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Me and how I got here

■ Graduated from Grinnell 
(CS and music) in 2004

■ Web development at a 
(failed) startup, 2004–2006

■ Perl plumbing at a publishing 
company, 2006–2008
■ but in 2007, I moved in with a 

couple of Haskell hackers...

■ Ph.D. student at Indiana 
studying PL since fall 2008



My field: programming language semantics

■ Questions we might want to answer:

3

Source:  Andrew Myers’ CS 611 course at Cornell



My field: programming language semantics

■ Questions we might want to answer:
■ Is this program correct?

3

Source:  Andrew Myers’ CS 611 course at Cornell



My field: programming language semantics

■ Questions we might want to answer:
■ Is this program correct?

■ Will this program encounter a run-time type 
error?

3

Source:  Andrew Myers’ CS 611 course at Cornell



My field: programming language semantics

■ Questions we might want to answer:
■ Is this program correct?

■ Will this program encounter a run-time type 
error?

■ Is one program indistinguishable from another?

3

Source:  Andrew Myers’ CS 611 course at Cornell



My field: programming language semantics

■ Questions we might want to answer:
■ Is this program correct?

■ Will this program encounter a run-time type 
error?

■ Is one program indistinguishable from another?

■ Is this optimization a safe program 
transformation?

3

Source:  Andrew Myers’ CS 611 course at Cornell



My field: programming language semantics

■ Questions we might want to answer:
■ Is this program correct?

■ Will this program encounter a run-time type 
error?

■ Is one program indistinguishable from another?

■ Is this optimization a safe program 
transformation?

■ Can programs written in this language crash?

3

Source:  Andrew Myers’ CS 611 course at Cornell



My field: programming language semantics

■ Questions we might want to answer:
■ Is this program correct?

■ Will this program encounter a run-time type 
error?

■ Is one program indistinguishable from another?

■ Is this optimization a safe program 
transformation?

■ Can programs written in this language crash?

■ Is this compiler translation correct?

3

Source:  Andrew Myers’ CS 611 course at Cornell



My field: programming language semantics

■ Questions we might want to answer:
■ Is this program correct?

■ Will this program encounter a run-time type 
error?

■ Is one program indistinguishable from another?

■ Is this optimization a safe program 
transformation?

■ Can programs written in this language crash?

■ Is this compiler translation correct?

■ Can source language A be translated into 
target language B?
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Why Rust?

■ What do we have now?
■ Firefox is in C++, which is Fast and 

Systemsy

■ ML is (sometimes) Fast and (very) Safe

■ Erlang is Safe and Concurrent

■ Haskell is (sometimes) Fast, (very) Safe, and 
Concurrent

■ Java and C# are Fast and Safe

5
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A systems language
pursuing the trifecta:
fast, concurrent, safe
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You worked on the what system?!

■ I didn’t arrive with the intention of working on 
the object system, but...

■ I was intrigued by the idea of a classless object 
model and flexible prototype-based objects
■ and was told, “None of that’s implemented yet; go for it!”

■ When I started: no object extension, method 
overriding, or self-dispatch

■ During my internship, I implemented those things
■ and learned that they interact with each other in 

interesting ways
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Caveat: Some disagreement on whether it should work this way (see:  Aldrich, “Selective Open Recursion”)
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1511

to arbitrary depth■ We need a way to temporarily pretend 
that self is the inner object, while still 
keeping track of what the extended self is

■ Solution: create a stack of “fake selves” 
threaded through the run-time stack

■ Every forwarding function allocates space 
in its frame for a “fake self” comprising a 
backwarding vtable and an inner object 
body



Go try it out!
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rust-lang.org

http://rust-lang.org
http://rust-lang.org


17Photo by jamesrbowe on Flickr.  Thanks!

Questions?

Thanks to:
Graydon Hoare and everyone on the Rust team
Dave Herman and everyone at Mozilla Research


