
Hacking the Rust object system at Mozilla
Lindsey Kuper

Grinnell College
April 5, 2012

1

2

Me and how I got here

2

Me and how I got here

■ Graduated from Grinnell
(CS and music) in 2004

2

Me and how I got here

■ Graduated from Grinnell
(CS and music) in 2004

■ Web development at a
(failed) startup, 2004–2006

2

Me and how I got here

■ Graduated from Grinnell
(CS and music) in 2004

■ Web development at a
(failed) startup, 2004–2006

■ Perl plumbing at a publishing
company, 2006–2008

2

Me and how I got here

■ Graduated from Grinnell
(CS and music) in 2004

■ Web development at a
(failed) startup, 2004–2006

■ Perl plumbing at a publishing
company, 2006–2008
■ but in 2007, I moved in with a

couple of Haskell hackers...

2

Me and how I got here

■ Graduated from Grinnell
(CS and music) in 2004

■ Web development at a
(failed) startup, 2004–2006

■ Perl plumbing at a publishing
company, 2006–2008
■ but in 2007, I moved in with a

couple of Haskell hackers...

■ Ph.D. student at Indiana
studying PL since fall 2008

My field: programming language semantics

■ Questions we might want to answer:

3

Source: Andrew Myers’ CS 611 course at Cornell

My field: programming language semantics

■ Questions we might want to answer:
■ Is this program correct?

3

Source: Andrew Myers’ CS 611 course at Cornell

My field: programming language semantics

■ Questions we might want to answer:
■ Is this program correct?

■ Will this program encounter a run-time type
error?

3

Source: Andrew Myers’ CS 611 course at Cornell

My field: programming language semantics

■ Questions we might want to answer:
■ Is this program correct?

■ Will this program encounter a run-time type
error?

■ Is one program indistinguishable from another?

3

Source: Andrew Myers’ CS 611 course at Cornell

My field: programming language semantics

■ Questions we might want to answer:
■ Is this program correct?

■ Will this program encounter a run-time type
error?

■ Is one program indistinguishable from another?

■ Is this optimization a safe program
transformation?

3

Source: Andrew Myers’ CS 611 course at Cornell

My field: programming language semantics

■ Questions we might want to answer:
■ Is this program correct?

■ Will this program encounter a run-time type
error?

■ Is one program indistinguishable from another?

■ Is this optimization a safe program
transformation?

■ Can programs written in this language crash?

3

Source: Andrew Myers’ CS 611 course at Cornell

My field: programming language semantics

■ Questions we might want to answer:
■ Is this program correct?

■ Will this program encounter a run-time type
error?

■ Is one program indistinguishable from another?

■ Is this optimization a safe program
transformation?

■ Can programs written in this language crash?

■ Is this compiler translation correct?

3

Source: Andrew Myers’ CS 611 course at Cornell

My field: programming language semantics

■ Questions we might want to answer:
■ Is this program correct?

■ Will this program encounter a run-time type
error?

■ Is one program indistinguishable from another?

■ Is this optimization a safe program
transformation?

■ Can programs written in this language crash?

■ Is this compiler translation correct?

■ Can source language A be translated into
target language B?

3

Source: Andrew Myers’ CS 611 course at Cornell

Why Rust?

■ What do we want in a programming
language?

4

Source: Michael Sullivan, “Closures for Rust”

Why Rust?

■ What do we want in a programming
language?
■ Fast: generates efficient machine code

4

Source: Michael Sullivan, “Closures for Rust”

Why Rust?

■ What do we want in a programming
language?
■ Fast: generates efficient machine code

■ Safe: type system provides guarantees that
prevent certain bugs

4

Source: Michael Sullivan, “Closures for Rust”

Why Rust?

■ What do we want in a programming
language?
■ Fast: generates efficient machine code

■ Safe: type system provides guarantees that
prevent certain bugs

■ Concurrent: easy to build concurrent
programs and to take advantage of
parallelism

4

Source: Michael Sullivan, “Closures for Rust”

Why Rust?

■ What do we want in a programming
language?
■ Fast: generates efficient machine code

■ Safe: type system provides guarantees that
prevent certain bugs

■ Concurrent: easy to build concurrent
programs and to take advantage of
parallelism

■ “Systemsy”: fine-grained control,
predictable performance characteristics

4

Source: Michael Sullivan, “Closures for Rust”

Why Rust?

■ What do we have now?

5

Source: Michael Sullivan, “Closures for Rust”

Why Rust?

■ What do we have now?
■ Firefox is in C++, which is Fast and

Systemsy

5

Source: Michael Sullivan, “Closures for Rust”

Why Rust?

■ What do we have now?
■ Firefox is in C++, which is Fast and

Systemsy

■ ML is (sometimes) Fast and (very) Safe

5

Source: Michael Sullivan, “Closures for Rust”

Why Rust?

■ What do we have now?
■ Firefox is in C++, which is Fast and

Systemsy

■ ML is (sometimes) Fast and (very) Safe

■ Erlang is Safe and Concurrent

5

Source: Michael Sullivan, “Closures for Rust”

Why Rust?

■ What do we have now?
■ Firefox is in C++, which is Fast and

Systemsy

■ ML is (sometimes) Fast and (very) Safe

■ Erlang is Safe and Concurrent

■ Haskell is (sometimes) Fast, (very) Safe, and
Concurrent

5

Source: Michael Sullivan, “Closures for Rust”

Why Rust?

■ What do we have now?
■ Firefox is in C++, which is Fast and

Systemsy

■ ML is (sometimes) Fast and (very) Safe

■ Erlang is Safe and Concurrent

■ Haskell is (sometimes) Fast, (very) Safe, and
Concurrent

■ Java and C# are Fast and Safe

5

Source: Michael Sullivan, “Closures for Rust”

Why Rust?

6

A systems language
pursuing the trifecta:
fast, concurrent, safe

You worked on the what system?!

7

You worked on the what system?!

■ I didn’t arrive with the intention of working on
the object system, but...

7

You worked on the what system?!

■ I didn’t arrive with the intention of working on
the object system, but...

■ I was intrigued by the idea of a classless object
model and flexible prototype-based objects

7

You worked on the what system?!

■ I didn’t arrive with the intention of working on
the object system, but...

■ I was intrigued by the idea of a classless object
model and flexible prototype-based objects
■ and was told, “None of that’s implemented yet; go for it!”

7

You worked on the what system?!

■ I didn’t arrive with the intention of working on
the object system, but...

■ I was intrigued by the idea of a classless object
model and flexible prototype-based objects
■ and was told, “None of that’s implemented yet; go for it!”

■ When I started: no object extension, method
overriding, or self-dispatch

7

You worked on the what system?!

■ I didn’t arrive with the intention of working on
the object system, but...

■ I was intrigued by the idea of a classless object
model and flexible prototype-based objects
■ and was told, “None of that’s implemented yet; go for it!”

■ When I started: no object extension, method
overriding, or self-dispatch

■ During my internship, I implemented those things

7

You worked on the what system?!

■ I didn’t arrive with the intention of working on
the object system, but...

■ I was intrigued by the idea of a classless object
model and flexible prototype-based objects
■ and was told, “None of that’s implemented yet; go for it!”

■ When I started: no object extension, method
overriding, or self-dispatch

■ During my internship, I implemented those things
■ and learned that they interact with each other in

interesting ways

7

Self-dispatch

8

Self-dispatch

8

Self-dispatch + object extension

9

Self-dispatch + object extension

9

A brainteaser...

10

After my first
implementation attempt,

this assertion failed.
Why?

A hint...

11

A brainteaser...

12

After my first
implementation attempt,

this assertion failed.
Why?

A brainteaser...

12

After my first
implementation attempt,

this assertion failed.
Why?

longcat’s vtablelongcat’s vtablelongcat’s vtable

0 ack forward to shortcat.ack()
1 lol ret “lol”

2 meow forward to shortcat.meow()
3 nyan ret “nyan”

4 zzz forward to shortcat.zzz()

A brainteaser...

12

After my first
implementation attempt,

this assertion failed.
Why?

longcat’s vtablelongcat’s vtablelongcat’s vtable

0 ack forward to shortcat.ack()
1 lol ret “lol”

2 meow forward to shortcat.meow()
3 nyan ret “nyan”

4 zzz forward to shortcat.zzz()

shortcat’s vtableshortcat’s vtableshortcat’s vtable

0 ack ret “ack”

1 meow ret “meow”

2 zzz ret self.meow()

How to fix it

13

longcat’s vtablelongcat’s vtablelongcat’s vtable

0 ack forward to shortcat.ack()
1 lol ret “lol”

2 meow forward to shortcat.meow()
3 nyan ret “nyan”

4 zzz forward to shortcat.zzz()

shortcat’s vtableshortcat’s vtableshortcat’s vtable

0 ack ret “ack”

1 meow ret “meow”

2 zzz ret self.meow()

How to fix it

13

longcat’s vtablelongcat’s vtablelongcat’s vtable

0 ack forward to shortcat.ack()
1 lol ret “lol”

2 meow forward to shortcat.meow()
3 nyan ret “nyan”

4 zzz forward to shortcat.zzz()

shortcat’s vtableshortcat’s vtableshortcat’s vtable

0 ack ret “ack”

1 meow ret “meow”

2 zzz ret self.meow()

shortcat’s backwarding vtableshortcat’s backwarding vtableshortcat’s backwarding vtable

0 ack backward to longcat.ack()

1 meow backward to longcat.meow()

2 zzz backward to longcat.zzz()

How to fix it

13

longcat’s vtablelongcat’s vtablelongcat’s vtable

0 ack forward to shortcat.ack()
1 lol ret “lol”

2 meow forward to shortcat.meow()
3 nyan ret “nyan”

4 zzz forward to shortcat.zzz()

shortcat’s vtableshortcat’s vtableshortcat’s vtable

0 ack ret “ack”

1 meow ret “meow”

2 zzz ret self.meow()

shortcat’s backwarding vtableshortcat’s backwarding vtableshortcat’s backwarding vtable

0 ack backward to longcat.ack()

1 meow backward to longcat.meow()

2 zzz backward to longcat.zzz()

self

Self-dispatch + object extension + overriding

14

Self-dispatch + object extension + overriding

14

Self-dispatch + object extension + overriding

14

Self-dispatch + object extension + overriding

14

Caveat: Some disagreement on whether it should work this way (see: Aldrich, “Selective Open Recursion”)

Self-dispatch + object extension + overriding

14

Self-dispatch + object extension + overriding

14

longercat’s vtablelongercat’s vtablelongercat’s vtable

0 ack forward to shortcat.ack()
1 meow ret “zzz”

2 zzz forward to shortcat.zzz()

Self-dispatch + object extension + overriding

14

longercat’s vtablelongercat’s vtablelongercat’s vtable

0 ack forward to shortcat.ack()
1 meow ret “zzz”

2 zzz forward to shortcat.zzz()

shortcat’s vtableshortcat’s vtableshortcat’s vtable

0 ack ret “ack”

1 meow ret “meow”

2 zzz ret self.meow()

Self-dispatch + object extension + overriding

14

longercat’s vtablelongercat’s vtablelongercat’s vtable

0 ack forward to shortcat.ack()
1 meow ret “zzz”

2 zzz forward to shortcat.zzz()

shortcat’s vtableshortcat’s vtableshortcat’s vtable

0 ack ret “ack”

1 meow ret “meow”

2 zzz ret self.meow()

shortcat’s backwarding vtableshortcat’s backwarding vtableshortcat’s backwarding vtable

0 ack backward to longercat.ack()

1 meow backward to longercat.meow()

2 zzz backward to longercat.zzz()

Self-dispatch + object extension + overriding

14

longercat’s vtablelongercat’s vtablelongercat’s vtable

0 ack forward to shortcat.ack()
1 meow ret “zzz”

2 zzz forward to shortcat.zzz()

shortcat’s vtableshortcat’s vtableshortcat’s vtable

0 ack ret “ack”

1 meow ret “meow”

2 zzz ret self.meow()

shortcat’s backwarding vtableshortcat’s backwarding vtableshortcat’s backwarding vtable

0 ack backward to longercat.ack()

1 meow backward to longercat.meow()

2 zzz backward to longercat.zzz()

self

Self-dispatch + object extension + overriding

1511

to arbitrary depth

Self-dispatch + object extension + overriding

1511

to arbitrary depth

Self-dispatch + object extension + overriding

1511

to arbitrary depth

Self-dispatch + object extension + overriding

1511

to arbitrary depth

Self-dispatch + object extension + overriding

1511

to arbitrary depth■ We need a way to temporarily pretend
that self is the inner object, while still
keeping track of what the extended self is

Self-dispatch + object extension + overriding

1511

to arbitrary depth■ We need a way to temporarily pretend
that self is the inner object, while still
keeping track of what the extended self is

■ Solution: create a stack of “fake selves”
threaded through the run-time stack

Self-dispatch + object extension + overriding

1511

to arbitrary depth■ We need a way to temporarily pretend
that self is the inner object, while still
keeping track of what the extended self is

■ Solution: create a stack of “fake selves”
threaded through the run-time stack

■ Every forwarding function allocates space
in its frame for a “fake self” comprising a
backwarding vtable and an inner object
body

Go try it out!

16

rust-lang.org

http://rust-lang.org
http://rust-lang.org

17Photo by jamesrbowe on Flickr. Thanks!

Questions?

Thanks to:
Graydon Hoare and everyone on the Rust team
Dave Herman and everyone at Mozilla Research

