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Veritying safety-critical software

Safety-critical system:
"A computer, electronic
or electromechanical
system whose failure
may cause injury or
death to human beings’
(foldoc.org/satety-critical system)

Software verification:
Using formal methods
to rigorously prove that
certain properties hold
of a program



http://foldoc.org/safety-critical%20system

Safety-critical systems use DNNSs...
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Abstract—One approach to designing the decision making logic
for an aircraft collision avoidance system is to frame the problem
as Markov decision process and optimize the system using
dynamic programming. The resulting strategy can be represented
as a numeric table. This methodology has been used in the
development of the ACAS X family of collision avoidance systems
for manned and unmanned aircraft. However, due to the high
dimensionality of the state space, discretizing the state variables
can lead to very large tables. To improve storage efficiency, we
propose two approaches for compressing the lookup table. The
first approach exploits redundancy in the table. The table is
decomposed into a set of lower-dimensional tables, some of which
can be represented by single tables in areas where the lower-
dimensional tables are identical or nearly identical with respect
to a similarity metric. The second approach uses a deep neural
network to learn a complex non-linear function approximation

is extremely large, requiring hundreds of gigabytes of floating
point storage. A simple technique to reduce the size of the
score table is to downsample the table after dynamic program-
ming. To minimize the deterioration in decision quality, states
are removed in areas where the variation between values in
the table are smooth. This allows the table to be downsampled
with only minor impact on overall decision performance. The
downsampling reduces the size of the table by a factor of 180
from that produced by dynamic programming. For the rest of
this paper, we refer to the downsampled ACAS Xu horizontal
table as our baseline, original table.

Even after downsampling, the current table requires over
2GB of floating point storage. Discretized score tables like

of the table. With the use of anesumeiLicalossfunstion and-o.—

this have been compressed with Gaussian Erocesses [6] and



Safety-critical systems use DNNSs...

'End to End Learning for Self-
Driving Cars” (NVIDIA 2016)
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We trained a convolutional neural network (CNN) to map raw pixels from a sin-
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to recognize specific human- demgnated features such as lane markings, guard ralls or other cars,

and to avoid having to create a collectlon of “if, then, else” rules, based on observation of these
features. 1

More work 1s needed to improve the robustness of the network, to find methods to verify the robust-

ness, and to improve visualization of the network-internal processing steps.
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'End to End Learning for Self-
Driving Cars" (NVIDIA, 2016)
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T e e ———— ——eeteaeesmmmemereTT

to a similarity metric. The second approvach uses a deep neural
network to learn a complex non-linear function approximation
of the table. With the use of an asymmetric loss function and a

preserving the relative preferences of the possible advisories
for each state. As a result, the table can be approximately

"Poli mor ion for represented by only the parameters of the network, which reduces
, Olicy CO P eSS, On 1o the required storage space by a factor of 1000. Simulation
Aircraft Collision Avoidance studies show that system performance is very similar using either

two annroaches TORIGERIRARET TR = e e
crete representation. Although there are significant certification

concerns with neural network representations, which may be

addressed in the future, these results indicate a promising way
R ——ecttammmpmSORRpTT

Systems" (Julian et al., 2016)




...even if they don't like to advertise it

After Mastering Singapore’s
Streets, NuTonomy’s Robo-taxis
Are Poised to Take on New Cities

An Al makes it easier to

debug the startup’s self-driving cars
R = STttt

(spectrum.ieee.org/transportation/self-driving/after-mastering-singapores-streets-
nutonomys-robotaxis-are-poised-to-take-on-new-cities)


http://spectrum.ieee.org/transportation/self-driving/after-mastering-singapores-streets-nutonomys-robotaxis-are-poised-to-take-on-new-cities
http://spectrum.ieee.org/transportation/self-driving/after-mastering-singapores-streets-nutonomys-robotaxis-are-poised-to-take-on-new-cities
http://spectrum.ieee.org/transportation/self-driving/after-mastering-singapores-streets-nutonomys-robotaxis-are-poised-to-take-on-new-cities

...even if they don't like to advertise it

Formal logic, on the other hand, gives you provable guarantees that the car
will obey the rules required to stay safe even in situations that it’s otherwise

completely unprepared for, using code that a human can read and

b

> explains
nuTonomy CEO and cofounder Karl Iganemma. “That’s something that’s

to figure out the underlying rules of good driving, then apply those rules to
enerall

nutonomys-robotaxis-are-poised-to-take-on-new-cities)
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Veritying DNNs Is an open problem



Veritying DNNs Is an open problem

e 2003: Neural networks "represent a class of
systems that do not fit into the current
paradigms of software development and
certification’ (Taylor et al. 2003)


https://futureoflife.org/ai-open-letter/
https://arxiv.org/abs/1602.03506
https://arxiv.org/abs/1602.03506

Veritying DNNs Is an open problem

e 2003: Neural networks "represent a class of
systems that do not fit into the current
paradigms of software development and
certification’ (1ayior et al. 2003)

e« 2010: an SMT solver that could verity safety

oroperties of small networks of 10-20 neurons (Pulina
and Tacchella 2010)
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Veritying DNNs Is an open problem

e 2003: Neural networks "represent a class of
systems that do not fit into the current
paradigms of software development and
certification’ (Taylor et al. 2003)

e« 2010: an SMT solver that could verity safety

oroperties of small networks of 10-20 neurons (Pulina
and Tacchella 2010)

e 2016: "When possible, it is desirable for systems
in safety-critical situations, for example, self-
driving cars, to be verifiable [...|] but much
remains to be done before it will be

possible’ (Russell et al. 2016, "Research Priorities for Robust ana

Beneficial Artificial Intelligence”; see futureoflife.org/ai-open-letter/; arxiv.org/abs/
1602.03506)
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opportunity!

Veritying DNNs Is an epen-problem.

e 2003: Neural networks "represent a class of
systems that do not fit into the current
paradigms of software development and
certification’ (Taylor et al. 2003)

e« 2010: an SMT solver that could verity safety

oroperties of small networks of 10-20 neurons (Pulina
and Tacchella 2010)

e 2016: "When possible, it is desirable for systems
in safety-critical situations, for example, self-
driving cars, to be verifiable [...|] but much
remains to be done before it will be

possible’ (Russell et al. 2016, "Research Priorities for Robust ana

Beneficial Artificial Intelligence”; see futureoflife.org/ai-open-letter/; arxiv.org/abs/
1602.03506)
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Goal of this project

Create automated
verification tools, such
as SMT solvers, that
can verify properties
of trained DNN models
used in real-world
safety-critical systems




The rest of this talk

* Motivating problem

 The ACAS Xu flight collision - ﬁ

avoidance system, its DNN ‘
implementation, and what we want —
to verify about it

* Verifying DNNs with SMT solvers
* Quick intro to SMT solving

 What makes (D)NNs a challenge for
SMT solvers?

e How our verification tool works

 What we can verify so far about the
ACAS Xu system

* Future plans and key takeaways



The ACAS X system

Qutput: one of 5 resolution advisories
(COC, weak left, weak right,
strong left, strong right)

Input: sensor data
once per second

Updates
once per second Fast table
Sensor lookups
measurements ' . : '
h iy Statq l \ : Acuqn
\; | estimation /| . selection |
i A V.. ’\ | 4 tStS“: Y S Resolution
‘ istribution advisory
| |
3 3 016
R T i
Probabilistic : 19100180001 100181 11
dynamic model iud— DiRBARs 43040 JhRaL
Probabilistic |
sensor model Optimized
logic table

(www.ll.mit.edu/publications/technotes/TechNote ACASX.pdf)



https://www.ll.mit.edu/publications/technotes/TechNote_ACASX.pdf

The ACAS Xu score table

* Associates a score with
each (state, advisory)
palr ,

¢ 7-dimensional state: viN e
A Uown -7

e p: distance from ownship to L
Intruder

e O: angle to intruder

e (p: heading angle of intruder
* Vown: SPeed of ownship "~ Ownship_,
* Vint: Speed of intruder

\
\

N\
\
___1__y

/

g--

« 7. time until loss of vertical
separation Needs 100s of GB of storage—

too big for verified hardware!

* Qprev. Previous advisory




The ACAS Xu deep neural network

e [rained on the score table

Input: [p, 6, P, vown, vint, 7, apreV]

Qutput: Score associated with each of 5 possible
advisories

~600K parameters; trained model just a few MB

“\

%‘—» COC: 0.230892

— weak right: 0.703941
/

9 fully-connected layers w/ RelLU activations (f(x) = max(0, x))



Can we trust the ACAS Xu DNN?

Original Table Neural Network
10 10 ‘
g o € <
)
80 - |
g 0 ))- 0 9- -
g -5 “ -5
O
—10 | —10 ‘
Downrange (kft) Downrange (kft)
Advisories: COC ] —3.0°/s —1.5°/s [ ] 1.5°/s ] 3.0°/s

e |t's only an approximation of the original table

e |s it safe”? We want to verity properties such as:

* |f intruder is directly ahead and moving towards ownship,
score for COC will not be minimal

* |f intruder is near and approaching from left, network will
advise "strong right”

e _..and more (see arxiv.ora/abs/1702.01135)



https://arxiv.org/abs/1702.01135

Verification strateqgy

SAT: determine if Description of network Property to be shown

a Boolean formula
(containing only

Boolean variables,
parens, A, v, 1) is

“If intruder is near and
approaching from left,
network will advise
‘'strong right™

satisfiable SMT formula /

SMT: determine w(h=5+m v (pA-q .
satisfiability of a

formula with

respect to some

fheO/'y(e.Q., SMT Solver

theory of linear

real arithmetic) / \

satisfiable unsatisfiable




The virtues of |aziness

Eager approach: convert

whole SMT formula to SAT Arithmetic Arrays

formula immediately, then \ /‘/

solve with SAT solver . o~ -
Lazy approach: use theory

solvers, each specific to a )

particular theory—allows
exploiting domain

knowledge for efficiency -

Lazy SMT solver architecture
(from fm.csl.sri.com/SSFT16/slides.pdf)

To exploit laziness, we need theory

solvers specially for handling DNNs!



http://fm.csl.sri.com/SSFT16/slides.pdf

L azily handling RelLU activations

Description of network Property to be shown

“If iIntruder is near and
approaching from left,
network will advise
‘strong right™

SMT formula ///

w (n=5+m)v (p A -q) ..

SMT Solver

/ N\

satisfiable unsatisfiable




L azily handling RelLU activations

Description of network Property to be shown

“If intruder is near and
approaching from letft,
network will advise
‘strong right™

SMT formula ///

w (n=5+m)v (p A -q) ..
SMT solver l

| P solver =———% Solver core —’- )
\ \

/

satisfiable unsatisfiable




L azily handling RelLU activations

Description of network Property to be shown

“If intruder is near and
approaching from letft,
network will advise

‘strong right™

P
SMT formula \\\ ’///

w (n=5+m)v (p A -q) ..
SMT solver l

LP solver =———= Solver core <:’. )
— )

/

satisfiable unsatisfiable

RelLU constraints like x = max(@, y) can only be encoded as disjunctions!

X20AXxX=y)vV(X<0OAXx=0)




L azily handling RelLU activations

Description of network Property to be shown

“If Intruder Is near and
@@ | | approaching from left,
‘0 . :
Q- network will advise
‘strong right™

P
SMT formula \\\k ///

w (n=5+m)v (p A -q) ..
SMT solver l

< - -~ Solvercore - )
/ N\

satisfiable unsatisfiable

RelLU constraints like x = max(@, y) can only be encoded as disjunctions!

X20AXxX=y)vV(X<0OAXx=0)




What can we verity about ACAS Xu?

Max. ReLU
split depth
(out of 300)

Does it Solver
hold? time

Property description

"if intruder is directly ahead and is
moving towards ownship, score for COC
will not be minimal"

"if intruder is near and approaching from
left, network advises 'strong right'"

"if intruder is sufficiently far away,
network advises COC"

"for large vertical separation and
previous 'weak left' advisory, network
will either advise COC or continue
advising 'weak left'"

...and more (see arxiv.org/abs/1702.01135)



https://arxiv.org/abs/1702.01135

What's next”?

e Support activation

functions other than
Rel U

e Support network
architectures other than
fully-connected
networks (like
convolutional networks!)

* Apply to more safety-
critical systems beyond
ACAS Xu

* What do you want veritied?




Takeaways from this talk
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probably here to stay
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Takeaways from this talk

Deep learning in safety-critical systems is
probably here to stay

e eeeneen |t jg pOSSIDIE to verify important properties
oo || Tenmsavse of DNNs using SMT solvers
AN
(n==5+m v (pAr-q

.. (N
< SMT Solver >

/ N

satisfiable unsatisfiable




Takeaways from this talk

Deep learning in safety-critical systems is
probably here to stay

Description of network Property to be shown |'|: /S pOSSIble to Verlfy Important propertles

“if intruder is near and
approaching from left,

network will advise Of DNNS US|ng SMT SO|VerS

‘strong right™

(@ o« @)  Off-the-shelf solvers aren't enough—we
eristiomte wmsatisriobe need DNN-specific theory solvers to
exploit the "lazy" SMT approach




