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ABSTRACT
Payment channel networks have been designed and utilized
to resolve the throughput limitation of blockchains. The ul-
timate goal of payment channel networks is that everyone
can conduct payment transactions with any other person in
the world using a social trust network without the interven-
tion of centralized organizations such as banks and govern-
ments. However routing is a critical problem in payment
channel networks and existing routing solutions for overlay
network do not satisfy the scalability and decentralized re-
quirements.

In this paper, we propose WebFlow, a set of greedy rout-
ing protocols for payment channel networks, which only re-
quires each user node to maintain localized information and
can be used for massive-scale networks. We utilize the ex-
tended routing algorithms based on the multi-hop Delaunay
triangulation (MDT). Our simulation studies indicate that
WebFlow can achieve low delay and small probing overhead
with guaranteed success of finding paths for all transactions.

1. INTRODUCTION
Blockchain is a promising solution for decentralized digital

ledgers. Since it was invented as a public transaction ledger
of the cryptocurrency Bitcoin in 2008 [14], there have been
many other payment systems emerging based on blockchain,
such as Ripple [3], Stellar [1], and Ethereum [8]. While
blockchain has achieved a wide success in many payment
systems, scalability remains a huge problem with growing
number of users and transactions [6, 17]. For instance, bit-
coin could only support fewer than 25 transactions per sec-
ond at peak in 2019 [2]. In contrast, some widely used
centralized payment hubs such as visa and MasterCard can
process more than 47,000 peak transactions per second dur-
ing 2013 holidays [17]. The reason of this low throughput
of blockchain is that every node processes all transactions
and the consensus is achieved by proof-of-work, a time- and
resource-consuming process. Every time when new block
arrives, all the nodes in the network have to process it and
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update the state of the blockchain. Using blockchain as a
global transaction system for massive users is impractical at
this moment. There have been some improvements of basic
blockchain such as Bitcoin-NG [7], Monoxide [21] and so on.
However their performance is still limited by the processing
capacity of the nodes and network bandwidth and cannot
be used as a global transaction system.

The recently proposed concept of payment channel net-
works (or offchain networks) [10,17] provide a high-throughput
solution for blockchain based payment systems. In a pay-
ment channel network, each user can conduct transactions
with another users through a bi-directional channel. Instead
of broadcasting all transactions to every node in the net-
work, only two transactions related to this channel need to
be recorded on the blockchain: opening and shutting down
the channel. Each user commits certain fund in the opening
of this channel. Then the two users can make any num-
ber of transactions that update the tentative distribution
of the channel’s funds without broadcasting them to the
blockchain. Two users sharing a channel reflects some level
of trust. In addition, a user can make a payment to (or
receive fund from) another untrusted user via a multi-hop
path, where any two consecutive users on the path share a
channel. The ultimate vision is that everyone can conduct
payment transactions with any other person in the world
using a social trust network [9] without the intervention of
centralized organizations such as banks and governments.

Routing, i.e., finding a path between two arbitrary users,
is a critical problem in payment channel networks. Cur-
rent routing solutions of overlay networks (including pay-
ment channel networks) can be classified in four types. 1)
Centralized routing that assumes every node knows the en-
tire network topology based on which the routing paths are
determined [17, 22]. This approach has several major prob-
lems to be used for large-scale payment channel networks,
including massive control message broadcast, memory and
computation scalability on each node, and privacy leakage
of the global topology. 2) Landmark routing, where selected
nodes (called routers) store routes for the rest of the net-
work, and other nodes only need route transactions to a
landmark [13, 20]. However, the landmarks may be con-
gested by massive traffic (transaction) and become system
bottlenecks. The landmarks again becomes a certain level
of centralized nodes such as banks, which violate the decen-
tralized nature of payment channel networks. 3) Structured
overlay networks such as distributed hash tables (DHTs),
which force each node to maintain links to designated nodes
and use the links for routing. DHTs cannot be used for pay-



ment channel networks because one cannot be forced to build
channels with untrusted users. 4) Gossip routing, whose ma-
jor weakness is no guaranteed success of finding a path.

To our knowledge, this work is the first attempt to de-
sign a scalable and fully decentralized routing solution for
payment channel networks, where no central authority or
landmarks are needed. We investigate the possibility of
using greedy routing that has been used for wireless net-
works [5,11,12,19], data center networks [18,23], and mem-
ory interconnections [16]. We propose a routing protocol
called WebFlow. WebFlow allows every node (user) to calcu-
late a set of Euclidean coordinates and uses the coordinates
to perform greedy routing [12]. To guarantee the success of
path finding, nodes can maintain a multi-hop Delaunay tri-
angulation (MDT) based on only the channels with trusted
users. It has been proved that on an MDT, greedy routing
always succeeds to find the destination.

2. WEBFLOW OVERVIEW
WebFlow is a distributed routing system for payment chan-

nel networks. In payment channel networks, each user is
called a node. We call two nodes are physical neighbors and
they share a physical link, if a bi-directional channel exists
between these two users to allow them to make several trans-
actions without broadcasting them to the blockchain.

Problem definition. The routing problem of WebFlow
is described as follows. Consider a transaction t initiated
by node s (called the source) that should be received by d
(called the destination). WebFlow needs to find a path of
links from s to d, where two consecutive nodes on the path
should share a physical link (payment channel). The success
of routing implies that s can make a transaction with d by
a sequence of transactions involving other nodes, even if s
and d have no trusted channel.

Every node locally maintains the links and capacity to its
own neighbors. As the topology of the network is locally
unknown, it is hard to figure out the hopcount between two
arbitrary nodes. So we introduce the coordinates here to
estimate the hopcount (distance) between two nodes. Each
node computes a set of coordinates for itself by the user po-
sitioning algorithm. When two nodes are neighbors, they
know the coordinates of each other. Every node needs to
store the coordinates of itself and its neighbors. When two
nodes need to make transactions, they exchange their coor-
dinates first. Greedy routing based on MDT can then be
performed among all nodes that have computed the coordi-
nates.

2.1 USER POSITIONING
For fast convergence and scalability, the proposed user po-

sitioning algorithm is in two steps. First a small group of
nodes are selected as trackers based on certain criteria or
simply random nodes. These trackers first compute their
coordinates, and then in the second part, any ordinary node
can compute its own coordinates according to the messages
sent from these trackers. Note the trackers in WebFlow
do not participate routing and only support coordi-
nates computation. Hence it avoids the landmark
limitations in landmark-based routing [13,20].

2.1.1 Tracker operations
We model a payment channel network as a graph G =

(V,E) in a Euclidean space S, where V is the set of nodes

and E is the set of links. Each node N will compute a set
of coordinates cSN in S. The goal is to let nodes maintain
coordinates that characterize their locations in the network
such that hopcount can be predicted by evaluating a dis-
tance function over their coordinates. We denote the actual
hopcount between nodes N1 and N2 as hN1N2 . The Eu-
clidean distance between the coordinates of N1 and N2 is
denoted as dSN1N2

.
A set of trackers, T = t1, ..., tk are randomly selected (for

example, based on the user IDs). |T | = k. Note that for
a D-dimensional Euclidean space, k needs to be at least
D + 1 [15].Here for simplicity, we assume WebFlow uses a
3-dimensional Euclidean space and k ≥ 4.

Once trackers are chosen, each tracker broadcasts the net-
work, resulting in a spanning tree. Then all nodes includ-
ing other trackers will know their hopcounts to this tracker.
Hence all trackers know a k×k hopcount matrix characteriz-
ing the distances between every pair of the trackers. We de-
note the actual hops between ti and tj as hS

titj , and the com-

puted distance between these two trackers as dStitj . In order
to predict hopcount between nodes accurately, we need to
find a set of coordinates cSt1 ,...,cStk , to make the overall error
between actual hops and distances minimized, which can be
computed by existing algorithms of multi-dimensional scal-
ing [4].

2.1.2 Node Operations
Once the coordinates of trackers, cSt1 ,...,cStk , are deter-

mined, they are broadcasting to all other nodes. Then ev-
ery node can compute their own coordinates in a distributed
way. When constructing the spanning trees for trackers, or-
dinary nodes have already known the hops to each tracker
and locally recorded these values. We still firstly assign a
random coordinate cN for the node N same as Tracker op-
erations. Using the k measured nodes-to-tracker hopcounts,
hHli , node N can compute its own coordinates cN by mini-
mizing the overall error between actual hops and computed
distances.

As payment channel network is very dynamic and nodes
may join and leave the network. We have to consider these
two situations. When a new node wants to join the network,
it just asks all its physical neighbors for their hopcounts to
the trackers, and directly get its own hopcounts to the track-
ers. As the node positioning algorithm is distributed, this
new node could easily compute its coordinate at any time
without synchronization with others. After a time period,
if a lot of nodes go offline and many new nodes join in, the
whole network topology will change a lot, and the original
coordinates are not accurate to reflect the routing distance.
Here, the above two steps can be periodically re-executed to
get updated coordinates.

2.2 ROUTING ALGORITHM
It is well-known that simple greedy routing does not al-

ways succeed, because it may be stuck at a local minimum
node, i.e., the node cannot find any neighbor that has closer
distance to the destination [12]. Multi-hop Delaunay trian-
gulation (MDT) [12] is a geographic routing protocol pro-
viding guaranteed delivery with low routing stretch.

For a given set of nodes S in a 2D space, a DT of S,
DT (S), is defined as a triangulation such that no forth node
in S is inside the circumcircle of any triangle. Two nodes
u and v are called DT neighbors if they share an edge in
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Figure 1: MDT graph of 6 nodes.

DT (S). We denote DT (S) as a tuple {< u,Nu > |u ∈ S},
where Nu is the set of u’s DT neighbors, which is locally
maintained by node u. It has been proved that greedy rout-
ing on the DT edges (i.e., assuming all DT neighbors are
connected) always succeeds to find the destination [12]. This
result can be extended to d-dimension for d ≥ 2.

The major challenging of applying DT to a real network
is that two DT neighbor may not be directly connected in
the network topology. In the case of this work, two nodes
that are DT neighbors may not have a trusted channel or
physical link. To address this problem, the multi-hop DT is
specified as a 3-tuple {< u,Nu, Fu > |u ∈ S}, where Fu is
a soft-state forwarding table, and Nu is the set of u’s DT
neighbors. The extension of MDT from DT is that a node in
Nu is not necessarily directly connected to node u by phys-
ical links. Apart from directly connected to u, it could also
be multiple hops apart. In this case, we call those nodes who
are u’s DT neighbors but not physical neighbors communi-
cate via a virtual link with u. Even if two DT neighbors do
not have a trusted channel, they can be connected by virtual
link because there is an underlying multi-hop path of phys-
ical links that connects one DT neighbor to the other. For
example, nodes a and d in Figure 1 have no trusted chan-
nel, but a multi-hop path with physical link a − b − c − d
supports the virtual link ad. Note that in WebFlow no node
should maintain a global view of the MDT such as the graph
shown in Figure 1. Each node only maintains local informa-
tion < u,Nu, Fu > that is independent of the network size.
The routing decisions are made locally. In addition there is
no super nodes that handle most transactions such as the
landmarks in landmark routing. Hence WebFlow is highly
scalable and decentralized. Given the destination co-
ordinates, WebFlow routing using the MDT graph
always finds a path to the destination based on local
decisions of the nodes on the path.

The routing algorithms of WebFlow contains several MDT
protocols including the forwarding protocol, join protocol,
maintenance protocol, leave protocol, failure protocol and
initialization protocol. The forwarding protocol determines
how a node should locally decide the next-hop node when
routing to a destination, when a correct MDT is maintained.
The other protocols are used to maintain a correct MDT
graph. They are all decentralized algorithms.

2.2.1 Forwarding Protocol
Consider a transaction t initiated by node s that should

be received by d. For each node u that needs to route this

transaction t, if u can find a physical neighbor v such that
the Euclidean distance D(v, d) < D(u, d), u sends the trans-
action to v. Otherwise, u finds the DT neighbor v′ that
is closest to d among all u’s DT neighbors. u then sends
the transaction to v′ using the virtual link. A correct MDT
guarantees that this forwarding protocol will find the desti-
nation d in a finite number of hops.

2.2.2 Join Protocol
When a new node w boots up and wants to join the net-

work, it first needs to know its physical neighbors and as-
signs its own coordinate. Then it will send join request to
its neighbors trying to find all of its DT neighbors. To begin
its search, it must find at least one neighbor in the new DT.
By a property of DT, the closest node to w in the Euclidean
space must be a DT neighbor.

2.2.3 Maintenance Protocol
Payment channel networks are very dynamic and there are

always nodes and channels setting up and offline. Hence we
need a maintenance protocol to fix the structure of MDT.
The MDT graph is correct only if every node knows all of
its DT neighbors. So in WebFlow, each node u queries some
of its neighbors to see if they know mutual neighbors that
node u does not know, and then sends neighbor-set requests
to them. If node u discovers a new neighbor from neighbor-
set replies, u will send a neighbor-set request to this new
neighbor if they are vertexes in a same simplex in DT (Cu).
Every node runs this maintenance protocol locally, and every
time when a node finishes running it, it will wait for a time
period Tm until running it again.

3. PERFORMANCE EVALUATION
In this section, we conduct some initial experimental eval-

uation of the WebFlow routing algorithms based on simu-
lations. The evaluation aims to answer the following ques-
tions:

• How does the WebFlow routing perform under simu-
lated payment channel network topologies?

• How effective is the routing algorithm under different
numbers of nodes?

• How does the number of channels per node (average
degree) affect the routing performance?

3.1 Methodology
Setup. We implement payment channel network topolo-

gies and routing schemes using the networkx package in
Python in the simulations. We study several real-world
offchain networks: Ripple and Lightning. Ripple includes
1,870 nodes and 17,416 edges from January 2013 to Novem-
ber 2016, and the Lightning network has 2,511 nodes and
36,016 edges on one day of December 2018 [22]. Based on
these observations, in our simulation, we consider the num-
ber of nodes varying from 1,000 to 20,000. And we ran-
domly set up some channels between those nodes by varying
the average degree with 5, 10, and 15. Finally, we generate
payments between arbitrary nodes to test WebFlow.

3.2 Overall Performance and Overhead
Delay (in terms of the number of routing hops).

We first evaluate the delay in the average number of routing
hops, which shows the efficiency of WebFlow. In Figure 2(a),
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Figure 2: Performance results by varying the number of nodes and average degree, and comparison of different algorithm:
shortest-path, MDT, WebFlow, SpeedyMurmurs and SilentWhispers.

the result show the delay in the average number of routing
hops, by varying the number of nodes from 1,000 to 20,000.
The three curves in the figure are different in the average
number of physical neighbors (average degree) per nodes,
which reflects if a network is densely connected. The result
shows that even if the number of nodes reaches 20,000, and
the average degree is 5, WebFlow can finish an arbitrary
transaction in less than 8 hops.

Processing time. We then evaluate the processing time
of WebFlow, which is the probing delay to find a transaction
path. Figure 2(b) shows the results. As the number of
nodes increases, it is obvious that the processing time will
also increase. Even when the number of nodes is 20,000, the
probing time is still less than 2.5 ms for each node. The
greedy routing in WebFlow minimizes unnecessary paths as
much as possible. Hence the computation overhead is low
due to less unnecessarily path computation.

Comparison to other schemes. We compare WebFlow
with shortest-path, SpeedyMurmurs [20] and SilentWhis-
pers [13] in Figure 2(c) based on Ripple topology. The result
shows that delay hopcount of WebFlow is lower than that of
SpeedyMurmurs and SilentWhispers. It is close to the delay
hopcount achieved by shortest-path routing algorithm.

In summary, our initial experiments show that WebFlow
is highly scalable with good performance.

4. FUTURE WORK
WebFlow achieves efficient and effective routing in pay-

ment channel networks. This paper only presents the initial
work. There are several challenges that require further stud-
ies. We will mainly focus on the following three aspects in
our future work.

Capacity. Our existing design has not considered the ca-
pacity of each channel. This is an extremely important
problem in payment channel network, because each chan-
nel on a path must has higher capacity than the transaction
amount. We will work on an extended MDT routing pro-
tocol with channel capacity considerations. When one path
cannot support a transaction, multi-path routing needs to
be executed.

Concurrency. In our design, we separately probe the
transaction operations. If several paths want to use the
same channel during probing, two situations might happen.
First, the two paths share this channel, but a solution needs
to be found when the channel capacity is not sufficiently
high. Second, the channel is reserved in a first-come first-
serve manner. Then we need to provide a solution to find

another path for the second transaction.
Privacy. There are three privacy properties for payment

channel network: value privacy, sender privacy, and receiver
privacy. We will consider the privacy of WebFlow under
both attacker models: when the attackers is on the path
and not on the path. We plan to apply an idea similar to
the Voronoi routing [5] based on MDT. To hide the exact
destination coordinates, we may use a ray to indicate the
routing direction, and we are able to prove that Voronoi
routing guarantees to find the actual destination if the ray
intersects the Voronoi cell of the destination node.

5. CONCLUSION
In this work, we present the design of a scalable and de-

centralized routing solution called WebFlow for large and
dynamic payment channel networks, which resolves the scal-
ability problems of prior routing methods. The initial results
demonstrate that WebFlow provides low delay, low probing
overhead, and guaranteed success of finding paths, even for
big networks. Our future work will be on the channel ca-
pacity constraints, concurrent routing control, and privacy
protections.
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