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Abstract—Public-key certificate validation is an important
building block for various security protocols for IoT devices, such
as secure channel establishment, handshaking, verifying sensing
data authenticity from cloud storage, and Blockchains. However,
certification validation incurs non-trivial overhead on resource-
constrained IoT devices, because it either requires long latency
or large cache space. This work proposes to utilize the power
of distributed caching and explores the feasibility of using the
cache spaces on all IoT devices as a large pool to store validated
certificates. We design a Collaborative Certificate Validation
(CCV) protocol including a memory-efficient and fast locator for
certificate holders, a trust model to evaluate the trustworthiness
of devices, and a protocol suite for dynamic update and certificate
revocation. Evaluation results show that CCV only uses less than
25% validation time and reduces >90% decryption operations
on each device, compared to a recent method. Malicious devices
that conduct dishonest validations can be detected by the network
using the proposed trust model.

I. INTRODUCTION

In recent years, Internet of Things (IoT) has attracted

significant attention due to the emerging applications of in-

dustrial automation, smart devices, vehicular communication,

smart cities, and smart homes [3] [22]. A widely accepted

definition of IoT for the smart environment is that IoT is

an interconnection of sensing and actuating devices that are

capable of sharing information across platforms through a

unified framework such as cloud [10]. Thus, a great amount

of data, including both public and private information, will be

generated, processed and transmitted by IoT devices.

Although many current IoT devices rely on a central plat-

form to verify data authenticity. Emerging and future IoT

devices, such as personal health monitors, unmanned aerial ve-

hicles, robots, and self-driving cars, become multi-functional,

self-organized, and interactive. Hence due to scalability and

autonomy problems, there may not be a central platform to

interconnect all these devices. Public key cryptography (PKC)

enables fundamental security protocols for IoT data commu-

nication, based on a well-functioning public key infrastructure

(PKI). We list the following (incomplete) important use cases

of PKC for IoT. 1) The authentication process in protocols for

establishing a secure channel between two end devices or one

device and a server. For example, in an IoT-based healthcare

system, wearable sensors that collect human-related data need

to securely communicate with other sensors, caregivers and

doctors [20]. Existing approaches modify traditional end-to-

end IP security protocols to adapt to IoT environments, such

as DTLS [23] and HIP DEX [21], which rely on PKC for

handshaking. 2) When an IoT device retrieves sensing data

that were collected by other sensors and stored in the cloud, it

needs to verify the data integrity and authenticity to guarantee

that data have not been tampered with or partially dropped

[18]. Digital signatures of sensing data are applied to this

situation. In order to verify the correctness of a data signed

by the private key of the data generator, a device first needs to

validate the public key via its certificate. 3) Recently studied

Blockchain-based IoT systems [6] heavily rely on PKC. For

all situations, certificate validation is an essential step.

Although certificate validation can be completed relatively

easily on an ordinary computer, it incurs non-trivial overhead

on resource-constraint IoT devices. For example, using an

optimized method that requires only one signature verification,

certificate validation still costs 1.9 seconds and certificate-

based public key operations demand 95% of the overall

processing time of handshaking on the WisMote platform [19],

as reported in [11].

This work focuses on a specific yet important problem: how

to perform fast certificate validation in a large IoT network.

We do not intend to improve handshaking protocols, PKI, or

PKC schemes in IoT. Instead, we study the certificate valida-

tion method that is compatible with most existing PKIs and

PKC algorithms. There have been existing work on reducing

certificate validation cost in classic network environments. One

method is to delegate certificate validation to a third party [11]

[20],which creates a single point of failure. Prefetching and

prevalidation are also used for efficient certificate validation

[24], but they require heavy storage cost.

Fast certificate validation on IoT devices seems to be a

dilemma: the most effective approach is to cache as many

validated certificates as possible, but it is not allowed on IoT

devices with limited memory. We call the process of validating

a public-key certificate via verification of CA signature as

individual validation. Individual validation of every certificate

is time-consuming. Hence none of the above methods is

desired for IoT.

In this work, we propose to utilize the power of distributed

caching and explore the feasibility of using the cache spaces

on all IoT devices as a large pool to store validated certificates,

which can be accessed by any internal device. We design a

Collaborative Certificate Validation protocol (CCV), which

adopts the cooperation strategy in a large IoT network and

utilizes the overall computation power and storage resources.

When one device d needs to validate a certificate that has been



validated and cached by another device h in the network, d can

request a collaborative certificate validation from h to confirm

that the requested certificate matches the cached one. The

design of CCV includes three main challenges. First, how

each device can efficiently locate the holder of a certificate

without storing a long index that maps every certificate to its

holder. Second, how to avoid false validation results shared by

the IoT devices controlled by the attacker (called malicious

devices). Third, how to dynamically maintain a consistent

collaborative validation when new certificates are validated

and cached certificates are removed or revoked.

Our contributions of this work include the following. 1)

We design a memory-efficient and fast locator for certificate

holders, called OLoc, based on a recent data structure Othello

Hashing [26]. 2) We introduce a trust model for CCV to

evaluate the trustworthiness of each device to avoid dishonest

collaborative validation from malicious devices. 3) We design

a complete protocol suite for efficient OLoc update, cache

replacement, and revocation status checking mechanisms in

a dynamic network. Evaluation results show that CCV only

uses less than 25% time compared to the certificate validation

in a recent method [11]. The majority time cost of CCV is

on network latency rather than local public key decryptions

(reducing > 90% decryptions), hence it significantly saves

computation resource.

The paper is structured as follows. We give the problem

statement, network model and security model in Section II.

Section III presents the design consideration of the certificate

locator. We present the detailed protocol design in Section IV.

We show the evaluation results and security analysis in Sec-

tion V. Section VI presents the related work and Section VII

concludes this work.

II. PROBLEM STATEMENT AND MODELS

A. Problem Specification and Network Model

We consider a large IoT system including a large number

(100 or more) of devices. The use cases of such system

can be an industrial IoT network [15], a community network

with home IoT devices, or an organization/building/campus

network with various devices (cameras, sensors, smart office

products, etc.). The system consists of the following units.

(1) IoT devices. An IoT device (or “device” in short) is

a sensor or actuator with constrained computing, memory,

and power resources. Each device can communicate to the

Internet through the routers in the IoT system. A device

sends and receives packets to/from a router using its wireless

chip via either a direct connection to a router (“infrastructure

mode”, such as those in a home WiFi network) or multi-hop

forwarding (“ad-hoc mode”, such as those in a low-power

sensor network). Devices can communicate with each other.

(2) Routers. Routers are the forwarding units to support

communication among IoT devices, or between a device and

the Internet.

(3) Tracker. A tracker is a function running on a remote or

edge server to help to manage the IoT network. All IoT devices

can communicate with the tracker. There could be multiple

duplicate trackers in a network, running on different servers.

Every tracker maintains the same network state and does not

actually perform validation or caching for devices. A tracker

in CCV is not a single point of failure. Our experiments will

show that a tracker requires minimal computation and com-

munication cost, hence it can be easily replicated. Note that

trackers do not need strong consistency or synchronization.

Even if some of the trackers have inconsistent, incomplete,

incorrect information, or stop functioning for a duration of

time, IoT devices can still perform correct certificate validation

–trackers impact on certificate caching efficiency rather

than verification correctness. Replicated trackers using ex-

isting protocols to tolerate Byzantine failures [4], which is out

of our scope.

This work focuses on the public key certificate validation

problem of an IoT system. Each certificate is uniquely iden-

tified by its public key. We assume secure communication

channels have already been established among the IoT devices

and the tracker in the same network using standard IoT

security solutions such as that in WirelessHART [15]. Hence

a device does not need to validate public keys of other devices

and the tracker in the same network. A device needs to validate

a public key certificate of an external node from the Internet

in the following situations:

(1) Authenticate an external node during the handshaking

to establish a secure session, such as that in DTLS [23] [11].

(2) Verify the authenticity of the data retrieved from a cloud,

which carry the digital signatures of external nodes [18].

The collaborative certificate validation scheme investigated

in the paper can be modeled as follows. When a device

receives a public key certificate that has already been verified

and cached by another device in the network (called the

holder), the device needs to locate the cached certificate

and ask the holder to confirm it. Otherwise, it needs to run

individual validation. Each device caches a (limited) number

of certificates validated by itself. When a device receives

a request from another device in the network to validate a

certificate, it will respond based on the result from its cache.

This research includes three main challenges. First, how each

device can efficiently locate the holder of a certificate without

storing a long index that maps every certificate to its holder.

Second, how to void false validation results shared by the IoT

devices controlled by the attacker (called malicious devices).

Third, how to dynamically maintain a consistent collaborative

validation when new certificates are validated and cached

certificates are removed or revoked.

B. Security Model

We assume the internal communication among IoT devices

or between a device and the tracker is secure. The secure

communication channels have been established using standard

solutions such as the security protocol of WirelessHART

[15]. Group keys and session keys have been successfully

distributed. We do not consider attacks on the communications

between two IoT devices or a device and the tracker. All

devices, except those controlled by an attacker, are willing



to collaborate. The goal of a device is to maximize the

functioning of the entire network rather than maximizing the

functioning or lifetime of itself.

This work focuses on the research problem of efficient

validation of public key certificates, assuming there exists a

well-functioning PKI. This research is not about building a

better PKI. Hence we do not consider attacks during the PKI

validation process.

An attacker can control a number of devices in the network

to conduct malicious behaviors, which are referred as mali-

cious devices. Malicious devices are “malicious-but-cautious”

and may collude. The tracker stores a trust value for every

device to indicate the likelihood that the device is legitimate.

We list six major attacks from malicious devices.

(1) False validation attack: A malicious device provides

false certificate validation results to other devices.

(2) Self-promoting attack: A malicious device promotes

its trust value by claiming that it helped other devices validate

certificates. However, it did not.

(3) Defamation attack: A malicious device claims that a

legitimate device provides wrong certificate validation results.

(4) Traitor attack: When a diplomatic attacker senses their

reputation is dropping because of providing malicious devices,

it can provide good services for a period of time to gain a high

reputation. Then it provides malicious services after it gains

high reputation.

(5) Whitewashing attack: Attackers can discard their cur-

rent identities and re-enter the systems when they have very

low trust levels and cannot be selected as collaborators.

(6) Collusion attack: Two or more malicious devices

improve their trust values by claiming that they helped each

other, However, they provide false validation results when

helping other devices to validate certificates.

In addition, a device never individually validates a certificate

that is not required by its own need, in order to avoid DoS

or resource exhaustion attacks. It only caches a certificate

validated by itself in prior communications and provides

validation confirmation of this certificate to another device.

III. DESIGN CONSIDERATION OF CERTIFICATE LOCATOR

One major challenge of collaborative certificate validation

is to allow each device to efficiently locate another device that

validated and caches the certificate of the public key to use.

A simple solution is to let each device maintain a complete

index of all certificate-to-device mappings. This method is

not scalable because every mapping requires more than 1000

bits of memory, assuming a public key is 1024-bit long. A

more advanced method is that each device maintains m − 1
counting Bloom filters (CBFs) [7] (m is the number of devices

in the network). Each CBF represents the set of certificates of

a device. The drawbacks of this method are 1) locating the

holder of a certificate requires up to m−1 Bloom filter lookup

operations, and 2) CBFs are not memory-efficient. Hence these

methods are impractical for IoT.

In this work we utilize and improve a recent innovation

called Othello Hashing [26] to design a memory-efficient and

fast locator for certificate holders. In addition, existing design

of Othello Hashing does not fully satisfy the requirement of

the locator hence we propose an improvement design called

Othello-based Locator (OLoc). Every device stores an OLoc.

Othello Hashing is used to represent a set of key-value pairs.

Given a set of keys K and each key k is mapped to a value

v ∈ V . Let n = |K|. An Othello Hashing structure is a seven-

tuple < ma,mb, ha, hb, a, b, G > defined as follows: Integers

ma and mb is the size of Othello. ma = mb ≈ 1.33n. A

pair of uniform random hash functions < ha, hb > maps

keys to integer values 0, 1, ...,ma − 1 and 0, 1, ...,mb − 1
respectively. a and b are two arrays including ma and mb

elements respectively. G is a bipartite graph which is used to

determine the values in a and b.

Othello uses O(n) time to build a bipartite graph G,

which is used to assign the elements of a and b, such that

a(ha(k))⊕b(hb(k)) is the value of k. Hence finding the value

of a given key k is extremely fast. Othello can simply retrieve

a(ha(k)) and b(hb(k)) and compute their XOR, requiring only

two memory access operations. In addition, G is needed only

by construction, hence the devices that perform lookups (such

as the IoT devices) do not need to maintain G.

Complexity. The space cost of the two arrays in Othello

is small, around 2.66nl bits, where l is the length of each

value. Each lookup only requires two memory access and one

XOR operations –very small constant. Space and lookup cost

is more efficient than most existing main-stream hash tables

including Cuckoo Hashing [26]. The expected time to add,

delete and update a key-value pair is proved to be O(1) [26].

Opportunities and challenges of using Othello. We find

that Othello Hashing is a good fit for the application of

memory-efficient certificate locator. Let each key be a public

key and the corresponding value be the holder of the certifi-

cate. We realize that, to perform locator lookups, only the two

hash functions < ha, hb > and arrays a and b need to be stored

in a device. The construction information, such as the key-

value pairs and the bipartite graph G are shared by the entire

network and not needed for lookups. Hence this information

can be stored at the tracker. Note the Othello construction and

update operations are relatively more complex than lookups.

Hence the IoT devices can avoid these operations and only

be responsible for efficient lookups. The tracker has plenty of

resources for construction and is responsible for updating and

sending the updated Othello arrays to the devices.

However, one limitation of Othello Hashing is that, if we

search a key k′ that is not in K, Othello will return an

arbitrary value. It is because a(ha(k
′)) and b(hb(k

′)) will

be two arbitrary elements. Hence if a certificate C is not

cached by any device in the network, the locator will point to

an arbitrary device. Falsely locating a holder will waste both

communication bandwidth and latency. In the next section, we

will present an improved design of an Othello-based Locator

(OLoc) to reduce the rate of false holder locating.
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Fig. 1. Protocol overview of CCV
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Fig. 2. OLoc lookup in CCV

IV. PROTOCOL DESIGN

A. Protocol Overview

Fig. 1 illustrates the overview of the proposed protocol

CCV. The CCV protocol runs on both the IoT devices and

the tracker.

Protocol on an IoT device d. When a device d needs to

validate a certificate C, CCV works as follows. Part 1. d
searches the Othello-based Locator (OLoc) to look for a holder

of C. Part 2. If the OLoc indicates that there is a holder h of

C, devices d and h conduct collaborative validation based on

the cached certificate on h. Part 3. If the OLoc indicates that

there is no holder of C, d runs individual validation. Part 5.

If a holder h confirms the validation of C, d will forward this

event to the tracker with a probability to allow the tracker to

monitor the trustworthiness of h.

Protocol on the tracker. In fact, it can be any of the

trackers. For simplicity, we use ‘the’ tracker. The tracker

is responsible for updating the OLoc of different devices,

monitoring the trust values, and removing revoked certificates.

The protocol on the tracker operates as follows: Part 4. Since

the certificates cached in the network change gradually, the

tracker needs to update the OLoc for each device to keep track

of the update-to-date holder information. It then distributes

the updated OLoc to each device. Part 5. When the tracker

receives a forwarded validation confirmation showing that h
just helped d, it will verify the correctness of this confirmation

and update h’s trust value accordingly. Part 6. When the

tracker receives new revocation lists from CAs, it notifies the

holders to remove these certificates from their caches.

B. Othello-based Locator and Update

The CCV protocol is driven by messages and events. Upon

receiving a validation requirement of a certificate C of a public

key k+ from the upper layer, a device d first checks its local

cache to see whether it has cached C. If C is cached and

the two versions are identical, then d confirms the validity of

C. Otherwise, d needs to determine whether there is another

device being the holder of C and which device it is.

Every device stores an Othello-based Locator (OLoc). The

lookup key of OLoc is a public key (identifier of a certifi-

cate) and the lookup result should indicate the holder of the

certificate. As discussed in Sec. III, one limitation of Othello

Hashing is that, if a certificate C is not cached by any device

in the network, the locator will point to an arbitrary device.

Assume the network has n devices and each device can be

referred by a l-bit index: l = ⌈log2 n⌉. Our innovation is to

extend the lookup value τ of an Othello to l + l′ bits for

the certificate C of the public key k+. The l least significant

bits (LSBs) of τ is the index of the holder i and the l′

most significant bits is the check code c of this certificate.

c is determined by the hash value H(k+) using a CRC hash

function H . Since H(k+) is longer than l′ bits, c can simply

be the l′ LSBs of H(k+).
Fig. 2 illustrates an example of the OLoc lookup. When a

device searches its OLoc for the holder of the certificate C
of k+, it compares whether the l′ LSBs of H(k+) matches

the check code c return by OLoc. If they match, it is highly

likely that the certificate is actually cached by the holder. By

“highly likely”, we mean that there is still a probability that

C is not cached but matches the check code, called a false

matching. Such probability is around 1/2l
′

depending on the

length of the check code l′. The existence of false matchings

does not hurt the correctness and security of CCV, but will

slightly increase the communication cost. In the example of

Fig. 2, both l and l′ are set to 8, which can be adjusted based

on the system requirements.

When the device d gets index i and the check code matches

H(k+), d sends message < REQUEST VALI, C, d, h > to

another device h whose index is i to perform collaborative

validation. If the check code does not match H(k+), the device

terminates CCV and conducts individual validation.

On the tracker side, the OLoc at every device should be

dynamically updated to reflect the update-to-date certificate

to holder mapping. At the very beginning, Othello is empty.

Then the tracker updates the OLoc of all devices at a fixed

interval and distributes newly updated OLoc to the devices.

Although the tracker is responsible for updating all devices in

the network, these updates are efficient and scalable because

all devices may share a same OLoc. When a device caches

a certificate, it sends a NEW CACHE message to notify the

tracker. Hence the tracker keeps track of all cached certificates

in the network and updates the OLoc. The updated OLoc is

then sent to the devices using the UPDATE OLOC message.

We apply another optimization based on the IoT network

features. It is possible that one certificate C is cached by

multiple devices in the network. Hence C may have multiple

holders, any of which can be a valid result of a holder

locator. In the construction stage of Othello, we choose the

index of one holder to be the lookup result of OLoc for the

public key k+ in C. However, it is reasonable to choose the



most suitable holder of C for different devices when there

are multiple feasible options. To construct the OLoc of a

device d, CCV may choose the holder with shortest network

distance (e.g., smallest hop count) to d. One may note that

using this optimization, the OLoc in different devices may be

different. Two devices on different locations in the network

may be close to different holders. However, constructing these

different versions of OLoc is still efficient. They share the

same set of keys and the same bipartite graph G, because G
depends only on the set of keys, rather than their values. Note

that computing G is the most time-complex step during the

construction of an Othello. Once G is obtained, determining

the arrays a and b is trivial. Hence all devices can still share

a same G and the arrays a and b can be computed in a short

time. In addition, many devices in network proximity are still

able to use a same OLoc.

In addition, the trust values of IoT devices maintained by the

track are used to filter malicious devices. Hence the tracker

will only select the holders whose values are above a pre-

determined threshold.

C. Collaborative Validation

To request a collaborative validation of certificate C, device

d sends a message < REQUEST VALI, C, d, h > to the holder

h. Upon receiving this message, the holder h searches its

cache to find the certificate of the public key k+ on C.

If such certificate exists and is identical to C, it replies

d with a message < REPLY VALI, C, h, d, ‘Correct′ >. If

the certificate exists but is different from C, it replies d
with a message < REPLY VALI, C, h, d, ‘Wrong′ >. If no

certificate of k+ is cached, it replies d with a message

< REPLY NO CERT, C, h, d >. The main reason for a

missing certificate is that previously cached certificates may

be replaced by others due to the lack of cache space, while this

information has not been updated to OLoc. The other reason is

the false matchings. Note all these messages should be signed

by h’s private key for non-repudiation purposes.

Once the device d receives the REPLY VALI message with

a ‘Correct’ value from a holder h, it knows the validation

of certificate C is confirmed and it can use C for incoming

communications. If d receives the REPLY VALI message

with a ‘Wrong’ value. It will discard the certificate C and

still forward this event to the tracker. If d receives the

REPLY NO CERT message, it runs individual validation.

One additional step is that d may forward the confirmation

events to the tracker, in order to improve the trust value

of the holders that provide validation. It sends a message

< UPDATE TRUST, d, t, E >, where E includes one or more

REPLY VALI messages received during the past period of time

as well as their digital signatures. In order to save message

cost and reduce tracker overhead, d does not forward every

collaborative validation event but on a sampling basis. When

a malicious device keeps providing false validation results,

then eventually it will be detected.

D. Individual validation and caching

If the device d chooses to run individual validation of

certificate C, this process consumes computation resource and

relatively long latency on d. After C being validated, d will

cache C in its local memory. One of the following three cache

replacement strategies will be used to replace old certificate:

random, FIFO (first in, first out), and LRU (Least recently

used). If an old certificate Co is replaced by a new one, d
sends a message < DELETE, Co, u, t > to the tracker.

Besides validating the certificate, d also needs to

check the revocation status of the certificate. It sends <
CHECK REVO, C, d, t > to the tracker to query the re-

vocation status. If the certificate is included in the revo-

cation list stored in the tracker. The tracker will send a

< REVO CERT, C, d, t > message to call back C and let

d stop using C and remove it from the cache.

E. Trust Model and Updates

1) Trust Model: The trust model is used to facilitate the

detection of malicious devices and make them in lower prob-

ability to be the selected holder. CCV adopts the following

definition of trust built from an existing model [5].

Definition 1. In the IoT network, a device d’s trust to

another device d′ is the subjective expectation of d of receiving

positive outcomes through the communications with d′.
Specifically, the trust value in CCV quantifies the expecta-

tion to receive correct validation results of certificates. The

range of trust value between two devices is [0, 1]. At the

beginning, the trust value between every two devices is set to

be 0.5. Trust can be categorized into two classes: direct trust

and indirect trust. Direct trust is the trust that is calculated by

direct communications between two devices. Indirect trust is

the trust that is calculated by indirect recommendations, which

will be explained later.

We consider both direct and indirect trusts and use past

communications between two devices to measure the trust

value. Direct trust is based on the certificate validation results

between a validation requester and the holder. During a

period of time, the tracker will gather collaborative validation

events and verify whether the holder honestly validated the

certificates or not. At time ρ, the tracker records the number

of honest validation events s and the number of dishonest

validation events f between a requester d and a holder d′

from the beginning of the system. We adopt a subjective logic

framework [14] [13] to compute the direct trust. Due to space

limit, we skip the detailed formulas.

Indirect trust is based on the recommendation. Device A
trusts B with a direct trust value α and device A trusts C
with a direct trust value ǫ. When the trust value that B trusts

C updates to β, if the trust value from A to B exceeds the

threshold θ, θ is set to be 0.5. B can recommend C to A. A
trusts C with an updated value αβ + (1− α)ǫ.

2) Trust Updates: When the tracker receives an UP-

DATE TRUST message, it verifies the collaborative validation

events in E. The tracker maintains two arrays A and B to store

the numbers of honest and dishonest collaborative validation



events between two devices respectively. A[i][j] denotes the

number of honest validations that i provides to j, and B[i][j]
denotes the number of dishonest validations that i provides

to j. The tracker also stores the trust value T [i][j] at current

time which denotes the degree that i trusts j. Once the tracker

verifies the collaborative validation event that j provided to i,
it updates A[i][j] or B[i][j].

If the tracker finds that a validation is dishonest and the

certificate is not valid, it sends a FALSE VALI RESULTS

message to tell the device.

F. Revocation Check

Revocation status check is important in certificate validation

but time-consuming on devices. In CCV, the tracker actively

downloads the Certificate Revocation List (CRL) [17]. A

device can send a CHECK REVO message to request the

revocation status of a certificate. This design makes the device

start using the certificate simultaneously while waiting for the

reply from the tracker. The tracker replies about the status

using a REPLY REVO message. If the certificate is revoked

according to the tracker, the device stops using it, removes it

from the cache, and rolls back to the prior state. In addition,

when the tracker updates its local revocation list and finds

existing certificates cached in the network are expired, it will

send REVO CERT messages to the holders of these certificates

for removing them.

V. EXPERIMENTAL RESULTS AND SECURITY ANALYSIS

We implement a complete version of CCV in a packet-level

discrete-event simulator running on a desktop with 3.6GHz

Intel(R) Core(TM) i7-7700 CPU. The actual processes of

cryptographic operations are implemented and the latencies,

including cryptographic latency and network latency, are sim-

ulated. The reason is that the cryptographic latency on a

desktop does not reflect the actual cryptographic overhead

on an IoT device. We use the latency data of cryptographic

operations gathered from a WisMote platform featuring a

16MHz MSP430 micro-controller [19] [11]. We use SHA256

for hash operations, elliptic curve NIST P-256 for PKC, and

AES-128 for symmetric-key operations in secure communi-

cations among in-network IoT devices. We compare CCV

to an advanced method of individual certificate validation

[11], in which validating the certificate chain only requires

one single decryption operation. The average time of such

individual certificate validation on WisMote is around 1.9sec

with 13.9ms standard deviation as reported in [11]. Note

most existing certificate validation methods typically require

multiple intermediate certificates in a chain, and the validation

overhead grows linearly with the number of intermediate

certificates [11].

In our experiments, we simulate a number of IoT devices

running the CCV protocol to collaboratively validate the

certificates. We use ‘I-Valid’ to refer to individual validation.

For a fair comparison, in CCV we assume at the system start

time, no certificate is validated and cached in the network.

Also, OLoc will use the cache space. Every certificate in CCV

must be individually validated once and cached for further use.

The tracker updates the OLoc every five seconds.

We evaluate and compare the following six metrics of CCV.

1) Latency is the average time from receiving a certificate

to finishing validation on a device. 2) Number of local

decryptions is the number of times of running public key

decryption to validate certificates. It characterizes the compu-

tation overhead on devices. 3) Average number of messages

per certificate evaluates the communication cost. 4) Through-

put is the maximum number of certificate validations on the

simulator. Although the computation resource on the simulator

is different from that on a device, this metric still reflects

whether CCV reduces resource overhead. 5) Computational

cost for OLoc update measures the overhead of the tracker.

6) Trust value changes are used to detect malicious devices.

The number of events that require certificate validations

happening on devices follows the Poisson distribution. The

parameter λ denotes the average number of events happening

in 1 sec, which is used to adjust the frequency of events. We

vary the number of events that requires a particular certificate

in three distribution: uniform, normal, and power law.

A. Evaluation Results

Performance varies with time. Assuming at the system

start time, no certificate is validated and cached in the network.

Then the devices validate and cache certificates gradually. We

may expect that the validation latency of CCV will decrease

when time increases. Fig. 3 shows the performance comparison

of CCV and I-Valid, by varying the time. In this set of

experiments, the number of IoT devices is 100, the total

number of certificates is 1000, λ is set to be 10, and the

memory size (OLoc and cache) is set to be 32 KB. I-Valid also

uses cache space to store certificates. We show the results for

uniform, normal, and power law distributions. From Fig. 3(a),

we find that CCV requires > 0.5s in average to validate a

certificate at time 500s and the latency keeps decreasing to

0.27s at time 5000s. CCV only uses 25% time compared to

I-Valid. More importantly, Fig. 3(b) shows that CCV always

requires around 10 decryptions per device, while this number

can be > 400 for I-Valid at time 5000s. CCV reduces more

than 99% local decryption operations and significantly saves

the computation cost. The latency of CCV is mainly the

network latency. From Fig. 3(c), we can see that the average

number of messages for each certificate in CCV increases

during time 0s to 2000s, but will be stable after 2000s. It

is because more collaborative validation will be used than

individual validation. CCV is very communication-efficient:

the number of messages per certificate is close to two. We

also find that different distributions have a relatively small

influence on the performance of CCV.

Varying the number of certificates and cache size. We

conduct experiments by varying both the number of total

certificates and the cache size to evaluate their influence. In

this set of experiments, the number of devices is 100, λ is set to

be 10, and the time is a 3000s duration. The results are shown

in Fig. 4. We find that CCV outperforms I-Valid protocol
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simulator

with lower latency and lower number of local decryptions.

When the number of total certificates increases, the latency

(Fig. 4(a)) and the number of decryptions (Fig. 4(b)) both

increase slightly in CCV, but still provides huge advantages

compared to I-Valid. There is a sudden increase at 3000

certificates in both latency, the number of decryptions, and

message cost (Fig. 4(c)) for CCV when the cache is 32KB.

This is because the more cache misses are caused by increasing

number of certificates. When the cache is 64KB, there is no

such problem.

Cache replacement. This set of experiments vary cache

replacement strategies including random, FIFO and LRU.

Fig. 5 shows that the strategy has little influence on the latency

of CCV, with random and LRU being slightly better.

Throughput. In this set of experiments, we compare the

validation capacity of CCV and I-Valid by keeping devices

performing validations in the simulation. The simulator simu-

lates 100 devices simultaneously. The signing and verification

algorithm is ECDSA with 160 bits keys. Fig. 6 shows that the

number of validations on a device in one millisecond. From

Fig. 6, we can see that CCV has a much better throughput

compared to I-Valid protocol, especially when large percentage

of public keys are recorded in OLoc.

B. Tracker overhead

The heaviest task for the tracker is to update the OLoc.

Table. I shows the time to construct an OLoc with different

number of certificates. The results show that it is very time-

efficient for the tracker to update the OLoc with a gigantic

size of certificates. CCV also builds different OLoc to choose

the most suitable holder of C for different devices when there

are multiple choices. The reasons for multiple copies of C are

the update delay of OLoc at the begining and the detection

of malicious devices. The number of different values among

different OLoc is small. Table. II shows the time to construct

an OLoc based on an existing OLoc with 10000 shared keys

but different values. The results show that it is very time-

efficient for the tracker to build the OLoc when there is little

difference in values with an existing OLoc.

C. Security Results and Analysis

We provide the evaluation results and analysis of how CCV

defends against three major attacks conducted by malicious

devices mentioned in Sec. II-B.
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TABLE I
TIME FOR BUILDING OLOC

# certificates 100 1000 5000 10000 100000

Times (ms) 0.20 1.48 6.59 13.03 131.51

TABLE II
TIME FOR BUILDING OLOC WITH SAME KEYS BUT DIFFERNET VALS

# different vals 10 100 200 300 400

Times (ms) 2.05 2.98 4.33 5.98 7.52

Trust value evaluation. We monitor the trust values

changes for both honest and malicious devices. In the set of

experiments, the number of devices is 100, the number of

certificates is 1000, time is set to a 900s duration, and the

cache size is 32 KB for each device. The initial trust value

between any two devices is set to be 0.5. The trust value will

be dynamically updated due to collaborative validation. The

percentage of malicious devices is 5%. Fig. 7 shows the trust

value changes. We show the results of five randomly chosen

honest (Fig. 7(a)) and the five malicious devices (Fig. 7(b)).

We find that the trust values of honest devices increase to

> 0.5 and are maintained at a high level. On the other

hand, the trust values of malicious devices are all < 0.5.

They will be filtered by the tracker during OLoc construction.

Fig. 8 shows the number of total false validations by malicious

devices.After a short duration, most malicious devices are not

able to perform false validations.

Fig. 9 shows the performance of CCV varying with the

percentage of malicious devices, ranging from 0% to 50%,

after 1000s. At that time, most malicious devices will be

detected and not used but the capacity of the whole cache

pool decreases. Hence we find that the latency (Fig. 9(a))

and average number of descriptions (Fig. 9(b)) both increase

with more malicious devices. The average message per cer-

tificate decreases from 1.88 to 1.77 in Fig. 9(c) because more

individual validation is conducted. However, CCV protocol

still achieves much better performance on average latency and

number of local decryptions, compared to I-Valid.

False validation attack: The evaluation of trust value

changes has been analyzed and the results, such as those in

Fig. 8, indicate that after a short period of time, the malicious

devices are not able to conduct false validation attacks.

Self-promoting attack: Trust value of each device is main-

tained and updated by the tracker. It is hard for a malicious

device to promote itself to be a collaborator.

Defamation attack: Each collaborative validation event

must carry a digital signature of the holder for authenticity

and non-repudiation purposes. The digital signature will be

verified by the tracker. Hence a malicious device cannot forge

a false validation event from a honest device unless it owns

the private key of the honest device.

Traitor attack and whitewashing attack: As shown in

Fig. 7(b), once the malicious device provides bad devices, the



trust value will drastically drop below the threshold, thus it can

not be selected as a collaborator. Besides, the tracker can audit

the identity of the device. Thus, the high cost will effectively

prevent the whitewashing attack.

Collusion attack: Two or more malicious devices may

improve their trust values by claiming that they helped each

other. However, a malicious device will eventually provide

a number of dishonest validations, which will be detected

by the tracker statistically. In our model, the trust value

reduction from one dishonest validation will be much larger

than the trust value improvement from one honest validation.

Hence it is only possible that the colluding malicious devices

claim collaborative validations much more frequently than

providing dishonest validations. Extremely high frequency of

collaborative validations will also be detected by the tracker.

VI. RELATED WORK

Certificate validation. Certificate-based PKIs are respon-

sible for creating, managing, distributing, using, storing and

revoking public key certificates, such as X.509. They are

widely used in Web browsing (TLS), email (S/MIME) and

document authentication. Efficient certificate validation has

attracted a broad attention of the research community in recent

years [11] [20] [2] [1] [16] [25] [12] [24]. Some approaches

delegate validation task to a third party, such as a smart e-

health gateway [20] and local ISPs [2]. Some approaches use

prefetching and prevalidation techniques to reduce certificate

validation cost [24], which can remove the time pressure from

the certificate validation. However, this approach brings a huge

cost for memory.

Trust Model. Ganeriwal et al. [9] proposes a distributed

reputation-based framework (RFSN) for high integrity sensor

networks. RFSN only uses direct trust between two nodes.

Feng et al. [8] proposes the NBBTE algorithm to establish the

direct trust and indirect values between two nodes by com-

prehensively considering and combining various factors. An

efficient distributed trust model (EDTM) has been proposed

in [13], which takes more trust metrics such as the energy

level information into consideration besides communication

behaviors. EDTM considers both direct and indirect trust.

VII. CONCLUSION

We design and evaluate the CCV protocol for fast public-

key certificate validation. Our contributions include a memory-

efficient and fast locator for certificate holders, called OLoc;

a trust model for CCV to evaluate the trustworthiness of

each device to avoid dishonest collaborative validation from

malicious devices; and a complete protocol suite for efficient

OLoc update, cache replacement, and revocation status check-

ing mechanisms in a dynamic network. Evaluation results

show that CCV significantly saves computation resource and

certificate validation latency on IoT devices.
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