object system at Mozilla

Lindsey Kuper
Grinnell College
April 5,2012

Me and how | got here

Me and how | got here

m Graduated from Grinnell
(CS and music) in 2004

Me and how | got here

m Graduated from Grinnell
(CS and music) in 2004

= Web development at a
(failed) startup, 2004—-2006

Me and how | got here

m Graduated from Grinnell
(CS and music) in 2004

= Web development at a
(failed) startup, 2004—-2006

= Perl plumbing at a publishing
company, 20062008

Me and how | got here

m Graduated from Grinnell
(CS and music) in 2004

= Web development at a
(failed) startup, 2004—-2006

= Perl plumbing at a publishing
company, 20062008

= butin 2007, | moved in with a
couple of Haskell hackers...

Me and how | got here

m Graduated from Grinnell
(CS and music) in 2004

= Web development at a
(failed) startup, 2004—-2006

= Perl plumbing at a publishing
company, 20062008

= butin 2007, | moved in with a
couple of Haskell hackers...
= Ph.D.student at Indiana
studying PL since fall 2008

My field: programming language semantics

= Questions we might want to answer:

Source: Andrew Myers’ CS 61| course at Cornell

My field: programming language semantics

= Questions we might want to answer:

= |s this program correct?

Source: Andrew Myers’ CS 61| course at Cornell

My field: programming language semantics

= Questions we might want to answer:

= |s this program correct?

= Will this program encounter a run-time type
error!

Source: Andrew Myers’ CS 61| course at Cornell

My field: programming language semantics

= Questions we might want to answer:

= |s this program correct?

= Will this program encounter a run-time type
error!

m |s one program indistinguishable from another?

Source: Andrew Myers’ CS 61| course at Cornell

My field: programming language semantics

= Questions we might want to answer:

= |s this program correct?

= Will this program encounter a run-time type
error!

m |s one program indistinguishable from another?

= |s this optimization a safe program
transformation?

Source: Andrew Myers’ CS 61| course at Cornell

My field: programming language semantics

= Questions we might want to answer:
= |s this program correct!

= Will this program encounter a run-time type
error!

m |s one program indistinguishable from another?

= |s this optimization a safe program
transformation?

= Can programs written in this language crash?

Source: Andrew Myers’ CS 61| course at Cornell

My field: programming language semantics

= Questions we might want to answer:
= |s this program correct!

= Will this program encounter a run-time type
error!

m |s one program indistinguishable from another?

= |s this optimization a safe program
transformation?

= Can programs written in this language crash?

= |s this compiler translation correct!?

Source: Andrew Myers’ CS 61| course at Cornell

My field: programming language semantics

= Questions we might want to answer:
= |s this program correct!

= Will this program encounter a run-time type
error!

m |s one program indistinguishable from another?

= |s this optimization a safe program
transformation?

= Can programs written in this language crash?
= |s this compiler translation correct!?

= Can source language A be translated into
target language B!

Source: Andrew Myers’ CS 61| course at Cornell

Why Rust!?

= What do we want in a programming
language!

Source: Michael Sullivan,“Closures for Rust”

Why Rust!?

= What do we want in a programming
language!

= Fast: generates efficient machine code

Source: Michael Sullivan,“Closures for Rust”

Why Rust!?

= What do we want in a programming
language!
= Fast: generates efficient machine code

= Safe: type system provides guarantees that
prevent certain bugs

Source: Michael Sullivan,“Closures for Rust”

Why Rust!?

= What do we want in a programming
language!
= Fast: generates efficient machine code

= Safe: type system provides guarantees that
prevent certain bugs

= Concurrent: easy to build concurrent
programs and to take advantage of
parallelism

Source: Michael Sullivan,“Closures for Rust”

Why Rust!?

= What do we want in a programming
language!
= Fast: generates efficient machine code

= Safe: type system provides guarantees that
prevent certain bugs

= Concurrent: easy to build concurrent
programs and to take advantage of
parallelism

= “Systemsy’: fine-grained control,
predictable performance characteristics

Source: Michael Sullivan,“Closures for Rust”

Why Rust!?

= What do we have now?

Source: Michael Sullivan,“Closures for Rust”

Why Rust!?

= What do we have now?

s Firefox is in C++, which is Fast and
Systemsy

Source: Michael Sullivan,“Closures for Rust”

Why Rust!?

= What do we have now?

s Firefox is in C++, which is Fast and
Systemsy

= ML is (sometimes) Fast and (very) Safe

Source: Michael Sullivan,“Closures for Rust”

Why Rust!?

= What do we have now?

s Firefox is in C++, which is Fast and
Systemsy

= ML is (sometimes) Fast and (very) Safe

= Erlang is Safe and Concurrent

Source: Michael Sullivan,“Closures for Rust”

Why Rust!?

= What do we have now?

s Firefox is in C++, which is Fast and
Systemsy

= ML is (sometimes) Fast and (very) Safe

= Erlang is Safe and Concurrent

= Haskell is (sometimes) Fast, (very) Safe, and
Concurrent

Source: Michael Sullivan,“Closures for Rust”

Why Rust!?

= What do we have now?

s Firefox is in C++, which is Fast and
Systemsy

= ML is (sometimes) Fast and (very) Safe

= Erlang is Safe and Concurrent

= Haskell is (sometimes) Fast, (very) Safe, and
Concurrent

= |ava and C# are Fast and Safe

Source: Michael Sullivan,“Closures for Rust”

Why Rust!?

A systems language
pursuing the trifecta:
fast, concurrent, safe

You worked on the what system?!

You worked on the what system?!

= | didn’t arrive with the intention of working on
the object system, but...

You worked on the what system?!

= | didn’t arrive with the intention of working on
the object system, but...

= | was intrigued by the idea of a classless object
model and flexible prototype-based objects

You worked on the what system?!

= | didn’t arrive with the intention of working on
the object system, but...

= | was intrigued by the idea of a classless object
model and flexible prototype-based objects

= and was told, “None of that’s implemented yet; go for it!”

You worked on the what system?!

= | didn’t arrive with the intention of working on
the object system, but...

= | was intrigued by the idea of a classless object
model and flexible prototype-based objects

= and was told, “None of that’s implemented yet; go for it!”

= When | started: no object extension, method
overriding, or self-dispatch

You worked on the what system?!

= | didn’t arrive with the intention of working on
the object system, but...

= | was intrigued by the idea of a classless object
model and flexible prototype-based objects

= and was told, “None of that’s implemented yet; go for it!”

= When | started: no object extension, method
overriding, or self-dispatch

= During my internship, | implemented those things

You worked on the what system?!

= | didn’t arrive with the intention of working on
the object system, but...

= | was intrigued by the idea of a classless object
model and flexible prototype-based objects

= and was told, “None of that’s implemented yet; go for it!”

= When | started: no object extension, method
overriding, or self-dispatch

= During my internship, | implemented those things

= and learned that they interact with each other in
Interesting ways

Self-dispatch

Self-dispatch

}
}
let shortcat = cat();
assert (shortcat.zzz() == meow);
T — —

Obj Cat() {
tn aCk() -> str {
ret "ack’;
}
fn meow() -> str {
ret "meow;
}

fn zzz() -> str {
ret self.meow();

Self-dispatch + object extension

obj cat() {

fn ack() -> str {
ret "ack’;

}

fn meow() -> str {
ret "meow ;

}

fn zzz() -> str {
ret self.meow();

}
}
let shortcat = cat();
T ——
assert (shortcat.zzz() == mecow');
T — e —

Self-dispatch + object extension

obj cat() {
fn ack() -> str {

ret "ack’ -

}

fn meow() -> str
ret "meow ;

}

fn zzz() -> str {

}
}

let shortcat = cat();

assert (shortcat.zzz(

ret self.meow(); };

let longcat = obj() {
fn lol() -> str {
ret "lol";

}
{ fn nyan() -> str {
ret "nyan’;
}

with shortcat

r

T ——
) == "meow)7
D |

T —

assert (longcat.zzz() == |

A brainteaser...

obj cat() { let longcat = obj() {

fn ack() -> str { fn lol() =-> str {
ret ; ret ;

} }

fn meow() -> str { fn nvan() -> str {
ret ’ ret ’

} }

fn zzz() -> str { with shortcat
ret self.meow(); };

}
}

assert (longcat.zzz() ==) ;

let shortcat = cat();

assert (shortcat.zzz() ==

After my first

e — ————n | imMplementation attempt,
this assertion failed.
Why!?

INT...

A brainteaser...

obj cat() { let longcat = obj() {

fn ack() -> str { fn lol() =-> str {
ret ; ret ;

} }

fn meow() -> str { fn nvan() -> str {
ret ’ ret ’

} }

fn zzz() -> str { with shortcat
ret self.meow(); };

}
}

assert (longcat.zzz() ==) ;

let shortcat = cat();

assert (shortcat.zzz() ==

After my first

e — ————n | imMplementation attempt,
this assertion failed.
Why!?

A brainteaser...

obj cat() {
fn ack() =-> str {
ret "ack";

}

fn meow() -> str {
ret "meow";

}

fn zzz() -> str {
ret self.meow();

}
}

let shortcat = cat();

assert (shortcat.zzz() == "meo

let longcat = obj() {
fn lol() -> str {
ret "lol";
}
fn nyvan() -> str {
ret "nyan”;

}
with shortcat
}i
assert (longcat.zzz() == "meow');

A

longcat’s vtable

A brainteaser...

ob] () A let longcat = obj() {
fn ack() -> str { fn lol() =-> str {
ret H ret ’
} }
fn 1 () => str { fn nyan() -> str {
ret ’ ret :
} }
fn () —> str { with shortcat
ret self.meow(); };
}
} assert (longcat.zzz() ==) ;
let shortcat = cat(); | A
’ longcat’s vtable
assert (shortcat.zzz() ==
0 ack forward to shortcat.ack()
shortcat’s vtable |1 lol ret “lol”
0 ack ret *“ack” 2 meow forward to shortcat.meow()
| meow ret “meow” 3 nyan ret “nyan”
2 zzz ret self.meow() 4 zzz forward to shortcat.zzz()

How to fix it

obj () {
fn . () => str {
ret ;
}
fn 1 () => str {
ret ;
}
fn () => str {
ret self.meow();
}
}

let shortcat = cat();

let longcat = obj() {
fn lol() -> str {
ret ;
}
fn an() => str {
ret ;
}

}i

assert (longcat.zzz(

with shortcat

)

~ longcat’s vtable
assert (shortcat.zzz() ==
0 ack forward to shortcat.ack()
shortcat’s vtable | 1ol ret “lol”
0 ack ret *“ack” 2 meow forward to shortcat.meow()
| meow ret “meow” 3 nyan ret “nyan”
2 zzz ret self.meow() 4 zzz forward to shortcat.zzz()

How to fix it

ob] () A let longcat = obj() {
fn () => str { fn () => str {
retc ’ ret :
i }
fn () => str { fn () => str {
ret ; ret .
i }
fn () => str { with shortcat
ret self meow(). }s
shortcat’s backwarding vtable
O |ack |backward to longcat.ack() @ssert (longcat.zzz() ==) ;

| |meow |backward to longcat .meow|() i

longcat’s vtable

2 |zzz |backward to longcat.zzz()

0 ack forward to shortcat. ack ()

shortcat’s vtable | 1ol ret “lol”

0 ack ret “ack” meow forward to shortcat.meow()

2
| meow ret “meow” 3 nyan ret “nyan”
4

2 zzz ret self.meow() zzz | forward to shortcat.zzz()

How to fix it

ob] () A let longcat = obj() {
fn () => str { fn () => str {
retc ’ ret :
i }
fn () => str { fn () => str {
ret ; ret .
i }
fn () => str { with shortcat
ret self meow(). }s
shortcat’s backwarding vtable
O |ack |backward to longcat.ack() @ssert (longcat.zzz() ==) ;

| |meow |backward to longcat .meow|() i

longcat’s vtable

2 |zzz |backward to longcat.zzz()

0 ack forward to shortcat. ack ()

shortcat’s vtable | 1ol ret “lol”

0 ack ret “ack” meow forward to shortcat.meow()

2
| meow ret “meow” 3 nyan ret “nyan”
4

2 zzz ret self.meow() zzZ forward to shortcat.zzz()

Self-dispatch + object extension + overriding

obg cat() {
fn ack() -> str {
ret "ack ;
}
fn meow() -> str {
ret me -
}

fn zzz() -> str {
ret self.meow();

}
}

let shortcat = cat();

assert (shortcat.zzz() == "ne) ;

— —

Self-dispatch + object extension + overriding

obj cat() {
fn ack() -> str {

ret "ack -

}

fn meow() -> str {
ret "meow’;

}

fn zzz() -> str {
ret self.meow();

}

let shortcat = cat();

assert (shortcat.zzz() == mecow);

— -

T —— ——
}

Self-dispatch + object extension + overriding

Obj Cat() {
fn ack() -> str {
ret "ack";
}
fn meow() -> str {
ret "meow":
}

fn zzz() -> str {
ret self.meow();

}i

let longercat = obj() {

fn meow() -> str {

ret "zzz";
}

with shortcat

assert (longercat.zzz() == zz=z ’

} |
T ——
}
let shortcat = cat();
assert (shortcat.zzz() == meow);
T — —

-

Self-dispatch + object extension + overriding

obj cat() { let longercat = obj() {
fn ack() -> str { fn meow() -> str {
ret ; ret ;
} }
fn meow() -> str { with shortcat
ret - };
}
in 222() -> str { assert (longercat.zzz() ==) ;

ret self.meow();

}
}

let shortcat = cat();

assert (shortcat.zzz() ==

Self-dispatch + object extension + overriding

Obj Cat() {
fn ack() -> str {
ret "ack";
}
fn meow() -> str {
ret "meow":
}

fn zzz() -> str {
ret self.meow();

}i

let longercat = obj() {

fn meow() -> str {

ret "zzz";
}

with shortcat

assert (longercat.zzz() == zz=z ’

} |
T ——
}
let shortcat = cat();
assert (shortcat.zzz() == meow);
T — —

-

Self-dispatch + object extension + overriding

obj cat() { let longercat = obj() ({
fn ack() -> str { fn meow() -> str {
ret ; retc ;
} }
fn meow() -> str { with shortcat
ret ; };
}
fn zzz() -> str { assert (longercat.zzz() ==) 3
ret self.meow();
} T —— ‘
}
let shortcat = cat();
assert (shortcat.zzz() ==) ;

longercat’s vtable

0 ack forward to shortcat.ack()

meow ret “zzz"

2 zzz forward to shortcat.zzz()

Self-dispatch + object extension + overriding

obj cat() { let longercat = obj() {
fn ack() -> str { fn meow() -> str {
ret ; ret ;
} }
fn meow() -> str { with shortcat
ret ; }i
}
fn zzz() -> str { assert (longercat.zzz() ==) ;
ret self.meow();
} T —— T
}
let shortcat = cat();
assert (shortcat.zzz() ==) ;
shortcat’s vtable longercat’s vtable
0 ack ret *“ack” 0 ack forward to shortcat.ack()
| meow ret “meow” | meow ret “zzz”
2 zzz ret self.meow() 2 zzz forward to shortcat.zzz()

Self-dispatch + object extension + overriding

obj cat() { let longercat = obj() {
fn ack() -> str { fn meow() -> str {
ret : ret ’
} }
fn meow() -> str { with shortcat
ret ; };
}
fn zzz() -> str { assert (longercat.zzz() ==) ;
ret self meow().
shortcat’s backwarding vtable I ——
O |ack |backward to longercat.ack()
| |meow |backward to longercat.meow()
2 |zzz | backward to longercat.zzz() |;
shortcat’s vtable longercat’s vtable
0 ack ret *“ack” 0 ack forward to shortcat.ack()
| meow ret “meow” | meow ret “zzz”
2 zzz ret self.meow() 2 zzz forward to shortcat.zzz()

Self-dispatch + object extension + overriding

obj cat() { let longercat = obj() {
fn ack() -> str { fn meow() -> str {
ret : ret ’
} }
fn meow() -> str { with shortcat
ret ; };
}
fn zzz() -> str { assert (longercat.zzz() ==) ;
ret self meow().
shortcat’s backwarding vtable I ——
O |ack |backward to longercat.ack()
| |meow |backward to longercat.meow()
2 |zzz | backward to longercat.zzz() |;
shortcat’s vtable longercat’s vtable
0 ack ret *“ack” 0 ack forward to shortcat.ack()
| meow ret “meow” | meow ret “zzz”
2 zzz ret self.meow() 2 zzz forward to shortcat.zzz()

Self-dispatch + object extension + overrldlng

obj cat() {
fn ack() -> str {
ret "ack’;
}
fn meow() -> str {
ret "meow ;
}

fn zzz() -> str {
ret self.meow();

}
}

let shortcat = cat();

—

assert (shortcat.zzz() ==

to arb:trary depth

let longercat = obj() {
fn meow() -> str {
ret '

L L 4 ’

}

with shortcat

}i

assert (longercat.zzz(

== "zzz);

|
T p—

T

—

Self-dispatch + object extension + overrldlng

to
obj cat() { let longercat = obj() {
fn ack() =-> str { fn meow() -> str {
ret "ack’; ret "zzz";
} }
fn meow() -> str { with shortcat
ret "meow ; };
}
fn zz2z() -> str { assert (longercat.zzz() == "zzz");
ret self.meow();
}
let shortcat = cat(
assert (shortcat.zz:
T —
I — T —

Self-dispatch + object extension + overrldlng

obj cat() {
fn ack() -> str {
ret "ack”;

}

" "
MO TaY .
.l. - A.l'-_- ':'_:' .ﬂ .'I‘

ret ;

}

fn zzz() -> str {

}
}

let shortcat = cat(

assert (shortcat.zz:

—

—

fn meow() -> str {

ret self.meow();

let longercat = obj() {
fn meow() -> str {
ret "zzz";
}
with shortcat
}i
assert (longercat.zzz() == "zzz");
T —— —
let evenlongercat = obj() {
fn meow() -> str {

}i

assert (evenlongercat.zzz()

to arb:trary depth

ret "zzzzzz ;

}

with longercat

'222222");

—
|5

Self-dispatch + object extension + overrldlng
to arb:trary depth

Self-dispatch + object extension + overriding

€O arbitr,
= Ve need a way to temporarily pretend

that self is the inner object, while still
keeping track of what the extended self is

ry depth

Self-dispatch + object extension + overriding
tO arbltra
= Ve need a way to temporarily pretend

that self is the inner object, while still
keeping track of what the extended self is

ry depth

m Solution: create a stack of “fake selves”
threaded through the run-time stack

Self-dispatch + object extension + overriding

to arbltl‘ar
= We need a way to temporarily pretend 4 depth

that self is the inner object, while still
keeping track of what the extended self is

m Solution: create a stack of “fake selves”
threaded through the run-time stack

= Every forwarding function allocates space
in its frame for a “fake self” comprising a
backwarding vtable and an inner object

body

Go try it out!

@ rust-lang.org

http://rust-lang.org
http://rust-lang.org

T

Questions?

Thanks to:
Graydon Hoare and everyone on the Rust team
Dave Herman and everyone at Mozilla Research

@@ Photo by jamesrbowe on Flickr. Thanks! 17

