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(CS and music) in 2004

= Web development at a
(failed) startup, 2004—-2006

= Perl plumbing at a publishing
company, 20062008

= butin 2007, | moved in with a
couple of Haskell hackers...
= Ph.D.student at Indiana
studying PL since fall 2008




My field: programming language semantics

= Questions we might want to answer:

Source: Andrew Myers’ CS 61| course at Cornell



My field: programming language semantics

= Questions we might want to answer:

= |s this program correct?

Source: Andrew Myers’ CS 61| course at Cornell



My field: programming language semantics

= Questions we might want to answer:

= |s this program correct?

= Will this program encounter a run-time type
error!

Source: Andrew Myers’ CS 61| course at Cornell



My field: programming language semantics

= Questions we might want to answer:

= |s this program correct?

= Will this program encounter a run-time type
error!

m |s one program indistinguishable from another?

Source: Andrew Myers’ CS 61| course at Cornell



My field: programming language semantics

= Questions we might want to answer:

= |s this program correct?

= Will this program encounter a run-time type
error!

m |s one program indistinguishable from another?

= |s this optimization a safe program
transformation?

Source: Andrew Myers’ CS 61| course at Cornell



My field: programming language semantics

= Questions we might want to answer:
= |s this program correct!

= Will this program encounter a run-time type
error!

m |s one program indistinguishable from another?

= |s this optimization a safe program
transformation?

= Can programs written in this language crash?

Source: Andrew Myers’ CS 61| course at Cornell



My field: programming language semantics

= Questions we might want to answer:
= |s this program correct!

= Will this program encounter a run-time type
error!

m |s one program indistinguishable from another?

= |s this optimization a safe program
transformation?

= Can programs written in this language crash?

= |s this compiler translation correct!?

Source: Andrew Myers’ CS 61| course at Cornell



My field: programming language semantics

= Questions we might want to answer:
= |s this program correct!

= Will this program encounter a run-time type
error!

m |s one program indistinguishable from another?

= |s this optimization a safe program
transformation?

= Can programs written in this language crash?
= |s this compiler translation correct!?

= Can source language A be translated into
target language B!

Source: Andrew Myers’ CS 61| course at Cornell
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Why Rust!?

= What do we have now?

s Firefox is in C++, which is Fast and
Systemsy

= ML is (sometimes) Fast and (very) Safe

= Erlang is Safe and Concurrent

= Haskell is (sometimes) Fast, (very) Safe, and
Concurrent

= |ava and C# are Fast and Safe

Source: Michael Sullivan,“Closures for Rust”



Why Rust!?

A systems language
pursuing the trifecta:
fast, concurrent, safe
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You worked on the what system?!

= | didn’t arrive with the intention of working on
the object system, but...

= | was intrigued by the idea of a classless object
model and flexible prototype-based objects

= and was told, “None of that’s implemented yet; go for it!”

= When | started: no object extension, method
overriding, or self-dispatch

= During my internship, | implemented those things

= and learned that they interact with each other in
Interesting ways
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Self-dispatch + object extension

obj cat() {
fn ack() -> str {

ret "ack’ -

}

fn meow() -> str
ret "meow ;

}

fn zzz() -> str {

}
}

let shortcat = cat();

assert (shortcat.zzz(

ret self.meow(); };

let longcat = obj() {
fn lol() -> str {
ret "lol";

}
{ fn nyan() -> str {
ret "nyan’;
}

with shortcat

r

T ——
) == "meow )7
D |

T —

assert (longcat.zzz() == |
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obj cat() {
fn ack() =-> str {
ret "ack";

}

fn meow() -> str {
ret "meow";

}

fn zzz() -> str {
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}
}
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ob] () A let longcat = obj() {
fn ack() -> str { fn lol() =-> str {
ret H ret ’
} }
fn 1 () => str { fn nyan() -> str {
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Obj Cat( ) {
fn ack() -> str {
ret "ack";
}
fn meow() -> str {
ret "meow":
}

fn zzz() -> str {
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}i
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}
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ret self meow( ).
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Self-dispatch + object extension + overrldlng

obj cat() {
fn ack() -> str {
ret "ack’;
}
fn meow() -> str {
ret "meow ;
}

fn zzz() -> str {
ret self.meow();

}
}

let shortcat = cat();

—

assert (shortcat.zzz() ==

to arb:trary depth

let longercat = obj() {
fn meow() -> str {
ret '

L L 4 ’

}

with shortcat

}i

assert (longercat.zzz(

== "zzz );

|
T p—

T

—



Self-dispatch + object extension + overrldlng

to
obj cat() { let longercat = obj() {
fn ack() =-> str { fn meow() -> str {
ret "ack’; ret "zzz";
} }
fn meow() -> str { with shortcat
ret "meow ; };
}
fn zz2z() -> str { assert (longercat.zzz() == "zzz");
ret self.meow();
}
let shortcat = cat(
assert (shortcat.zz:
T —
I — T —



Self-dispatch + object extension + overrldlng

obj cat() {
fn ack() -> str {
ret "ack”;

}

" "
MO TaY .
.l. - A.l'-_- ':'_:' .ﬂ .'I‘

ret ;

}

fn zzz() -> str {

}
}

let shortcat = cat(

assert (shortcat.zz:

—

—

fn meow() -> str {

ret self.meow();

let longercat = obj() {
fn meow() -> str {
ret "zzz";
}
with shortcat
}i
assert (longercat.zzz() == "zzz");
T —— —
let evenlongercat = obj() {
fn meow() -> str {

}i

assert (evenlongercat.zzz()

to arb:trary depth

ret "zzzzzz ;

}

with longercat

'222222");

—
|5
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Self-dispatch + object extension + overriding

to arbltl‘ar
= We need a way to temporarily pretend 4 depth

that self is the inner object, while still
keeping track of what the extended self is

m Solution: create a stack of “fake selves”
threaded through the run-time stack

= Every forwarding function allocates space
in its frame for a “fake self” comprising a
backwarding vtable and an inner object

body



Go try it out!

@ rust-lang.org


http://rust-lang.org
http://rust-lang.org

T

Questions?

Thanks to:
Graydon Hoare and everyone on the Rust team
Dave Herman and everyone at Mozilla Research

@@ Photo by jamesrbowe on Flickr. Thanks! 17



