._"' £FEE
LVars:

Lattice-based Data Structures
for Deterministic Parallelism

Lindsey Kuper
Indiana University

RICON West, San Francisco, CA, USA

- October 29, 2013 .
R

“ RlCON ' WES T Home Blog Venue Speakers Schedule Training AfterParty Sponsors Register

Jeff Dean Peter Bailis Justin Sheehy Pat Helland

Google Fellow PhD Student Chief Technology Officer Architect
Google, Inc. UC Berkeley Basho Technologies Salesforce.com
Diego Ongaro Lindsey Kuper Michael Bernstein

PhD Student Distributed Systems Engineer PhD Student Instigator
Stanford University Twitter Indiana University Code Climate

F RlCON ’ WES T Home Blog Venue Speakers Schedule Training AfterParty Sponsors Register

Jeff Dean Peter Bailis Justin Sheehy Pat Helland

/
Google Fellow PhD Student T hief Technology Officer Architect
Google, Inc. UC Berkeley Basho Technologies Salesforce.com
Diego Ongaro Jeff Hodges Lindsey Kuper Michael Bernstein

PhD Student

Stanford University T Twitter Indiana University == Code Climate

ﬁ RlCON ‘ WES T Home Blog Venue Speakers Schedule Training AfterParty Sponsors Register

Jeff Dean Peter Bailis Justin Sheehy

BGogIe Fellow PhD Student - Technology Officer Architect
Google, Inc. UC Berkeley Basho Technologies Salesforce.com

Diego Ongaro Jeff Hodges Lindsey Kuper Michael Bernstein

Stu o

PhD Student |
Stanford University

_ son W ‘
3&\/.\

herttad | ystems Engineer PhD Student

witter Indiana University === Code Climate

._"' £FEE
LVars:

Lattice-based Data Structures
for Deterministic Parallelism

Lindsey Kuper
Indiana University

RICON West, San Francisco, CA, USA

- October 29, 2013 .
R

X =
put (x,

Xx = 3
put(x, 5)

3

X = 3
X =
put(x, 5)
O) CAP
put(x,

Xx = 3
put(x, 4)

6)

X=
put (x,

3

7)

X =
put (x,

Xx = 3
put(x, 5)

3

X = 3
X =
put(x, 5)
O) CAP
put(x,

Xx = 3
put(x, 4)

6)

X=
put (x,

3

7)

put(x, 4) <::>

O
_ put(x, 7)
pui(; 35) put(x, 6)
X = 3
put(x, 4)

Eventual consistency.

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels

Amazon.com

ABSTRACT

Reliability at massive scale is one of the biggest challenges we
face at Amazon.com, one of the largest e-commerce operations in
the world; even the slightest outage has significant financial
consequences and impacts customer trust. The Amazon.com
platform, which provides services for many web sites worldwide,
is implemented on top of an infrastructure of tens of thousands of
servers and network components located in many datacenters
around the world. At this scale, small and large components fail
continuously and the way persistent state is managed in the face
of these failures drives the reliability and scalability of the
software systems.

This paper presents the design and implementation of Dynamo, a
highly available key-value storage system that some of Amazon’s
core services use to provide an “always-on” experience. To
achieve this level of availability, Dynamo sacrifices consistency
under certain failure scenarios. It makes extensive use of object
versioning and application-assisted conflict resolution in a manner
that provides a novel interface for developers to use.

Categories and Subject Descriptors

D.4.2 [Operating Systems]: Storage Management; D.4.5
[Operating Systems]: Reliability; D.4.2 [Operating Systems]:
Performance;

General Terms
Algorithms, Management, Measurement, Performance, Design,
Reliability.

1. INTRODUCTION

Amazon runs a world-wide e-commerce platform that serves tens
of millions customers at peak times using tens of thousands of
servers located in many data centers around the world. There are
strict operational requirements on Amazon’s platform in terms of
performance, reliability and efficiency, and to support continuous
growth the platform needs to be highly scalable. Reliability is one
of the most important requirements because even the slightest
outage has significant financial consequences and impacts
customer trust. In addition, to support continuous growth, the
platform needs to be highly scalable.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SOSP’07, October 14-17, 2007, Stevenson, Washington, USA.
Copyright 2007 ACM 978-1-59593-591-5/07/0010...$5.00.

One of the lessons our organization has learned from operating
Amazon’s platform is that the reliability and scalability of a
system is dependent on how its application state is managed.
Amazon uses a highly decentralized, loosely coupled, service
oriented architecture consisting of hundreds of services. In this
environment there is a particular need for storage technologies
that are always available. For example, customers should be able
to view and add items to their shopping cart even if disks are
failing, network routes are flapping, or data centers are being
destroyed by tornados. Therefore, the service responsible for
managing shopping carts requires that it can always write to and
read from its data store, and that its data needs to be available
across multiple data centers.

Dealing with failures in an infrastructure comprised of millions of
components is our standard mode of operation; there are always a
small but significant number of server and network components
that are failing at any given time. As such Amazon’s software
systems need to be constructed in a manner that treats failure
handling as the normal case without impacting availability or
performance.

To meet the reliability and scaling needs, Amazon has developed
a number of storage technologies, of which the Amazon Simple
Storage Service (also available outside of Amazon and known as
Amazon S3), is probably the best known. This paper presents the
design and implementation of Dynamo, another highly available
and scalable distributed data store built for Amazon’s platform.
Dynamo is used to manage the state of services that have very
high reliability requirements and need tight control over the
tradeoffs between availability, consistency, cost-effectiveness and
performance. Amazon’s platform has a very diverse set of
applications with different storage requirements. A select set of
applications requires a storage technology that is flexible enough
to let application designers configure their data store appropriately
based on these tradeoffs to achieve high availability and
guaranteed performance in the most cost effective manner.

There are many services on Amazon’s platform that only need
primary-key access to a data store. For many services, such as
those that provide best seller lists, shopping carts, customer
preferences, session management, sales rank, and product catalog,
the common pattern of using a relational database would lead to
inefficiencies and limit scale and availability. Dynamo provides a
simple primary-key only interface to meet the requirements of
these applications.

Dynamo uses a synthesis of well known techniques to achieve
scalability and availability: Data is partitioned and replicated
using consistent hashing [10], and consistency is facilitated by
object versioning [12]. The consistency among replicas during
updates is maintained by a quorum-like technique and a
decentralized replica synchronization protocol. Dynamo employs

Eventual consistency.

E— |

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels

Amazon.com

ABSTRACT

Reliability at massive scale is one of the biggest challenges we
face at Amazon.com, one of the largest e-commerce operations in
the world; even the slightest outage has significant financial
consequences and impacts customer trust. The Amazon.com
platform, which provides services for many web sites worldwide,

i@ imnlementad Am to o AL an infractraat -~ A Ancande nf

One of the lessons our organization has learned from operating
Amazon’s platform is that the reliability and scalability of a
system is dependent on how its application state is managed.
Amazon uses a highly decentralized, loosely coupled, service
oriented architecture consisting of hundreds of services. In this
environment there is a particular need for storage technologies
that are always available. For example, customers should be able
"4 items to their shopping cart even if disks are

routes are flapping, or data centers are being

nados. Therefore, the service responsible for

g carts requires that it can always write to and

since the application 1s aware of the data schema 1t g s e s me

"ures in an infrastructure comprised of millions of

can decide on the conflict resolution method that is best suited for smmmoe o operon ere arc avays

sant number of server and network components
it any given time. As such Amazon’s software

its client’s experience. For instance, the application that maintains o mme b s e
customer shopping carts can choose to “merge” the conflicting e s s o s et
versions and return a single unified shopping cart.

R ——

Amazon runs a world-wide e-commerce p

of millions customers at peak times using tens of thousands of
servers located in many data centers around the world. There are
strict operational requirements on Amazon’s platform in terms of
performance, reliability and efficiency, and to support continuous
growth the platform needs to be highly scalable. Reliability is one
of the most important requirements because even the slightest
outage has significant financial consequences and impacts
customer trust. In addition, to support continuous growth, the
platform needs to be highly scalable.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SOSP’07, October 14-17, 2007, Stevenson, Washington, USA.
Copyright 2007 ACM 978-1-59593-591-5/07/0010...$5.00.

age technologies, of which the Amazon Simple

Iso available outside of Amazon and known as

iobably the best known. This paper presents the

Jentation of Dynamo, another highly available

ibuted data store built for Amazon’s platform.

0 manage the state of services that have very

squirements and need tight control over the

availability, consistency, cost-effectiveness and

el Amazon’s platform has a very diverse set of

s with different storage requirements. A select set of

applications requires a storage technology that is flexible enough

to let application designers configure their data store appropriately

based on these tradeoffs to achieve high availability and
guaranteed performance in the most cost effective manner.

There are many services on Amazon’s platform that only need
primary-key access to a data store. For many services, such as
those that provide best seller lists, shopping carts, customer
preferences, session management, sales rank, and product catalog,
the common pattern of using a relational database would lead to
inefficiencies and limit scale and availability. Dynamo provides a
simple primary-key only interface to meet the requirements of
these applications.

Dynamo uses a synthesis of well known techniques to achieve
scalability and availability: Data is partitioned and replicated
using consistent hashing [10], and consistency is facilitated by
object versioning [12]. The consistency among replicas during
updates is maintained by a quorum-like technique and a
decentralized replica synchronization protocol. Dynamo employs

Eventual consistency.

E— |

Conflict-Free Replicated Data Types*

Marc Shapiro, Nuno Preguica'-?, Carlos Baquero®, and Marek Zawirski*-*

INRIA, Paris, France
* CITI, Universidade Nova de Lishoa, Portugal
Universidade do Minho, Portugal
" UPMC, Paris, France
" LIP6, Paris, France

Abstract. Replicating data under Eventual Consistency (EC) allows
any replica to accept updates without remote synchronisation. This en.
sures performance and scalabllity in large-scale distributed systems (e.g.,
clouds). However, published EC approaches are ad-hoc and error-prone
Under a formal Strong Eventual Consistency (SEC) model, we study suf.
ficlent conditions for convergence. A data type that satisfies these con-
ditions is called a Conflict-free Replicated Data Type (CRDT), Replicas
of any CRDT are guaranteed to converge in a self-stabilising manner,
despite any number of failures. This paper formalises two popular ap-
proaches (state- and operation-based) and their relevant sufficent con-
ditions. We study a number of useful CRDTs, such as sets with clean
semantics, supporting both add and remove operations, and consider in
depth the more complex Graph data type. CRDT types can be composed
to develop large-scale distributed applications, and have interesting the-

oretical properties,

Keywords: Eventual Consistency, Replicated Shared Objects, Large-
Scale Distributed Systems

1 Introduction

Replication and consistency are essential features of any large distributed system,
such as the WWW, peer-to-peer, or cloud computing platforms. The standard
“strong consistency™ approach serialises updates in a global total order [10].
This constitutes a performance and scalability bottleneck. Furthermore, strong
consistency conflicts with availability and partition-tolerance [8].

When network delays are large or partitioning is an issue, as in delay-tolerant
networks, disconnected operation, cloud computing, or P2P systems, eventfual
consistency promises better availability and performance U—ﬂﬂ] An update ex-
ecutes at some replica, without synchronisation; later, it is sent to the other

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels

Amazon.com

ABSTRACT

Reliability at massive scale is one of the biggest challenges we
face at Amazon.com, one of the largest e-commerce operations in
the world; even the slightest outage has significant financial
consequences and impacts customer trust. The Amazon.com
platform, which provides services for many web sites worldwide,

je imnlamantad A e AL an infra ot st -~ ~C i Ancande nf

One of the lessons our organization has learned from operating
Amazon’s platform is that the reliability and scalability of a
system is dependent on how its application state is managed.
Amazon uses a highly decentralized, loosely coupled, service
oriented architecture consisting of hundreds of services. In this
environment there is a particular need for storage technologies
that are always available. For example, customers should be able
4 items to their shopping cart even if disks are

routes are flapping, or data centers are being

nados. Therefore, the service responsible for

carts requires that it can always write to and

store, and that its data needs to be available

ware of the data schema 1t ¢

thod that 1s best suited for
application that maintains
) “merge” the conflicting

lopping cart.

Amazon runs a world-wide e-commerce p
of millions customers at peak times using tens of thousands of
servers located in many data centers around the world. There are
strict operational requirements on Amazon’s platform in terms of
performance, reliability and efficiency, and to support continuous
growth the platform needs to be highly scalable. Reliability is one
of the most important requirements because even the slightest
outage has significant financial consequences and impacts
customer trust. In addition, to support continuous growth, the
platform needs to be highly scalable.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SOSP’07, October 14-17, 2007, Stevenson, Washington, USA.
Copyright 2007 ACM 978-1-59593-591-5/07/0010...$5.00.

"ures in an infrastructure comprised of millions of
standard mode of operation; there are always a

t number of server and network components
any given time. As such Amazon’s software

e constructed in a manner that treats failure
ormal case without impacting availability or

ity and scaling needs, Amazon has developed
e technologies, of which the Amazon Simple
Iso available outside of Amazon and known as
ably the best known. This paper presents the
Jentation of Dynamo, another highly available
uted data store built for Amazon’s platform.
manage the state of services that have very
irements and need tight control over the
ailability, consistency, cost-effectiveness and
on’s platform has a very diverse set of
ifferent storage requirements. A select set of
applications requires a storage technology that is flexible enough
to let application designers configure their data store appropriately
based on these tradeoffs to achieve high availability and
guaranteed performance in the most cost effective manner.

There are many services on Amazon’s platform that only need
primary-key access to a data store. For many services, such as
those that provide best seller lists, shopping carts, customer
preferences, session management, sales rank, and product catalog,
the common pattern of using a relational database would lead to
inefficiencies and limit scale and availability. Dynamo provides a
simple primary-key only interface to meet the requirements of
these applications.

Dynamo uses a synthesis of well known techniques to achieve
scalability and availability: Data is partitioned and replicated
using consistent hashing [10], and consistency is facilitated by
object versioning [12]. The consistency among replicas during
updates is maintained by a quorum-like technique and a
decentralized replica synchronization protocol. Dynamo employs

Eventual consistency.

T ——=

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall

Conflict-Free Replicated Data Types* and Werner Vogels

Amazon.com

Marc Shapiro®”, Nuno Preguica'-?, Carlos Baquero®, and Marek Zawirski'-* ABSTRACT One of the lessons our organization has learned from operating

L . . . Amazon’s platform is that the reliability and scalability of a
\ Yapic Ky Reliability at massive scale is one of the biggest challenges we S P . . ability
INRIA, Paris, France 2 system is dependent on how its application state is managed.
face at Amazan cam ane of the laroect eccammerce aneratiang in

* CITI, Universidade Nova de Lishoa, Portugal the w I, loosely coupled, service
ndreds of services. In this

(LT - e A& i ‘artue
U m\;t .sn’im.c: (.(l) .\..x..l{u. Portugal c?;sfzcrq d for storage technologies
) UPMC, Paris, France ‘pq . 2, customers should be able
LIP6, Paris, France ping cart even if disks are

or data centers are being
he service responsible for
it can always write to and

- . ‘ . . dat ds to b ilabl
Abstract. Replicating data under Eventual Consistency (EC) allows Wa i1 BEeEE S0 06 aratanis

any replica to accept updates without remote synchronisation. This en-
sures performance and scalability in large-scale distributed systems (e.g., th

clouds). However, published EC approaches are ad-hoc and error-prone. (r and network components
Under a formal Strong Eventual Consistency (SEC) model, we study suf- s such Amazon’s software
ficient conditions for convergence. A data type that satisfies these con- 3 ap manner that treats failure

ire comprised of millions of
peration; there are always a

3 : - c .2 " ‘ ' . . t impacting availability or
ditions is called a Conflict-free Replicated Data Type (CRDT), Replicas pacting Y

of any CRDT are guaranteed to converge in a self-stabilising manner, (4 P . has develoned
. .A g . . : >ds, Amazon has develope
despite any number of failures. This paper formalises two popular ap- ‘) which the Amazon Sinfple
proaches (state- and operation-based) and their relevant sufficient con- s of Amazon and known as
ditions. We study a number of useful CRDTs, such as sets with clean ‘ LOF wn. This paper presents the
semantics, supporting both add and remove operations, and consider in f; another highly available
. 1 . ilt for Amazon’s platform.
depth the more complex Graph data type. CRDT types can be composed of services that have very
to develop large-scale distributed applications, and have Interesting the- ed tight control over the
oretical properties. 2ney, cost-effe?ctiveness and
X- - as a very diverse set of
mazi .
. . o : & [quirements. A select set of
Keywords: Eventual Consistency, Replicated Shared Objects, Large- of mil ogy that is flexible enough
Scale Distributed Systems, pervel heir data store appropriately
strict ¢ ve high availability and
perfog st effective manner.
. grow
1 Introduction of the ’s platform that only need
outage Tor many services, such as
. custo . support continuous growth, the W shopping carts, customer
R(";Jll(‘ﬂ.l ion and consistency are essent ial features of any li’ll’}{l" distributed system, platform needs to be highly scalable. preferences, session management, sales rank, and product catalog,
such as the WWW, peer-to-peer, or cloud computing platforms. The standard Fhef;"{nm‘?n Pat(tie? ‘?tf “Sli’g a(;elatlfingl.‘i;tagase would l?zd to
ralotanau? 1 cnrdalicnc s Cp e o X . inefficiencies and limit scale and availability. Dynamo provides a
strong consistency™ approach serialises updates in a global total order [10. simple primary-key only interface to meet the requirements of
Thic o ittt v ANCE cealability moeck F ~ v st r these applications.
lhz:s' constitutes a po..xf.(.-rumut.(. ufxfl 5S¢ a]abxl.t_\. l?utllt.l(‘tl\. I urtvhtrmun.. strong Permission to make digital or hard copies of all or part of this work for pp
consistency conflicts with availability and partition-tolerance [b‘ personal or classroom use is granted without fee provided that copies are Dynamo uses a synthesis of well known techniques to achieve
When network delays are large or partitioning is an issue, as in delay-tolerant not made or distributed for profit or commercial advantage and that scalability and availability: Data is partitioned and replicated
. § . . . Ty) copies bear this notice and the full citation on the first page. To copy using consistent hashing [10], and consistency is facilitated by
networks, disconnected operation, cloud computing, or P21 systems, cventual otherwise, or republish, to post on servers or to redistribute to lists, object versioning [12]. The consistency among replicas during
iste sl bette ailability 1 - PPN A jate e requires prior specific permission and/or a fee. dat . intained b like techni d
consistency promises detler avalability and periormance | j. Al update ex- SOSP'07, October 14-17, 2007, Stevenson, Washington, USA. lép ates 1'15 dmaull.ame hy a quorum-li el Ie)c nique an1 a
ecutes at some replica, without synchronisation; later, it is sent to the other Copyright 2007 ACM 978-1-59593-591-5/07/0010...35.00. ccentralized replica synchronization protocol. Dynamo employs

-

Eventual consistency.

Conflict-Free Replicated Data Types*

Marc Shapiro®”, Nuno Preguica'-?, Carlos Baquero®, and Marek Zawirski'-*

INRIA, Paris, France
* CITI, Universidade Nova de Lisboa, Portugal
¥ Universidade do Minho, Portugal
* UPMC, Paris, France
* LIP6, Paris, France

Abstract. Replicating data under Eventual Consistency (EC) allows
any replica to accept updates without remote synchronisation. This en-
sures performance and scalability in large-scale distributed systems (e.g.,
clouds). However, published EC approaches are ad-hoc and error-prone.
Under a formal Strong Eventual Consistency (SEC) model, we study suf-
ficient conditions for convergence. A data type that satisfies these con-
ditions is called a Conflict-free Replicated Data Type (CRDT), Replicas
of any CRDT are guaranteed to converge in a self-stabilising manner,
despite any number of failures. This paper formalises two popular ap-
proaches (state- and operation-based) and their relevant sufficient con-
ditions. We study a number of useful CRDTs, such as sets with clean
semantics, supporting both add and remove operations, and consider in
depth the more complex Graph data type. CRDT types can be composed
to develop large-scale distributed applications, and have Interesting the-
oretical properties.

Keywords: Eventual Consistency, Replicated Shared Objects, Large-
Scale Distributed Systems,

1 Introduction

Replication and consistency are essential features of any large distributed system,
such as the WWW, peer-to-peer, or cloud computing platforms. The standard
“strong consistency™ approach serialises updates in a global total order [10].
This constitutes a performance and scalability bottleneck. Furthermore, strong
consistency conflicts with availability and partition-tolerance [8].

When network delays are large or partitioning is an issue, as in delay-tolerant
networks, disconnected operation, cloud computing, or P2P systems, evenfual
consistency promiscs better availability and performance [17]21]. An update ex-
ecutes at some replica, without synchronisation; later, it is sent to the other

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels

ABSTRACT

Reliability at massive scale is one of the biggest challenges we
face at Amazan cam ane of the laroect eccammerce aneratiang in
the wi
conseq
platfor

iQ imn

Wa
th¢

server.
strict @
perfort
growth
of the
outage

Amazon.com

One of the lessons our organization has learned from operating
Amazon’s platform is that the reliability and scalability of a
system is dependent on how its application state is managed.
, loosely coupled, service
indreds of services. In this
d for storage technologies
2, customers should be able
ping cart even if disks are
or data centers are being
he service responsible for
it can always write to and
data needs to be available

ire comprised of millions of
peration; there are always a
r and network components
s such Amazon’s software
manner that treats failure
t impacting availability or

:ds, Amazon has developed
which the Amazon Simple
¢ of Amazon and known as
wn. This paper presents the
0, another highly available
ilt for Amazon’s platform.
of services that have very
ed tight control over the
2ncy, cost-effectiveness and
as a very diverse set of
quirements. A select set of
ogy that is flexible enough
heir data store appropriately
ve high availability and
st effective manner.

’s platform that only need
‘or many services, such as

custon‘WponcontTuous growth, the
platform needs to be highly scalable.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SOSP’07, October 14-17, 2007, Stevenson, Washington, USA.
Copyright 2007 ACM 978-1-59593-591-5/07/0010...$5.00.

W shopping carts, customer
preferences, session management, sales rank, and product catalog,

the common pattern of using a relational database would lead to
inefficiencies and limit scale and availability. Dynamo provides a
simple primary-key only interface to meet the requirements of
these applications.

Dynamo uses a synthesis of well known techniques to achieve
scalability and availability: Data is partitioned and replicated
using consistent hashing [10], and consistency is facilitated by
object versioning [12]. The consistency among replicas during
updates is maintained by a quorum-like technique and a
decentralized replica synchronization protocol. Dynamo employs

Eventual consistency.

T —

Conflict-Free Replicated Data Types*

Marc Shapiro®”, Nuno Preguica'-?, Carlos Baquero®, and Marek Zawirski'-*

INRIA, Paris, France
* CITI, Universidade Nova de Lishoa, Portugal
¥ Universidade do Minho, Portugal
* UPMC, Paris, France
* LIP6, Paris, France

Abstract. Replicating data under Eventual Consistency (EC) allows
any replica to accept updates without remote synchronisation. This en-
sures performance and scalability in large-scale distributed systems (e.g.,
clouds). However, published EC approaches are ad-hoc and error-prone.
Under a formal Strong Eventual Consistency (SEC) model, we study suf-
ficient conditions for convergence. A data type that satisfies these con-
ditions is called a Conflict-free Replicated Data Type (CRDT), Replicas
of any CRDT are guaranteed to converge in a self-stabilising manner,
despite any number of failures. This paper formalises two popular ap-
proaches (state- and operation-based) and their relevant sufficient con-
ditions. We study a number of useful CRDTs, such as sets with clean
semantics, supporting both add and remove operations, and consider in
depth the more complex Graph data type. CRDT types can be composed
to develop large-scale distributed applications, and have Interesting the-
oretical properties.

Keywords: Eventual Consistency, Replicated Shared Objects, Large-
Scale Distributed Systems,

1 Introduction

Replication and consistency are essential features of any large distributed system,
such as the WWW, peer-to-peer, or cloud computing platforms. The standard
“strong consistency™ approach serialises updates in a global total order [10].
This constitutes a performance and scalability bottleneck. Furthermore, strong
consistency conflicts with availability and partition-tolerance [8].

When network delays are large or partitioning is an issue, as in delay-tolerant
networks, disconnected operation, cloud computing, or P2P systems, evenfual
consistency promiscs better availability and performance [17]21]. An update ex-
ecutes at some replica, without synchronisation: later, it is sent to the other

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels

ABSTRACT

Reliability at massive scale is one of the biggest challenges we
face at Amazan cam ane of the laroect eccammerce aneratiang in
the wi
conseq
platfor

iQ imn

wad

server.
strict @
perfort
growth
of the
outage

Amazon.com

One of the lessons our organization has learned from operating
Amazon’s platform is that the reliability and scalability of a
system is dependent on how its application state is managed.
, loosely coupled, service
indreds of services. In this
d for storage technologies
2, customers should be able
ping cart even if disks are
or data centers are being
he service responsible for
it can always write to and
data needs to be available

ire comprised of millions of
peration; there are always a
r and network components
s such Amazon’s software
manner that treats failure
t impacting availability or

:ds, Amazon has developed
which the Amazon Simple
¢ of Amazon and known as
wn. This paper presents the
0, another highly available
ilt for Amazon’s platform.
of services that have very
ed tight control over the
2ncy, cost-effectiveness and
as a very diverse set of
quirements. A select set of
ogy that is flexible enough
heir data store appropriately
ve high availability and
st effective manner.

’s platform that only need
‘or many services, such as

custo . support continuous growth, the
platform needs to be highly scalable.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SOSP’07, October 14-17, 2007, Stevenson, Washington, USA.
Copyright 2007 ACM 978-1-59593-591-5/07/0010...$5.00.

W shopping carts, customer
preferences, session management, sales rank, and product catalog,

the common pattern of using a relational database would lead to
inefficiencies and limit scale and availability. Dynamo provides a
simple primary-key only interface to meet the requirements of
these applications.

Dynamo uses a synthesis of well known techniques to achieve
scalability and availability: Data is partitioned and replicated
using consistent hashing [10], and consistency is facilitated by
object versioning [12]. The consistency among replicas during
updates is maintained by a quorum-like technique and a
decentralized replica synchronization protocol. Dynamo employs

Eventual consistency.

-

Conflict-Free Replicated Data Types*

Marc Shapiro®-®, Nuno Preguica'-2, Carlos Baquero®, and Marek Zawirski'-*
' INRIA, Paris, France
* CITI, Universidade Nova de Lishoa, Portugal
¥ Universidade do Minho, Portugal
* UPMC, Paris, France
* LIP6, Paris, France

Abstract. Replicating data under Eventual Consistency (EC) allows
any replica to accept updates without remote synchronisation. This en-
sures performance and scalability in large-scale distributed systems (e.g.,
clouds). However, published EC approaches are ad-hoc and error-prone.
Under a formal Strong Eventual Consistency (SEC) model, we study suf-
ficient conditions for convergence. A data type that satisfies these con-
ditions is called a Conflict-free Replicated Data Type (CRDT), Replicas
of any CRDT are guaranteed to converge in a self-stabilising manner,
despite any number of failures. This paper formalises two popular ap-
proaches (state- and operation-based) and their relevant sufficient con-
ditions. We study a number of usefu]l CRDTs, such as sets with clean
semantics, supporting both add and remove operations, and consider in
depth the more complex Graph data type. CRDT types can be composed
to develop large-scale distributed applications, and have interesting the-
oretical properties.

Keywords: Eventual Consistency, Replicated Shared Objects, Large-
Scale Distributed Systems,

1 Introduction

Replication and consistency are essential features of any large distributed system,
such as the WWW, peer-to-peer, or cloud computing platforms. The standard
“strong consistency™ approach serialises updates in a global total order [10].
This constitutes a performance and scalability bottleneck. Furthermore, strong
consistency conflicts with availability and partition-tolerance [8].

When network delays are large or partitioning is an issue, as in delay-tolerant
networks, disconnected operation, cloud computing, or P2P systems, evenfual
consistency promiscs better availability and performance [17]21]. An update ex-
ecutes at some replica, without synchronisation; later, it is sent to the other

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels

ABSTRACT

Reliability at massive scale is one of the biggest challenges we
face at Amazan cam ane of the laroect eccammerce aneratiang in
the wi
conseq
platfor

iQ imn

Wa
th¢

ap

()

.

Amaz
of mil
server:
strict @
perfort
growth
of the
outage

Amazon.com

One of the lessons our organization has learned from operating
Amazon’s platform is that the reliability and scalability of a
system is dependent on how its application state is managed.
, loosely coupled, service
indreds of services. In this
d for storage technologies
2, customers should be able
ping cart even if disks are
or data centers are being
he service responsible for
it can always write to and
data needs to be available

ire comprised of millions of
peration; there are always a
r and network components
s such Amazon’s software
manner that treats failure
t impacting availability or

:ds, Amazon has developed
which the Amazon Simple
¢ of Amazon and known as
wn. This paper presents the
0, another highly available
ilt for Amazon’s platform.
of services that have very
ed tight control over the
2ncy, cost-effectiveness and
as a very diverse set of
quirements. A select set of
ogy that is flexible enough
heir data store appropriately
ve high availability and
st effective manner.

’s platform that only need
‘or many services, such as

custommus growth, the
platform needs to be highly scalable.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SOSP’07, October 14-17, 2007, Stevenson, Washington, USA.
Copyright 2007 ACM 978-1-59593-591-5/07/0010...$5.00.

those shopping carts, customer
preferences, session management, sales rank, and product catalog,

the common pattern of using a relational database would lead to
inefficiencies and limit scale and availability. Dynamo provides a
simple primary-key only interface to meet the requirements of
these applications.

Dynamo uses a synthesis of well known techniques to achieve
scalability and availability: Data is partitioned and replicated
using consistent hashing [10], and consistency is facilitated by
object versioning [12]. The consistency among replicas during
updates is maintained by a quorum-like technique and a
decentralized replica synchronization protocol. Dynamo employs

Eventual consistency.

-

Deterministic Parallelism

(observably)
Deterministic Parallelism

What does this program do?

num

N/

MVar

What does this program do?

3

num

4

putMVar\ / putMVar

MVar

What does this program do?

3 4
putMVar\ / putMVar

num MVar

l takeMVar
Vv

What does this program do?

|

3 4
putMVar\\\ K//butMVar

num MVar

l takeMVar
Vv

I

What does this program do?

O
Il

do

|

3 4
putMVar\\\ K//butMVar

num MVar

l takeMVar
Vv

—]

What does this program do?

p = do

num <- new,

|

3 4
putMvVar putMvVar
cmptyMVar P
num MVar
l takeMVar
A\
T ———
—

What does this program do?

P

%

= do 3 4
num <- newbkEmptyMVar e/
forkIO (putMvar num 3) Har

l takeMVar
Vv

e

What does this program do?

W

p - do tMV3 4:tMV
num <- newbkEmptyMVar e/
forkIO (putMvar num 3) Har
forkIO (putMvar num 4) },takewar

|

——

What does this program do?

p - d o tMV3 4tMV
num <- newbkEmptyMVar e/
forkIO (putMvar num 3) Har
forkIO (putMvar num 4) immmr

v <- takeMVar num

T ————

|
T — e —————T

What does this program do?

p - d o tMV3 4tMV
num <- newbkEmptyMVar e/
forkIO (putMvar num 3) Har
forkIO (putMvar num 4) immmr

v <- takeMVar num
return v

BT

——> *

Terminal — bash — 88x23

landin:lvar-examples lkuper$ make data-race-example
ghc -02 data-race-example.hs -rtsopts -threaded

Linking data-race-example ...
while true; do ./data-race-example +RTS -N2; done

4 4 AW 4 4 4

Disallow multiple writes?

p = do
num <- newbkEmptyMVar
forkIO (putMVar num 3)
forkIO (putMVar num 4)

v <- takeMVar num
return v

T — T

Disallow multiple writes?

p = do
num <- newEmEpvaarﬁ
forkIO K;htMVar num 3x

forkIO (puthvar num 4)

— =

v <- takeMVar num
return v

T —

Disallow multiple writes?

p = do
num <- newE@Eﬁvaar%
forkIO (;ﬁtMVar — 35_

forkIO ¢putMvVar num 4)

— =

v <- takeMVar num
return v

T —

Tesler and Enea, 1968

Arvind et al., 1989 [Vars

Disallow multiple writes?

return v

T —

Tesler and Enea, 1968 IV
Arvind et al., 1989 drI'sS

Disallow multiple writes?

return v

T —

Tesler and Enea, 1968 IV
Arvind et al., 1989 dl'S

./ivar-example +RTS -N2

lvar-example: multiple put

Deterministic programs that single-assignment forbids

return v

—

Deterministic programs that single-assignment forbids

return v

—

Deterministic programs that single-assignment forbids

return v

*

. /repeated-4-ivar +RTS -N2

repeated-4-ivar: multiple put

Deterministic programs that single-assignment forbids

p :: Par Int
p = do
num <- new
fork D

return v

./repeated-4-ivar +RTS -N2

repeated-4-ivar: multiple put

Deterministic programs that single-assignment forbids

p :: Par Int
p = do
num <- new
fork D

return v

./repeated-4-ivar +RTS -N2

repeated-4-ivar: multiple put

do
fork (insert t "0") — e
fork (insert t "1100")
fork (insert t "1111")
v <- get t
return v

Deterministic programs that single-assignment forbids

p :: Par Int
p = do
num <- new
fork D

return v

./repeated-4-ivar +RTS -N2

repeated-4-ivar: multiple put

do
fork (insert t
fork (insert t
fork (insert t
v <- get t
return v

LVars: Multiple monotonic writes

u PI‘OV&blY deterministic [Kuper and Newton, FHPC *13]

LVars: Multiple monotonic writes

N Provably deterministic [Kuper and Newton, FHPC ’13]

= Contents grow monotonically with each write

LVars: Multiple monotonic writes

N Provably deterministic [Kuper and Newton, FHPC ’13]
= Contents grow monotonically with each write

= Pluggable application-specific types

import Control.LVish
import Data.LVar.Set

T — e

LVars: Multiple monotonic writes

N Provably deterministic [Kuper and Newton, FHPC ’13]
= Contents grow monotonically with each write

= Pluggable application-specific types

import Control.LVish
import Data.LVar.Pair

T — e

LVars: Multiple monotonic writes

N Provably deterministic [Kuper and Newton, FHPC ’13]
= Contents grow monotonically with each write

= Pluggable application-specific types

import Control.LVish
import Data.LVar.Map

T — e

LVars: Multiple monotonic writes

N Provably deterministic [Kuper and Newton, FHPC ’13]
= Contents grow monotonically with each write

= Pluggable application-specific types

import Control.LVish
import Data.LVar.Counter

T — e

LVars: Multiple monotonic writes

N Provably deterministic [Kuper and Newton, FHPC ’13]
= Contents grow monotonically with each write

= Pluggable application-specific types

import Control.LVish
import Data.LVar.IVar

T — e

LVars: Multiple monotonic writes

N Provably deterministic [Kuper and Newton, FHPC ’13]
= Contents grow monotonically with each write

= Pluggable application-specific types

import Control.LVish
import Data.LVar.IVar

—'

* cabal install lvish today!

LVars: Multiple monotonic writes

num

Raises an error, since 3 u4 =T

do
fork (put num 3)
fork (put num 4)

I — —
Works fine, since 4 u 4 =4
do

fork (put num 4)
fork (put num 4)

1 — D |

LVars: Multiple monotonic writes

num

n Neil Conway 2

neil_conway
/// \\\ fmemutabilty s a special case of monotone
growth, albeit a particularly useful one.

O 1 2 3 4 . 4 Reply T3 Retweet W Favorited ®e® More

\\\ // A—— LT LI
10:10 AM - 21 Oct 13
T —

Overlapping writes are no problem

do

fork (insert t
fork (insert t
v <- get t
return v

LVars: Threshold reads

(0,0) (O, 1)

) fork (putFst nn 0)
/ \ """ fork (putSnd nn 1)
i = v <- getSnd nn
- (L0 (L) o (0) (1,1

_KQ:\ / return v -- returns
~ |
- —

"tripwire"

LVars: Threshold reads

(0, 0) (01)

. fork (putFst nn 0)
/ gt \ ---- fork (putSnd nn 1)
T"'74<; — v <- getSnd nn
- (L0 (L) o (0) (1,1
T ““““““““ / return v -- returns I
, —
getSnd | "tripwire”

LVars: Threshold reads

nn - \

/// \\\ =

nn <- newPailr

(O’(Q’” SN fork (putFst nn 0)

/ \ ---- fork (putSnd nn 1)
um/un L Enaen . VST getSnd nn
T ------------- / \\7// return v —-- returns 1
getSnd ”tripvéire” L

LVars: Threshold reads

(0, 0)

) fork (putFst nn 0)
/ \ """ fork (putSnd nn 1)
i = v <- getSnd nn
- (L0 (L) o (0) (1,1

_KQ:\ / return v -- returns
~ |
- —

"tripwire"

LVars: Threshold reads

IR . fork (putFst nn 0)
/ gt \ ---- fork (putSnd nn 1)
T"'74<; — v <- getSnd nn
(Lo (L) L 0L (L)
T ““““““““ / return v -- returns I
) *
getSnd | "tripwire”

LVars: Threshold reads

IR fork (putFst nn 0)
/ ”‘\ """ fork (putSnd nn 1)
(lO)/ m ! o L1) (1,1) . v <- getSnd nn
IT _____________ \</i;///// return v —-- returns 1
N \
getSnd | "tripwire" —

LVars: Threshold reads

(0, 0)

) fork (putFst nn 0)
/ \ """ fork (putSnd nn 1)
i = v <- getSnd nn
- (L0 (L) o (0) (1,1

_KQ:\ / return v -- returns
~ |
- —

"tripwire"

LVars: Threshold reads

\ R fork (putFst nn 0)

fork (putSnd nn 1)
)/ v <- getSnd nn
. O, L) (1,1)

—” return v -- returns 1
W
), -
"tripwire"

LVars: Threshold reads

R fork (putFst nn 0)
\ ----- fork (putSnd nn 1)
v <- getSnd nn
return v -- returns 1

(0, 1) (1, 1)

Monotonicity enables deterministic parallelism

Kahn, 1974

INFORMATION PROCESSING 74 — NORTH-HOLLAND PUBLISHING COMPANY (1974)

THE SEMANTICS OF A SIMPLE LANGUAGE FOR PARALLEL PROGRAMMING

Gilles KAHN

IRIA-Laboria, Domaine de Voluceau, 78150
Rocquencourt, France

and

Commissariat d I'Energie Atomique, France

In this paper, we describe a simple language for parallel programming. Its

ics 1is studied thor-

oughly. The desirable properties of this language and its deficiencies are exhibited by this theoret-
ical study. Basic results on parallel program s.hemata are given. We hope in this way to make a case
for a more formal (i.e. mathematical) approach tc-the design of languages for systems programming and

the design of operating systems.

. There is a wide disagreement among systems designers

as to what are the best primitives for writing sys-
tems programs. In this paper, we describe a simple
language for parallel programming and study its
mathematical properties.

1. A SIMPLE LANGUAGE FOR PARALLEL PROGRAMMING.

The features of our mini-language are exhibited on
the sample program S on fig.l. The conventions are
close to Algol and we only insist upon the new
features. The program S consists of a set of decla-
rations and a body. Variables of type integer
channel are declared at 'line (1), and for ary simple
type o (bcolean, real, etc...) we could have decla-
red a o ch 1. Then pr f, g and h are
declared, much like procedures. Aside from usual
parameters (passed by value in this example, like
INIT at line (3)), we can declare in the heading of
the process how it is linked to other processes : at
line (2) f is stated to communicate via two input

* lines that can carry integers, and one similar out-

put line.

The body of a process is an usual Algol program except
for invocation of wait onan input line (e.g. at (4))
or send a variable on a line of compatible type
(e.g. at (5)). The process stays blocked on a wait
until something is being sent on this line by ano-
ther process, but nothing can prevent a process
from performing a send on a line.

In other words, processes communicate via first-in
first-out (fifo) queues.

Calling instances of the processes is done in the

. body of the main program at line (6) where the

actual names of the channels are bound to the formal
parameters of the processes. The infix operator par
initiates the concurrent activation of the processes.
Such a style of programming is close to may systems
using EVENT mechanisms ([1],02],03],04]). A picto-
rial representation of the program is the schema P
on fig.2,, where the nodes represent processes and
the arcs communication channels between these pro-
cesses. '

What sort of things would we like to prove on a
program like S ? Firstly, that all processes in §
run forever. Secondly, more precisely, that S prints
out (at line (7)) an alternating sequence of 0's

and 1's forever. Third, that if one of the processes
were to stop at some time for an extraneous reason,
the whole system would stop.

The ability to state formally this kind of property
of a parallel program and to prove them within a
formal logical framework is the central motivation
for the theoretical study of the next sections.

2. PARALLEL COMPUTATION.

Informally speaking, a parallel computation is orga-
nized in the following way : some autonomous compu-
ting stations are connected to each other in a net-
work by communication lines. Computing stations
exchange information through these lines. A given
station computes on data coming along its input lines,

Begin
(1) Integer channel X, Y, 2, T, T2 ;
(2) Process f(integer in U,V; integer out W) ;
Begin integer 1 ; logical B ;
B := true ;
Repeat Begin

(4) 1 := if B then wait(V) else wait(V) ;
e print (1) ;
(5) send Ton VW ;

B :=—/B ;

end ;

3

End ;
Process g(integer in U ; integer out V, W) ;
Begin integer 1 ; logical B ; .
B := true ;
Repeat Begin
I := wait (U) ;
if B then send I on V else send 1 on W ;
B :=7B ;
End ;

End ;
(3) Process h(integer in U;integer out V; integer INIT);
Begin integer 1 ;
send INIT on V ;
Repeat Begin
I := watt(V) ;
send TonV ;
End ;
End ;

Camment : body of mainprogram ;

(6) f£(Y,Z,X) par g(X,T1,T2) par h(T1,Y,0) par h(T2,Z,1
End ;

Fig.!. Sample parallel program S.

Fig.2. The schema P for the program S.

onotonicity enables deterministic parallelism

f is monotonic ift, for a given §,

x <y = f(x) < f(y)

Kahn, 1974

INFORMATION PROCESSING 74 — NORTH-HOLLAND PUBLISHING COMPANY (1974)

THE SEMANTICS OF A SIMPLE LANGUAGE FOR PARALLEL PROGRAMMING

Gilles KAHN

IRIA-Laboria, Domaine de Voluceau, 78150
Rocquencourt, France

and

Commissariat a I'Energie Atomique, France

In this paper, we describe a simple language for parallel programming. Its semantics is studied thor-
oughly. The desirable properties of this language and its deficiencies are exhibited by this theoret-
ical study. Basic results on parallel program s.hemata are given. We hope in this way to make a case
for a more formal (i.e. mathematical) approach tc-the design of languages for systems programming and

the design of operating systems.

. There is a wide disagreement among systems designers

as to what are the best primitives for writing sys-
tems programs. In this paper, we describe a simple
language for parallel programming and study its
mathematical properties.

1. A SIMPLE LANGUAGE FOR PARALLEL PROGRAMMING.

The features of our mini-language are exhibited on
the sample program S on fig.l. The conventions are
close to Algol and we only insist upon the new
features. The program S consists of a set of decla-
rations and a body. Variables of type integer
channel are declared at 'line (1), and for ary simple
type o (bcolean, real, etc...) we could have decla-
red a o ch 1. Then pr f, g and h are
declared, much like procedures. Aside from usual
parameters (passed by value in this example, like
INIT at line (3)), we can declare in the heading of
the process how it is linked to other processes : at
line (2) f is stated to communicate via two input

* lines that can carry integers, and one similar out-

put line.

The body of a process is an usual Algol program except
for invocation of wait onan input line (e.g. at (4))
or send a variable on a line of compatible type
(e.g. at (5)). The process stays blocked on a wait
until something is being sent on this line by ano-
ther process, but nothing can prevent a process
from performing a send on a line.

In other words, processes communicate via first-in
first-out (fifo) queues.

Calling instances of the processes is done in the

. body of the main program at line (6) where the

actual names of the channels are bound to the formal
parameters of the processes. The infix operator par
initiates the concurrent activation of the processes.
Such a style of programming is close to may systems
using EVENT mechanisms ([1],02],03],04]). A picto-
rial representation of the program is the schema P
on fig.2,, where the nodes represent processes and
the arcs communication channels between these pro-
cesses. :

What sort of things would we like to prove on a
program like S ? Firstly, that all processes in §
run forever. Secondly, more precisely, that S prints
out (at line (7)) an alternating sequence of 0's

and 1's forever. Third, that if one of the processes
were to stop at some time for an extraneous reason,
the whole system would stop.

The ability to state formally this kind of property
of a parallel program and to prove them within a
formal logical framework is the central motivation
for the theoretical study of the next sections.

2. PARALLEL COMPUTATION.

Informally speaking, a parallel computation is orga-
nized in the following way : some autonomous compu-
ting stations are connected to each other in a net-
work by communication lines. Computing stations
exchange information through these lines. A given
station computes on data coming along its input lines,

Begin
(1) Integer channel X, Y, 2, T, T2 ;
(2) Process f(integer in U,V; integer out W) ;
Begin integer 1 ; logical B ;
B := true ;
Repeat Begin

(4) 1 := if B then wait(V) else wait(V) ;
) print (1) ;
(5) send Ton VW ;

B :=—/B ;

end ;

3

;
Process g(integer in U ; integer out V, W) ;
Begin integer 1 ; logical B ; .

B := true ;

Repeat Begin
I := wait (U) ;
if B then send I on V else send 1 on W ;
B :=TB ;
End ;

End ;
(3) Process h(integer in U;integer out V; integer INIT);
Begin integer 1 ;
send INIT on V ;
Repeat Begin
I := watt(V) ;
send TonV ;
End ;
End ;

Camment : body of mainprogram ;

(6) f£(Y,Z,X) par g(X,T1,T2) par h(T1,Y,0) par h(T2,Z,1
End ;

Fig.!. Sample parallel program S.

Fig.2. The schema P for the program S.

Monotonicity enables deterministic parallelism

INFORMATION PROCESSING 74 — NORTH-HOLLAND PUBLISHING COMPANY (1974) .~ ~

f i S m O n O tO n iC iff’ fO r a give n <) THE SEMANTICS OF A SIMPLE LANGUAGE FOR PARALLEL PRbGRAMMlNG
x <y = f(x) < f(y)

Rocquencourt, France
and

Commissariat d I'Energie Atomique, France

In this paper, we describe a simple language for parallel programming. Its semantics is studied thor-
Aeficiencies are exhibited by this theoret-

ven. We hope in this way to make a case

f languages for systems programming and

Monotonicitz means that receiving more input at J
@ computing station can only provoke it to send more FrwslimwinTTY

B := true ;
Repeat Begin

ou tpu t . Ind eed thi S a cruc ial proper ty s i-llc e i t ‘:”,:E;‘;f‘ﬁ Ehc;n wait(V) else wait(V) ;
allows parallel operation : a machine need not have

all of its input to start computing, since future b o

1 := wait (U) ; !
2f B then send I on V else gend 1 on W ;

lnput concerns onlz future putput. B

s

88 h(integer in U;integer out V; integer INIT);
“n integer 1 ;

nd INIT on V ;

2peat Begin

I := watt(V) ;
= send 1 onV ;
——
ther process, but no End ;
from performing a send on a line. End ;

In other words, processes communicate via first-in
first-out (fifo) queues.

Comment : bbdy of mainprogram ;

Calling instances of the processes is done in the (6) £(¥,2,X) par g(X,T1,T2) par h(T1,Y,0) par h(T2,Z,!
. body of the main program at line (6) where the End ;

actual names of the channels are bound to the formal .

parameters of the processes. The infix operator par Fig.l. Sample parallel program §.

The kind of parallel programming.we have studied in
this paper is severely limited : it can produce only-.
determinate programs. -

2. PARALLEL COMPUTATION.

Informally speaking, a parallel computation is orga-
nized in the following way : some autonomous compu-
ting stations are connected to each other in a net-
work by communication lines. Computing stations
exchange information through these lines. A given

station computes on data coming along its input lines, Fig.2. The schema P for the program S.

Kahn, 1974

Challenge problem

In a directed graph:

= find the connected component of all
nodes within k hops of a vertex v

= and compute a function analyze over
each vertex in that component

= making the set of results available
asynchronously to other
computations

Challenge problem

We compared two implementations:
Control.Parallel.Strategies

Our prototype LVar library
(tracking visited nodes in an LVar)

Level-sync breadth-first traversal, k= 10

Random graph; 320K edges; 40K nodes
Varying:
number of cores

amount of work done by analyze

Challenge problem: Strategies vs. LVars

Speedup over seq with 1us analyze function
1.6

1.2

0.8

0.4

0
1 core 2 core 3 core 4 core

O par/pseq (1us) O LVar (1ps)

Speedup over seq with 16us analyze function
4

0
1 core 2 core 3 core 4 core

O par/pseq (16ps) O LVar (16us)

Speedup over seq with 8us analyze function
4

0
1 core 2 core 3 core 4 core

O par/pseq (8us) O LVar (8us)

Speedup over seq with 32us analyze function
5

3.75

2.5

1.25

0
1 core 2 core 3 core 4 core

O par/pseq (32us) O LVar (32us)

R —

e ————

Challenge problem: Strategies vs. LVars

Monotonicitz means that receiving more input at /
a8 computing station can only provoke it to send more
output. Indeed this a crucial property since it
allows parallel operation : a machine need not have
all of its input to start comggting;-gince future

lnput concerns onlz future putput.
PR R—— A

Average time from start of program
to first invocation of analyze:

Strategies version: 64.64 ms

LVar version: 0.18 ms

(observably)
Deterministic Parallelism

via monotonic writes
and threshold reads.

<~ bloom

Logic and Lattices for Distributed Programming

Neil Conway
UC Berkeley
nrc@cs.berkeley.edu
Joseph M. Hellerstein
Keley

UG Bert
hellerstein@cs.berkeley.edu

ABSTRACT

In recent years there has been interest in achieving application-
level consistency criteria without the latency and availability
costs of strongly consistent storage infrastructure. A stan-
dard technique is to adopt a vocabulary of commutative op-
erations; this avoids the risk of inconsistency due to message
reordering. A more powerful approach was recently captured

Y the CALM theorem, which proves that logically mono-
tonic programs are guaranteed to be eventually consistent.
In logic languages such as Bloom, CALM analysis can au-
tomatically verify that program modules achieve consistency
without coordination.

In this paper we present Bloom*, an extension to Bloom
that takes inspiration from both these traditions. Bloom" gen-
eralizes Bloom to support lattices and extends the power of
CALM analysis to whole programs containing arbitrary lat-
tices. We show how the Bloom interpreter can be general-
ized to support efficient evaluation of lattice-based code us-
ing well-known strategies from logic programming. Finally,
we use Bloom” to develop several practical distributed pro-
grams, including a key-value store similar to Amazon Dy-
namo, and show how Bloom" encourages the safe composi-
tion of small, easy-to-analyze lattices into larger programs.

1. INTRODUCTION

As cloud computing becomes increasingly common, the
inherent difficulties of distributed systems—asynchrony, con-
currency, and partial failure—affect a growing segment of the
developer community. Traditionally, transactions and other
forms of strong consistency encapsulated these problems at
the data management layer. But in recent years there has
been interest in achieving application-level consistency cri-
teria without incurring the latency and availability costs of
strongly consistent storage [8, 17]. Two different frameworks
for these techniques have received significant atiention in
recent research: Convergent Modules and Monotonic Logic.
Convergent Modules: In this approach, a programmer writes
encapsulated modules whose public methods provide certain
guarantees regarding message reordering and retry. For exam-
ple, Statebox is an open-source library that merges conflicting
updates to data items in a key-value store: the user of the li-

William R. Marczak

Peter Alvaro

UC Berkeley UC Berkeley
wrm@cs.berkeley.edu palvaro@cs.berkeley.edu

David Maier
Portland State University
maier@cs.pdx.edu

brary need only register commutative, associative, idempotent
merge functions [19]. This approach has roots in research in
databases and systems [12. 14, 17, 27, 39] as well as group-
ware [11,37]. Shapiro, et al. recently proposed a formalism
for these approaches called Conflict-Free Replicated Data
Types (CRDTS), which casts these ideas into the algebraic
framework of semilattices 34, 35].

CRDTs present two main problems: (a) the programmer
bears responsibility for ensuring latiice properties for their
‘methods (commutativity, associativity, idempotence), and (b)
CRDTS only provide guarantees for individual data objects.
not for application logic in general. As an example of this
second point, consider the following:

Exawrie 1. A replicated, fault-tolerant courseware ap-
plication assigns students into study teams. It uses wo set
RDTs: one for Students and another for Teams. The appli-
cation reads a version of Students and inserts the derived
element <Alice,Bob> into Teams. Concurrentl
moved from Students by another application replica. The
use of CRDTS ensures that all replicas will eventually agree
that Bob is absent from Students, but this is not enough:
application-level state is inconsistent unless the derived val-
wues in Teams are updated consistently to reflect Bob’s re-
moval. This is outside the scope of CRDT guaranices.

‘Taken together, the problems with Convergent Modules
present a scope dilemma: a small module (e.g., a set) makes
lattice properties easy to inspect and test, but provides only
simple semantic guarantees. Large CRDTS (e.g., an eventu-
ally consistent shopping cart) provide higher-level application
‘guarantees but require the programmer to ensure lattice prop-
erties hold for a large module, resulting in software that is
difficult to test, maintain, and trust.

Monotonic Logic: In recent work, we observed that the
database theory literature on monotonic logic provides a
powerful lens for reasoning about distributed consistency.
Inuwitively, a monotonic program makes forward progress
over time: it never “retracts” an carlier conclusion in the face

ant to message reordering and retry) and hence eventually
ent [5. 18, 25]. Monotonicity of a Datalog program is

) 1LOO0IN

Logic and Lattices for Distributed Programming

Neil Conway
UC Berkeley
nrc@cs.berkeley.edu
Joseph M. Hellerstein
Keley

C Ber
hellerstein@cs.berkeley.edu

ABSTRACT

In recent years there has been interest in achieving application-
level consistency criteria without the latency and availability
costs of strongly consistent storage infrastructure. A stan-
dard technique is to adopt a vocabulary of commutative op-
erations; this avoids the risk of inconsistency due to message
reordering. A more powerful approach was recently captured
by the CALM theorem, which proves that logically mono-
tonic programs are guaranteed to be eventually consistent.
In logic languages such as Bloom, CALM analysis can au-
tomatically verify that program modules achieve consistency
without coordination.

In this paper we present Bloom", an extension to Bloom
that takes inspiration from both these traditions. Bloom" gen-
eralizes Bloom to support lattices and extends the power of
CALM analysis to whole programs containing arbitrary lat-
tices. We show how the Bloom interpreter can be general-
ized to support efficient evaluation of lattice-based code us-
ing well-known strategies from logic programming. Finally,
we use Bloom” to develop several practical distributed pro-
grams, including a key-value store similar to Amazon Dy-
namo, and show how Bloom" encourages the safe composi-
tion of small, easy-to-analyze lattices into larger programs.

1. INTRODUCTION

As cloud computing becomes increasingly common, the
inherent difficulties of distributed systems—as)

currency, and partial failure—affect a growing segment of the
developer community. Traditionally, transactions and other
forms of strong consistency encapsulated these problems at
the data management layer. But in recent years there has
been interest in achieving application-level consistency cri-
teria without incurring the latency and availability costs of
strongly consistent storage (8, 17]. Two different frameworks
for these techniques have received significant attention in
recent research: Convergent Modules and Monotonic Logic

nchrony, con-

Convergent Modules: In this approach, a programmer writes
encapsulated modules whose public methods provide certain
guarantees regarding message reordering and retry. For exam-
ple, Statebox s an open-source library that merges conflicting
updates to data items in a key-value store: the user of the li-

William R. Marczak

UC Berkeley
wrm@cs.berkeley.edu

Peter Alvaro

UC Berkeley
palvaro@cs.berkeley.edu
David Maier

Portland State University
maier@cs.pdx.edu

brary need only register commutative, associative, idempotent
merge functions [19]. This approach has roots in research in
databases and systems [12, 14, 17, 27, 39] as well as group-
ware [11,37]. Shapiro, et al. recently proposed a formalism
for these approaches called Conlict-Free Replicated Data
Types (CRDTS), which casts these ideas into the algebraic
framework of semilattices 34, 35].

"RDTS present two main problems: (a) the programmer
bears responsibility for ensuring latiice properties for their
methods (commutativity, associativity, idempotence), and (b)
CRDTS only provide guarantees for individual data objects,
not for application logic in general. As an example of this
second point, consider the following:

Exawrie 1. A replicated, fault-tolerant courseware ap-
plication assigns students into study teams. It uses two set
RDTs: one for Students and another for Teams. The appli-
cation reads a version of Students and inserts the derived
element <Alice,Bob> into Teams. Concurrently, Bob is re-
moved from Students by another application replica. The
use of CRDTs ensures that all replicas will eventually agree
that Bob is absent from Students, but this is not enough
application-level state is inconsistent unless the derived val-
wues in Teams are updated consistently to reflect Bob’s re-
moval. This is outside the scope of CRDT guaranices.

Taken together, the problems with Convergent Modules
present a scope dilemma: a small module (e.g.. a set) makes
lattice properties easy to inspect and test, but provides only
simple semantic guarantees. Large CRDTS (e.g.. an eventu-
ally consistent shopping cart) provide higher-level application
‘guarantees but require the programmer to ensure lattice prop-
erties hold for a large module, resulting in software that is
difficult to test, maintain, and trust.

Monotonic Logic: In recent work, we observed that the
database theory literature on monotonic logic provides a
powerful lens for reasoning about distributed consistency.
Intuitively. a monotonic program makes forward progress
over time: it never “retracts” an earlier conclusion in the face
of new information. We proposed the CALM theorem, which
established that all monotonic programs are confluent (invari-
ant to message reordering and retry) and hence eventually
consistent [5, 18, 25]. Monotonicity of a Datalog program is

B —

Logic and Lattices for Distributed Programming

Neil Conway
UC Berkeley
nrc@cs.berkeley.edu
Joseph M. Hellerstein
Keley

UG Bert
hellerstein@cs.berkeley.edu

ABSTRACT

In recent years there has been interest in achieving application-
level consistency criteria without the latency and availability
costs of strongly consistent storage infrastructure. A stan-
dard technique is to adopt a vocabulary of commutative op-
erations; this avoids the risk of inconsistency due to message
reordering. A more powerful approach was recently captured

Y the CALM theorem, which proves that logically mono-
tonic programs are guaranteed to be eventually consistent.
In logic languages such as Bloom, CALM analysis can au-
tomatically verify that program modules achieve consistency
without coordination.

In this paper we present Bloom*, an extension to Bloom
that takes inspiration from both these traditions. Bloom* gen-
eralizes Bloom to support lattices and extends the power of
CALM analysis to whole programs containing arbitrary lat-
tices. We show how the Bloom interpreter can be general-
ized to support efficient evaluation of lattice-based code us-
ing well-known strategies from logic programming. Finally,
we use Bloom” to develop several practical distributed pro-
grams, including a key-value store similar to Amazon D:
namo, and show how Bloom" encourages the safe composi-
tion of small, easy-to-analyze lattices into larger programs.

1.

INTRODUCTION

As cloud computing becomes increasingly common, the
inherent difficulties of distributed systems—asynchrony, con-
currency, and partial failure—affect a growing segment of the
developer community. Traditionally, transactions and other
forms of strong consistency encapsulated these problems at
the data management layer. But in recent years there has
been interest in achieving application-level consistency cri-
teria without incurring the latency and availability costs of
strongly consistent storage [8, 17]. Two different frameworks
for these techniques have received significant atiention in
recent research: Convergent Modules and Monotonic Logic.

Convergent Modules: In this approach, a programmer writes
encapsulated modules whose public methods provide certain
guarantees regarding message reordering and retry. For exam-
ple, Statebox is an open-source library that merges conflicting
updates to data items in a key-value store: the user of the li-

William R. Marczak

Peter Alvaro

UC Berkeley UC Berkeley
wrm@cs.berkeley.edu palvaro@cs.berkeley.edu

David Maier
Portland State University
maier@cs.pdx.edu

brary need only register commutative, associative, idempotent
merge functions [19]. This approach has roots in research in
databases and systems [12. 14, 17, 27, 39] as well as group-
ware [11,37]. Shapiro, et al. recently proposed a formalism
for these approaches called Conflict-Free Replicated Data
Types (CRDTS), which casts these ideas into the algebraic
framework of semilattices 34, 35].

CRDTs present two main problems: (a) the programmer
bears responsibility for ensuring latiice properties for their
‘methods (commutativity, associativity, idempotence), and (b)
CRDTS only provide guarantees for individual data objects,
not for application logic in general. As an example of this
second point, consider the following:

Exawrie 1. A replicated, fault-tolerant courseware ap-
plication assigns students into study teams. It uses wo set
RDTs: one for Students and another for Teams. The appli-
cation reads a version of Students and inserts the derived
element <Alice,Bob> into Teams. Concurrently, Bob is re-
moved from Students by another application replica. The
use of CRDTS ensures that all replicas will eventually agree
that Bob is absent from Students, but this is not enough:
application-level state is inconsistent unless the derived val-
wues in Teams are updated consistently to reflect Bob’s re-
moval. This is outside the scope of CRDT guaranices.

‘Taken together, the problems with Convergent Modules
present a scope dilemma: a small module (e.g., a set) makes
lattice properties easy to inspect and test, but provides only
simple semantic guarantees. Large CRDTS (e.g., an eventu-
ally consistent shopping cart) provide higher-level application
‘guarantees but require the programmer to ensure lattice prop-
erties hold for a large module, resulting in software that is
difficult to test, maintain, and trust.

Monotonic Logic: In recent work, we observed that the
database theory literature on monotonic logic provides a
powerful lens for reasoning about distributed consistency.
Inuwitively, a monotonic program makes forward progress
over time: it never “retracts” an carlier conclusion in the face
of new information. We proposed the CALM theorem, which
established that all monotonic programs are confluent (invari-
ant to message reordering and retry) and hence eventually
consistent [5, 18, 25]. Monotonicity of a Datalog program is

Logic and Lattices for Distributed Programming

Neil Conway William R. Marczak Peter Alvaro

UC Berkeley UC Berkeley UC Berkeley
nrc@cs.berkeley.edu wrm@cs.berkeley.edu palvaro@cs.berkeley.edu

Joseph M. Hellerstein
Keley

UG Bert
hellerstein@cs.berkeley.edu

ABSTRACT

In recent years there has been interest in achieving application-
level consistency criteria without the latency and availability
costs of strongly consistent storage infrastructure. A stan-
dard technique is to adopt a vocabulary of commutative op-
erations; this avoids the risk of inconsistency due to message
reordering. A more powerful approach was recently captured

Y the CALM theorem, which proves that logically mono-
tonic programs are guaranteed to be eventually consistent.
In logic languages such as Bloom, CALM analysis can au-
tomatically verify that program modules achieve consistency
without coordination.

In this paper we present Bloom*, an extension to Bloom
that takes inspiration from both these traditions. Bloom" gen-
eralizes Bloom to support lattices and extends the power of
CALM analysis to whole programs containing arbitrary lat-
tices. We show how the Bloom interpreter can be general-
ized to support efficient evaluation of lattice-based code us-
ing well-known strategies from logic programming. Finally,
we use Bloom” to develop several practical distributed pro-
grams, including a key-value store similar to Amazon D:
namo, and show how Bloom" encourages the safe compos
tion of small, easy-to-analyze lattices into larger programs.

1.

INTRODUCTION

As cloud computing becomes increasingly common, the
inherent difficulties of distributed systems—asynchrony, con-
currency, and partial failure—affect a growing segment of the
developer community. Traditionally, transactions and other
forms of strong consistency encapsulated these problems at
the data management layer. But in recent years there has
been interest in achieving application-level consistency cri-
teria without incurring the latency and availability costs of
strongly consistent storage [8, 17]. Two different frameworks
for these techniques have received significant atiention in
recent research: Convergent Modules and Monotonic Logic.

Convergent Modules: In this approach, a programmer writes
encapsulated modules whose public methods provide certain
guarantees regarding message reordering and retry. For exam-
ple, Statebox is an open-source library that merges conflicting
updates to data items in a key-value store: the user of the li-

David Maier
Portland State University
maier@cs.pdx.edu

brary need only register commutative, associative, idempotent
merge functions [19]. This approach has roots in research in
databases and systems [12. 14, 17, 27, 39] as well as group-
ware [11,37]. Shapiro, et al. recently proposed a formalism
for these approaches called Conflict-Free Replicated Data
Types (CRDTS), which casts these ideas into the algebraic
framework of semilattices 34, 35].

CRDTs present two main problems: (a) the programmer
bears responsibility for ensuring latiice properties for their
‘methods (commutativity, associativity, idempotence), and (b)
CRDTS only provide guarantees for individual data objects,
not for application logic in general. As an example of this
second point, consider the following:

Exawrie 1. A replicated, fault-tolerant courseware ap-
plication assigns students into study teams. It uses wo set

RDTs: one for Students and another for Teams. The appli-
cation reads a version of Students and inserts the derived
element <Alice,Bob> into Teams. Concurrently, Bob is re-
moved from Students by another application replica. The
use of CRDTS ensures that all replicas will eventually agree
that Bob is absent from Students, but this is not enough:
application-level state is inconsistent unless the derived val-
wues in Teams are updated consistently to reflect Bob’s re-
moval. This is outside the scope of CRDT guaranices.

‘Taken together, the problems with Convergent Modules
present a scope dilemma: a small module (e.g., a set) makes
lattice properties easy to inspect and test, but provides only
simple semantic guarantees. Large CRDTS (e.g., an eventu-
ally consistent shopping cart) provide higher-level application
‘guarantees but require the programmer to ensure lattice prop-
erties hold for a large module, resulting in software that is
difficult to test, maintain, and trust.

Monotonic Logic: In recent work, we observed that the
database theory literature on monotonic logic provides a
powerful lens for reasoning about distributed consistency.
Inuwitively, a monotonic program makes forward progress
over time: it never “retracts” an carlier conclusion in the face
of new information. We proposed the CALM theorem, which
established that all monotonic programs are confluent (invari-
ant to message reordering and retry) and hence eventually
consistent [5, 18, 25]. Monotonicity of a Datalog program is

Logic and Lattices for Distributed Programming

Neil Conway William R. Marczak Peter Alvaro

UC Berkeley UC Berkeley UC Berkeley
nrc@cs.berkeley.edu wrm@cs.berkeley.edu palvaro@cs.berkeley.edu

Joseph M. Hellerstein
Keley

UG Bert
hellerstein@cs.berkeley.edu

ABSTRACT

In recent years there has been interest in achieving application-
level consistency criteria without the latency and availability
costs of strongly consistent storage infrastructure. A stan-
dard technique is to adopt a vocabulary of commutative op-
erations; this avoids the risk of inconsistency due to message
reordering. A more powerful approach was recently captured

Y the CALM theorem, which proves that logically mono-
tonic programs are guaranteed to be eventually consistent.
In logic languages such as Bloom, CALM analysis can au-
tomatically verify that program modules achieve consistency
without coordination.

In this paper we present Bloom*, an extension to Bloom
that takes inspiration from both these traditions. Bloom" gen-
eralizes Bloom to support lattices and extends the power of
CALM analysis to whole programs containing arbitrary lat-
tices. We show how the Bloom interpreter can be general-
ized to support efficient evaluation of lattice-based code us-
ing well-known strategies from logic programming. Finally,
we use Bloom” to develop several practical distributed pro-
grams, including a key-value store similar to Amazon D:
namo, and show how Bloom" encourages the safe compos
tion of small, easy-to-analyze lattices into larger programs.

1.

INTRODUCTION

As cloud computing becomes increasingly common, the
inherent difficulties of distributed systems—asynchrony, con-
currency, and partial failure—affect a growing segment of the
developer community. Traditionally, transactions and other
forms of strong consistency encapsulated these problems at
the data management layer. But in recent years there has
been interest in achieving application-level consistency cri-
teria without incurring the latency and availability costs of
strongly consistent storage [8, 17]. Two different frameworks
for these techniques have received significant atiention in
recent research: Convergent Modules and Monotonic Logic.

Convergent Modules: In this approach, a programmer writes
encapsulated modules whose public methods provide certain
guarantees regarding message reordering and retry. For exam-
ple, Statebox is an open-source library that merges conflicting
updates to data items in a key-value store: the user of the li-

David Maier
Portland State University
maier@cs.pdx.edu

brary need only register commutative, associative, idempotent
merge functions [19]. This approach has roots in research in
databases and systems [12. 14, 17, 27, 39] as well as group-
ware [11,37]. Shapiro, et al. recently proposed a formalism
for these approaches called Conflict-Free Replicated Data
Types (CRDTS), which casts these ideas into the algebraic
framework of semilattices 34, 35].

CRDTs present two main problems: (a) the programmer
bears responsibility for ensuring latiice properties for their
‘methods (commutativity, associativity, idempotence), and (b)
CRDTS only provide guarantees for individual data objects,
not for application logic in general. As an example of this
second point, consider the following:

Exawrie 1. A replicated, fault-tolerant courseware ap-
plication assigns students into study teams. It uses wo set

RDTs: one for Students and another for Teams. The appli-
cation reads a version of Students and inserts the derived
element <Alice,Bob> into Teams. Concurrently, Bob is re-
moved from Students by another application replica. The
use of CRDTS ensures that all replicas will eventually agree
that Bob is absent from Students, but this is not enough:
application-level state is inconsistent unless the derived val-
wues in Teams are updated consistently to reflect Bob’s re-
moval. This is outside the scope of CRDT guaranices.

‘Taken together, the problems with Convergent Modules
present a scope dilemma: a small module (e.g., a set) makes
lattice properties easy to inspect and test, but provides only
simple semantic guarantees. Large CRDTS (e.g., an eventu-
ally consistent shopping cart) provide higher-level application
‘guarantees but require the programmer to ensure lattice prop-
erties hold for a large module, resulting in software that is
difficult to test, maintain, and trust.

Monotonic Logic: In recent work, we observed that the
database theory literature on monotonic logic provides a
powerful lens for reasoning about distributed consistency.
Inuwitively, a monotonic program makes forward progress
over time: it never “retracts” an carlier conclusion in the face
of new information. We proposed the CALM theorem, which
established that all monotonic programs are confluent (invari-
ant to message reordering and retry) and hence eventually
consistent [5, 18, 25]. Monotonicity of a Datalog program is

Logic and Lattices for Distributed Programming

Neil Conway William R. Marczak Peter Alvaro

UC Berkeley UC Berkeley UC Berkeley
nrc@cs.berkeley.edu wrm@cs.berkeley.edu palvaro@cs.berkeley.edu

Joseph M. Hellerstein
Keley

UG Bert
hellerstein@cs.berkeley.edu

ABSTRACT

In recent years there has been interest in achieving application-
level consistency criteria without the latency and availability
costs of strongly consistent storage infrastructure. A stan-
dard technique is to adopt a vocabulary of commutative op-
erations; this avoids the risk of inconsistency due to message
reordering. A more powerful approach was recently captured

Y the CALM theorem, which proves that logically mono-
tonic programs are guaranteed to be eventually consistent.
In logic languages such as Bloom, CALM analysis can au-
tomatically verify that program modules achieve consistency
without coordination.

In this paper we present Bloom*, an extension to Bloom
that takes inspiration from both these traditions. Bloom" gen-
eralizes Bloom to support lattices and extends the power of
CALM analysis to whole programs containing arbitrary lat-
tices. We show how the Bloom interpreter can be general-
ized to support efficient evaluation of lattice-based code us-
ing well-known strategies from logic programming. Finally,
we use Bloom” to develop several practical distributed pro-
grams, including a key-value store similar to Amazon D:
namo, and show how Bloom" encourages the safe compos
tion of small, easy-to-analyze lattices into larger programs.

1.

INTRODUCTION

As cloud computing becomes increasingly common, the
inherent difficulties of distributed systems—asynchrony, con-
currency, and partial failure—affect a growing segment of the
developer community. Traditionally, transactions and other
forms of strong consistency encapsulated these problems at
the data management layer. But in recent years there has
been interest in achieving application-level consistency cri-
teria without incurring the latency and availability costs of
strongly consistent storage [8, 17]. Two different frameworks
for these techniques have received significant atiention in
recent research: Convergent Modules and Monotonic Logic.

Convergent Modules: In this approach, a programmer writes
encapsulated modules whose public methods provide certain
guarantees regarding message reordering and retry. For exam-
ple, Statebox is an open-source library that merges conflicting
updates to data items in a key-value store: the user of the li-

David Maier
Portland State University
maier@cs.pdx.edu

brary need only register commutative, associative, idempotent
merge functions [19]. This approach has roots in research in
databases and systems [12. 14, 17, 27, 39] as well as group-
ware [11,37]. Shapiro, et al. recently proposed a formalism
for these approaches called Conflict-Free Replicated Data
Types (CRDTS), which casts these ideas into the algebraic
framework of semilattices 34, 35].

CRDTs present two main problems: (a) the programmer
bears responsibility for ensuring latiice properties for their
‘methods (commutativity, associativity, idempotence), and (b)
CRDTS only provide guarantees for individual data objects,
not for application logic in general. As an example of this
second point, consider the following:

Exawrie 1. A replicated, fault-tolerant courseware ap-

plication assigns students into study teams. It uses wo set
RDTs: one for Students and another for Teams. The appli-

cation reads a version of Students and inserts the derived
element <Alice,Bob> into Teams. Concurrently, Bob is re-
moved from Students by another application replica. The
use of CRDTS ensures that all replicas will eventually agree
that Bob is absent from Students, but this is not enough:
application-level state is inconsistent unless the derived val-
wues in Teams are updated consistently to reflect Bob’s re-
moval. This is outside the scope of CRDT guaranices.

‘Taken together, the problems with Convergent Modules
present a scope dilemma: a small module (e.g., a set) makes
lattice properties easy to inspect and test, but provides only
simple semantic guarantees. Large CRDTS (e.g., an eventu-
ally consistent shopping cart) provide higher-level application
‘guarantees but require the programmer to ensure lattice prop-
erties hold for a large module, resulting in software that is
difficult to test, maintain, and trust.

Monotonic Logic: In recent work, we observed that the
database theory literature on monotonic logic provides a
powerful lens for reasoning about distributed consistency.
Inuwitively, a monotonic program makes forward progress
over time: it never “retracts” an carlier conclusion in the face
of new information. We proposed the CALM theorem, which
established that all monotonic programs are confluent (invari-
ant to message reordering and retry) and hence eventually
consistent [5, 18, 25]. Monotonicity of a Datalog program is

Logic and Lattices for Distributed Programming

Neil Conway William R. Marczak Peter Alvaro

UC Berkeley UC Berkeley UC Berkeley
nrc@cs.berkeley.edu wrm@cs.berkeley.edu palvaro@cs.berkeley.edu

Joseph M. Hellerstein
Keley

UG Bert
hellerstein@cs.berkeley.edu

ABSTRACT

In recent years there has been interest in achieving application-
level consistency criteria without the latency and availability
costs of strongly consistent storage infrastructure. A stan-
dard technique is to adopt a vocabulary of commutative op-
erations; this avoids the risk of inconsistency due to message
reordering. A more powerful approach was recently captured

Y the CALM theorem, which proves that logically mono-
tonic programs are guaranteed to be eventually consistent.
In logic languages such as Bloom, CALM analysis can au-
tomatically verify that program modules achieve consistency
without coordination.

In this paper we present Bloom*, an extension to Bloom
that takes inspiration from both these traditions. Bloom" gen-
eralizes Bloom to support lattices and extends the power of
CALM analysis to whole programs containing arbitrary lat-
tices. We show how the Bloom interpreter can be general-
ized to support efficient evaluation of lattice-based code us-
ing well-known strategies from logic programming. Finally,
we use Bloom” to develop several practical distributed pro-
grams, including a key-value store similar to Amazon D:
namo, and show how Bloom" encourages the safe compos
tion of small, easy-to-analyze lattices into larger programs.

1.

INTRODUCTION

As cloud computing becomes increasingly common, the
inherent difficulties of distributed systems—asynchrony, con-
currency, and partial failure—affect a growing segment of the
developer community. Traditionally, transactions and other
forms of strong consistency encapsulated these problems at
the data management layer. But in recent years there has
been interest in achieving application-level consistency cri-
teria without incurring the latency and availability costs of
strongly consistent storage [8, 17]. Two different frameworks
for these techniques have received significant atiention in
recent research: Convergent Modules and Monotonic Logic.

Convergent Modules: In this approach, a programmer writes
encapsulated modules whose public methods provide certain
guarantees regarding message reordering and retry. For exam-
ple, Statebox is an open-source library that merges conflicting
updates to data items in a key-value store: the user of the li-

David Maier
Portland State University
maier@cs.pdx.edu

brary need only register commutative, associative, idempotent
merge functions [19]. This approach has roots in research in
databases and systems [12. 14, 17, 27, 39] as well as group-
ware [11,37]. Shapiro, et al. recently proposed a formalism
for these approaches called Conflict-Free Replicated Data
Types (CRDTS), which casts these ideas into the algebraic
framework of semilattices 34, 35].

CRDTs present two main problems: (a) the programmer
bears responsibility for ensuring latiice properties for their
‘methods (commutativity, associativity, idempotence), and (b)
CRDTS only provide guarantees for individual data objects,
not for application logic in general. As an example of this
second point, consider the following:

Exawrie 1. A replicated, fault-tolerant courseware ap-

plication assigns students into study teams. It uses wo set
RDTs: one for Students and another for Teams. The appli-

cation reads a version of Students and inserts the derived
element <Alice,Bob> into Teams. Concurrently, Bob is re-
moved from Students by another application replica. The
use of CRDTS ensures that all replicas will eventually agree
that Bob is absent from Students, but this is not enough:
application-level state is inconsistent unless the derived val-
wues in Teams are updated consistently to reflect Bob’s re-
moval. This is outside the scope of CRDT guaranices.

‘Taken together, the problems with Convergent Modules
present a scope dilemma: a small module (e.g., a set) makes
lattice properties easy to inspect and test, but provides only
simple semantic guarantees. Large CRDTS (e.g., an eventu-
ally consistent shopping cart) provide higher-level application
‘guarantees but require the programmer to ensure lattice prop-
erties hold for a large module, resulting in software that is
difficult to test, maintain, and trust.

Monotonic Logic: In recent work, we observed that the
database theory literature on monotonic logic provides a
powerful lens for reasoning about distributed consistency.
Inuwitively, a monotonic program makes forward progress
over time: it never “retracts” an carlier conclusion in the face
of new information. We proposed the CALM theorem, which
established that all monotonic programs are confluent (invari-
ant to message reordering and retry) and hence eventually
consistent [5, 18, 25]. Monotonicity of a Datalog program is

“It’s very

interesting stuff.”

) 1LOO0IN

Logic and Lattices for Distributed Programming

Neil Conway William R. Marczak Peter Alvaro
UC Berkeley UC Berkeley UC Berkeley
nrc@cs.berkeley.edu wrm@cs.berkeley.edu palvaro@cs.berkeley.edu

Joseph M. Hellerstein
Keley

C Ber
hellerstein@cs.berkeley.edu

ABSTRACT

In recent years there has been interest in achieving application-
level consistency criteria without the latency and availability
costs of strongly consistent storage infrastructure. A stan-
dard technique is to adopt a vocabulary of commutative op-
erations; this avoids the risk of inconsistency due to message
reordering. A more powerful approach was recently captured
by the CALM theorem, which proves that logically mono-
tonic programs are guaranteed to be eventually consistent.
In logic languages such as Bloom, CALM analysis can au-
tomatically verify that program modules achieve consistency
without coordination.

In this paper we present Bloom", an extension to Bloom
that takes inspiration from both these traditions. Bloom" gen-
eralizes Bloom to support lattices and extends the power of
CALM analysis to whole programs containing arbitrary lat-
tices. We show how the Bloom interpreter can be general-
ized to support efficient evaluation of lattice-based code us-
ing well-known strategies from logic programming. Finally,
we use Bloom” to develop several practical distributed pro-
grams, including a key-value store similar to Amazon Dy-
namo, and show how Bloom" encourages the safe composi-
tion of small, easy-to-analyze lattices into larger programs.

1. INTRODUCTION

As cloud computing becomes increasingly common, the
inherent difficulties of distributed systems—as)

currency, and partial failure—affect a growing segment of the
developer community. Traditionally, transactions and other
forms of strong consistency encapsulated these problems at
the data management layer. But in recent years there has
been interest in achieving application-level consistency cri-
teria without incurring the latency and availability costs of
strongly consistent storage (8, 17]. Two different frameworks
for these techniques have received significant attention in
recent research: Convergent Modules and Monotonic Logic

nchrony, con-

Convergent Modules: In this approach, a programmer writes
encapsulated modules whose public methods provide certain
guarantees regarding message reordering and retry. For exam-
ple, Statebox s an open-source library that merges conflicting
updates to data items in a key-value store: the user of the li-

David Maier
Portland State University
maier@cs.pdx.edu

brary need only register commutative, associative, idempotent
merge functions [19]. This approach has roots in research in
databases and systems [12, 14, 17, 27, 39] as well as group-
ware [11,37]. Shapiro, et al. recently proposed a formalism
for these approaches called Conlict-Free Replicated Data
Types (CRDTS), which casts these ideas into the algebraic
framework of semilattices 34, 35].

"RDTS present two main problems: (a) the programmer
bears responsibility for ensuring latiice properties for their
methods (commutativity, associativity, idempotence), and (b)
CRDTS only provide guarantees for individual data objects,
not for application logic in general. As an example of this
second point, consider the following:

Exawrie 1. A replicated, fault-tolerant courseware ap-
plication assigns students into study teams. It uses two set
RDTs: one for Students and another for Teams. The appli-
cation reads a version of Students and inserts the derived
element <Alice,Bob> into Teams. Concurrently, Bob is re-
moved from Students by another application replica. The
use of CRDTs ensures that all replicas will eventually agree
that Bob is absent from Students, but this is not enough
application-level state is inconsistent unless the derived val-
wues in Teams are updated consistently to reflect Bob’s re-
moval. This is outside the scope of CRDT guaranices.

Taken together, the problems with Convergent Modules
present a scope dilemma: a small module (e.g.. a set) makes
lattice properties easy to inspect and test, but provides only
simple semantic guarantees. Large CRDTS (e.g.. an eventu-
ally consistent shopping cart) provide higher-level application
‘guarantees but require the programmer to ensure lattice prop-
erties hold for a large module, resulting in software that is
difficult to test, maintain, and trust.

Monotonic Logic: In recent work, we observed that the
database theory literature on monotonic logic provides a
powerful lens for reasoning about distributed consistency.
Intuitively. a monotonic program makes forward progress
over time: it never “retracts” an earlier conclusion in the face
of new information. We proposed the CALM theorem, which
established that all monotonic programs are confluent (invari-
ant to message reordering and retry) and hence eventually
consistent [5, 18, 25]. Monotonicity of a Datalog program is

B —

“It’s very

interesting stuff.”

Logic and Lattices for Distributed Programming

Neil Conway William R. Marczak Peter Alvaro

UC Berkeley UC Berkeley UC Berkeley
nrc@cs.berkeley.edu wrm@cs.berkeley.edu palvaro@cs.berkeley.edu

Joseph M. Hellerstein
Keley

ert
hellerstein@cs.berkeley.edu

ABSTRACT

In recent years there has been interest in achieving application-
level consistency criteria without the latency and availability
costs of strongly consistent storage infrastructure. A stan-
dard technique is to adopt a vocabulary of commutative op-
erations; this avoids the risk of inconsistency due to message
reordering. A more powerful approach was r captured
by the CALM theorem, which proves that logically mono-
tonic programs are guaranteed to be eventually consistent.
In logic languages such as Bloom, CALM analysis can au-
tomatically verify that program modules achieve consistency
without coordination.

In this paper we present Bloom", an extension to Bloom
that takes inspiration from both these traditions. Bloom" gen-
eralizes Bloom to support lattices and extends the power of
CALM analysis to whole programs containing arbitrary lat-
tices. We show how the Bloom interpreter can be general-
ized to support efficient evaluation of lattice-based code us-
ing well-known strategies from logic programming. Finally,
we use Bloom” to develop several practical distributed pro-
grams, including a key-value store similar to Amazon Dy-
namo, and show how Bloom" encourages the safe composi-
tion of small, easy-to-analyze lattices into larger programs.

1. INTRODUCTION

As cloud computing becomes increasingly common, the
inherent difficulties of distributed systems—asynchrony, con-
currency, and partial failure—affect a growing segment of the
developer community. Traditionally, transactions and other
forms of strong consistency encapsulated these problems at
the data management layer. But in recent years there has
been interest in achieving application-level consistency cri-
teria without incurring the latency and availability costs of
strongly consistent storage [8, 17]. Two different frameworks
for these techniques have received significant attention in
recent research: Convergent Modules and Monotonic Logic

Convergent Modules: In this approach, a programmer writes
encapsulated modules whose public methods provide certain
guarantees regarding message reordering and retry. For exam-
ple, Statebox s an open-source library that merges conflicting
updates to data items in a key-value store: the user of the li-

David Maier
Portland State University
maier@cs.pdx.edu

brary need only register commutative, associative, idempotent
merge functions [19]. This approach has roots in research in
databases and systems [12, 14, 17, 27, 39] as well as group-
ware [11,37]. Shapiro, et al. recently proposed a formalism
for these approaches called Conlict-Free Replicated Data
Types (CRDTS), which casts these ideas into the algebraic
framework of semilattices 34, 35].

"RDTS present two main problems: (a) the programmer
bears responsibility for ensuring latiice properties for their
methods (commutativity, associativity, idempotence), and (b)
CRDTS only provide guarantees for individual data objects,
not for application logic in general. As an example of
second point, consider the following:

Exawrie 1. A replicated, fault-tolerant courseware ap-
plication assigns students into study teams. It uses two set
RDTs: one for Students and another for Teams. The appli-
cation reads a version of Students and inserts the derived
element <Alice,Bob> into Teams. Concurrently, Bob is re-
moved from Students by another application replica. The
use of CRDTs ensures that all replicas will eventually agree
that Bob is absent from Students, but this is not enough:
application-level state is inconsistent unless the derived val-
wues in Teams are updated consistently to reflect Bob’s re-
moval. This is outside the scope of CRDT guaranices.

Taken together, the problems with Convergent Modules
present a scope dilemma: a small module (e.g.. a set) makes
lattice properties easy to inspect and test, but provides only
simple semantic guarantees. Large CRDTS (e.g.. an eventu-
ally consistent shopping cart) provide higher-level application
‘guarantees but require the programmer to ensure lattice prop-
erties hold for a large module, resulting in software that is
difficult to test, maintain, and trust.

Monotonic Logic: In recent work, we observed that the
database theory literature on monotonic logic provides a
powerful lens for reasoning about distributed consistency.
Intuitively. a monotonic program makes forward progress
over time: it never “retracts” an earlier conclusion in the face
of new information. We proposed the CALM theorem, which
established that all monotonic programs are confluent (invari-
ant to message reordering and retry) and hence eventually
consistent [5, 18, 25]. Monotonicity of a Datalog program is

“It’s very
interesting stuff.”

“I’d love to link a few co-workers
to your blog post...”

) 1LOO0IN

Logic and Lattices for Distributed Programming

Neil Conway William R. Marczak Peter Alvaro
UC Berkeley UC Berkeley UC Berkeley
nrc@cs.berkeley.edu wrm@cs.berkeley.edu palvaro@cs.berkeley.edu

Joseph M. Hellerstein
Keley

C Ber
hellerstein@cs.berkeley.edu

ABSTRACT

In recent years there has been interest in achieving application-
level consistency criteria without the latency and availability
costs of strongly consistent storage infrastructure. A stan-
dard technique is to adopt a vocabulary of commutative op-
erations; this avoids the risk of inconsistency due to message
reordering. A more powerful approach was recently captured
by the CALM theorem, which proves that logically mono-
tonic programs are guaranteed to be eventually consistent.
In logic languages such as Bloom, CALM analysis can au-
tomatically verify that program modules achieve consistency
without coordination.

In this paper we present Bloom", an extension to Bloom
that takes inspiration from both these traditions. Bloom" gen-
eralizes Bloom to support lattices and extends the power of
CALM analysis to whole programs containing arbitrary lat-
tices. We show how the Bloom interpreter can be general-
ized to support efficient evaluation of lattice-based code us-
ing well-known strategies from logic programming. Finally,
we use Bloom” to develop several practical distributed pro-
grams, including a key-value store similar to Amazon Dy-
namo, and show how Bloom" encourages the safe composi-
tion of small, easy-to-analyze lattices into larger programs.

1. INTRODUCTION

As cloud computing becomes increasingly common, the
inherent difficulties of distributed systems—as)

currency, and partial failure—affect a growing segment of the
developer community. Traditionally, transactions and other
forms of strong consistency encapsulated these problems at
the data management layer. But in recent years there has
been interest in achieving application-level consistency cri-
teria without incurring the latency and availability costs of
strongly consistent storage (8, 17]. Two different frameworks
for these techniques have received significant attention in
recent research: Convergent Modules and Monotonic Logic

nchrony, con-

Convergent Modules: In this approach, a programmer writes
encapsulated modules whose public methods provide certain
guarantees regarding message reordering and retry. For exam-
ple, Statebox s an open-source library that merges conflicting
updates to data items in a key-value store: the user of the li-

David Maier
Portland State University
maier@cs.pdx.edu

brary need only register commutative, associative, idempotent
merge functions [19]. This approach has roots in research in
databases and systems [12, 14, 17, 27, 39] as well as group-
ware [11,37]. Shapiro, et al. recently proposed a formalism
for these approaches called Conlict-Free Replicated Data
Types (CRDTS), which casts these ideas into the algebraic
framework of semilattices 34, 35].

"RDTS present two main problems: (a) the programmer
bears responsibility for ensuring latiice properties for their
methods (commutativity, associativity, idempotence), and (b)
CRDTS only provide guarantees for individual data objects,
not for application logic in general. As an example of this
second point, consider the following:

Exawrie 1. A replicated, fault-tolerant courseware ap-
plication assigns students into study teams. It uses two set
RDTs: one for Students and another for Teams. The appli-
cation reads a version of Students and inserts the derived
element <Alice,Bob> into Teams. Concurrently, Bob is re-
moved from Students by another application replica. The
use of CRDTs ensures that all replicas will eventually agree
that Bob is absent from Students, but this is not enough
application-level state is inconsistent unless the derived val-
wues in Teams are updated consistently to reflect Bob’s re-
moval. This is outside the scope of CRDT guaranices.

Taken together, the problems with Convergent Modules
present a scope dilemma: a small module (e.g.. a set) makes
lattice properties easy to inspect and test, but provides only
simple semantic guarantees. Large CRDTS (e.g.. an eventu-
ally consistent shopping cart) provide higher-level application
‘guarantees but require the programmer to ensure lattice prop-
erties hold for a large module, resulting in software that is
difficult to test, maintain, and trust.

Monotonic Logic: In recent work, we observed that the
database theory literature on monotonic logic provides a
powerful lens for reasoning about distributed consistency.
Intuitively. a monotonic program makes forward progress
over time: it never “retracts” an earlier conclusion in the face
of new information. We proposed the CALM theorem, which
established that all monotonic programs are confluent (invari-
ant to message reordering and retry) and hence eventually
consistent [5, 18, 25]. Monotonicity of a Datalog program is

B —

“It’s very

interesting stuff.” FHPC ’13

“I’d love to link a few co-workers
to your blog post...”

Logic and Lattices for Distributed Programming

Neil Conway William R. Marczak Peter Alvaro
UC Berkeley UC Berkeley UC Berkeley
nrc@cs.berkeley.edu wrm@cs.berkeley.edu palvaro@cs.berkeley.edu

Joseph M. Hellerstein
Keley

C Ber
hellerstein@cs.berkeley.edu

ABSTRACT

In recent years there has been interest in achieving application-
level consistency criteria without the latency and availability
costs of strongly consistent storage infrastructure. A stan-
dard technique is to adopt a vocabulary of commutative op-
erations; this avoids the risk of inconsistency due to message
reordering. A more powerful approach was recently captured
by the CALM theorem, which proves that logically mono-
tonic programs are guaranteed to be eventually consistent.
In logic languages such as Bloom, CALM analysis can au-
tomatically verify that program modules achieve consistency
without coordination.

In this paper we present Bloom", an extension to Bloom
that takes inspiration from both these traditions. Bloom" gen-
eralizes Bloom to support lattices and extends the power of
CALM analysis to whole programs containing arbitrary lat-
tices. We show how the Bloom interpreter can be general-
ized to support efficient evaluation of lattice-based code us-
ing well-known strategies from logic programming. Finally,
we use Bloom” to develop several practical distributed pro-
grams, including a key-value store similar to Amazon Dy-
namo, and show how Bloom" encourages the safe composi-
tion of small, easy-to-analyze lattices into larger programs.

1. INTRODUCTION

As cloud computing becomes increasingly common, the
inherent difficulties of distributed systems—as)
currency, and partial failure—affect a growing segment of the
developer community. Traditionally, transactions and other
forms of strong consistency encapsulated these problems at
the data management layer. But in recent years there has
been interest in achieving application-level consistency cri
teria without incurring the latency and availability costs of
strongly consistent storage (8, 17]. Two different frameworks
for these techniques have received significant attention in
recent research: Convergent Modules and Monotonic Logic

nchrony, con-

Convergent Modules: In this approach, a programmer writes
encapsulated modules whose public methods provide certain
guarantees regarding message reordering and retry. For exam-
ple, Statebox s an open-source library that merges conflicting
updates to data items in a key-value store: the user of the li-

David Maier
Portland State University
maier@cs.pdx.edu

brary need only register commutative, associative, idempotent
merge functions [19]. This approach has roots in research in
databases and systems [12, 14, 17, 27, 39] as well as group-
ware [11,37]. Shapiro, et al. recently proposed a formalism
for these approaches called Conlict-Free Replicated Data
Types (CRDTS), which casts these ideas into the algebraic
framework of semilattices 34, 35].

"RDTS present two main problems: (a) the programmer
bears responsibility for ensuring latiice properties for their
methods (commutativity, associativity, idempotence), and (b)
CRDTS only provide guarantees for individual data objects,
not for application logic in general. As an example of this
second point, consider the following:

Exawrie 1. A replicated, fault-tolerant courseware ap-
plication assigns students into study teams. It uses two set
RDTs: one for Students and another for Teams. The appli-
cation reads a version of Students and inserts the derived
element <Alice,Bob> into Teams. Concurrently, Bob is re-
moved from Students by another application replica. The
use of CRDTs ensures that all replicas will eventually agree
that Bob is absent from Students, but this is not enough
application-level state is inconsistent unless the derived val-
wues in Teams are updated consistently to reflect Bob’s re-
moval. This is outside the scope of CRDT guaranices.

Taken together, the problems with Convergent Modules
present a scope dilemma: a small module (e.g.. a set) makes
lattice properties easy to inspect and test, but provides only
simple semantic guarantees. Large CRDTS (e.g.. an eventu-
ally consistent shopping cart) provide higher-level application
‘guarantees but require the programmer to ensure lattice prop-
erties hold for a large module, resulting in software that is
difficult to test, maintain, and trust.

Monotonic Logic: In recent work, we observed that the
database theory literature on monotonic logic provides a
powerful lens for reasoning about distributed consistency.
Intuitively. a monotonic program makes forward progress
over time: it never “retracts” an earlier conclusion in the face
of new information. We proposed the CALM theorem, which
established that all monotonic programs are confluent (invari-
ant to message reordering and retry) and hence eventually
consistent [5, 18, 25]. Monotonicity of a Datalog program is

B —

“It’s very

interesting stuff.” FHPC’13 POPL ’14

“I’d love to link a few co-workers
to your blog post...”

) 1LOO0IN

Logic and Lattices for Distributed Programming

Neil Conway William R. Marczak Peter Alvaro

UC Berkeley UC Berkeley UC Berkeley
nrc@cs.berkeley.edu wrm@cs.berkeley.edu palvaro@cs.berkeley.edu

Joseph M. Hellerstein
Keley

C Ber
hellerstein@cs.berkeley.edu

ABSTRACT

In recent years there has been interest in achieving application-
level consistency criteria without the latency and availability
costs of strongly consistent storage infrastructure. A stan-
dard technique is to adopt a vocabulary of commutative op-
erations; this avoids the risk of inconsistency due to message
reordering. A more powerful approach was recently captured
by the CALM theorem, which proves that logically mono-
tonic programs are guaranteed to be eventually consistent.
In logic languages such as Bloom, CALM analysis can au-
tomatically verify that program modules achieve consistency
without coordination.

In this paper we present Bloom", an extension to Bloom
that takes inspiration from both these traditions. Bloom" gen-
eralizes Bloom to support lattices and extends the power of
CALM analysis to whole programs containing arbitrary lat-
tices. We show how the Bloom interpreter can be general-
ized to support efficient evaluation of lattice-based code us-
ing well-known strategies from logic programming. Finally,
we use Bloom” to develop several practical distributed pro-
grams, including a key-value store similar to Amazon Dy-
namo, and show how Bloom" encourages the safe composi-
tion of small, easy-to-analyze lattices into larger programs.

1. INTRODUCTION

As cloud computing becomes increasingly common, the
inherent difficulties of distributed systems—as)

currency, and partial failure—affect a growing segment of the
developer community. Traditionally, transactions and other
forms of strong consistency encapsulated these problems at
the data management layer. But in recent years there has
been interest in achieving application-level consistency cri-
teria without incurring the latency and availability costs of
strongly consistent storage (8, 17]. Two different frameworks
for these techniques have received significant attention in
recent research: Convergent Modules and Monotonic Logic

nchrony, con-

Convergent Modules: In this approach, a programmer writes
encapsulated modules whose public methods provide certain
guarantees regarding message reordering and retry. For exam-
ple, Statebox s an open-source library that merges conflicting
updates to data items in a key-value store: the user of the li-

David Maier
Portland State University
maier@cs.pdx.edu

brary need only register commutative, associative, idempotent
merge functions [19]. This approach has roots in research in
databases and systems [12, 14, 17, 27, 39] as well as group-
ware [11,37]. Shapiro, et al. recently proposed a formalism
for these approaches called Conlict-Free Replicated Data
Types (CRDTS), which casts these ideas into the algebraic
framework of semilattices 34, 35].

"RDTS present two main problems: (a) the programmer
bears responsibility for ensuring latiice properties for their
methods (commutativity, associativity, idempotence), and (b)
CRDTS only provide guarantees for individual data objects,
not for application logic in general. As an example of this
second point, consider the following:

Exawrie 1. A replicated, fault-tolerant courseware ap-
plication assigns students into study teams. It uses two set
RDTs: one for Students and another for Teams. The appli-
cation reads a version of Students and inserts the derived
element <Alice,Bob> into Teams. Concurrently, Bob is re-
moved from Students by another application replica. The
use of CRDTs ensures that all replicas will eventually agree
that Bob is absent from Students, but this is not enough
application-level state is inconsistent unless the derived val-
wues in Teams are updated consistently to reflect Bob’s re-
moval. This is outside the scope of CRDT guaranices.

Taken together, the problems with Convergent Modules
present a scope dilemma: a small module (e.g.. a set) makes
lattice properties easy to inspect and test, but provides only
simple semantic guarantees. Large CRDTS (e.g.. an eventu-
ally consistent shopping cart) provide higher-level application
‘guarantees but require the programmer to ensure lattice prop-
erties hold for a large module, resulting in software that is
difficult to test, maintain, and trust.

Monotonic Logic: In recent work, we observed that the
database theory literature on monotonic logic provides a
powerful lens for reasoning about distributed consistency.
Intuitively. a monotonic program makes forward progress
over time: it never “retracts” an earlier conclusion in the face
of new information. We proposed the CALM theorem, which
established that all monotonic programs are confluent (invari-
ant to message reordering and retry) and hence eventually
consistent [5, 18, 25]. Monotonicity of a Datalog program is

B —

“It’s very
interesting stuff.”

“I’d love to lin

FHPC ’13 POPL ’14

k a few co-workers

to your blog post...”

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall

Conflict-Free

Leisbsbsk

'
-

&

IS

4

Lbhbsdwl

s

and Werner Vogels

derating

Logic and Lattices for Distributed Programming

Neil Conway William R. Marczak Peter Alvaro
UC Berkeley UC Berkeley Berkeley
nrc@cs.berkeley.edu wrm@cs.berkeley.edu palvaro@cs.berkeley.edu

Joseph M. Hellerstein
UC Berkeley

erkeley.edu

David Maier
Portland State University
i pdx.edu

ABSTRACT

Inrecent years there has been interest in ach lication-
level consistency criteria without the latency and availability
costs of strongly consistent storage infrastructure. A stan-
dard technique is 1o adopt a vocabulary of commutative op-
erations; this avoids the risk of inconsistency due to message
reordering. A more powerful approach was recently captured
by the CALM theorem, which proves that logically mono-
tonic programs are guaranteed to be eventually consistent.
In logic languages such as Bloom, CALM analysis can au-
tomatically verify that program modules achieve consistency
without coordination.

In this paper we present Bloom", an extension to Bloom
that takes inspiration from both these traditions. Bloom gen-
eralizes Bloom to support lattices and extends the power of
CALM analysis to whole programs containing arbitrary lat-
tices. We show how the Bloom interpreter can be general-
ized to support efficient evaluation of lattice-based code us-
ing well-known strategies from logic programming. Finally,
we use Bloom" to develop several practical distributed pro-
grams, including a key-value store similar to Amazon Dy-
namo, and show how Bloom* encourages the safe composi-
tion of small, easy-to-analyze lattices into larger programs.

1. INTRODUCTION

As cloud computing becomes increasingly common, the
inherent difficulties of distributed systems—asynchrony, con-
currency. and partial failure—affect a growing segment of the
developer community. Traditionally, transactions and other
forms of strong consistency encapsulated these problems at
the data management layer. But in recent years there has
been interest in achieving application-level consistency cri-
teria without incurring the latency and availability costs of
strongly consistent storage [8, 17]. Two different frameworks
for these techniques have received significant atiention in
recent research: Convergent Modules and Monotonic Logic.
Convergent Modules: In this approach, a programmer writes
encapsulated modules whose public methods provide certain
‘guarantees regarding message reordering and retry. For exam-
ple, Statebox is an open-source library that merges conflicting
updates to data items in a key-value store: the user of the li-

brary need only register commutative, associative, idempotent
merge functions [19]. This approach has roots in research in
databases and systems [12. 14, 17. 27, 39] as
ware [11,37]. Shapiro, et al. recently proposed a formalism
for these approaches called Conflict-Free Replicated Data
Types (CRDTS), which casts these ideas into the algebraic
framework of semilattices [34, 351.

CRDTS present two main problems: (a) the programmer
bears responsibility for ensuring lattice properties for their
methods (commutativity, associativity, idempotence), and (b)
CRDTS only provide guarantees for individual data objects,
not for application logic in general. As an example of this
second point, consider the following:

Exawris 1. A replicated, fault-tolerant courseware ap-
plication assigns students into study teams. It uses two set
CRDTS: one for Students and another for Teams. The appli-
cation reads a version of Students and inserts the derived
element <Alice,Bob> into Teams. Concurrently, Bob is re-
moved from Students by another application replica. The
use of CRDTS ensures that all replicas will eventually agree
that Bob is absent from Students, but this is not enough:
application-level state is inconsistent unless the derived val-
ues in Teams are updated consistently to reflect Bob's re-
moval. This is outside the scope of CRDT guaranices.

Taken together, the problems with Convergent Modules
present a scope dilemma: a small module (e.g.. a set) makes
lattice properties easy to inspect and test, but provides only
simple semantic guarantees. Large CRDTS (e.g. an even
ally consistent shopping cart) provide higher-level application
‘guarantees but require the programmer to ensure lattice prop-
erties hold for a large module, resulting in software that is
difficult t0 test, maintain, and trust.

tu-

Monotonic Logic: In recent work, we observed that the
database theory literature on monotonic logic provides a
powerful lens for reasoning about distributed consistency.
Intitively, a monotonic program makes forward progress
over time: it never “retracts” an carlier conclusion in the face
of new information. We proposed the CALM theorem, which
established that all monotonic programs are confluent (invari-
ant o message reordering and retry) and hence eventually
consistent [, 18, 25). Monotonicity of a Datalog program is

Abstract
Programs wril

hard-to-reprod

parallel softwé

by cmmmclm
ngle

LVars ensure ¢

but never wrol

Categories an
and Features)
current Progy
Definitions an
cations]: Cong

Keywords D

1. Introdi
Programs wril
parallel compl
observable re
hard-to-reprod
parallel softwi

written using {
‘The most ¢

by-constructio

meaning mat

Haskell progré

Permission o ma)

Copyright s hed}
ACM 978.1-4503
ntpid.dos orglll

LVars: Lattice-based Data Structures
for Deterministic Parallelism

Lindsey Kuper ~ Ryan R. Newton
Indiana University
{lkuper, rewton} @csindiana.edu

Freeze After Writing

Quasi-Deterministic Parallel Programming with LVars

Lindsey Kuper Aaron Turon
Indiana University MPI-SWS
Ikuper@cs.indiana.edu turon@mpi-sws.org.
Abstract
D stic-by parallel models of-

fer programmers the prom dom from subtle, hard-to-
reproduce nondeterministic bugs in parallel code. A principled ap-
proach arallel with
shared state is offered by Liars: shared memry Tocations whose
semantics are defined in terms of a user-specified lattice. Writes to
an LVar take the least upper bound of the old and new values with
respect 1o the lattice, while reads from an LVar can observe only
that its contents have crossed a ed threshold in the latice.
Although it guarantees determinism, this interface is quite limited.

We extend LVars in two ways. First, we add the ability to
“freeze” and then read the contents of an LVar directly. Second,
we add the ability to attach callback functions to an LVar, allowing
events 1o be triggered by wites 10 it Together, callbacks and frecz-

Neelakantan R. Ryan R. Newton
Krishnaswami Indiana University
MPI-SWS rrnewton@cs.indiana.edu

neelk@mpi-sws.org

prevent them from observing the effects of scheduling, a restri
that must be enforced at the language or runtime level.

The simplest strategy is to allow 5o communication, forc-
ing concurrent tasks to produce values independently. Pure data-
prale languages follow tis strategy (22], s do languages tht
force references to be cither task-unique or immutable [5]. But
some algorithms are more l\dlllml]y or efficiently written using
state or message passing. A variety of deterministic-by-
Consruction models allow Tmied communication along these
lines, but they tend to be narrow in scope and centered around a
single data structure: for instance, FIFO queues in Kahn process
networks [13] and Streamlt [11], or shared write-only tables in
Intel Concurrent Collections [6]

Big-tentdeterminisic paralleism _ Our goulis 0 reate a broader,

ing enable an expressive and useful style of parallel
We prove that in a language where communication takes place
through freezable LVars, programs are at worst quasi-deterministic:
on every run, they either produce the same answer or raise an er-
ror. We demonstrate the viability of our approach by implementing
alibray for Haskell supporting 2 varicty of L based daa s

ol yild promising parale 3p¢=dup

1. Introduction

Nondeterminism is essential for achieving flexible parallelism: it
allows tasks to be scheduled onto cores dynamically, in response
o the vagaries of an execution. But if schedule nondeterminism s
observable within a program, it becomes much more difficult for
programmers to discover and correct bugs by testing, let alone to
reason about their programs in the first place.

‘While much work has focused on identifying methods of de-
terministic parallel programming (5, 6, 13, 16, 17, 26, guaranteed
determinism in real parallel programs remains a lofty and rarely
achieved goal. It places stringent constraints on the programming
model: concurrent tasks must communicate in restricted ways that

Permission to make digital o hard copies of all or part of this work for personal or
lasoom s s granied wilhout s povided ht copis s ot e o disiutd
forproitor

on the first page. Copyrighis for compoents of this work ovwned by others than the
() st b onord. Absrcing with redi s pnmie o copycfervis, o

mm e Reguent pomions om permision G semort

January 22-24, 2014, San Dicgo. CA. USA.
Coppiaptis b A
ACM 978145032544 811410115 0.
M do g1 145K 535842

envic
fonment to increase the appeal and applicability of the method. We
seek an approach that is not tied to a particular data structure and
that supports familiar idioms from both functional and imperative
languages. Our starting point is the idea of monotonic data struc-
tures, in which (1) information can only be added. never removed.
and (2) the order in which information is added is not observable.
A paradigmatic example s a set that supports insertion but not re-
‘moval, but there are many others.

“The LVars programming model recently proposed by Kuper and
Newton makes an initial foray into programming with monotonic
data srctwves 151, ntheir model (ki we evien i Section 2,

alled LVars) are monotonic, and U
e ot o e ke on Fom o o, Weo 6 an L¥ar
must correspond (0 a join (least upper bound) in the lattice, which
‘means that they monotonically increase the information in the LVar,
and that they commute with one another. But commuting writes
are not enough to guarantee determinism: if a read can observe
‘whether or not a concurrent write has happened. then it can observe
differences in scheduling. So, in the LVar model, the answer to the
question “has a write occurred?” (i.e., is the LVar above a certain
lattice value?) is always yes: the reading thread will block until the
LVar goes over a desired threshold. In a monotonic data structure,
the absence of information is transient—another thread could add
that information at any time—but the presence of information is

model guarantees determinism, supports an unlim-
e variey of dta ircturs (anyihing viewsble s e, and
provides a familiar AP so it already achieves several of our goals.
Unfortunately. it is not as general-purpose as one might hope.
Many algorithms are presented explicily as fixpoints of mono-
tonic functions. For example, an unordered graph traversal can
be understood in ferms of monotoncally growing st o “secn
ighbors of seen nodes are fed back into the set until it

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall

Conflict-Free

e -
o ing
— PR
Boywarde 1o =
1 Introdection
Wegenn oo asf v emwre e
€ iy * o g
" s Oy v

and Werner Vogels

perating

Logic and Lattices for Distributed Programming

Neil Conway William R. Marczak Peter Alvaro
UC Berkeley UC Berkeley UC Berkeley
nrc@cs.berkeley.edu wrm@cs.berkeley.edu palvaro@cs.berkeley.edu

Joseph M. Hellerstein
C Berkeley

berkeley.edu

David Maier
Portland State University
i pdx.edu

ABSTRACT

In recent years there has been interest in achi licats

level cnlm\lency criteria without the latency and availability
strongly consistent storage infrastructure. A stan-
dard !cchmqnc is 10 adopt a vocabulary of commutative op-
erations; this avoids the risk of inconsistency due to message
reordering. A more powerful approach was recently captured
by the CALM theorem, which proves that logically mono-
tonic programs are guaranteed to be eventually consistent.
In logic languages such as Bloom, CALM analysis can au-
tomatically verify that program modules achieve consistency
without coordination.

In this paper we present Bloom", an extension to Bloom
that takes inspiration from both these traditions. Bloom® gen-
eralizes Bloom to support lattices and extends the power of
CALM analysis to whole programs containing arbitrary lat-
tices. We show how the Bloom interpreter can be general-
ized to support efficient evaluation of lattice-based code us-
ing well-known strategies from logic programming. Finally,
we use Bloom" to develop several practical distributed pro-
grams, including a key-value store similar to Amazon Dy-
namo, and show how Bloom* encourages the safe composi-
tion of small, easy-to-analyze lattices into larger programs.

1. INTRODUCTION

As cloud computing becomes increasingly common, the
inherent difficulties of distributed systems—asynchrony, con-
currency. and partial failure—affect a growing segment of the
developer community. Traditionally, transactions and other
forms of strong consistency encapsulated these problems at
the data management layer. But in recent years there has
been interest in achieving application-level consistency cri-
teria without incurring the latency and availability costs of
strongly consistent storage [8, 17]. Two different frameworks
for these techniques have received significant atiention in
recent research: Convergent Modules and Monotonic Logic.
Convergent Modules: In this approach, a programmer writes
encapsulated modules whose public methods provide certain
‘guarantees regarding message reordering and retry. For exam-
ple, Statebox is an open-source library that merges conflicting
updates to data items in a key-value store: the user of the li-

brary need only register commutative, associative, idempotent
merge functions [19]. This approach has roots in research i
databases and systems [12. 14, 17, 27, 39] as well as group-
ware [11,37]. Shapiro, et al. recently proposed a formalism
for these approaches called Conflict-Free Replicated Data
Types (CRDTS), which casts these ideas into the algebraic
framework of semilattices [34, 351.

CRDTS present two main problems: (a) the programmer
bears responsibility for ensuring lattice properties for their
methods (commutativity, associativity, idempotence), and (b)
CRDTS only provide guarantees for individual data objects,
not for application logic in general. As an example of this
second point, consider the following:

Exawris 1. A replicated, fault-tolerant courseware ap-
plication assigns students into study teams. It uses o set
CRDTS: one for Students and another for Teams. The appli-
cation reads a version of Students and inserts the derived
element <Alice,Bob> into Teams. Concurrently, Bob is re-
moved from Students by another application replica. The
use of CRDTS ensures that all replicas will eventually agree
that Bob is absent from Students, but this is not enough:
application-level state is inconsistent unless the derived val-
ues in Teams are updated consistently to reflect Bob's re-
moval. This is outside the scope of CRDT guarantees.

Taken together, the problems with Convergent Modules
present a scope dilemma: a small module (¢.g., a set) makes
lattice properties easy to inspect and test, but pmvldes nnly
simple semantic guarantees. Large CRDTS (e.
ally consistent shopping cart) provide higher-level apphcauon
‘guarantees but require the programmer to ensure lattice prop-
erties hold for a large module, resulting in software that is
difficult to test, maintain, and trust

ntu-

Monotonic Logic: In recent work, we observed that the
database theory literature on monotonic logic provides a
powerful lens for reasoning about distributed consistency.
Intitively, a monotonic program makes forward progres
over time: it never “retracts” an carlier conclusion in the face
of new information. We proposed the CALM theorem. whmh
established that all monotonic programs are confluent
ant o message reordering and retry) and hence ev:mual]y
consistent [3, 18, 25]. Monotonicity of a Datalog program is

Abstract

Programs wel

hard-to-reprod
parslel it

tructio
\mkle assignit
monotonically

but never wrol

Categories an.
and Features]
current Progi
Definitions an
cations]: Cong

Keywords D

1. Introdi
Programs wril
parallel comp|
observable re
hard-to-reprod
parallel softwi
uage extens

programming,
written using |
by-constructio

ming with fun
Haskell progré

Permission o ma)

Copyright s held)
14503
ntpid.dos orglll

ﬁ

LVars: Lattice-based Data Structures
for Deterministic Parallelism

Lindsey Kuper ~ Ryan R. Newton
Indiana University
{Ikuper, rmewton}@cs.indiana.edu

Freeze After Writing

Quasi-Deterministic Parallel Programming with LVars

‘Aaron Turon

Indiana University MPI-SWS
Ikuper@cs.indiana.edu turon@mpi-sws.org

Abstract

ot c-b arallel models of-

fer programmers the promise of freedom from subtle, hard-to-
reproduce nondeterministic bugsinparallelcode. A prnciped -
proach parallel
shared state is offered by Tiars: shared memory locations »\nm
semantics are defined in terms of a user-specified lattice. Writes to
an LVar take the least upper bound of the old and new values with
respect to the lattice, while reads from an LVar can observe only
that its contents have crossed a specified threshold in the lattice.
Allhough it guarantcesdeterminis,tis incrface s guielimited
We extend LVars in two ways. First, we add the
“freese” and. then read the contents of an LVar directly. Second,
we add the ability to attach callback functions to an LVar, allowing
events 10 be triggered by writes o it. Together, callbacks and freez-

Neelakantan R. Ryan R. Newton

Indiana University

rrnewton@cs.indiana.edu
neelk@mpi-sws.org

prevent them from observing the effects of scheduling, a restriction
that must be enforced at the language or runtime level.

The simplest strategy is to allow 5o communication, forc-
ing concurrent tasks to produce values independently. Pure data-
prale languages follo this strategy (22], s do languages that
force references to be cither task-unique or immutable [5]. B
some algorithms are more naturally or efficiently written u
hared sise or message pasing. A varity of derminitic-by:
construction models allow limited communication along these
lines, but they tend to be narrow in nd centered around a
single data structure: for instance, FIFO queues in Kahn process
networks [13] and Streamlt [11], or shared write-only tables in
Intel Concurrent Collections [6]

Big-tentdeterminisic paralleism _ Our goulis 0 reate a broader,

ing enable an expressive and useful style of parallel
We prove that in a language where communication takes plact
through freezable LVars, programs are at worst quasi-deter erminitie
on every run, they either produce the same answer or raise an er-
ror. We demonstrate the viability of our approach by implementing
a library for Haskell supporting a variety of LVar-based data struc-
tures, together with two case studies that illustrate the programming
model and yield promising parallel speedup.

1. Introduction
Nondeterminism is essential for achieving flexible parallelism: it
allows tasks to be scheduled onto cores dynamically, in response
o the vagaries of an execution. But if schedule nondeterminism s
observable Wi jeram, it becomes much more difficult for
s to discover and correct hun\ m testing, let alone to
Teason sbout ther programe in he f
While much work has focused on .murqu methods of de-
terministic parallel programming (5,6, 13, . 26), guaranteed
determinism in real parallel r ns a lofty and rarely
achieved goal. It places m.nw.\ constraints on the programming
model: concurrent tasks must communicate in restricted ways that

Permission to make digital o hard copies of all or part of this work for personal or
d wihou e rovided st copes e sl made o distted

o e g o o componn o vk o o
‘author(s mustbe honored. Abstacting with credit s permitied. To copy otherwise, or
epublish or requires prior
andlora fee. Request permissions from permissions @acm ore.
POPL 14, 014, San Dicgo. CA. USA.

Publ

Junuary
ACM O78-1-4503-2544-8/14/01....$15.00,
hupyfd doj org/10,1145/2535838 2535842

110 ACM.

envi-
fonment to increase the appeal and applicability of the method. We

seck an approach that is not tied to a particular data structure and
that supports familiar idioms from both functional and imperative
languages. Our starting point is the idea of monofonic data struc-
tures, in which (1) information can only be added, never removed,
and (2) the order in which information is added is not observable.
A paradigmatic example is a set that supports insertion but not re-
moval, but there are many others.

The LVars programming model recently proposed by Kuper and
Newton makes an initial foray into programming with monotonic
data structures [15]. In their model (which we review in Section 2),
all shared data structures (called LVars) are monotonic, and the
states that an LVar can take on form a lartice. Wites to an L
must correspond to a join (least upper bound) in the lattice, which
means that they monotonically increase the information in the LVar,
and that they commute with one another. But commuting writes
are not enough to guarantee determinism: if a read can observe
‘whether or not a concurrent write has happened, then it can observe
differences in scheduling. So, in the LVar model, the answer to the
question “has a write occurred?” (i.e., is the LVar above a certain
lattice value?) is always yes: the reading thread will block until the
LVar goes over a desired threshold. In a monotonic data structure,
the absence of information is transient—another thread could add
that information at any time—but the presence of information is
forever.

‘The LVars model guarantees determinism, supports an unlim-
ited variety of data structures (anything viewable as a lattice), and
provides a familiar AP, so it already achieves several of our goals.
Unfortunately, it is not as general-purpose as one might hope.

Many algorithms are presented explicitly as fixpoints of mono-
tonic functions. For example, an unordered graph traversal can
be understood in terms of a monotonically growing set of “scen
des”; neighbors of seen nodes are fed back into the set until it

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall

nfict-Free

isdsbak

svabals

- 3

abbus

and Werner Vogels

derating

Logic and Lattices for Distributed Programming

Neil Conway William R. Marczak Peter Alvaro
UC Berkeley UC Berkeley UC Berkeley
nrc@cs.berkeley.edu wrm@cs.berkeley.edu palvaro@cs.berkeley.edu

Joseph M. Hellerstein
UC Berkeley

hellerstein@cs.berkeley.edu

David Maier
Portland State University
pdx.edu

ABSTRACT

In recent years there has been interest in achieving application-
level consistency criteria without the latency and availability
costs of strongly consistent storage infrastructure. A stan-
dard technique is 10 adopt a vocabulary of commutative op-

reordering. A more powerful approach was recently captured
by the CALM theorem, which proves that logically mono-
tonic programs are guaranteed to be eventually consistent
In logic languages such as Bloom, CALM analysis can au-

tomatically verify that program modules achieve consistency
without coordination.

In this paper we present Bloom", an extension to Bloom
that takes inspiration from both these traditions. Bloom” gen-
eralizes Bloom to support lattices and extends the power of
CALM analysis to whole programs containing arbitrary lat-
tices. We show how the Bloom interpreter can be general-
ized to support efficient evaluation of lattice-based code us-
ing well-known strategies from logic programming. Finally,
we use Bloom" 1o develop several practical distributed pro-
ncluding a key-value store similar to Amazon Dy-
namo, and show how Bloom" encourages the safe composi-
tion of small, easy-to-analyze lattices into larger programs

gram:

1. INTRODUCTION

As cloud computing becomes increasingly common, the
inherent difficulties of distributed systems—asynchron
currency. and partial failure—affect a growing segment of the
developer community. Traditionally, transactions and other
forms of strong consistency encapsulated these problems at
the data management layer. But in recent years there has
been interest in achieving application-level consistency cri-
teria without incurring the latency and availability costs of
strongly consistent storage [8, 17]. Two different frameworks
for these techniques have received significant attention in
recent research: Convergent Modules and Monotonic Logic
Convergent Modules: In this approach, a programmer writes
encapsulated modules whose public methods provide certain
arantees regarding message reordering and retry. For exam-
ple, Statebox is an open-source library that merges conflicting
updates to data items in a key-value store; the user of the li-

on-

brary need only register commutative, associative, idempotent
merge functions [19]. This approach has roots in rescarch i
databases and systems [12. 14, 17, 27, 39] as well as group-
ware [11,37]. Shapiro, et al. recently proposed a formalism
for these approaches called Conflici-Free Replicated Data
Types (CRDTS), which casts these ideas into the algebraic
framework of semilattices [34, 35]

CRDTS present two main problems: (a) the programmer
bears responsibility for ensuring lattice properties for their
methods (commutativity, associativity, idempotence), and (b)
CRDTS only provide guarantees for individual data objects,
not for application logic in general. As an example of this
second point, consider the following

Exampie 1. A replicated, fault-tolerant courseware ap-
plication assigns students into study teams. It uses two set
CRDTs: one for Students and another for Teams. The appli-
cation reads a version of Students and inserts the derived
element <Alice,Bob> into Teams. Concurrently, Bob is re-
moved from Swdents by another application replica. The
use of CRDTs ensures that all replicas will eventually agree
that Bob is absent from Students, but this is not enough
application-level state is inconsistent unless the derived val-
ues in Teams are updated consistently to reflect Bob’s re-
moval. This is outside the scope of CRDT guarantees.

Taken together, the problems with Convergent Modules
present a scope dilemma: a small module (e.g., a set) makes
lattice properties easy to inspect and test, but provides only
simple semantic guarantees. Large CRDTS (e.
ally consistent shopping cart) provide higher-level application
‘guarantees but require the programmer to ensure lattice prop-
erties hold for a large module, resulting in software that is
difficult t0 test, maintain, and trust.

ntu-

Monotonic Logic: In recent work, we observed that the
database theory literature on monotonic logic provides a
powerful lens for reasoning about distributed consistency
Intitively, a monotonic program makes forward progress
over time: it never “retracts” an earlier conclusion in the face
of new information. We proposed the CALM theorem, which
established that all monotonic programs are confluent (invari-
ant to message reordering and retry) and hence eventually
consistent [, 18, 25). Monotonicity of a Datalog program is

T ———)

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall

LVars: Lattice-based Data Structures
for Deterministic Parallelism

Abstract

Programs wel

Lindsey Kuper ~ Ryan R. Newton
Indiana University
{Ikuper, rmewton}@cs.indiana.edu

Freeze After Writing

Quasi-Deterministic Parallel Programming with LVars

and Werner Vogels

derating

Logic and Lattices for Distributed Programming

by-constructio | Neil Conway William R. Marczak Peter Alvaro
single-assignn Aaron Turon Neelakantan R. Ryan R. Newton UC Berkeley UC Berkeley keley
Tomotonica Indiana University MPLSWS Krishnaswami Indiana University : nrc@cs.berkeley.edu wrm@cs.berkeley.edu palvaro@cs.berkeley.edu
ihreshold” 1é Ikuper@cs.indiana.edu turon@mpi-sws.org MPL-SWS rrnewton@cs.indiana.edu | Joseph M. Hellerstein David Maier
give neelk@mpi-sws.org UG Berkeley Portland State University
m support a hellerstein@cs.berkeley.edu pdx.edu
but never wrot
Categories an ABSTRACT brary need only register commutative, associative, idempotent
aud Pl Abstract prevent them from observing the efectsof scheduling,a restrction i i Inrecent years ther has been nteretin chieving application. e funtions I\:;’I\nf"'lg spprosch s ts in tesearch in
Defitions B b paralll models of- that must be enforced at the language or runtime leve | level consistency criteria without the latency and availability e Sy‘ s 112 14, 17,27, 39)as wel as g p
cations]: Cong fer programmers the promise of freedom from subtle, hard-to- The simplest strategy is to allow o communication, forc- costs of strongly consistent storage infrastructure. A stan- Ware L1, 371. Shapiro, et al. recently proposed a formalism
reproduce |mmlelermmnm ‘bugs i paralel code. A principled ap- ing concurrent tasks to produce values ll\dt]’wndcnl\» Pure data- El dard technique is to adopt a vocabulary of commutative op- for these approaches called Conflict-Free Replicated Data
Keywords D acalle wil parallel languages follow this siraegy [22], as do languages that d erations; this avoids the risk of inconsistency due to message lmm (CRDTs), which casts these ideas into the algebraic
e s offend by Vs shated memory Tocations whose oree references 1o be cither task-unique ot mutable (3], But Teordering. A more powerful tppronch was ecently captured TramEwork of semifatices 134, 351
1. Introdi semantics are defined in terms of a user-specified lattice. Writes to some algorithms are more naturally or efficiently written using A l ves 1 CRDTs present two main problems: (a) the programmer
F shared state or message passing. A variety of deterministic-by- by the CALM theorem, which proves that logically mono- e
Programs Wi an LVar take the least upper bound of the old and new values with Tesuage pasing & Y of deteminiatie “ tonic programs are guaranteed to be eventually consisten, bears responsibility for ensuring lattice properties for their
parallel comp! respect to the lattice, while reads from an LVar can observe only r""“”““"" models allow limited communication along these In logic languages such as Bl CALM anals -, methods (commutativity, associativity, idempotence), and (b)
that its contents have crossed a specified threshold in the lattice. lines, but they tend to be narrow in scope and centered mmmd a n logic languages such as Bloom, CALM analysis can au- CRDTs only provide guarantees for individual data objects.
Auhuugh i guaraces determinism, this interface is quite limited. single data structure: for instance, FIFO queues in Kahn process | tomatically verify that program modules achieve consistency d y ! guara i objects,
e a networks [13] and Streamit [11] or shared wrteonly tabes in | without coordination ot for application logic in general. As an example of this
“freese and then read the contents of an LVar direely. Second, el Concurrent Colections 6] In this paper we present Bloom®, an extension to Bloom S€cond point, consider the following
we add the A\mm) to attach callback functions to an LVar, allowing)) | that takes inspiration from both these traditions. Bloom" gen- Exampe 1. A replicated, fault-tolerant courseware ap-
events 1o be 1 red by writes to it. Together, callbacks and freez- Bm-trr'vtdmvmuumrpm"el:un Our "mI is to create a broader, A eralizes Bloom to support lattices and extends the power of plication assigns students into study teams. It uses two set
i enable an cxpressive and useful syle of parallel general-purpos y nvi- | CALM analysis to whole programs containing arbitrary lat- CRDT: one for Students and another for Teams. The appli-
We prove that in a language where communication takes place ronment to increase the appeal and applicability of the m We tices. We show how the Bloom interpreter can be general- p i i "
through freezable LVars, programs are at worst quasi-deterministic: seek an approach that is not tied to a particular data structure and | ices. We show how the Bloom interpreter can be general cation reads a version of Students and inserts the derived
on vy T eyl s e S a0 e an -t sippors il i rom both nctona and i p| ized to support efficient evaluation of lattice-based code us- element <Alice,Bob> inio Teams. Concurrenly, Bob is re-
ming with fut o We demonstrte he vLablty of our approach by implementing languages. Our sartng point i the dea of monoronic dats Sruc. ing well-known strategies from logic programming. Finally, moved from Students by another application replica. The
Haskell progré a library for Haskell supporting a variety of LVar-based data struc- ~ tures, in which (1) information can only be added, never remoed, we use Bloom" to develop several practical distributed pro- use of CRDTs ensures that all replicas will eventually agree
tures, together with two case studies that illustrate the programming ~ and (2) the order in which information is added is not observable. grams, including a key-value store similar to Amazon Dy- that Bob is absent from Students, but this is not enough
maodel and yield promising parallel speedup. A paradigmatic example is a set that supports insertion but not re- — o namo, and show how Bloom*: encourages the safe composi- application-level state is inconsistent unless the derived val-
mﬂ\|~\| h,l'll ther ;::’;::::::‘.‘:::ud ecently proposed by Kuper and - tion of small, easy-to-analyze lattices into larger programs. ues in Teams are updated u;/m\hf/‘n/\ 10 reflect Bob's re-
1. Introduction Newton makes an initial foray into programming with monotonic moval. This is outside the scope of CRDT guarantees
Nondeterminism is essential for achieving flexible parallelism: it data structures [15]. In their model (which we review in Section 2), 1. INTRODUCTION Taken together, the problems with Convergent Modules
allows tasks to be scheduled onto cores dynamically, in response Al shared data structures (called LVars) are monotonic, and the 1 As cloud computing becomes increasingly common, the present a scope dilemma: a small module (c.g.. a set) makes
o the agares ofanexcution. Bt i schedule nondetrminim s 4465 hat an LY cantake on fom g i, Wi 0 an Lyar ol ro inherent diffiulties of distributed systems—asynchrony, con- lattice properties easy to inspect and test, but provides only
ek | ;ﬁ:tzxv’:h “‘:]3‘11,:151‘23’:,‘,‘2. Ll:"bri:"::;‘w:1“0": (\J::hfw:::‘ ’t‘. means that ‘Eey monotonically incupase the information in the LVar, curtency, and partial falure —affect a growing segment of the . simple semantic guarantees. Large CRDTS (e.g, an eventu-
e s o i ot and that they commute with one another. But commuting wries < developer community. Traditionally, transactions and other ally consistent shopping cart) provide higher-level application
While much work has focused on i dmmm methods of are not enough to guarantee determinism: if a read can observe b forms of strong consistency encapsulated these problems at guaraniees but require the programmer to ensure latice prop-
terministic parallel programming [5, 6, 13, 16, 17, 26), guarante M ‘whether or not a concurrent write has happened, then it can observe the data management layer. But in recent years there has erties hold for a large module, resulting in software that is
llel ams remains a lofty and rarely differences in scheduling. So, in the LVar model, the answer to the been interest in achieving application-level consistency cri- difficult to test, maintain, and trust,
achieved goal. It places siringent constraints on the programming question “has a write occurred?” (i.e., is the LVar above a certain ‘ teria without incurring the latency and availability costs of N " N)
model: concurrent tasks must communicate in restricted ways that lattice value?) is always yes; the reading thread will block until the o strongly consistent \l(»mgs 18, 17]. Two different frameworks Monotonic Logic: In recent work, we observed that the
LVar goes over a desired threshold. In a monotonic data structure, ‘. e 5 o e o database theory literature on monotonic logic provides a
the absence of information is transient—another thread could add or these techniques have received significant atiention in powerful lens for reasoning about distributed consistency
that information at any time—but the presence of information is 9 recent research: Convergent Modules and Monotonic Logic Intitively, a monotonie program makes forward progress
oty .Q‘u'21".‘Q,’.’d"ﬁ:}l’ﬂ’&I(If»‘.l’lﬂ;{ilTp”.lf'L':",L,Tf,’f,ﬁxl‘lﬁ,".ﬁmfﬁ forever. | Convergent Modules: In this approach, a programmer writes over time: it never “retracts” an earlier conclusion in the face
for profit or The LVars model guarantees determinism, \up‘mu\ an unlim- encapsulated modules whose public methods provide certain of new information. We proposed the CALM theorem, which
o the frst page. Copyrights for components of this work owned by others than the ited variety of data structures (anything viewable as a latice), and ' psu 2 P P " normat Propo A - Vi
) i e B, AT NI S, T oyl ar APL so it already achieves several of our goals. | arantees regarding message reordering and retry. For exam- established that all monotonic programs are confluent (invari-
s, requires prior sp ot as general-purpose as one might hope. ple, Statebox is an open-source library that merges conflicting ant to message reordering and retry) and hence eventually

andlor fee. Request wuwn\wuv~ from permissions @acm.orz.
POPL 14, CA.USA
jghislicensed 10 ACM.

SIS0 B $1500
Ripihdndo ng 1011452535836 2835842

Many dlgorithms e presented explcily 4 ixpaints of mono-
tonic functions. For example, an unordered graph traversal can
be understood in terms of a monotonically growing set of “seen
nodes”; neighbors of seen nodes are fed back into the set until it

7

—

updates to data items in a key-value store; the user of the li-

consistent [, 18, 25]. Monotonicity of a Datalog program is

TTTT—

*

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,

. Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
LVars: Lattice-based Data Structures v e e sy '

Abstract

Programs wril
parallel compi
observable re

Abstract

Programs written using 4 ¢
parallel computation are g

for Deterministic Parallelism

Freeze After Writing

Quasi-Deterministic Parallel Programming wi

Lindsey Kuper Aaron Turon

Neelakantan R.

and Werner Vogels

Amazon.com

Data Types®

Logic and Lattices for Distributed Programming

Neil Conway
UC Berkeley
nrc@cs.berkeley.edu
Joseph M. Hellerstein
UC Berkeley
t i .berkeley.edu

William R. Marczak

UC Berkeley
wrm@cs.berkeley.edu

Peter Alvaro
UC Berkeley
palvaro@cs.berkeley.edu
avid Maier
Portland State University
pdx.edu

ot | Indiana University Krishnaswami ABSTRACT brary need only register commutative, associative, idempotent
jons [19]. This approach has roo scarc
hard-to-reproduce nondetel Ikuper@cs.indiana.edu turon@mpi-sws.org MPI-SWS “ Tn recent years there has been interest in achieving applicati merge functions [19]. This approach has rools in rescarch in
parallel software. We presg neelk@mpi-sws.org, level consistency eriteria without the latency and availability ~ databases and systems [12, 14, 17, 27, 39] as well as group-
gle ignmens models] costs of strongly consistent storage infrastructure. A stan- WAre [11, 371. Shapiro, et al.recently proposed a formalism
Tonotonically increasing § dard technique is to adopt a vocabulary of commutative op- {0 these approaches called Conflict-Free Replicated Data
LVars ensure determinism | erations; this avoids the risk of inconsistency due to message 15 (CRDT), which casts these ideas into the algebraic
E " framework of semilarces [34, 351
threshold” reads that blog reordering. A more powerful approach was recently captured
give a proof of determinis Abstract prevent them from obsery| by the CALM theorem, which proves that logically mono- DTs present two main problems: (a) the programmer
Tangusge with Lvars and g D b ction parallel models o, that must be enforced at tf tonic programs are guaranteed to be eventually consistent, Dears responsibility for ensuring latice properties for their
 support a limited form ¢ odels of- g s (commutativity, associativity, i ence), a
PP i g The simplest strateg Iu logic languages such as Bloom, CALM analysis can au- ~ Methods (commutativity, associativity, idempotence), and (b)
but never wrong answers. for programmers the promise uv freedom from subile, hard-to- a CRDTs only provide suarantees for individual data objects.
N reproduce nondetermirisic bugs in pdmllc\ code. A princpledsp- ing concurrent tasks to g matically verify that program modules achieve consistency t b ¥ L objests:
Categories and Subject Des proac win parallel languages follow ot oordmosion not for application logic in general. As an example of this
and Features]: Concurrenf shared state is offered hy Lars: hared mulmr) locations whose f0rce references to be il In this paper we present Bloom®, an extension to Bloom S¢cond point, consider the following:
current. Programming]: B some hms are mop 2 . .
emiions i Theomyt:d semantics are defined in lerms of & uset-specied latice. Wries 1o ' 1 that takes inspiration from both these traditions. Bloom" ge Exampie 1. A replicated, fault-tolerant courseware ap-
cations]: Concurrent, distrl e e - . . eralizes Bloom to support lattices and extends the power of plication assigns students into study teams. It uses o set
respect o the lattice, while reads from an LVar can observe only . .
Keywords Deterministic. {hat 5 contents have eroseed & specified threshold in the e f CALM analysis to whole programs containing arbitrary lat- 'RDTs: one for Students and another for Teams. The appli-
4 H Although it guarantees determinism, this interface is quite limited. - : { tices. We show how the Bloom interpreter can be general- cation reads a version of Students and inserts the derived
1. Introduction We extend LVars in two ways. First, we add the ability o S . ized to support efficient evaluation of lattice-based code us- element <Alice.Bob> into Teams. Concurrently, Bob is re-
- “freeze” and then read the contents of an LVar directly. Second, Intel Concurrent Collecti A ing well-known strategies from logic programming. Finally, moved from Students by another application replica. The
Programs witen using a ¢ we add the ability to attach callback functions (o an LVar, allowing 1 we use Bloom" to develop several practical distributed pro- use of CRDTs ensures that all replicas will eveniually agree
arallel computation arc ig4 inistic .
gmmm . e ““mf Big- /f"""f/”"""'»‘"fl’ﬂ' N grams, including a key-value store ~m||hr to Amazon Dy- that Bob is absent from Students, but this is not enough:
e e el . l Ramo, and show how Bloom. encourates he sufe compos applcation vl st s inconsisat unfews e derved -
/e prove that in a language where communication takes place tion of small, easy-to-analyze latices into larger programs s in Teams are updated consistenly 10 reflect Bob’s re-
gv‘“]'*‘ e N | through freezable Lars, programs are at worst quasi-deterministie: seck an approach that is § , easy y ger programs es it TT"“* re 71 o d consistently 10 reflect Bob's r
uage extensions (.. Ci on every run, they cither produce the same answer or rise an er- that supports famifiar idig | moval. This s outside the scope of CRDT guarantees
proa e few of themy for. We demonstrate the viability of our approach by implementing _ languages. Our starting p{ 1. INTRODUCTION Taken together, the problems with Convergent Modules
writien using the mode! alibrary for Haskell supporting a varic jar-based data struc-~ tures, in which (1) infors . - - ¥ X
‘The most developed paf library for Haskell supporting a vaiety of LVar-based data stru A (1) inforrg L) As cloud computing becomes increasingly common, nm present a scope dilemma; a small module (€.g., a set) makes
ures, together with two case studies that illustrate the programming ~~ and (2) the order in whick
by-construction guarantee . i l inherent difficulties of distributed system: - lattice properties easy to inspect and test, but provides only
conse o model and yield promising parallel speedup. A paradigmatic example § dtest, y
meaning mature impleme ¥ moval, but there are many “ currency, and partial failure—affect a growing segment otihe simple semantic guarantees. Large CRDTS (e.g.. an eventu-
e A ‘The LVars programmin u developer community. Traditionally, transactions and other ally consistent shopping cart) provide higher-level application
Hackell programs using full 1. Introduction Newton makes an initi forms of strong consistency encapsulated these problems i guarantees but require the programmer to ensure laitice prop-
“ 1 Nondeterminism is essential for achicving flexible parallelism: jt data structures [15]. In the the data management layer. But in recent years there has erties hold for a large module, resulting in software that is
W— allows tasks to be scheduled onto cores dynamically, in response o et da ol been interest in achieving application-level consistency difficult to test, maintain, and trust
. . to the vagaries of an execution. But if schedule nondeterminism is. stales fhat an Lvar cay ~ teria without incurring the latency and availability costs of M ic Logi k. b 4 that th
observable within a program, it becomes much more diffieult for MUSt correspond to ajoin " o onotonic Logic: In recent work, we observed that the
ervable 4 program, it becomes much more difficu st e strongly consistent storage [8, 17]. Two different frameworks
! . . i’ means tha they monotoni¢ - database theory literature on monotonic logic provides a
programmers to discover and correct bugs by testing, let alone to for these techniques have received significant attention in &
feason about their programs in the first place. and that they commute e B e iEnheant aento powerful lens for reasoning about distributed consistency.
Sndlor e, Roquest pemissiondl While much work has focused on deniiyng methads of d are hot enough o guacly recent research: Convergent Modules and Monotonic Logic Intuitively, a monotonic program makes forward progres
P 1 Sepenter s 1 terminsic prallel progeamnin (5, 6,13, 16, 17,26, guaranted :‘”m‘ﬂe‘{:;;:':;\"\;:;’;;{:::’ wt honr Convergent Modules: In this approach, a programmer writes over time: it never “retracts” an carlier conclusion in the face
Copyighti e by the owneratf o et parallel programs remains a lofty and r question “has a virite ool encapsulated modules whose public methods provide certain of new information. We proposed the CALM theorem, which
i doorg 101 14572502333 achieved goal. It places stringent constraints on the P“'E"”‘"“mé 2 is always guarantees regarding message reordering and retry. For exam- established that all monotonic programs are confluent (invari-
v v del: copourrent tasks . cate in restricted ways thit e value?) is always 3¢ e garding messag 2 . prog
model: concurrent tasks must communicate In restricted ways that goes over a desired | " ple, Statebox is an open-source library that merges conflictin ant to message reordering and retry) and hence eventually
the absence of informatio) . ; updates to data items in a key-value store; the user of the li- consistent [3, 18, 25]. Monotonicity of a Datalog program is
that information at any i WW. p
Penmisson to make digial orhard copies of al or part of this work for personalor goc U0
o i, Aol o : orever |
clastoon use i ranied without fee rovided hat copies ar not made o disrbured p
- 5 s The LVars model guarantees 1
ited variety of data structures (anything " . |

T

on he st pge, Coprights o componens o his wrk ownd b shers thn e
o1

cpublish, gt prmission
andlor afee. Request permissions from. yxrwuwwn\l’ acm,

POPL 14, January 22-24, 2014, San Diego, CA. USA

Copyright s held by the ownerfauthor(). Pubicaion rights licensed to ACM,

ACM 978.1 45033544 §/1401....S15.00

Tnupy/d.doi.org/10.1 14512535835 2535842

LVars: Lattice-based Data Structures
for Deterministic Parallelism

Lindsey Kuper ~ Ryan R. Newton

Indiana University

{Ikuper, rrmewton}@cs.indiana.edu

Freeze After Writing

provides a familiar API, so it already achiey
Unfortunately, it is not as general-purpose &

Many algorithms are presented explicith
For example, an unorder
be understood in terms of a monotonically

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall

nflict-Free

and Werner Vogels

derating

Logic and Lattices for Distributed Programming

Quasi-Deterministic Parallel Programming with LVars “
| Neil Conway William R. Marczak Peter Alvaro
Aaron Turon Neelakantan R. Ryan R. Newton | UC Berkeley UC Berkeley UC Berkeley
Indiana University MPLSWS Indiana University | nrc@cs.berkeley.edu wrm@cs.berkeley.edu palvaro@cs.berkeley.edu
Ikuper@cs.indiana.edu turon@mpi-sws.org rrnewtonGcs.indiana.edu | Joseph M. Hellerstein David Maier
neelk@mpi-sws.org. UC Berkeley Portland State University
© support alf hellerstein@cs.berkeley.edu pdx.edu
but never wrof
Categories an ABSTRACT brary need only register commutative, associative, idempotent
and Featur " y ge functions [19]. This c o o
o e Abstract prevent them from observing the effects of scheduling, a restriction R | T recent yearsthere has been interestin achieving application. Meree functions [191. This approa s oot in escarch i
Defnitons @ b b paralll models of. that must be enforced at the language or runtime level level consistency eriteria without the latency and availability ~ daabases and systems [12, 14, 17, 27, 39] as well as group-
cations): Cong fer programmers the promise of freedom from subtle, hard-to- The simplest strategy is to allow no communication, forc- ' costs of strongly consistent storage infrastructure, A stan- Ware [11, 37]. Shapiro, et al. recently proposed a formalism
reproduce nondeterminitic bugs in parlll code. A principled ap- ing concurent tsks to produce alues independently. Pre dta- N dard technique is 10 adopt a vocabulary of commutative op- 07 these approaches called Conflict-Free Replicated Data
Keywords D paralle pralel anguages fllow thi saegy [22], s do langa uges that ”| erations; this avoids the isk of inconsistency due to message 79P¢s (CRDTS). which casts \hc;e ideas into the algebraic
force references 1o be cither task-unique or immutable amew em es [34
1. Introd ate s offered by s Shared memry ocions e Some algorithms are more naturally or efficiently written u~|ng . “ reordering. A more powerful approach was recently captured framework of semilatices (34, 33]
- Introdi semantis re defined interms of a user-specified latice. Writes 0 Jpme WS sre mors ity or ey witen » | by the CALM theorem, which proves that logically mono- CRDTS present two main problems: (a) the programmer
Programs wij an L take the least upper bound of the odand new valueswith (00 L0 o8 R LR o dlone o tonic programs are guaranteed to be eventually consistent. be.n: responsibility for ensuring lattice properties for their
arallel con respect 1o the lattice, while reads from an LVar can observe only methods (commutativity, associati empotence), an
parallel com§ hat s contonts have crossed a specifed hreshold in the lttce lne, but they tend to be mastow in scope and contred aound a In logic languages such as Bloom, CALM analysis can au- Methods (commutativity, associativity, idempotence), and (b)
hard-to-reprod Although it uarances determiism, s interfce i gt limited e data structure: for instance, FIFO queues in Kahn process Kl tomatically verify that program modules achieve consistency CRDTS only provide guarantees for individual data objects,
parallel softw} two ways. First, we © nuwum (13] and Streamlt [11], or \hmvd write-only tables in d without coordination. not for application logic in general. As an example of this
guage e “freeze” and then read the contents of an LVar direcily Second, Intel Concurrent Collecions [6] 4 In this paper we present Bloom®, an extension to Bloom $¢cond point, consider the following
programming, we add the ability to attach callback functions to an LVar, allowing that takes inspiration from both these traditions. Bloom* gen- Examrie 1. A replicated, fault-tolerant courseware ap-
writen uing} events to be triggered by writes 10 it. Together, callbacks and freez- HU.'-I!mdetlmnnunrpam”elum Ourgoal is 0 reate a broader, . eralizes Bloom to support lattices and extends the power of plication assigns students into study teams. It uses two set
e most ¢ ing enable an expressive and useful style of parallel envi- alysis programs . ¢ lat- " one fo other for Teams. The appl
by-constructio We prove that in a language where communication (skes place ronment o increase the appeal and applicability of the method. We 4 CAL":\“‘“"E § }“““h}“" e “{b“"‘“ 'j‘; CRDTs: one for Swdents and another for Teams. The appli-
meaning maty through freezable LVars, programs are at worst quasi-deterministic: seek an approach thal is mot tied to a particular data structure and | tices. We show how the Bloom interpreter can be general- cation reads a version of Students and inserts the derived
libraries and i on every run, they either produce the same answer or raise an er- that supports familiar idioms from both functional and imperative a ized to support efficient evaluation of lattice-based code us- element <Alice,Bob> into Teams. Concurrently, Bob is re-
ming with fun ror. We demonstrate the viability of our approach by implementing languages. Our starting point is the idea of monoronic data struc- ing well-known strategies from logic programming. Finally, moved from Students by another application replica. The
Haskell progré alibrary for Haskell supporting a variety of LVar-based data struc- tures, in which (1) information can only be added, never removed, we use Bloom" to develop several practical distributed pro- use of CRDTs ensures that all replicas will eventually agree
tures, together with two case studies that illustrate the programming and (2) the order in which information is added is not observable. grams, including a key-value store similar to Amazon Dy- rhat Bob is absent from Students, but this is not enough
Permission to md model and yield promising parallel speedup. A paradigmatic example is & et tha supportsinsertion but ot re- Bovy e ' namo, and show how Bloom* encourages the safe composi- application-level state is inconsistent unless the derived val-
eyl bt et s others ey roposeby Kuperand . tion of small, easy-to-analyze lattices into larger programs ues in Teams are updated consistently 1o reflect Bob’s re-
1. Introduction Newton makes an initial foray into programming with monotonic moval. This is outside the scope of CRDT guarantees.
Nondeterminism is essential for achieving flxible paralelism: it daa sructures [15]. In ther model (which we review in Section 2) 1. INTRODUCTION Taken together, the problems with Convergent Modules
allows tasks to be scheduled onto cores dynamically, in response Al shared data structures (called LVars) are monotonic, and the As cloud computing becomes increasingly common, the present a scope
" 10 ¢ sehect e Y states that an LVar can take on form a latrice. Writes to an LVar 1 Imtrodection
1o the vagaries of an execution. But if schedule nondeterminism is e comeapon to s o ot bpper bound in he ettt which inherent difficulties of distributed systems—asynchrony, con- lattice properties easy to inspect and test, but provides only
observale wilin o program, it becomes much more ifcult for must correspond o0 a join (least upper bound) in the lattice, which currency, a 4 - affect @ growing seg y i antic guara arge CRDT: g
i do gl rogrammers to discover and corret bugs by testing, let alone to Means that they monotonically increase the informaion inthe LV, currency. and partial failure—affect a growing segment of the simple semantic guarantees. Large CRDTs (e, ntu
D o abont their bromarmt i ho fost Bt ® at they commute with one another. But commuting writes < developer community. Traditionally, transactions and other ally consistent shopping cart) provide higher-level application
While much work has focused on Mentifying methods of de. @€ 1ot enotigh to guarantee determinisms if a read can observe forms of strong consistency encapsulated these problems at guarantees but require the programmer to ensure lattice prop-
teministc prle progrmming (5.6, 13,16, 17, 26), suaraniced ‘whether or not a concurrent write has happened. then it can observe W - the data management layer. But in recent years there has erties hold for a large module, resulting in software that is
determinism in real parallel programs remains a lofty and rarely ~ differences in scheduling. So, in the LVar model, the answer to the v been interest in achieving application-level consistency cri- difficult to test, maintain, and trust.
chicued ol T plates ssingent consiraims on the programmine _QUESion “has a wit occurred is the LVar above a certain teria without incurring the latency and availability costs of ic Losi
lattice value?) is always yes; the reading thread will block until the 4 " ferent fra Monotonic Logic: In recent work, we observed that the
model: concurrent tasks must communicate in restricted ways that) lys yes; 2 strongly consistent storage [8, 17]. Two different frameworks
LVar goes over a desired threshold. In a monotonic data structure, N o ecemed shenificant atio database theory literature on monotonic logic provides a
the absence of information is transient—another thread could add e e eales e et pon " powerful lens for reasoning about distributed consistency
Penmisson o make digha o b copis of sl o par f this work o personal or 1 information at anytime—but the presence of information fs) 1 recentresearchs Convergent Modules and Monotonic Losic Intuitively, a monotonic program makes forward progress
il v it o e o e G ""‘T‘]f; LVars model guarantees determinism. sunports an unlim- | Convergent Modules: In this approach, a programmer writes over time: it never “retracts” an earlier conclusion in the face
A gua - SUPP encapsulated modules whose public methods provide certain of new information. We proposed the CALM theorem, which
o e B gt oy, o oo ot {1 ok e i e ited varity of data structures (anything viewable s a ltice), and |
s s et A Wi el e To oy ki provides a familiar APL. o it alsady ahieves severalof our gals d arantees regarding message reordering and retry. For exam- established that all monotonic programs are confluent (invari-
espror

ﬁ

fe. Request mmw» Trom permission Gacm o
PL 14, Jamuary

ACM O78-1-4503-2544-8/14/01....$15.00,

tpid dor /10,1 14572535836 2535842

110 ACM.

Unfortunately, it is not as general-purpose as one might hope.
Many algorithms are presented explicitly as fixpoints of mono-
tonic functions. For example, an unordered graph traversal can
be understood in terms of a monotonically growing set of “scen
nodes”; neighbors of seen nodes are fed back into the set until it

ple, Statebox is an open-source library that merges conflicting
updates to data items in a key-value store; the user of the li-

ant to message reordering and retry) and hence eventually
consistent [, 18, 25]. Monotonicity of a Datalog program is

. LA s

Thank you!

Email: lkuper@cs.indiana.edu

Research blog: composition.al

Project repo: github.com/iu-parfunc/lvars

Code from this talk: github.com/lkuper/lvar-examples

Special thanks to: Ryan Newton, Aaron Turon, Neel Krishnaswami, Sam Tobin-Hochstadt,
Amr Sabry, Vincent St-Amour, Neil Conway, Sam Elliott, Mike Bernstein, and the IU PL. Wonks.

TN S

(€9 (® Photo by kakadu on Flickr. Thanks!

