then
Appoint a feasible path p for flow ~

: Step 3: Route Update Scheduling
: Apply the previous Dionysus method [3] for route update

© ® N U AW

—_ =
—_— O

After the second step, we have determined the target
route configuration. The third step just applies the previous
Dionysus method for consistent and congestion-free route
update. Specifically, Dionysus first encodes as a dependency
graph the consistency-related dependencies among updates at
individual switches. Then, this method dynamically schedules
these updates based on runtime differences in the update
speeds of different switches [3]. The RRSU algorithm is given
in Alg. 1.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017

C. Approximation Performance Analysis

We analyze the approximate performance of the proposed
RRSU algorithm. Assume that the minimum capacity of all the
links is denoted by cp,i,. We define a variable « as follows:

)\Cmin
s(f)

In most practical situations, since the flow intensity is usually
much less than the link capacity, for example, cp,i, =1Gbps,
and s(f) =4Mbps for high definition video, and ¢, is usually
much less than Tp, it follows that o« > 1. Since RRSU is a
randomized algorithm, we compute the expected traffic load
on links and the expected update delay on switches. We give
two famous lemmas for probability analysis.

Lemma 3 (Chernoff Bound): Given n independent vari-
ables: 1, 22, ..., Ty, where Vz; € [0,1]. Let p = E[} " | z;].

n _e2
Then, Pr | > x; > (1+ e)p:| <e 2+<“, where € is an arbi-
i=1

a = min{min{ e}, ?—0} 4)

i=
trary positive value.
Lemma 4 (Union Bound): Given a countable set of n
events: Ay, As,..., A,, each event A; happens with proba-
n

blhty PI'(Az) Then, PI‘(A1 UAsU... U An) < E PI'(Az)

Link Capacity Constraints: We first bound thezaobability
with which the capacity of each link will be violated after
route update. The first step of the RRSU algorithm will derive
a fractional solution %% and an optimal result X for the relaxed
S-DSRU problem by the linear program. Using the randomized
rounding method, for each flow v € I', only one path in P,
will be chosen as its target route. Thus, the traffic load of link
e from flow ~ is defined as a random variable x. -, as follows:

Definition 2: For each link e € F and each flow v € T,
a random variable z. . is defined as:

s(y), with probability of Z 3}3
Tey = e€p:pEP~ (5)

0, otherwise.

According to the definition, Z¢~,, ey, -.. are mutually
independent. The expected traffic load on link e is:

E Z%W = ZE[xeﬁ] = Z Z g;\g -s(y) < Xc(e)

yel yel ~vel e€p:peP~
(6)

Combining Eq. (6) and the definition of « in Eq. (4),
we have
Loy - O

Ac(e)
Z A -7 c(e)

~el’

€10,1]

)

Then, by applying Lemma 3, assume that p is an arbitrary
positive value. It follows

. —p2a
Z Len @ o (1+p)a| <e?% (8)
o A-cle)

XU et al.: JOINT ROUTE SELECTION AND UPDATE SCHEDULING FOR LOW-LATENCY UPDATE IN SDNs

Now, we assume that

Te —p2a F
Sos ()| << O
'YEF C()

where F is the function of network-related variables (such as
the number of switches n, efc.) and F — 0 when the network
size grows.

The solution for Eq. (9) is expressed as:

log"—;+\/log2"—;+8alog”—;
, n>2

20 (10)

p>

We give the approximation performance as follows.
Theorem 5: The proposed RRSU algorithm achieves the
approximation factor of 41‘?% +3 for link capacity constraints.
Proof: Set F = % Eq. (9) is transformed into:

Tey 1
>) =(1+p)| =3
yer
41
where p > ogn + 2 (1)
o
By applying Lemma 4, we have,
rl V2 ()
eeE'yeF)\ c(e
<) Pr - (1+p)
eckl 'yEF
1 1 41
<n’—=—, p2—2ly (12)
n* n? «

Note that the third inequality holds, because there are at
most n? links in a network with n switches. The approximation
factor of our algorithm is p+ 1 = 41"% + 3. O

Route Update Delay Constraints: Similar to the above
analysis, we can obtain the approximation factor for the route
update delay constraint.

Lemma 6: After the rounding process, the total route update
delay on any switch v will not exceed the constraint 7 by a
factor of % + 3 for the S-DSRU problem.

Approximation Factor: To forward all the flows on chosen
paths, the above analysis shows that, the link capacity will
hardly be violated by a factor of 41"% + 3, and the route
update delay constraint will not be violated by a factor of
% + 3 for the S-DSRU problem. For simplicity, we use
F, to denote the set of updated flows whose ingress switches
are v. By Eq. (3), we have the following lemma:

Lemma 7: E%FU tm <Tp, Yo EV.

According to Lemma 7, we conclude that:

Theorem 8: If we omit the congestion-free constraint dur-
ing update, the RRSU algorithm can guarantee that, the link
capacity will hardly be violated by a factor of 41‘;% + 3, and
the route update delay constraint will not be violated by a
factor of 310% + 4 for the DSRU problem.

Note that, the previous Dionysus method [3] has shown
that, the congestion-free and consistent constraints will not

3079

bring significant route update delay compared with simul-
taneously updating (i.e., the Oneshot method) through effi-
cient scheduling. As our RRSU algorithm only updates a
smaller number of flows, the congestion-free constraint will
also not bring significant update delay increase. In most
practical situations, the RRSU algorithm can reach almost
the constant bi-criteria approximation. For example, let A
be 0.4. The link capacity of today’s networks will be 1Gbps.
Observing the practical flow traces, the maximum intensity of
a flow may reach 1Mbps or 10Mbps. Under two cases, C(f)

will be 10% and 102, respectively. In a larger network with
1000 switches, logn = 10. The approximation factor for the
link capacity constraint is 3.04 and 3.4, respectively. Since
tT—O is usually 102 at least, the approximation factor for the
route update delay constraint is 4.3. In other words, our RRSU
algorithm can achieve the constant bi-criteria approximation

for the DSRU problem in many situations.

Algorithm 2 Complete RRSU Algorithm

: Step 1: the same as that in Alg. 1

: Step 2: the same as that in Alg. 1

: Step 3: Route Selection with Link Capacity Constraint
: for each flow vy € I" do

29 = D pep, —(Re(7)} V3

: for each flow v € I" in the increasing order of z, do

The route of flow v being updated is denoted by p

if at least one link on path p can not contain this flow
then

9: this flow will not be updated

10: Step 4: Update Scheduling with Delay Constraint

11: Sort all the flows v € I'* in the decreasing order of z,
12: The current updated flow set is T

o N9 R w Y

13: repeat

14: if IV = @ or A flow has been updated then

15: repeat

16: Dequeue next flow v from the queue

17: if Eq. (13) is satisfied for each link e € Rf () then
18: Schedule update of this flow, IV =TV U {7}

19: Remove flow v from queue

20: until (Such a flow is not found)

21: Apply the previous Dionysus method [3] for route update
22: until (The update delay is running out)

D. Complete Algorithm for the DSRU Problem

Though the RRSU algorithm almost achieves the bi-criteria
approximation performance for the DSRU problem, the ran-
domized rounding mechanism cannot fully guarantee that both
the route update delay and link capacity constraints are always
met. Below we give the complete RRSU algorithm for route
selection and update which satisfies both two constraints. The
complete algorithm description is given in Alg. 2.

The complete algorithm mainly consists of four steps. Same
to the original RRSU algorithm, the first step constructs a
linear program by Eq. (3) as a relaxation of the S-DSRU
problem. Assume that the optimal solution for Eq. (3) is
denoted by y4. The second step will choose a feasible path
for each flow using the randomized rounding method.

3080

In the third step, we will choose a subset of flows for
route update while satisfying the link capacity constraint. Let
variable z, denote the probability with which flow « is selected
for route update. For each flow v € T, we compute z, as

2y = ZpePr{Rc(v)} y4. The algorithm sorts all flows by the
increasing order of z., and checks these flows one by one. For
each flow ~ € T, its target route path is denoted by p after
randomized rounding. If at least one link on path p can not
contain this flow, we will not update the route of this flow,
that is, we just set Rf (7) = R°(7). As a result, the set of all
flows being updated is denoted by I'“.

In the fourth step, the algorithm schedules the update
operations on switches while satisfying several constraints:
1) the congestion-free constraint; 2) the route consistency
constraint; and 3) the low-latency constraint. We sort all flows
in I'* by the decreasing order of z,, and put them into a queue.
The set of flows being updated is denoted by I". When I is
null (i.e., ®) or the route update of a flow has been finished,
we choose several flows from the queue for simultaneous
update without congestion, which will be described in the
next paragraph. To guarantee route consistency, the update
on the ingress switch should start after the updates on the
internal switches are finished, which can be implemented
by the previous Dionysus method [3]. Due to link capacity
constraint, we may not find such a flow for update. Under
this situation, a natural way is to reduce the flow rate so as
to satisfy the link capacity constraint. The algorithm will be
terminated until the update delay is running out.

We introduce an efficient way to choose several flows for
simultaneous update without congestion. We dequeue the next
flow from the queue, and schedule the route update for this
flow if this flow and all flows in set I can be updated
without transient congestion. This procedure is terminated
until we cannot find such a flow from the queue. Assume that
the temporary route configuration is denoted by R!. For the
dequeued flow +, the transient congestion can be avoided if
the following constraint is satisfied on each link e of its target
route:

2err Lerin *)

!
< —
Dt Do 207 S ele) = 5(7)

13)

Eq. (13) means that the traffic load on link e consists of two
parts: 1) For each ' € I' — I, the controller will not change
its route, i.e., R'(v'). 2) If the controller is updating the route
of flow 4" € TV, due to asynchronous operations on different
switches, we cannot determine its route, either the route before
the update (R'(7’)) or the route after the update (R (7).
Now, we discuss the time complexity of the complete RRSU
algorithm. Cohen et al. [30] have shown that polynomial
number (with input the number of switches) of feasible paths
are enough for performance optimization. Assume that A
is the maximum number of feasible paths for all flows.
Thus, we regard that A is polynomial of the number of
switches (n). Moreover, the number of flows is denoted by
r = |['|. The first step mainly solves the linear program.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017

Since the number of variables in L P; is polynomial value of
r and A, it takes polynomial time of the number of flows and
the number of switches to solve this LP;. The second step
uses randomized rounding for route selection, and its time
complexity is 7 - A. In the third step, the algorithm computes
a weight for each flow, and its time complexity is r - A as
well. Then, the algorithm will check all links on the selected
route of each flow, and its time complexity is 6 - 7, where
0 is the maximum hop number of all feasible paths. In the
fourth step, the algorithm will schedule the update operations
on different switches. To fulfill this function, we will check
all links on the final path of a flow. Thus, it takes a time
complexity of § - 7. As a result, the total time complexity of
the RRSU algorithm is polynomial of the number of flows (),
the number of switches (n) and the maximum hop number of
all feasible paths (9).

E. Discussion

1) In the proposed update algorithm, we assume that all
the switches along the final route path should take the
update operations. In fact, the route update delay can be
reduced by exploring route multiplexing. For a flow -,
we use R¢(y) and R/ () to denote the current path
and the target path of this flow. If one switch v lies on
both route paths, and its next-hop switch is same on
both route paths, it is no need to update the forwarding
rule of flow ~+ on this switch. To express this feature,
we use NS(p,v) to denote the next-hop switch of v
on path p. Since the forwarding rules on some switches
will not be changed, to guarantee the route consistency,
we should determine the “ingress” switch (or the first
switch to be updated) on the final route path R/ (v) as
follows: for each switch v € R/ () from the source to
the destination, its next-hop switch is denoted by v’.
If e,, does not lie on the current path R¢(v), Le.,
NS(R/(v),v) # NS(R°(7),v), we determine switch
v as its “ingress” switch for route update. For each
switch v € RS (7), if v is the “ingress” switch, there
needs an update operation, and its update delay is
denoted by t,,. If v is the internal switch of R/ (y)
and NS(Rf(y),v) # NS(R®(v),v), there needs an
insertion operation, and its delay is ¢;. Otherwise, there
is no need for route update on this switch. Then, we can
directly apply the RRSU algorithm for route selection
and update.

2) Besides the two-phase update mechanism, there are
other methods for consistent network update, such as
[16] and [31]. Our RRSU algorithm can be easily
extended to other non-two-phase update approaches.
By the end of the third step, we have determined a set of
flows being potentially updated. In each iteration of the
fourth step, we determine a flow set IV with congestion-
free, and construct dependence graph for I'" according to
different consistency requirements, such as congestion-
free [31] or loop-freedom [16]. Then, the controller can
schedule the update operations on switches by applying
different consistent mechanism for route update.

XU et al.: JOINT ROUTE SELECTION AND UPDATE SCHEDULING FOR LOW-LATENCY UPDATE IN SDNs

V. ALGORITHM EXTENSION

Jin et al. [3] have shown that the per-rule update latency may
sometimes be varied for flow entries. We call this “the straggler
case”. Two main factors may lead to the straggler case. One
is the switch’s CPU load. Due to low CPU processing power
on each commodity switch, the higher CPU load on a switch
will increase the rule update latency. The other is the rule
priority. The forwarding rules are stored from top to bottom in
decreasing order of their priorities in the flow table [3]. When
a forwarding rule will be inserted into a flow table, it may
cause existing rules, especially with lower priorities, to move
in the flow table, which may lead to various update latency.
Accounting for these dynamic factors ahead of time is difficult.
To deal with the case, we design an efficient algorithm, called
RRSU-V, for route selection and update with variable update
latency.

Similar to RRSU, our RRSU-V algorithm also consists of
four steps. As described in [3], the update latency also depends
on the current switch’s state, such as the number of inserted
flow entries in a flow table, and the current traffic load on
this switch, etc. To express their difference among switches,
each switch v will be assigned a weight w,, with w, > 1.
Intuitively, when the traffic load is high, its weight will be
much larger. If the traffic load is low or it is with less control
load, its weight is set as 1. Due to switch’s state dynamics,
it is difficult to accurately estimate the update time. According
to [3], the update delay in the straggler case is about less than
2 times as that in the normal case. So, we will divide all the
switches into three categories according to their traffic loads.
If one switch is with a lighter traffic load, we set its weight
as 1. If one switch is with a middle traffic load, its weight is
set as 1.5. Otherwise, we set its weight as 2, i.e., this switch
with a higher traffic load. Similar to Eq. (2), we define the
weighted S-DSRU problem, called WS-DSRU, as follows:

min A\

> =1,

pEP
Sit. Z’YEFZDEPIPEPw yh-wo-t(v,7,p) <To, YveV

Vyel

D . <)\ .
Z’Yefzeez):peﬂ, Yy s(y) <A c(e), Vee E
y? € {0, 1}, .y
(14)

Note that, P, denotes a set of permissible paths for flow ~.
To solve the problem formalized in Eq. (14), the algorithm
constructs a linear program as a relaxation of the WS-DSRU
problem. More specifically, traffic of each flow ~ is permitted
to be splittable and forwarded through a path set P,. After
solving the relaxed WS-DSRU problem, we obtain the optimal
solution ¢4. Then, we can apply the following three steps of
the RRSU algorithm for route selection and update scheduling.
The RRSU-V algorithm is described in Alg. 3.

VI. SIMULATION RESULTS

This section first introduces the metrics and benchmarks for
performance comparison (Section VI-A). Then, we describe the

3081

Fig. 2. Topology of the SDN Platform. Our platform is mainly
composed of three parts: a controller, six OpenFlow enabled switches
{v1,v2,v3,v4,v5,v6} and four terminals {u1, ug, u3, us}.

Algorithm 3 RRSU-V: Rounding-Based Route Selection and
Update With Variable Update Time
1: Step 1: Solving the Relaxed WS-DSRU Problem
2: for each switch v € V do
3: Compute the weight w, for switch v
4: Construct a linear program in Eq. (14)
5: §91ve Relaxed WS-DSRU, and obtain the optimal solution
v
: Step 2: The Same as that in Alg. 2
7: Step 3: The Same as that in Alg. 2
8: Step 4: The Same as that in Alg. 2

[=))

implementation of delay-satisfied route update algorithms on
our SDN platform, and present testing results (Section VI-B).
We evaluate our algorithm through extensive simula-
tions (Section VI-C).

A. Performance Metrics and Benchmarks

Since this paper cares for low-latency route update by
joint optimization of route selection and update scheduling,
we adopt three main performance metrics to measure the
route efficiency and update delay. The first metric is link
load ratio (LLR), which can be obtained by measuring the
traffic load I(e) of each link e. Then, LLR is defined as:
LLR = max{l(e)/c(e), e € E}. The second one is the
throughput factor 7, with 0 < n < 1. This means that, for
each flow ~, at least the traffic of 1 - s(v) can be forwarded
from source to destination without congestion. The last one is
the route update delay, which refers the delay for the update
procedure from the current route configuration to the target
one.

We implement the delay-satisfied route update algorithm
on both the SDN platform and Mininet [32], which is a
widely-used simulator for an SDN. To show update efficiency
of our RRSU algorithm, we compare it with some other
benchmarks. First, the controller often determines the target
route configuration based on the current workload using
the different routing algorithms, e.g., the multi-commodity
flow (MCF) algorithm [33], and executes route updates from
the current route configuration to the target one using the
update scheduling algorithm, e.g., Dionysus [3]. Since the
controller may update all flows, including elephant flows and

3082

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017

1.8
RRSU XXX
1.6 EMCF+DS _s—

14
1.2

0.8
0.6
0.4
0.2

Route Update Delay (s)
Link Load Ratio

200

600
Number of Flows

(a)

1000

Update delay constraint Ty (s)

2
s N OSPF
g @ RRSU - &-
g 08 N EMCF+DS --€3-- |
-~ N
x 6 -
5 o M)
QOO0 OO -8 8OO
. 0.6
0 0.02 004 006 008 0.1 0 0.2 0.4 0.6 0.8 1

Update delay constraint Ty (s)

(b) (©

Fig. 3. Testing results through the SDN platform. (a) Route update delay vs. Number of flows. (b) Link load ratio vs. Update delay constraint with 200 flows.

(c) Link load ratio vs. Update delay constraint with 1000 flows.

mice flows, by the MCF algorithm, the update delay may
likely be larger. For example, our simulation results show
that, when there are 40k flows in topology (b), the update
delay by joint MCF and Dionysus methods may reach 65s,
which is unacceptable for many applications. An improved
version is that we only update the routes of those elephant
flows [27], denoted by EMCEF, and also adopt the Dionysus
method [3] for update scheduling. In this section, one flow
is identified as an elephant flow, if its traffic size is more
than 1Mbps. The combined method is denoted by EMCF+DS.
The second one is the OSPF protocol, which only chooses
the shortest path for route selection, and does not apply route
updates. This benchmark is adopted for comparing the route
performance of our proposed algorithm. The third one is the
optimal result of the linear program LP; in Eq. (3), denoted
by OPT. Since LP; is the relaxed version of the S-DSRU
problem, and S-DSRU is the simplified version of DSRU,
OPT is a lower-bound for both S-DSRU and DSRU problems.
We mainly observe the impact of two parameters, i.e., number
of flows and route update delay constraint Tj;, on the route
update performance. Intuitively, when parameter T increases,
since the routes of more flows can be updated, the link load
ratio will be reduced. Due to limited capacity, our commodity
switch cannot support the delay measurement of insertion
and modification operations on the flow table. According to
the testing results on the HP ProCurve 5406z1 switch [26],
the delays for insertion and modification operations are set as
Sms and 10ms, respectively. We also take these results in our
platform testing and simulations.

B. Test-Bed Evaluation

1) Implementation on the Platform: We implement the
OSPF, EMCF+DS and RRSU algorithms on a real test-bed.
Our SDN platform is mainly composed of three parts:
a server installed with the controller’s software, a set of
OpenFlow enabled switches and some terminals. Specifically,
we choose Opendaylight, which is an open source project
supported by multiple enterprises, as the controller’s software.
The Opendaylight controller is running on a server with a core
15-3470 processor and 4GB of RAM. The topology of our
SDN platform is illustrated in Fig. 2. The forwarding plane of
an SDN comprises of 6 H3C S5120-28SC-HI switches, which
support the OpenFlow v1.3 standard. During the platform
implementation, each flow is identified by three elements,

EMCF+DS —6—
RRSU - &-

EMCF+DS —©—
RRSU - &-

Update Delay (s)
Update Delay (s)

R

0
8 115 2 25 3 35 4
Number of Flows (* 10%)

2 3 4 5 6 7
Number of Flows (* 10°%)

Fig. 4. Route Update Delay vs. Number of Flows under the Normal Case.
Left plot: Topology (a); right plot: Topology (b).

source IP, destination IP and TCP port, so that each terminal is
able to generate different numbers of flows to other terminals.

2) Testing Results: We mainly observe the impact of update
delay constraint on the performance of link load ratio. Three
sets of experiments are run on the platform by generating
different numbers of flows. In each experiment, there are 20%
elephant flows and 80% mice flows. Fig. 3(a) shows that it
takes about 0.36s, 1.15s and 1.80s for the update procedure
by the EMCF+DS algorithm when there are 200, 600 and
1000 flows in a network. Meanwhile, the RRSU algorithm
takes 0.1s, 0.42s and 0.80s, respectively, so that RRSU can
achieve the similar route performance as EMCF+DS (with
link load ratio increased not more than 3%). Figs. 3(b) and 3(c)
show that, the link load ratio is improved with the increase
of the route update delay constraint by our RRSU algorithm.
However, the improvement is much slower with the increas-
ing route update delay. Note that, the route performance of
EMCF+DS will not change with update delay constraint.
Fig. 3(b) shows that our algorithm can reduce the route update
delay by 77% compared with the EMCF+DS method while
preserving a similar routing performance (with link load ratio
increased about 1%). Fig. 3(c) shows that, our RRSU algo-
rithm can achieve the close route performance as EMCF+DS
(with link load ratio increased about 2%) while it reduces the
update delay about 61%. From these testing results, our RRSU
algorithm achieves the better trade-off performance between
route performance and route update delay.

C. Simulation Evaluation

1) Simulation Setting: In the simulations, we choose
two typical topologies. The first topology, denoted by (a),
is derived from a commercial and operational network, which
connects several data centers distributed at different locations
in Beijing, China. This topology contains 20 switches and

XU et al.: JOINT ROUTE SELECTION AND UPDATE SCHEDULING FOR LOW-LATENCY UPDATE IN SDNs

3083

R o * RRSU
08 - 0.8 F5» 5 08 -o-
§ § R FoRt - 2 ;c% ® RRSU <->f é R Emcrobs 5-
Wy EMCF DS 5- \ RN + =
g b EmCrebs & - ERRA NN * R o Emcrohs 25 - - x. -
- 0.6 {)_ - o — = 3 RPN ~ N B
£ - £ 06 . LR N ST £ 0600 —B— Q=R R
SIRT S R oh b £ & B e g BF g9 5 - BIRRRR 2 "
0.4
0.4 0.4 04
0o 05 1 15 2 25 3 35 0 05 1 15 2 25 3 35 0 05 1 15 2 25 3 35 0 05 1 15 2 25 3 35
Update delay constraint T (s) Update delay constraint T (s) Update delay constraint Ty (s) Update delay constraint Ty (s)
(@ (b) (© ()
Fig. 5. Link load ratio vs. Update delay constraint for topology (a). (a) 2000 flows. (b) 4000 flows. (c) 6000 flows. (d) 8000 flows.
1
1]
- 0.9 0.8 Fw
Y OSPF
OSPF OSPF B
g 08 RRSU - @ - £ g 08 RRSU - ©- g 07t Ve RRMISC
g o7 N OPT --X- & g o7 L g el T EMCF+DS —© -
B os| ©- EMCFDS —©-= B % o6 - E X, O
S s X190 -6 S S sl L el S os DS
e e—é A X - EOOST % el ER e
S o4 E S 0460 B B Qeg o O o-—o—8= - friQ—
0.3 0.3 0.3
0.2 . 0.2 0.2
0 05 1 15 2 25 3 35 0 05 1 15 2 25 3 35 0 05 1 15 2 25 3 35 0 05 1 15 2 25 3 35
Update delay constraint Ty, (s) Update delay constraint T (s) Update delay constraint T (s) Update delay constraint Ty (s)
(a) (®) © ()
Fig. 6. Link load ratio vs. Update delay constraint for topology (b). (a) 10000 flows. (b) 20000 flows. (c) 30000 flows. (d) 40000 flows.
1 0.8
0.8
090 - QB --B--E--8--6--0 _ | ¥ -0V oy YT AT RS8N
5 on- 5 5 5 07
E 08 o ¢ £ g o7 g .
2 OPT —%— E Q- 2 2 os OSPF —F1 -
S o EMCF+DS - © - = OSPF —£}- £ o061/, OSPF —£} - 5 :
3 RRSU --& - 3 3 3
E ool OSPF —}- £ g —O— 5 —0—-5- E B OB 8-—-B8-8-H £ s -8 —O0—B5 8—8--5--4
-8-—4—8-8—8--8-—
05 . 04 04
0 05 1 15 2 25 3 35 0 05 1 15 2 25 3 35 0 05 1 15 2 25 3 35 0 05 1 15 2 25 3 35
Update delay constraint Ty (s) Update delay constraint T, (s) Update delay constraint T, (s) Update delay constraint Ty (s)
(@ (b) (© (d)
Fig. 7. Throughput factor vs. Update delay constraint for topology (a). (a) 2000 flows. (b) 4000 flows. (c) 6000 flows. (d) 8000 flows.
1 —
§ 0.9 0.,»0"' % 0 % 0_'., §
fid o pid i oPT & 5 OPT —¢ &
L o8 o® OPT —%¢— = EMCF+DS .7_5__ 5 EMCF+DS - © - E & OPT —%—
2 EMCF+DS - ©- & & RRSU --& - & . RRSU --&-- e EMCF+DS -0-
e 07 RRSU -9 -- 2 B OSPF —£1 - 2 & OSPF —f1} - 2 & 9
2 osl/ OSPE - 2 o 2 2 - OSPF
o e F F ‘. g--B-—8-B5 B -8-—
o588 -8-8—B—-8--8-—8—g -8-f8—0--0-8 88— 8 — 58 —-0—
0.4
0 05 1 15 2 25 3 35 0 05 1 15 2 25 3 35 0 05 1 15 2 25 3 35 0 05 1 15 2 25 3 35
Update delay constraint Ty, (s) Update delay constraint T (s) Update delay constraint T (s) Update delay constraint Ty (s)
(a) (®) © ()

Fig. 8.

54 links. The second topology, denoted by (b), is derived from
the Monash university [34], and contains 100 switches and
397 links. For the both topologies, each link has a uniform
capacity, |00Mbps. We execute each simulation 100 times, and
give the average simulation results. Curtis et al. [5] have shown
that less than 20% of the top-ranked flows may be responsible
for more than 80% of the total traffic. Thus, we generate
different numbers of flows, and the intensity of each flow
obeys this 2-8 distribution. Similar to [3], we show results in
both normal setting and straggler setting. In the former case,
the update delay setting is given in Section VI-A. For the
straggler case, we draw rule update delay from [3].

2) Simulation Results for the Normal Case: We run three
groups of experiments to check the effectiveness of our
algorithm. The first group of two simulations shows the route
update delay by varying the number of flows in an SDN.

Throughput factor vs. Update delay constraint for topology (b). (a) 10000 flows. (b) 20000 flows. (c) 30000 flows. (d) 40000 flows.

We execute two algorithms, EMCF+DS and RRSU, on two
different topologies. Fig. 4 shows that the required route
update delay by the EMCF+DS algorithm is almost linearly
increasing with the number of flows in a network. In the
large network with 40k flows, it requires more than 19s
by the right plot of Fig. 4. In the following simulations,
we limit the route update delay constraint no more than 4s
(and 2s by default), and mainly compare the route performance
with the EMCF+-DS algorithm for fairness. Obviously, even
though the controller only updates the routes of those elephant
flows, the required update delay by EMCF+-DS is still much
more than the update delay constraint.

The second group of simulations mainly shows how the
update delay constraint affects the route performance on two
topologies. Given a fixed number of flows in a network,
we change the route update delay constraints, and the link load

3084

OSPF
RRSU - &-

OPT --%
EMCF+DS —€ -

OSPF
RRSU - & -

OPT --X%
[EMCF+DS —€) -

Link Load Ratio
Link Load Ratio

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017

Link Load Ratio
Link Load Ratio

Number of Flows (* 10%) Number of Flows (* 10%)

(@ ()

Fig.

OSPF —|—
RRSU - ©-

OPT --X-
EMCF+DS —© -

OSPF —|—
RRSU - ©-

OPT --X-
EMCF+DS —© -

Link Load Ratio
o
2

Link Load Ratio
o
2

PRS2
,&.a’g-‘g A 02

1 15 2 25 3 3.5 4 1 15 2 25 3 3.5 4
Number of Flows (* 10%) Number of Flows (* 10%)

(b)

(a)

10.

Fig.

Link load ratio vs. Number of flows for topology (b). (a) Tp = 1.0s.

Number of Flows (* 10%) Number of Flows (* 10%)

©) (d)

9. Link load ratio vs. Number of flows for topology (a). (a) Tp = 1.0s. (b) Tp = 2.0s. (c) Tp = 3.0s. (d) Tp=4.0s.

Link Load Ratio
Link Load Ratio

1 1.5 2 25 3 35 4 1 1.5 2 25 3 35 4
Number of Flows (* 10%) Number of Flows (* 10%)

(c) (@

(b) To = 2.0s. (¢c) Tp = 3.0s. (d) Tp =

Throughput Factor
Throughput Factor

Throughput Factor
Throughput Factor

OSPF —F}- >~

07 .
OPT —%—
06 | [EMCFiDS - ©- \E'\‘
-d- “— - RRSU --& - .
_ ; - -~
05 OSPF —£} o 05 OSPF —£} -
04 04
2 3 4 5 6 7 8 2 3 4 5 6 7 8
Number of Flows (* 10%) Number of Flows (* 10%)

(@ (b)

Fig. 11.

Throughput Factor
Throughput Factor

1 15 2 25 3 35 4 1 15 2 25 3 35 4
Number of Flows (* 10%) Number of Flows (* 10%)

(a) (b)

Fig. 12.

ratio performance is shown in Figs. 5 and 6. Two figures show
that, the link load ratio is reduced when the route update delay
becomes larger by our proposed RRSU algorithm. However,
the route update delay constraint does not affect the link load
ratio of the EMCF+-DS algorithm, which always updates the
routes of those elephant flows in a network. For the small
topology, Fig. 5 shows that our RRSU algorithm reduces the
route update delay by 60% compared with the EMCF+DS
method while preserving a close route performance (with link
load ratio increased less than 3%). For example, when there
are 6000 flows in the network, the EMCF+DS method needs
about 5.6s for route update by the left plot of Fig. 4. Fig. 5
shows that the RRSU algorithm can achieve the similar route
performance with EMCF+-DS only with a route update delay
of 2s. For the large topology, we find that the RRSU algorithm
can reduce the route update delay about 65% compared with

Throughput factor vs. Number of flows for topology (a). (a) 7o = 1.0s.

Throughput factor vs. Number of flows for topology (b). (a) 7o = 1.0s. (b) Top = 2.0s. (¢) Tp = 3.0s. (d) Tp

2 3 4 5 6 7 8 T2 3 4 5 6 7 8
Number of Flows (* 10%) Number of Flows (* 10%)

(c) (@

(b) To = 2.0s. (c) Tp = 3.0s. (d) Tp

Throughput Factor
Throughput Factor

o EMCFoDS - O i >
OPT —%— .
03 RRSU --& - B
04 OSPF —£} - i)

0.3

“1 45 2 25 3 35 4 115 2 25 3 35 4
Number of Flows (* 10%) Number of Flows (* 10%)
(© (d)

= 4.0s.

EMCF~+DS while still achieving the similar link load ratio
performance by Fig. 6. Figs. 7 and 8 show that our RRSU
algorithm can achieve the similar throughput factor compared
with EMCF+DS when the update delay constraint is not less
than 2s.

The third group of simulations shows how the number
of flows affects the route performance on two topologies.
Figs. 9 and 10 show that, the link load ratio performance of
our RRSU algorithm is much closer to that of EMCF+DS
with the increase of the route update delay constraint. More
specifically, the RRSU algorithm with route update delay of 2s
can achieve the similar route performance as EMCF+DS,
which should take a route update delay of 5-8s in topology (a).
In topology (b), Fig. 10 shows that our RRSU algorithm just
takes about 2s for route update, so as to achieve the similar
route performance as EMCF+DS, which will take a route

XU et al.: JOINT ROUTE SELECTION AND UPDATE SCHEDULING FOR LOW-LATENCY UPDATE IN SDNs

14 40
35

12 ENCE D5 —O o EMCF+DS —6—
Z 10 RRSU-V - & - = RRSU-V - ©-
g 4 F 25
8 8 2
° °
i 6 g
S 4 S 10

260 =00 --0--0--4 5

o 00 -0 - - -

2 3 4 5 6 7 8 1 15 2 25 3 3.5 4

Number of Flows (* 10%) Number of Flows (* 10%)

Fig. 13. Route update delay vs. Number of flows under the straggler case.
Left plot: Topology (a); right plot: Topology (b).

0.9
0.88
° 2 OSPF =53
3 OSPF —J 3 B
5 N] . RRSU-V - & -
2 o7 RRSU-V - &~ 2 07
< \\<> EMCF+DS --6- < LN EMCF+DS --©-
8 8 N
< 06 N 2 06 -6
< O £ T Os
5 o 5 N
05 By X 085G+ @ D@ O BTG
YRR R R IR By - A
04 04
0 05 1 15 2 25 3 35 0 05 1 15 2 25 3 35

Update delay constraint T (s) Update delay constraint T (s)

Fig. 14. Link load ratio vs. Update delay constraint for topology (a).
Left plot: 4000 flows; right plot: 8000 flows.

update delay of 10-16s. Moreover, our RRSU algorithm can
achieve almost the same throughput factor as EMCF+DS by
Figs. 11 and 12.

From these simulation results, we can draw some con-
clusions. First, with the increase of the route update delay
constraint, our algorithm can update more flows, and improve
the route performance by Figs. 5-8. Second, Figs. 9-12 show
that, with the increasing number of flows, the link load ratio
will be increased and the throughput factor will be reduced
under the same route update delay constraint by our RRSU
algorithm. Third, Figs. 5-12 show that, the proposed algorithm
almost achieves the similar performance as OPT, which is the
lower bound for the DSRU problem, provided that the route
update delay constraint is not too small. Fourth, Fig. 4 shows
that our proposed algorithm decreases the route update delay
about 60-80% compared with the EMCF+-DS algorithm. How-
ever, it can reach almost the similar route performance, such
as load balancing, as EMCF+DS by Figs. 5-12. Therefore,
our proposed RRSU algorithm can achieve the better trade-
off between the route performance and update delay by joint
optimization of route selection and update scheduling.

3) Simulation Results for the Straggler Case: We run two
groups of experiments to check the effectiveness of our
algorithm under the straggler case. The first group of two sim-
ulations shows the route update delay by varying the number
of flows in an SDN. We execute two algorithms, EMCF+DS
and RRSU-V, on two different topologies. Fig. 13 shows that
the required route update delay by the EMCF+DS algorithm
is almost linearly increasing with the number of flows in a
network. In a large network with 40k flows, it requires more
than 33s by the right plot of Fig. 13. Obviously, even though
the controller only updates the routes of those elephant flows,
the required update delay by EMCF+DS is still much more
than the update delay constraint.

The second group of simulations mainly observes how
different parameters affect the link load ratio on two topologies
under the straggler case. Given a fixed number of flows in
a network, we observe the link load ratio performance by

3085

09
e
08 osPE
N RRSU-V - © -
2 * OSPF 2 o7 s EMCF+DS --©-
T 07 ® RRSU-V - & - 4 N
! EMCF+DS --©- ® o6 o
2 06 2 .
£ N £ 05 T
s SO B S R o SR C S < MRS IO S
5600008780 04
0.4 0.3
0 05 1 15 2 25 3 35 0 05 1 15 2 25 3 35

Update delay constraint T (s) Update delay constraint T, (s)

Fig. 15. Link load ratio vs. Update delay constraint for topology (b).
Left plot: Topology (a); right plot: Topology (b).

OSPF
h 0.8 RRSU-V -
0.7 | [EMCF+DS -

OSPF —HJ S-
RRSU-V - &- 8-
EMCF+DS --©-

&7

Link Load Ratio
Link Load Ratio

03 03 -
020 _ 0.24 ___,g--‘-"g
0177 0197
0 0
2 3 4 5 6 7 8 2 3 4 5 6 7 8
Number of Flows (* 10%) Number of Flows (* 10°%)
Fig. 16. Link load ratio vs. Number of flows for topology (a).

Left plot: Ty =1.0s; right plot: Ty =2.0s.

OSPF
RRSU-V - & -
EMCF+DS --© -

OSPF —
08 RRSU-V - &~
EMCF+DS --©-

Link Load Ratio
N
Link Load Ratio

020 020 o

0197 01¢ 7"

0 0

115 2 25 3 35 4 115 2 25 3 35 4

Number of Flows (* 10%) Number of Flows (* 10%)

Fig. 17. Link load ratio vs. Number of flows for topology (b).
Left plot: Ty =1.0s; right plot: Ty =2.0s.

changing the route update delay constraints. Figs. 14 and 15
show that, the link load ratio is reduced when the route update
delay becomes larger by our proposed RRSU-V algorithm.
We also find that the RRSU-V algorithm can achieve the
similar route performance with EMCF+DS only with a route
update delay of 3s. For example, for topology (a), when
there are 4000 flows in topology (a), it needs about 6s for
route update by the EMCF+DS method by the left plot of
Fig. 13. The left plot of Fig. 14 shows that our RRSU-V
method can reduce the route update delay by 50% compared
with the EMCF+-DS method while preserving a close route
performance (with link load ratio increased less than 3%).
For the large topology, we find that the RRSU-V algorithm
can reduce the route update delay about 82% compared with
EMCF~+DS while still achieving the similar link load ratio
performance from Fig. 15. Figs. 16 and 17 also show that our
RRSU-V algorithm can achieve the similar route performance
with EMCF+DS under different numbers of flows when we
set the update delay constraint as 2s.

VII. CONCLUSION

In this paper, we have studied the low-latency route update
while considering the current workload, the speed of TCAM
updates, and the delay requirement on each switch. We have
designed a rounding-based route update algorithm for the
DSRU problem, and analyzed its approximation performance.
The testing results on the SDN platform and the extensive
simulation results have shown the high efficiency of our

3086

Fig. 18.

A special example of the DSRU problem.

proposed algorithm. We should note that the problem that is
here addressed is actually generic for any network with cen-
tralized control and low-speed flow/route table operations (e.g.,
MPLS or GMPLS) and not limited to SDN.

APPENDIX
PROOF OF THEOREM 1

Proof: 'We prove the NP-hardness by showing that the
unrelated processor scheduling (UPS) problem [9] is a special
case of the DSRU problem. We consider an example of the
DSRU problem. As shown in Fig. 18, there are g flows in the
network, in which each flow from wu; to u;, with 1 <1 <gq,
has a feasible path set, denoted by {u; —v; —v; —ve —u},3 <
i < 6}. In this topology, we assume that c¢(v1v3) = c(v1v4) =
c(vivs) = ¢(vivg) = co, Where ¢p is a finite value, and
others have infinite capacities. We consider a special version,
in which there is no constraint on the route update delay. Then,
we are possibly able to update routes of all flows for load
balancing in an SDN. The controller will choose one feasible
path for each flow to forward its traffic so as to minimize the
maximum traffic load among links {vyvs,v1v4, 0105, 0106}
If we regard the flows and the link set {vjvs, v1v4, V1U5, V106 }
as tasks and processors, this becomes the unrelated processor
scheduling problem, which is NP-Hard [9]. Since UPS is a
special case of the DSRU problem, DSRU is an NP-Hard
problem too. U

REFERENCES
[1]
[2]

C.-Y. Hong et al., “Achieving high utilization with software-driven wan,”
in Proc. ACM SIGCOMM, 2013, pp. 15-26.

S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken,
“The nature of data center traffic: Measurements & analysis,” in Proc.
SIGCOMM Internet Meas. Conf., 2009, pp. 202-208.

X. Jin et al., “Dynamic scheduling of network updates,” in Proc.
SIGCOMM, 2014, pp. 539-550.

T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine grained
traffic engineering for data centers,” in Proc. 7th Conf. Emerg. Netw.
Experim. Technol., 2011, p. 8.

A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee, “DevoFlow: Scaling flow management for high-
performance networks,” Comput. Commun. Rev., vol. 41, no. 4,
pp. 254-265, Aug. 2011.

S. Dudycz, A. Ludwig, and S. Schmid, “Can’t touch this: Consistent
network updates for multiple policies,” in Proc. 46th IEEE/IFIP Int.
Conf. Dependable Syst. Netw. (DSN), Jul. 2016, pp. 133-143.

K. Kannan and S. Banerjee, “Compact TCAM: Flow entry compaction
in TCAM for power aware SDN,” in Proc. Distrib. Comput. Netw., 2013,
pp. 439-444.

B.-Y. Choi, J. Park, and Z.-L. Zhang, “Adaptive packet sampling for
flow volume measurement,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 32, no. 3, p. 9, 2002.

[3]
[4]

[5]

[6]

[7]

[8]

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

[33]

[34]

E. Davis and J. M. Jaffe, “Algorithms for scheduling tasks on unrelated
processors,” J. ACM, vol. 28, no. 4, pp. 721-736, 1981.

P. Raghavan and C. D. Tompson, “Randomized rounding: A technique
for provably good algorithms and algorithmic proofs,” Combinatorica,
vol. 7, no. 4, pp. 365-374, 1987.

K.-T. Foerster, S. Schmid, and S. Vissicchio. (2016). “Survey of
consistent network updates.” [Online]. Available: https://arxiv.org/
abs/1609.02305

A. Ludwig, M. Rost, D. Foucard, and S. Schmid, “Good network updates
for bad packets: Waypoint enforcement beyond destination-based routing
policies,” in Proc. 13th ACM Workshop Hot Topics Netw., 2014, p. 15.
M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
“Abstractions for network update,” in Proc. SIGCOMM Appl., Technol.,
Archit., Protocols Comput. Commun., 2012, pp. 323-334.

S. Vissicchio and L. Cittadini, “FLIP the (Flow) table: Fast lightweight
policy-preserving SDN updates,” in Proc. IEEE INFOCOM, Apr. 2016,
pp. 10-15.

J. Hua, X. Ge, and S. Zhong, “FOUM: A flow-ordered consistent update
mechanism for software-defined networking in adversarial settings,” in
Proc. IEEE INFOCOM, Apr. 2016, pp. 1-9.

K.-T. Forster, R. Mahajan, and R. Wattenhofer, “Consistent updates
in software defined networks: On dependencies, loop freedom, and
blackholes,” in Proc. 15th IFIP Netw., 2016, pp. 1-9.

N. P. Katta, J. Rexford, and D. Walker, “Incremental consistent updates,”
in Proc. 2nd SIGCOMM Workshop Hot Topics Softw. Defined Netw.,
2013, pp. 49-54.

R. Mahajan and R. Wattenhofer, “On consistent updates in software
defined networks,” in Proc. 12th ACM Workshop Hot Topics Netw., 2013,
p. 20.

H. H. Liu et al, “zUpdate: Updating data center networks with
zero loss,” ACM SIGCOMM Comput. Commun. Rev., vol. 43, no. 4,
pp. 411422, 2013.

M. Canini, P. Kuznetsov, D. Levin, and S. Schmid, “A distributed and
robust SDN control plane for transactional network updates,” in Proc.
IEEE INFOCOM, May 2015, pp. 190-198.

T. Mizrahi, E. Saat, and Y. Moses. (2015). “Timed consistent network
updates.” [Online]. Available: https://arxiv.org/abs/1505.03653

J. McClurg, H. Hojjat, P. Cerny, and N. Foster. (2015). “Efficient
synthesis of network updates.” [Online]. Available: https://arxiv.org/
abs/1403.5843

T. Mizrahi, O. Rottenstreich, and Y. Moses, “TimeFlip: Scheduling
network updates with timestamp-based TCAM ranges,” in Proc. IEEE
Infocom, May 2015, pp. 2551-2559.

F. Clad, S. Vissicchio, P. Mérindol, P. Francois, and J.-J. Pansiot,
“Computing minimal update sequences for graceful router-wide recon-
figurations,” IEEE/ACM Trans. Netw., vol. 23, no. 5, pp. 1373-1386,
May 2015.

H. Xu, Z. Yu, X.-Y. Li, C. Qian, and L. Huang, “Real-time update with
joint optimization of route selection and update scheduling for SDNs,”
in Proc. IEEE ICNP, Nov. 2016, pp. 1-10.

HP Procurve 5400 ZL Switch Series, accessed on Apr. 18, 2016.
[Online]. Available: http://h17007.www 1.hp.com/us/en/products/
switches/HP_E5400_zl_Switch_Series/index.aspx

M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks,” in Proc.
Netw. Syst. Design Implement. Symp. (NSDI), vol. 10. 2010, p. 19.

R. Narayanan ef al., “Macroflows and microflows: Enabling rapid
network innovation through a split SDN data plane,” in Proc. Eur.
Workshop Softw. Defined Netw., 2012, pp. 79-84.

S. Agarwal, M. Kodialam, and T. Lakshman, “Traffic engineering in
software defined networks,” in Proc. IEEE INFOCOM, Apr. 2013,
pp. 2211-2219.

R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “On the effect of
forwarding table size on SDN network utilization,” in Proc. IEEE Conf.
Comput. Commun., May 2014, pp. 1734-1742.

S. A. Amiri, S. Dudycz, S. Schmid, and S. Wiederrecht. (2016).
“Congestion-free rerouting of flows on dags.” [Online]. Available:
https://arxiv.org/abs/1611.09296

The Mininet Platform, accessed on Apr. 18, 2016. [Online]. Available:
http://mininet.org/

S. Even, A. Itai, and A. Shamir, “On the complexity of time table and
multi-commodity flow problems,” in Proc. 16th Annu. Symp. Found.
Comput. Sci., Oct. 1975, pp. 184-193.

The Network Topology From the Monash University, accessed
on Apr. 18, 2016. [Online]. Available: http://www.ecse.monash.edu.
au/twiki/bin/view/InFocus/LargePacket-switchingNetworkTopologies

XU et al.: JOINT ROUTE SELECTION AND UPDATE SCHEDULING FOR LOW-LATENCY UPDATE IN SDNs

Hongli Xu (M’08) received the B.S. degree in
computer science and the Ph.D. degree in computer
software and theory from the University of Science
and Technology of China in 2002 and 2007, respec-
tively. He is currently an Associate Professor with
the School of Computer Science and Technology,
University of Science and Technology of China.
He has authored over 70 papers, and held about
30 patents. His main research interest is software
defined networks, cooperative communication, and
vehicular ad hoc network.

Zhuolong Yu is currently pursuing the M.S. degree
in computer science at the University of Sci-
ence and Technology of China. His research inter-
ests include software defined networks and mobile
computing.

Xiang-Yang Li (F’15) received the bachelor’s
degree with the Department of Computer Science
and the bachelor’s degree with the Department of
Business Management, Tsinghua University, China,
in 1995, and the M.S. and Ph.D. degrees with
the Department of Computer Science, University of
Ilinois at Urbana—Champaign, in 2000 and 2001,
respectively. He was a Professor with the Illinois
Institute of Technology. He held an EMC-Endowed
Visiting Chair Professorship at Tsinghua University.
He is currently a Professor and the Dean with the
School of Computer Science and Technology, University of Science and
Technology of China. He published a monograph Wireless Ad Hoc and Sensor
Networks: Theory and Applications. His research interests include wireless
networking, mobile computing, security and privacy, cyber physical systems,
social networking, and algorithms. He is an ACM Distinguished Scientist
since 2014. He was a recipient of China NSF Outstanding Overseas Young
Researcher (B). He and his students won several best paper awards and the
Best Demo Award.

3087

Liusheng Huang (M’07) received the M.S. degree
in computer science from the University of Science
and Technology of China in 1988. He is currently a
Senior Professor and the Ph.D. Supervisor with the
School of Computer Science and Technology, Uni-
versity of Science and Technology of China. He has
authored six books and over 300 journal/conference
papers. His research interests are in the areas of
Internet of Things, vehicular ad hoc network, infor-
mation security, and distributed computing.

Chen Qian (M’08) received the B.S. degree from
Nanjing University in 2006, the M.Phil. degree from
The Hong Kong University of Science and Technol-
ogy in 2008, and the Ph.D. degree from The Uni-
versity of Texas at Austin in 2013, all in computer
science. He is currently an Assistant Professor with
the Department of Computer Engineering, Univer-
sity of California at Santa Cruz. His research inter-
ests include computer networking, network security,
and Internet of Things. He has authored over 60
research papers in highly competitive conferences

and journals. He is a member of the ACM.

2015, respectively. He has served many international conferences as a TPC
Member, including the IEEE DCOSS, the IEEE MSN, the IEEE IPCCC, and
BigCom. He is a member of the ACM.

Taeho Jung (M’17) received the B.E. degree in
computer software from Tsinghua University, and
the Ph.D. degree in computer science from the
Illinois Institute of Technology. He is currently an
Assistant Professor with the University of Notre
Dame. His research area includes privacy and secu-
rity issues in the big data ecosystem. His paper has
won the Best Paper Award from the IEEE IPCCC
2014, and two of his papers were selected as a Best
Paper Candidate from the ACM MobiHoc 2014 and
the Best Paper Award Runner Up from BigCom

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

