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ABSTRACT

Reliability at massive scale is one of the biggest challenges we
face at Amazon.com, one of the largest e-commerce operations in
the world; even the slightest outage has significant financial
consequences and impacts customer trust. The Amazon.com
platform, which provides services for many web sites worldwide,
is implemented on top of an infrastructure of tens of thousands of
servers and network components located in many datacenters
around the world. At this scale, small and large components fail
continuously and the way persistent state is managed in the face
of these failures drives the reliability and scalability of the
software systems.

This paper presents the design and implementation of Dynamo, a
highly available key-value storage system that some of Amazon’s
core services use to provide an “always-on” experience. To
achieve this level of availability, Dynamo sacrifices consistency
under certain failure scenarios. It makes extensive use of object
versioning and application-assisted conflict resolution in a manner
that provides a novel interface for developers to use.

Categories and Subject Descriptors

D.4.2 [Operating Systems]: Storage Management; D.4.5
[Operating Systems]: Reliability; D.4.2 [Operating Systems]:
Performance;

General Terms
Algorithms, Management, Measurement, Performance, Design,
Reliability.

1. INTRODUCTION

Amazon runs a world-wide e-commerce platform that serves tens
of millions customers at peak times using tens of thousands of
servers located in many data centers around the world. There are
strict operational requirements on Amazon’s platform in terms of
performance, reliability and efficiency, and to support continuous
growth the platform needs to be highly scalable. Reliability is one
of the most important requirements because even the slightest
outage has significant financial consequences and impacts
customer trust. In addition, to support continuous growth, the
platform needs to be highly scalable.
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One of the lessons our organization has learned from operating
Amazon’s platform is that the reliability and scalability of a
system is dependent on how its application state is managed.
Amazon uses a highly decentralized, loosely coupled, service
oriented architecture consisting of hundreds of services. In this
environment there is a particular need for storage technologies
that are always available. For example, customers should be able
to view and add items to their shopping cart even if disks are
failing, network routes are flapping, or data centers are being
destroyed by tornados. Therefore, the service responsible for
managing shopping carts requires that it can always write to and
read from its data store, and that its data needs to be available
across multiple data centers.

Dealing with failures in an infrastructure comprised of millions of
components is our standard mode of operation; there are always a
small but significant number of server and network components
that are failing at any given time. As such Amazon’s software
systems need to be constructed in a manner that treats failure
handling as the normal case without impacting availability or
performance.

To meet the reliability and scaling needs, Amazon has developed
a number of storage technologies, of which the Amazon Simple
Storage Service (also available outside of Amazon and known as
Amazon S3), is probably the best known. This paper presents the
design and implementation of Dynamo, another highly available
and scalable distributed data store built for Amazon’s platform.
Dynamo is used to manage the state of services that have very
high reliability requirements and need tight control over the
tradeoffs between availability, consistency, cost-effectiveness and
performance. Amazon’s platform has a very diverse set of
applications with different storage requirements. A select set of
applications requires a storage technology that is flexible enough
to let application designers configure their data store appropriately
based on these tradeoffs to achieve high availability and
guaranteed performance in the most cost effective manner.

There are many services on Amazon’s platform that only need
primary-key access to a data store. For many services, such as
those that provide best seller lists, shopping carts, customer
preferences, session management, sales rank, and product catalog,
the common pattern of using a relational database would lead to
inefficiencies and limit scale and availability. Dynamo provides a
simple primary-key only interface to meet the requirements of
these applications.

Dynamo uses a synthesis of well known techniques to achieve
scalability and availability: Data is partitioned and replicated
using consistent hashing [10], and consistency is facilitated by
object versioning [12]. The consistency among replicas during
updates is maintained by a quorum-like technique and a
decentralized replica synchronization protocol. Dynamo employs

Eventual consistency.
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any replica to accept updates without remote synchronisation. This en.
sures performance and scalabllity in large-scale distributed systems (e.g.,
clouds). However, published EC approaches are ad-hoc and error-prone
Under a formal Strong Eventual Consistency (SEC) model, we study suf.
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of any CRDT are guaranteed to converge in a self-stabilising manner,
despite any number of failures. This paper formalises two popular ap-
proaches (state- and operation-based) and their relevant sufficent con-
ditions. We study a number of useful CRDTs, such as sets with clean
semantics, supporting both add and remove operations, and consider in
depth the more complex Graph data type. CRDT types can be composed
to develop large-scale distributed applications, and have interesting the-

oretical properties,
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1 Introduction

Replication and consistency are essential features of any large distributed system,
such as the WWW, peer-to-peer, or cloud computing platforms. The standard
“strong consistency™ approach serialises updates in a global total order [10].
This constitutes a performance and scalability bottleneck. Furthermore, strong
consistency conflicts with availability and partition-tolerance [8].

When network delays are large or partitioning is an issue, as in delay-tolerant
networks, disconnected operation, cloud computing, or P2P systems, eventfual
consistency promises better availability and performance U—ﬂﬂ] An update ex-
ecutes at some replica, without synchronisation; later, it is sent to the other
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W shopping carts, customer
preferences, session management, sales rank, and product catalog,

the common pattern of using a relational database would lead to
inefficiencies and limit scale and availability. Dynamo provides a
simple primary-key only interface to meet the requirements of
these applications.

Dynamo uses a synthesis of well known techniques to achieve
scalability and availability: Data is partitioned and replicated
using consistent hashing [10], and consistency is facilitated by
object versioning [12]. The consistency among replicas during
updates is maintained by a quorum-like technique and a
decentralized replica synchronization protocol. Dynamo employs

Eventual consistency.
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Abstract. Replicating data under Eventual Consistency (EC) allows
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sures performance and scalability in large-scale distributed systems (e.g.,
clouds). However, published EC approaches are ad-hoc and error-prone.
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ficient conditions for convergence. A data type that satisfies these con-
ditions is called a Conflict-free Replicated Data Type (CRDT), Replicas
of any CRDT are guaranteed to converge in a self-stabilising manner,
despite any number of failures. This paper formalises two popular ap-
proaches (state- and operation-based) and their relevant sufficient con-
ditions. We study a number of usefu]l CRDTs, such as sets with clean
semantics, supporting both add and remove operations, and consider in
depth the more complex Graph data type. CRDT types can be composed
to develop large-scale distributed applications, and have interesting the-
oretical properties.

Keywords: Eventual Consistency, Replicated Shared Objects, Large-
Scale Distributed Systems,

1 Introduction

Replication and consistency are essential features of any large distributed system,
such as the WWW, peer-to-peer, or cloud computing platforms. The standard
“strong consistency™ approach serialises updates in a global total order [10].
This constitutes a performance and scalability bottleneck. Furthermore, strong
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the common pattern of using a relational database would lead to
inefficiencies and limit scale and availability. Dynamo provides a
simple primary-key only interface to meet the requirements of
these applications.

Dynamo uses a synthesis of well known techniques to achieve
scalability and availability: Data is partitioned and replicated
using consistent hashing [10], and consistency is facilitated by
object versioning [12]. The consistency among replicas during
updates is maintained by a quorum-like technique and a
decentralized replica synchronization protocol. Dynamo employs
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What does this program do?

p = do

num <- new,
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What does this program do?
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= do 3 4
num <- newbkEmptyMVar e/
forkIO (putMvar num 3) Har

l takeMVar
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What does this program do?

p - d o tMV3 4tMV
num <- newbkEmptyMVar e/
forkIO (putMvar num 3) Har
forkIO (putMvar num 4) immmr

v <- takeMVar num

T ————

|
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What does this program do?

p - d o tMV3 4tMV
num <- newbkEmptyMVar e/
forkIO (putMvar num 3) Har
forkIO (putMvar num 4) immmr

v <- takeMVar num
return v

BT

——> *



Terminal — bash — 88x23

landin:lvar-examples lkuper$ make data-race-example
ghc -02 data-race-example.hs -rtsopts -threaded

Linking data-race-example ...
while true; do ./data-race-example +RTS -N2; done

4 4 AW 4 4 4



Disallow multiple writes?

p = do
num <- newbkEmptyMVar
forkIO (putMVar num 3)
forkIO (putMVar num 4)

v <- takeMVar num
return v

T — T



Disallow multiple writes?

p = do
num <- newEmEpvaarﬁ
forkIO K;htMVar num 3x

forkIO (puthvar num 4)

— =

v <- takeMVar num
return v

T —




Disallow multiple writes?

p = do
num <- newE@Eﬁvaar%
forkIO (;ﬁtMVar — 35_

forkIO ¢putMvVar num 4)

— =

v <- takeMVar num
return v

T —

Tesler and Enea, 1968

Arvind et al., 1989 [Vars



Disallow multiple writes?

return v

T —

Tesler and Enea, 1968 IV
Arvind et al., 1989 drI'sS




Disallow multiple writes?

return v

T —

Tesler and Enea, 1968 IV
Arvind et al., 1989 dl'S

./ivar-example +RTS -N2

lvar-example: multiple put



Deterministic programs that single-assignment forbids

return v
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Deterministic programs that single-assignment forbids

return v

*

. /repeated-4-ivar +RTS -N2

repeated-4-ivar: multiple put




Deterministic programs that single-assignment forbids

p :: Par Int
p = do
num <- new
fork D

return v

./repeated-4-ivar +RTS -N2

repeated-4-ivar: multiple put




Deterministic programs that single-assignment forbids

p :: Par Int
p = do
num <- new
fork D

return v

./repeated-4-ivar +RTS -N2

repeated-4-ivar: multiple put

do
fork (insert t "0") — e
fork (insert t "1100")
fork (insert t "1111")
v <- get t
return v




Deterministic programs that single-assignment forbids

p :: Par Int
p = do
num <- new
fork D

return v

./repeated-4-ivar +RTS -N2

repeated-4-ivar: multiple put

do
fork (insert t
fork (insert t
fork (insert t
v <- get t
return v




LVars: Multiple monotonic writes

u PI‘OV&blY deterministic [Kuper and Newton, FHPC *13]



LVars: Multiple monotonic writes

N Provably deterministic [Kuper and Newton, FHPC ’13]

= Contents grow monotonically with each write



LVars: Multiple monotonic writes

N Provably deterministic [Kuper and Newton, FHPC ’13]
= Contents grow monotonically with each write

= Pluggable application-specific types

import Control.LVish
import Data.LVar.Set

T — e



LVars: Multiple monotonic writes

N Provably deterministic [Kuper and Newton, FHPC ’13]
= Contents grow monotonically with each write

= Pluggable application-specific types

import Control.LVish
import Data.LVar.Pair

T — e



LVars: Multiple monotonic writes

N Provably deterministic [Kuper and Newton, FHPC ’13]
= Contents grow monotonically with each write

= Pluggable application-specific types

import Control.LVish
import Data.LVar.Map

T — e



LVars: Multiple monotonic writes

N Provably deterministic [Kuper and Newton, FHPC ’13]
= Contents grow monotonically with each write

= Pluggable application-specific types

import Control.LVish
import Data.LVar.Counter

T — e



LVars: Multiple monotonic writes

N Provably deterministic [Kuper and Newton, FHPC ’13]
= Contents grow monotonically with each write

= Pluggable application-specific types

import Control.LVish
import Data.LVar.IVar

T — e



LVars: Multiple monotonic writes

N Provably deterministic [Kuper and Newton, FHPC ’13]
= Contents grow monotonically with each write

= Pluggable application-specific types

import Control.LVish
import Data.LVar.IVar

—'

* cabal install lvish today!



LVars: Multiple monotonic writes

num

Raises an error, since 3 u4 =T

do
fork (put num 3)
fork (put num 4)

I — —
Works fine, since 4 u 4 =4
do

fork (put num 4)
fork (put num 4)

1 — D |



LVars: Multiple monotonic writes

num

n Neil Conway 2

neil_conway
/// \\\ fmemutabilty s a special case of monotone
growth, albeit a particularly useful one.
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Overlapping writes are no problem

do

fork (insert t
fork (insert t
v <- get t
return v




LVars: Threshold reads

(0,0) (O, 1)

) fork (putFst nn 0)
/ \ """ fork (putSnd nn 1)
i = v <- getSnd nn
- (L0 (L) o (0 ) (1,1

_KQ:\ / return v -- returns
~ |
- —

"tripwire"




LVars: Threshold reads

(0, 0) (01)

. fork (putFst nn 0)
/ gt \ ---- fork (putSnd nn 1)
T"'74<; — v <- getSnd nn
- (L0 (L) o (0 ) (1,1
T ““““““““ / return v -- returns I
, —
getSnd | "tripwire”
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LVars: Threshold reads

R fork (putFst nn 0)
\ ----- fork (putSnd nn 1)
v <- getSnd nn
return v -- returns 1
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Monotonicity enables deterministic parallelism

Kahn, 1974
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In this paper, we describe a simple language for parallel programming. Its

ics 1is studied thor-

oughly. The desirable properties of this language and its deficiencies are exhibited by this theoret-
ical study. Basic results on parallel program s.hemata are given. We hope in this way to make a case
for a more formal (i.e. mathematical) approach tc-the design of languages for systems programming and

the design of operating systems.

. There is a wide disagreement among systems designers

as to what are the best primitives for writing sys-
tems programs. In this paper, we describe a simple
language for parallel programming and study its
mathematical properties.

1. A SIMPLE LANGUAGE FOR PARALLEL PROGRAMMING.

The features of our mini-language are exhibited on
the sample program S on fig.l. The conventions are
close to Algol and we only insist upon the new
features. The program S consists of a set of decla-
rations and a body. Variables of type integer
channel are declared at 'line (1), and for ary simple
type o (bcolean, real, etc...) we could have decla-
red a o ch 1. Then pr f, g and h are
declared, much like procedures. Aside from usual
parameters (passed by value in this example, like
INIT at line (3)), we can declare in the heading of
the process how it is linked to other processes : at
line (2) f is stated to communicate via two input

* lines that can carry integers, and one similar out-

put line.

The body of a process is an usual Algol program except
for invocation of wait onan input line (e.g. at (4))
or send a variable on a line of compatible type
(e.g. at (5)). The process stays blocked on a wait
until something is being sent on this line by ano-
ther process, but nothing can prevent a process
from performing a send on a line.

In other words, processes communicate via first-in
first-out (fifo) queues.

Calling instances of the processes is done in the

. body of the main program at line (6) where the

actual names of the channels are bound to the formal
parameters of the processes. The infix operator par
initiates the concurrent activation of the processes.
Such a style of programming is close to may systems
using EVENT mechanisms ([1],02],03],04]). A picto-
rial representation of the program is the schema P
on fig.2,, where the nodes represent processes and
the arcs communication channels between these pro-
cesses. '

What sort of things would we like to prove on a
program like S ? Firstly, that all processes in §
run forever. Secondly, more precisely, that S prints
out (at line (7)) an alternating sequence of 0's

and 1's forever. Third, that if one of the processes
were to stop at some time for an extraneous reason,
the whole system would stop.

The ability to state formally this kind of property
of a parallel program and to prove them within a
formal logical framework is the central motivation
for the theoretical study of the next sections.

2. PARALLEL COMPUTATION.

Informally speaking, a parallel computation is orga-
nized in the following way : some autonomous compu-
ting stations are connected to each other in a net-
work by communication lines. Computing stations
exchange information through these lines. A given
station computes on data coming along its input lines,

Begin
(1) Integer channel X, Y, 2, T, T2 ;
(2) Process f(integer in U,V; integer out W) ;
Begin integer 1 ; logical B ;
B := true ;
Repeat Begin

(4) 1 := if B then wait(V) else wait(V) ;
e print (1) ;
(5) send Ton VW ;

B :=—/B ;

end ;

3

End ;
Process g(integer in U ; integer out V, W) ;
Begin integer 1 ; logical B ; .
B := true ;
Repeat Begin
I := wait (U) ;
if B then send I on V else send 1 on W ;
B :=7B ;
End ;

End ;
(3) Process h(integer in U;integer out V; integer INIT);
Begin integer 1 ;
send INIT on V ;
Repeat Begin
I := watt(V) ;
send TonV ;
End ;
End ;

Camment : body of mainprogram ;

(6) f£(Y,Z,X) par g(X,T1,T2) par h(T1,Y,0) par h(T2,Z,1
End ;

Fig.!. Sample parallel program S.

Fig.2. The schema P for the program S.




onotonicity enables deterministic parallelism

f is monotonic ift, for a given §,

x <y = f(x) < f(y)
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tems programs. In this paper, we describe a simple
language for parallel programming and study its
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The features of our mini-language are exhibited on
the sample program S on fig.l. The conventions are
close to Algol and we only insist upon the new
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declared, much like procedures. Aside from usual
parameters (passed by value in this example, like
INIT at line (3)), we can declare in the heading of
the process how it is linked to other processes : at
line (2) f is stated to communicate via two input

* lines that can carry integers, and one similar out-

put line.
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for invocation of wait onan input line (e.g. at (4))
or send a variable on a line of compatible type
(e.g. at (5)). The process stays blocked on a wait
until something is being sent on this line by ano-
ther process, but nothing can prevent a process
from performing a send on a line.

In other words, processes communicate via first-in
first-out (fifo) queues.

Calling instances of the processes is done in the

. body of the main program at line (6) where the

actual names of the channels are bound to the formal
parameters of the processes. The infix operator par
initiates the concurrent activation of the processes.
Such a style of programming is close to may systems
using EVENT mechanisms ([1],02],03],04]). A picto-
rial representation of the program is the schema P
on fig.2,, where the nodes represent processes and
the arcs communication channels between these pro-
cesses. :

What sort of things would we like to prove on a
program like S ? Firstly, that all processes in §
run forever. Secondly, more precisely, that S prints
out (at line (7)) an alternating sequence of 0's

and 1's forever. Third, that if one of the processes
were to stop at some time for an extraneous reason,
the whole system would stop.

The ability to state formally this kind of property
of a parallel program and to prove them within a
formal logical framework is the central motivation
for the theoretical study of the next sections.

2. PARALLEL COMPUTATION.

Informally speaking, a parallel computation is orga-
nized in the following way : some autonomous compu-
ting stations are connected to each other in a net-
work by communication lines. Computing stations
exchange information through these lines. A given
station computes on data coming along its input lines,

Begin
(1) Integer channel X, Y, 2, T, T2 ;
(2) Process f(integer in U,V; integer out W) ;
Begin integer 1 ; logical B ;
B := true ;
Repeat Begin

(4) 1 := if B then wait(V) else wait(V) ;
) print (1) ;
(5) send Ton VW ;

B :=—/B ;

end ;

3

;
Process g(integer in U ; integer out V, W) ;
Begin integer 1 ; logical B ; .

B := true ;

Repeat Begin
I := wait (U) ;
if B then send I on V else send 1 on W ;
B :=TB ;
End ;

End ;
(3) Process h(integer in U;integer out V; integer INIT);
Begin integer 1 ;
send INIT on V ;
Repeat Begin
I := watt(V) ;
send TonV ;
End ;
End ;

Camment : body of mainprogram ;

(6) f£(Y,Z,X) par g(X,T1,T2) par h(T1,Y,0) par h(T2,Z,1
End ;

Fig.!. Sample parallel program S.

Fig.2. The schema P for the program S.
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Monotonicitz means that receiving more input at J
@ computing station can only provoke it to send more FrwslimwinTTY

B := true ;
Repeat Begin

ou tpu t . Ind eed thi S a cruc ial proper ty s i-llc e i t ‘:”,:E;‘;f‘ﬁ Ehc;n wait(V) else wait(V) ;
allows parallel operation : a machine need not have . . ........

all of its input to start computing, since future b o

1 := wait (U) ; !
2f B then send I on V else gend 1 on W ;

lnput concerns onlz future putput. B

s

88 h(integer in U;integer out V; integer INIT);
“n integer 1 ;

nd INIT on V ;

2peat Begin

I := watt(V) ;
= send 1 onV ;
——
ther process, but no End ;
from performing a send on a line. End ;

In other words, processes communicate via first-in
first-out (fifo) queues.

Comment : bbdy of mainprogram ;

Calling instances of the processes is done in the (6) £(¥,2,X) par g(X,T1,T2) par h(T1,Y,0) par h(T2,Z,!
. body of the main program at line (6) where the End ;

actual names of the channels are bound to the formal .

parameters of the processes. The infix operator par Fig.l. Sample parallel program §.

The kind of parallel programming.we have studied in
this paper is severely limited : it can produce only-.
determinate programs. -

2. PARALLEL COMPUTATION.

Informally speaking, a parallel computation is orga-
nized in the following way : some autonomous compu-
ting stations are connected to each other in a net-
work by communication lines. Computing stations
exchange information through these lines. A given

station computes on data coming along its input lines, Fig.2. The schema P for the program S.

Kahn, 1974




Challenge problem

In a directed graph:

= find the connected component of all
nodes within k hops of a vertex v

= and compute a function analyze over
each vertex in that component

= making the set of results available
asynchronously to other
computations




Challenge problem

We compared two implementations:
Control.Parallel.Strategies

Our prototype LVar library
(tracking visited nodes in an LVar)

Level-sync breadth-first traversal, k= 10

Random graph; 320K edges; 40K nodes
Varying:
number of cores

amount of work done by analyze




Challenge problem: Strategies vs. LVars

Speedup over seq with 1us analyze function
1.6

1.2

0.8

0.4

0
1 core 2 core 3 core 4 core

O par/pseq (1us) O LVar (1ps)

Speedup over seq with 16us analyze function
4

0
1 core 2 core 3 core 4 core

O par/pseq (16ps) O LVar (16us)

Speedup over seq with 8us analyze function
4

0
1 core 2 core 3 core 4 core

O par/pseq (8us) O LVar (8us)

Speedup over seq with 32us analyze function
5

3.75

2.5

1.25

0
1 core 2 core 3 core 4 core

O par/pseq (32us) O LVar (32us)
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Challenge problem: Strategies vs. LVars

Monotonicitz means that receiving more input at /
a8 computing station can only provoke it to send more
output. Indeed this a crucial property since it
allows parallel operation : a machine need not have
all of its input to start comggting;-gince future

lnput concerns onlz future putput.
PR R—— A

Average time from start of program
to first invocation of analyze:

Strategies version: 64.64 ms

LVar version: 0.18 ms



(observably)
Deterministic Parallelism

via monotonic writes
and threshold reads.
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ABSTRACT

In recent years there has been interest in achieving application-
level consistency criteria without the latency and availability
costs of strongly consistent storage infrastructure. A stan-
dard technique is to adopt a vocabulary of commutative op-
erations; this avoids the risk of inconsistency due to message
reordering. A more powerful approach was recently captured

Y the CALM theorem, which proves that logically mono-
tonic programs are guaranteed to be eventually consistent.
In logic languages such as Bloom, CALM analysis can au-
tomatically verify that program modules achieve consistency
without coordination.

In this paper we present Bloom*, an extension to Bloom
that takes inspiration from both these traditions. Bloom" gen-
eralizes Bloom to support lattices and extends the power of
CALM analysis to whole programs containing arbitrary lat-
tices. We show how the Bloom interpreter can be general-
ized to support efficient evaluation of lattice-based code us-
ing well-known strategies from logic programming. Finally,
we use Bloom” to develop several practical distributed pro-
grams, including a key-value store similar to Amazon Dy-
namo, and show how Bloom" encourages the safe composi-
tion of small, easy-to-analyze lattices into larger programs.

1. INTRODUCTION

As cloud computing becomes increasingly common, the
inherent difficulties of distributed systems—asynchrony, con-
currency, and partial failure—affect a growing segment of the
developer community. Traditionally, transactions and other
forms of strong consistency encapsulated these problems at
the data management layer. But in recent years there has
been interest in achieving application-level consistency cri-
teria without incurring the latency and availability costs of
strongly consistent storage [8, 17]. Two different frameworks
for these techniques have received significant atiention in
recent research: Convergent Modules and Monotonic Logic.
Convergent Modules: In this approach, a programmer writes
encapsulated modules whose public methods provide certain
guarantees regarding message reordering and retry. For exam-
ple, Statebox is an open-source library that merges conflicting
updates to data items in a key-value store: the user of the li-
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brary need only register commutative, associative, idempotent
merge functions [19]. This approach has roots in research in
databases and systems [12. 14, 17, 27, 39] as well as group-
ware [11,37]. Shapiro, et al. recently proposed a formalism
for these approaches called Conflict-Free Replicated Data
Types (CRDTS), which casts these ideas into the algebraic
framework of semilattices 34, 35].

CRDTs present two main problems: (a) the programmer
bears responsibility for ensuring latiice properties for their
‘methods (commutativity, associativity, idempotence), and (b)
CRDTS only provide guarantees for individual data objects.
not for application logic in general. As an example of this
second point, consider the following:

Exawrie 1. A replicated, fault-tolerant courseware ap-
plication assigns students into study teams. It uses wo set
RDTs: one for Students and another for Teams. The appli-
cation reads a version of Students and inserts the derived
element <Alice,Bob> into Teams. Concurrentl
moved from Students by another application replica. The
use of CRDTS ensures that all replicas will eventually agree
that Bob is absent from Students, but this is not enough:
application-level state is inconsistent unless the derived val-
wues in Teams are updated consistently to reflect Bob’s re-
moval. This is outside the scope of CRDT guaranices.

‘Taken together, the problems with Convergent Modules
present a scope dilemma: a small module (e.g., a set) makes
lattice properties easy to inspect and test, but provides only
simple semantic guarantees. Large CRDTS (e.g., an eventu-
ally consistent shopping cart) provide higher-level application
‘guarantees but require the programmer to ensure lattice prop-
erties hold for a large module, resulting in software that is
difficult to test, maintain, and trust.

Monotonic Logic: In recent work, we observed that the
database theory literature on monotonic logic provides a
powerful lens for reasoning about distributed consistency.
Inuwitively, a monotonic program makes forward progress
over time: it never “retracts” an carlier conclusion in the face

ant to message reordering and retry) and hence eventually
ent [5. 18, 25]. Monotonicity of a Datalog program is
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ABSTRACT

In recent years there has been interest in achieving application-
level consistency criteria without the latency and availability
costs of strongly consistent storage infrastructure. A stan-
dard technique is to adopt a vocabulary of commutative op-
erations; this avoids the risk of inconsistency due to message
reordering. A more powerful approach was recently captured
by the CALM theorem, which proves that logically mono-
tonic programs are guaranteed to be eventually consistent.
In logic languages such as Bloom, CALM analysis can au-
tomatically verify that program modules achieve consistency
without coordination.

In this paper we present Bloom", an extension to Bloom
that takes inspiration from both these traditions. Bloom" gen-
eralizes Bloom to support lattices and extends the power of
CALM analysis to whole programs containing arbitrary lat-
tices. We show how the Bloom interpreter can be general-
ized to support efficient evaluation of lattice-based code us-
ing well-known strategies from logic programming. Finally,
we use Bloom” to develop several practical distributed pro-
grams, including a key-value store similar to Amazon Dy-
namo, and show how Bloom" encourages the safe composi-
tion of small, easy-to-analyze lattices into larger programs.

1. INTRODUCTION

As cloud computing becomes increasingly common, the
inherent difficulties of distributed systems—as)

currency, and partial failure—affect a growing segment of the
developer community. Traditionally, transactions and other
forms of strong consistency encapsulated these problems at
the data management layer. But in recent years there has
been interest in achieving application-level consistency cri-
teria without incurring the latency and availability costs of
strongly consistent storage (8, 17]. Two different frameworks
for these techniques have received significant attention in
recent research: Convergent Modules and Monotonic Logic

nchrony, con-

Convergent Modules: In this approach, a programmer writes
encapsulated modules whose public methods provide certain
guarantees regarding message reordering and retry. For exam-
ple, Statebox s an open-source library that merges conflicting
updates to data items in a key-value store: the user of the li-
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brary need only register commutative, associative, idempotent
merge functions [19]. This approach has roots in research in
databases and systems [12, 14, 17, 27, 39] as well as group-
ware [11,37]. Shapiro, et al. recently proposed a formalism
for these approaches called Conlict-Free Replicated Data
Types (CRDTS), which casts these ideas into the algebraic
framework of semilattices 34, 35].

"RDTS present two main problems: (a) the programmer
bears responsibility for ensuring latiice properties for their
methods (commutativity, associativity, idempotence), and (b)
CRDTS only provide guarantees for individual data objects,
not for application logic in general. As an example of this
second point, consider the following:

Exawrie 1. A replicated, fault-tolerant courseware ap-
plication assigns students into study teams. It uses two set
RDTs: one for Students and another for Teams. The appli-
cation reads a version of Students and inserts the derived
element <Alice,Bob> into Teams. Concurrently, Bob is re-
moved from Students by another application replica. The
use of CRDTs ensures that all replicas will eventually agree
that Bob is absent from Students, but this is not enough
application-level state is inconsistent unless the derived val-
wues in Teams are updated consistently to reflect Bob’s re-
moval. This is outside the scope of CRDT guaranices.

Taken together, the problems with Convergent Modules
present a scope dilemma: a small module (e.g.. a set) makes
lattice properties easy to inspect and test, but provides only
simple semantic guarantees. Large CRDTS (e.g.. an eventu-
ally consistent shopping cart) provide higher-level application
‘guarantees but require the programmer to ensure lattice prop-
erties hold for a large module, resulting in software that is
difficult to test, maintain, and trust.

Monotonic Logic: In recent work, we observed that the
database theory literature on monotonic logic provides a
powerful lens for reasoning about distributed consistency.
Intuitively. a monotonic program makes forward progress
over time: it never “retracts” an earlier conclusion in the face
of new information. We proposed the CALM theorem, which
established that all monotonic programs are confluent (invari-
ant to message reordering and retry) and hence eventually
consistent [5, 18, 25]. Monotonicity of a Datalog program is
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ABSTRACT

In recent years there has been interest in achieving application-
level consistency criteria without the latency and availability
costs of strongly consistent storage infrastructure. A stan-
dard technique is to adopt a vocabulary of commutative op-
erations; this avoids the risk of inconsistency due to message
reordering. A more powerful approach was recently captured

Y the CALM theorem, which proves that logically mono-
tonic programs are guaranteed to be eventually consistent.
In logic languages such as Bloom, CALM analysis can au-
tomatically verify that program modules achieve consistency
without coordination.

In this paper we present Bloom*, an extension to Bloom
that takes inspiration from both these traditions. Bloom* gen-
eralizes Bloom to support lattices and extends the power of
CALM analysis to whole programs containing arbitrary lat-
tices. We show how the Bloom interpreter can be general-
ized to support efficient evaluation of lattice-based code us-
ing well-known strategies from logic programming. Finally,
we use Bloom” to develop several practical distributed pro-
grams, including a key-value store similar to Amazon D:
namo, and show how Bloom" encourages the safe composi-
tion of small, easy-to-analyze lattices into larger programs.

1.

INTRODUCTION

As cloud computing becomes increasingly common, the
inherent difficulties of distributed systems—asynchrony, con-
currency, and partial failure—affect a growing segment of the
developer community. Traditionally, transactions and other
forms of strong consistency encapsulated these problems at
the data management layer. But in recent years there has
been interest in achieving application-level consistency cri-
teria without incurring the latency and availability costs of
strongly consistent storage [8, 17]. Two different frameworks
for these techniques have received significant atiention in
recent research: Convergent Modules and Monotonic Logic.

Convergent Modules: In this approach, a programmer writes
encapsulated modules whose public methods provide certain
guarantees regarding message reordering and retry. For exam-
ple, Statebox is an open-source library that merges conflicting
updates to data items in a key-value store: the user of the li-
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brary need only register commutative, associative, idempotent
merge functions [19]. This approach has roots in research in
databases and systems [12. 14, 17, 27, 39] as well as group-
ware [11,37]. Shapiro, et al. recently proposed a formalism
for these approaches called Conflict-Free Replicated Data
Types (CRDTS), which casts these ideas into the algebraic
framework of semilattices 34, 35].

CRDTs present two main problems: (a) the programmer
bears responsibility for ensuring latiice properties for their
‘methods (commutativity, associativity, idempotence), and (b)
CRDTS only provide guarantees for individual data objects,
not for application logic in general. As an example of this
second point, consider the following:

Exawrie 1. A replicated, fault-tolerant courseware ap-
plication assigns students into study teams. It uses wo set
RDTs: one for Students and another for Teams. The appli-
cation reads a version of Students and inserts the derived
element <Alice,Bob> into Teams. Concurrently, Bob is re-
moved from Students by another application replica. The
use of CRDTS ensures that all replicas will eventually agree
that Bob is absent from Students, but this is not enough:
application-level state is inconsistent unless the derived val-
wues in Teams are updated consistently to reflect Bob’s re-
moval. This is outside the scope of CRDT guaranices.

‘Taken together, the problems with Convergent Modules
present a scope dilemma: a small module (e.g., a set) makes
lattice properties easy to inspect and test, but provides only
simple semantic guarantees. Large CRDTS (e.g., an eventu-
ally consistent shopping cart) provide higher-level application
‘guarantees but require the programmer to ensure lattice prop-
erties hold for a large module, resulting in software that is
difficult to test, maintain, and trust.

Monotonic Logic: In recent work, we observed that the
database theory literature on monotonic logic provides a
powerful lens for reasoning about distributed consistency.
Inuwitively, a monotonic program makes forward progress
over time: it never “retracts” an carlier conclusion in the face
of new information. We proposed the CALM theorem, which
established that all monotonic programs are confluent (invari-
ant to message reordering and retry) and hence eventually
consistent [5, 18, 25]. Monotonicity of a Datalog program is
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ABSTRACT

In recent years there has been interest in achieving application-
level consistency criteria without the latency and availability
costs of strongly consistent storage infrastructure. A stan-
dard technique is to adopt a vocabulary of commutative op-
erations; this avoids the risk of inconsistency due to message
reordering. A more powerful approach was recently captured

Y the CALM theorem, which proves that logically mono-
tonic programs are guaranteed to be eventually consistent.
In logic languages such as Bloom, CALM analysis can au-
tomatically verify that program modules achieve consistency
without coordination.

In this paper we present Bloom*, an extension to Bloom
that takes inspiration from both these traditions. Bloom" gen-
eralizes Bloom to support lattices and extends the power of
CALM analysis to whole programs containing arbitrary lat-
tices. We show how the Bloom interpreter can be general-
ized to support efficient evaluation of lattice-based code us-
ing well-known strategies from logic programming. Finally,
we use Bloom” to develop several practical distributed pro-
grams, including a key-value store similar to Amazon D:
namo, and show how Bloom" encourages the safe compos
tion of small, easy-to-analyze lattices into larger programs.

1.

INTRODUCTION

As cloud computing becomes increasingly common, the
inherent difficulties of distributed systems—asynchrony, con-
currency, and partial failure—affect a growing segment of the
developer community. Traditionally, transactions and other
forms of strong consistency encapsulated these problems at
the data management layer. But in recent years there has
been interest in achieving application-level consistency cri-
teria without incurring the latency and availability costs of
strongly consistent storage [8, 17]. Two different frameworks
for these techniques have received significant atiention in
recent research: Convergent Modules and Monotonic Logic.

Convergent Modules: In this approach, a programmer writes
encapsulated modules whose public methods provide certain
guarantees regarding message reordering and retry. For exam-
ple, Statebox is an open-source library that merges conflicting
updates to data items in a key-value store: the user of the li-
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brary need only register commutative, associative, idempotent
merge functions [19]. This approach has roots in research in
databases and systems [12. 14, 17, 27, 39] as well as group-
ware [11,37]. Shapiro, et al. recently proposed a formalism
for these approaches called Conflict-Free Replicated Data
Types (CRDTS), which casts these ideas into the algebraic
framework of semilattices 34, 35].

CRDTs present two main problems: (a) the programmer
bears responsibility for ensuring latiice properties for their
‘methods (commutativity, associativity, idempotence), and (b)
CRDTS only provide guarantees for individual data objects,
not for application logic in general. As an example of this
second point, consider the following:

Exawrie 1. A replicated, fault-tolerant courseware ap-
plication assigns students into study teams. It uses wo set

RDTs: one for Students and another for Teams. The appli-
cation reads a version of Students and inserts the derived
element <Alice,Bob> into Teams. Concurrently, Bob is re-
moved from Students by another application replica. The
use of CRDTS ensures that all replicas will eventually agree
that Bob is absent from Students, but this is not enough:
application-level state is inconsistent unless the derived val-
wues in Teams are updated consistently to reflect Bob’s re-
moval. This is outside the scope of CRDT guaranices.

‘Taken together, the problems with Convergent Modules
present a scope dilemma: a small module (e.g., a set) makes
lattice properties easy to inspect and test, but provides only
simple semantic guarantees. Large CRDTS (e.g., an eventu-
ally consistent shopping cart) provide higher-level application
‘guarantees but require the programmer to ensure lattice prop-
erties hold for a large module, resulting in software that is
difficult to test, maintain, and trust.

Monotonic Logic: In recent work, we observed that the
database theory literature on monotonic logic provides a
powerful lens for reasoning about distributed consistency.
Inuwitively, a monotonic program makes forward progress
over time: it never “retracts” an carlier conclusion in the face
of new information. We proposed the CALM theorem, which
established that all monotonic programs are confluent (invari-
ant to message reordering and retry) and hence eventually
consistent [5, 18, 25]. Monotonicity of a Datalog program is
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ABSTRACT

In recent years there has been interest in achieving application-
level consistency criteria without the latency and availability
costs of strongly consistent storage infrastructure. A stan-
dard technique is to adopt a vocabulary of commutative op-
erations; this avoids the risk of inconsistency due to message
reordering. A more powerful approach was recently captured

Y the CALM theorem, which proves that logically mono-
tonic programs are guaranteed to be eventually consistent.
In logic languages such as Bloom, CALM analysis can au-
tomatically verify that program modules achieve consistency
without coordination.

In this paper we present Bloom*, an extension to Bloom
that takes inspiration from both these traditions. Bloom" gen-
eralizes Bloom to support lattices and extends the power of
CALM analysis to whole programs containing arbitrary lat-
tices. We show how the Bloom interpreter can be general-
ized to support efficient evaluation of lattice-based code us-
ing well-known strategies from logic programming. Finally,
we use Bloom” to develop several practical distributed pro-
grams, including a key-value store similar to Amazon D:
namo, and show how Bloom" encourages the safe compos
tion of small, easy-to-analyze lattices into larger programs.

1.

INTRODUCTION

As cloud computing becomes increasingly common, the
inherent difficulties of distributed systems—asynchrony, con-
currency, and partial failure—affect a growing segment of the
developer community. Traditionally, transactions and other
forms of strong consistency encapsulated these problems at
the data management layer. But in recent years there has
been interest in achieving application-level consistency cri-
teria without incurring the latency and availability costs of
strongly consistent storage [8, 17]. Two different frameworks
for these techniques have received significant atiention in
recent research: Convergent Modules and Monotonic Logic.

Convergent Modules: In this approach, a programmer writes
encapsulated modules whose public methods provide certain
guarantees regarding message reordering and retry. For exam-
ple, Statebox is an open-source library that merges conflicting
updates to data items in a key-value store: the user of the li-
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brary need only register commutative, associative, idempotent
merge functions [19]. This approach has roots in research in
databases and systems [12. 14, 17, 27, 39] as well as group-
ware [11,37]. Shapiro, et al. recently proposed a formalism
for these approaches called Conflict-Free Replicated Data
Types (CRDTS), which casts these ideas into the algebraic
framework of semilattices 34, 35].

CRDTs present two main problems: (a) the programmer
bears responsibility for ensuring latiice properties for their
‘methods (commutativity, associativity, idempotence), and (b)
CRDTS only provide guarantees for individual data objects,
not for application logic in general. As an example of this
second point, consider the following:

Exawrie 1. A replicated, fault-tolerant courseware ap-
plication assigns students into study teams. It uses wo set

RDTs: one for Students and another for Teams. The appli-
cation reads a version of Students and inserts the derived
element <Alice,Bob> into Teams. Concurrently, Bob is re-
moved from Students by another application replica. The
use of CRDTS ensures that all replicas will eventually agree
that Bob is absent from Students, but this is not enough:
application-level state is inconsistent unless the derived val-
wues in Teams are updated consistently to reflect Bob’s re-
moval. This is outside the scope of CRDT guaranices.

‘Taken together, the problems with Convergent Modules
present a scope dilemma: a small module (e.g., a set) makes
lattice properties easy to inspect and test, but provides only
simple semantic guarantees. Large CRDTS (e.g., an eventu-
ally consistent shopping cart) provide higher-level application
‘guarantees but require the programmer to ensure lattice prop-
erties hold for a large module, resulting in software that is
difficult to test, maintain, and trust.

Monotonic Logic: In recent work, we observed that the
database theory literature on monotonic logic provides a
powerful lens for reasoning about distributed consistency.
Inuwitively, a monotonic program makes forward progress
over time: it never “retracts” an carlier conclusion in the face
of new information. We proposed the CALM theorem, which
established that all monotonic programs are confluent (invari-
ant to message reordering and retry) and hence eventually
consistent [5, 18, 25]. Monotonicity of a Datalog program is
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ABSTRACT

In recent years there has been interest in achieving application-
level consistency criteria without the latency and availability
costs of strongly consistent storage infrastructure. A stan-
dard technique is to adopt a vocabulary of commutative op-
erations; this avoids the risk of inconsistency due to message
reordering. A more powerful approach was recently captured

Y the CALM theorem, which proves that logically mono-
tonic programs are guaranteed to be eventually consistent.
In logic languages such as Bloom, CALM analysis can au-
tomatically verify that program modules achieve consistency
without coordination.

In this paper we present Bloom*, an extension to Bloom
that takes inspiration from both these traditions. Bloom" gen-
eralizes Bloom to support lattices and extends the power of
CALM analysis to whole programs containing arbitrary lat-
tices. We show how the Bloom interpreter can be general-
ized to support efficient evaluation of lattice-based code us-
ing well-known strategies from logic programming. Finally,
we use Bloom” to develop several practical distributed pro-
grams, including a key-value store similar to Amazon D:
namo, and show how Bloom" encourages the safe compos
tion of small, easy-to-analyze lattices into larger programs.

1.

INTRODUCTION

As cloud computing becomes increasingly common, the
inherent difficulties of distributed systems—asynchrony, con-
currency, and partial failure—affect a growing segment of the
developer community. Traditionally, transactions and other
forms of strong consistency encapsulated these problems at
the data management layer. But in recent years there has
been interest in achieving application-level consistency cri-
teria without incurring the latency and availability costs of
strongly consistent storage [8, 17]. Two different frameworks
for these techniques have received significant atiention in
recent research: Convergent Modules and Monotonic Logic.

Convergent Modules: In this approach, a programmer writes
encapsulated modules whose public methods provide certain
guarantees regarding message reordering and retry. For exam-
ple, Statebox is an open-source library that merges conflicting
updates to data items in a key-value store: the user of the li-
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brary need only register commutative, associative, idempotent
merge functions [19]. This approach has roots in research in
databases and systems [12. 14, 17, 27, 39] as well as group-
ware [11,37]. Shapiro, et al. recently proposed a formalism
for these approaches called Conflict-Free Replicated Data
Types (CRDTS), which casts these ideas into the algebraic
framework of semilattices 34, 35].

CRDTs present two main problems: (a) the programmer
bears responsibility for ensuring latiice properties for their
‘methods (commutativity, associativity, idempotence), and (b)
CRDTS only provide guarantees for individual data objects,
not for application logic in general. As an example of this
second point, consider the following:

Exawrie 1. A replicated, fault-tolerant courseware ap-

plication assigns students into study teams. It uses wo set
RDTs: one for Students and another for Teams. The appli-

cation reads a version of Students and inserts the derived
element <Alice,Bob> into Teams. Concurrently, Bob is re-
moved from Students by another application replica. The
use of CRDTS ensures that all replicas will eventually agree
that Bob is absent from Students, but this is not enough:
application-level state is inconsistent unless the derived val-
wues in Teams are updated consistently to reflect Bob’s re-
moval. This is outside the scope of CRDT guaranices.

‘Taken together, the problems with Convergent Modules
present a scope dilemma: a small module (e.g., a set) makes
lattice properties easy to inspect and test, but provides only
simple semantic guarantees. Large CRDTS (e.g., an eventu-
ally consistent shopping cart) provide higher-level application
‘guarantees but require the programmer to ensure lattice prop-
erties hold for a large module, resulting in software that is
difficult to test, maintain, and trust.

Monotonic Logic: In recent work, we observed that the
database theory literature on monotonic logic provides a
powerful lens for reasoning about distributed consistency.
Inuwitively, a monotonic program makes forward progress
over time: it never “retracts” an carlier conclusion in the face
of new information. We proposed the CALM theorem, which
established that all monotonic programs are confluent (invari-
ant to message reordering and retry) and hence eventually
consistent [5, 18, 25]. Monotonicity of a Datalog program is
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In recent years there has been interest in achieving application-
level consistency criteria without the latency and availability
costs of strongly consistent storage infrastructure. A stan-
dard technique is to adopt a vocabulary of commutative op-
erations; this avoids the risk of inconsistency due to message
reordering. A more powerful approach was recently captured

Y the CALM theorem, which proves that logically mono-
tonic programs are guaranteed to be eventually consistent.
In logic languages such as Bloom, CALM analysis can au-
tomatically verify that program modules achieve consistency
without coordination.

In this paper we present Bloom*, an extension to Bloom
that takes inspiration from both these traditions. Bloom" gen-
eralizes Bloom to support lattices and extends the power of
CALM analysis to whole programs containing arbitrary lat-
tices. We show how the Bloom interpreter can be general-
ized to support efficient evaluation of lattice-based code us-
ing well-known strategies from logic programming. Finally,
we use Bloom” to develop several practical distributed pro-
grams, including a key-value store similar to Amazon D:
namo, and show how Bloom" encourages the safe compos
tion of small, easy-to-analyze lattices into larger programs.

1.

INTRODUCTION

As cloud computing becomes increasingly common, the
inherent difficulties of distributed systems—asynchrony, con-
currency, and partial failure—affect a growing segment of the
developer community. Traditionally, transactions and other
forms of strong consistency encapsulated these problems at
the data management layer. But in recent years there has
been interest in achieving application-level consistency cri-
teria without incurring the latency and availability costs of
strongly consistent storage [8, 17]. Two different frameworks
for these techniques have received significant atiention in
recent research: Convergent Modules and Monotonic Logic.

Convergent Modules: In this approach, a programmer writes
encapsulated modules whose public methods provide certain
guarantees regarding message reordering and retry. For exam-
ple, Statebox is an open-source library that merges conflicting
updates to data items in a key-value store: the user of the li-
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brary need only register commutative, associative, idempotent
merge functions [19]. This approach has roots in research in
databases and systems [12. 14, 17, 27, 39] as well as group-
ware [11,37]. Shapiro, et al. recently proposed a formalism
for these approaches called Conflict-Free Replicated Data
Types (CRDTS), which casts these ideas into the algebraic
framework of semilattices 34, 35].

CRDTs present two main problems: (a) the programmer
bears responsibility for ensuring latiice properties for their
‘methods (commutativity, associativity, idempotence), and (b)
CRDTS only provide guarantees for individual data objects,
not for application logic in general. As an example of this
second point, consider the following:

Exawrie 1. A replicated, fault-tolerant courseware ap-

plication assigns students into study teams. It uses wo set
RDTs: one for Students and another for Teams. The appli-

cation reads a version of Students and inserts the derived
element <Alice,Bob> into Teams. Concurrently, Bob is re-
moved from Students by another application replica. The
use of CRDTS ensures that all replicas will eventually agree
that Bob is absent from Students, but this is not enough:
application-level state is inconsistent unless the derived val-
wues in Teams are updated consistently to reflect Bob’s re-
moval. This is outside the scope of CRDT guaranices.

‘Taken together, the problems with Convergent Modules
present a scope dilemma: a small module (e.g., a set) makes
lattice properties easy to inspect and test, but provides only
simple semantic guarantees. Large CRDTS (e.g., an eventu-
ally consistent shopping cart) provide higher-level application
‘guarantees but require the programmer to ensure lattice prop-
erties hold for a large module, resulting in software that is
difficult to test, maintain, and trust.

Monotonic Logic: In recent work, we observed that the
database theory literature on monotonic logic provides a
powerful lens for reasoning about distributed consistency.
Inuwitively, a monotonic program makes forward progress
over time: it never “retracts” an carlier conclusion in the face
of new information. We proposed the CALM theorem, which
established that all monotonic programs are confluent (invari-
ant to message reordering and retry) and hence eventually
consistent [5, 18, 25]. Monotonicity of a Datalog program is
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ABSTRACT

In recent years there has been interest in achieving application-
level consistency criteria without the latency and availability
costs of strongly consistent storage infrastructure. A stan-
dard technique is to adopt a vocabulary of commutative op-
erations; this avoids the risk of inconsistency due to message
reordering. A more powerful approach was recently captured
by the CALM theorem, which proves that logically mono-
tonic programs are guaranteed to be eventually consistent.
In logic languages such as Bloom, CALM analysis can au-
tomatically verify that program modules achieve consistency
without coordination.

In this paper we present Bloom", an extension to Bloom
that takes inspiration from both these traditions. Bloom" gen-
eralizes Bloom to support lattices and extends the power of
CALM analysis to whole programs containing arbitrary lat-
tices. We show how the Bloom interpreter can be general-
ized to support efficient evaluation of lattice-based code us-
ing well-known strategies from logic programming. Finally,
we use Bloom” to develop several practical distributed pro-
grams, including a key-value store similar to Amazon Dy-
namo, and show how Bloom" encourages the safe composi-
tion of small, easy-to-analyze lattices into larger programs.

1. INTRODUCTION

As cloud computing becomes increasingly common, the
inherent difficulties of distributed systems—as)

currency, and partial failure—affect a growing segment of the
developer community. Traditionally, transactions and other
forms of strong consistency encapsulated these problems at
the data management layer. But in recent years there has
been interest in achieving application-level consistency cri-
teria without incurring the latency and availability costs of
strongly consistent storage (8, 17]. Two different frameworks
for these techniques have received significant attention in
recent research: Convergent Modules and Monotonic Logic

nchrony, con-

Convergent Modules: In this approach, a programmer writes
encapsulated modules whose public methods provide certain
guarantees regarding message reordering and retry. For exam-
ple, Statebox s an open-source library that merges conflicting
updates to data items in a key-value store: the user of the li-
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brary need only register commutative, associative, idempotent
merge functions [19]. This approach has roots in research in
databases and systems [12, 14, 17, 27, 39] as well as group-
ware [11,37]. Shapiro, et al. recently proposed a formalism
for these approaches called Conlict-Free Replicated Data
Types (CRDTS), which casts these ideas into the algebraic
framework of semilattices 34, 35].

"RDTS present two main problems: (a) the programmer
bears responsibility for ensuring latiice properties for their
methods (commutativity, associativity, idempotence), and (b)
CRDTS only provide guarantees for individual data objects,
not for application logic in general. As an example of this
second point, consider the following:

Exawrie 1. A replicated, fault-tolerant courseware ap-
plication assigns students into study teams. It uses two set
RDTs: one for Students and another for Teams. The appli-
cation reads a version of Students and inserts the derived
element <Alice,Bob> into Teams. Concurrently, Bob is re-
moved from Students by another application replica. The
use of CRDTs ensures that all replicas will eventually agree
that Bob is absent from Students, but this is not enough
application-level state is inconsistent unless the derived val-
wues in Teams are updated consistently to reflect Bob’s re-
moval. This is outside the scope of CRDT guaranices.

Taken together, the problems with Convergent Modules
present a scope dilemma: a small module (e.g.. a set) makes
lattice properties easy to inspect and test, but provides only
simple semantic guarantees. Large CRDTS (e.g.. an eventu-
ally consistent shopping cart) provide higher-level application
‘guarantees but require the programmer to ensure lattice prop-
erties hold for a large module, resulting in software that is
difficult to test, maintain, and trust.

Monotonic Logic: In recent work, we observed that the
database theory literature on monotonic logic provides a
powerful lens for reasoning about distributed consistency.
Intuitively. a monotonic program makes forward progress
over time: it never “retracts” an earlier conclusion in the face
of new information. We proposed the CALM theorem, which
established that all monotonic programs are confluent (invari-
ant to message reordering and retry) and hence eventually
consistent [5, 18, 25]. Monotonicity of a Datalog program is
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ABSTRACT

In recent years there has been interest in achieving application-
level consistency criteria without the latency and availability
costs of strongly consistent storage infrastructure. A stan-
dard technique is to adopt a vocabulary of commutative op-
erations; this avoids the risk of inconsistency due to message
reordering. A more powerful approach was r captured
by the CALM theorem, which proves that logically mono-
tonic programs are guaranteed to be eventually consistent.
In logic languages such as Bloom, CALM analysis can au-
tomatically verify that program modules achieve consistency
without coordination.

In this paper we present Bloom", an extension to Bloom
that takes inspiration from both these traditions. Bloom" gen-
eralizes Bloom to support lattices and extends the power of
CALM analysis to whole programs containing arbitrary lat-
tices. We show how the Bloom interpreter can be general-
ized to support efficient evaluation of lattice-based code us-
ing well-known strategies from logic programming. Finally,
we use Bloom” to develop several practical distributed pro-
grams, including a key-value store similar to Amazon Dy-
namo, and show how Bloom" encourages the safe composi-
tion of small, easy-to-analyze lattices into larger programs.

1. INTRODUCTION

As cloud computing becomes increasingly common, the
inherent difficulties of distributed systems—asynchrony, con-
currency, and partial failure—affect a growing segment of the
developer community. Traditionally, transactions and other
forms of strong consistency encapsulated these problems at
the data management layer. But in recent years there has
been interest in achieving application-level consistency cri-
teria without incurring the latency and availability costs of
strongly consistent storage [8, 17]. Two different frameworks
for these techniques have received significant attention in
recent research: Convergent Modules and Monotonic Logic

Convergent Modules: In this approach, a programmer writes
encapsulated modules whose public methods provide certain
guarantees regarding message reordering and retry. For exam-
ple, Statebox s an open-source library that merges conflicting
updates to data items in a key-value store: the user of the li-
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brary need only register commutative, associative, idempotent
merge functions [19]. This approach has roots in research in
databases and systems [12, 14, 17, 27, 39] as well as group-
ware [11,37]. Shapiro, et al. recently proposed a formalism
for these approaches called Conlict-Free Replicated Data
Types (CRDTS), which casts these ideas into the algebraic
framework of semilattices 34, 35].

"RDTS present two main problems: (a) the programmer
bears responsibility for ensuring latiice properties for their
methods (commutativity, associativity, idempotence), and (b)
CRDTS only provide guarantees for individual data objects,
not for application logic in general. As an example of
second point, consider the following:

Exawrie 1. A replicated, fault-tolerant courseware ap-
plication assigns students into study teams. It uses two set
RDTs: one for Students and another for Teams. The appli-
cation reads a version of Students and inserts the derived
element <Alice,Bob> into Teams. Concurrently, Bob is re-
moved from Students by another application replica. The
use of CRDTs ensures that all replicas will eventually agree
that Bob is absent from Students, but this is not enough:
application-level state is inconsistent unless the derived val-
wues in Teams are updated consistently to reflect Bob’s re-
moval. This is outside the scope of CRDT guaranices.

Taken together, the problems with Convergent Modules
present a scope dilemma: a small module (e.g.. a set) makes
lattice properties easy to inspect and test, but provides only
simple semantic guarantees. Large CRDTS (e.g.. an eventu-
ally consistent shopping cart) provide higher-level application
‘guarantees but require the programmer to ensure lattice prop-
erties hold for a large module, resulting in software that is
difficult to test, maintain, and trust.

Monotonic Logic: In recent work, we observed that the
database theory literature on monotonic logic provides a
powerful lens for reasoning about distributed consistency.
Intuitively. a monotonic program makes forward progress
over time: it never “retracts” an earlier conclusion in the face
of new information. We proposed the CALM theorem, which
established that all monotonic programs are confluent (invari-
ant to message reordering and retry) and hence eventually
consistent [5, 18, 25]. Monotonicity of a Datalog program is
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ABSTRACT

In recent years there has been interest in achieving application-
level consistency criteria without the latency and availability
costs of strongly consistent storage infrastructure. A stan-
dard technique is to adopt a vocabulary of commutative op-
erations; this avoids the risk of inconsistency due to message
reordering. A more powerful approach was recently captured
by the CALM theorem, which proves that logically mono-
tonic programs are guaranteed to be eventually consistent.
In logic languages such as Bloom, CALM analysis can au-
tomatically verify that program modules achieve consistency
without coordination.

In this paper we present Bloom", an extension to Bloom
that takes inspiration from both these traditions. Bloom" gen-
eralizes Bloom to support lattices and extends the power of
CALM analysis to whole programs containing arbitrary lat-
tices. We show how the Bloom interpreter can be general-
ized to support efficient evaluation of lattice-based code us-
ing well-known strategies from logic programming. Finally,
we use Bloom” to develop several practical distributed pro-
grams, including a key-value store similar to Amazon Dy-
namo, and show how Bloom" encourages the safe composi-
tion of small, easy-to-analyze lattices into larger programs.

1. INTRODUCTION

As cloud computing becomes increasingly common, the
inherent difficulties of distributed systems—as)

currency, and partial failure—affect a growing segment of the
developer community. Traditionally, transactions and other
forms of strong consistency encapsulated these problems at
the data management layer. But in recent years there has
been interest in achieving application-level consistency cri-
teria without incurring the latency and availability costs of
strongly consistent storage (8, 17]. Two different frameworks
for these techniques have received significant attention in
recent research: Convergent Modules and Monotonic Logic

nchrony, con-

Convergent Modules: In this approach, a programmer writes
encapsulated modules whose public methods provide certain
guarantees regarding message reordering and retry. For exam-
ple, Statebox s an open-source library that merges conflicting
updates to data items in a key-value store: the user of the li-
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brary need only register commutative, associative, idempotent
merge functions [19]. This approach has roots in research in
databases and systems [12, 14, 17, 27, 39] as well as group-
ware [11,37]. Shapiro, et al. recently proposed a formalism
for these approaches called Conlict-Free Replicated Data
Types (CRDTS), which casts these ideas into the algebraic
framework of semilattices 34, 35].

"RDTS present two main problems: (a) the programmer
bears responsibility for ensuring latiice properties for their
methods (commutativity, associativity, idempotence), and (b)
CRDTS only provide guarantees for individual data objects,
not for application logic in general. As an example of this
second point, consider the following:

Exawrie 1. A replicated, fault-tolerant courseware ap-
plication assigns students into study teams. It uses two set
RDTs: one for Students and another for Teams. The appli-
cation reads a version of Students and inserts the derived
element <Alice,Bob> into Teams. Concurrently, Bob is re-
moved from Students by another application replica. The
use of CRDTs ensures that all replicas will eventually agree
that Bob is absent from Students, but this is not enough
application-level state is inconsistent unless the derived val-
wues in Teams are updated consistently to reflect Bob’s re-
moval. This is outside the scope of CRDT guaranices.

Taken together, the problems with Convergent Modules
present a scope dilemma: a small module (e.g.. a set) makes
lattice properties easy to inspect and test, but provides only
simple semantic guarantees. Large CRDTS (e.g.. an eventu-
ally consistent shopping cart) provide higher-level application
‘guarantees but require the programmer to ensure lattice prop-
erties hold for a large module, resulting in software that is
difficult to test, maintain, and trust.

Monotonic Logic: In recent work, we observed that the
database theory literature on monotonic logic provides a
powerful lens for reasoning about distributed consistency.
Intuitively. a monotonic program makes forward progress
over time: it never “retracts” an earlier conclusion in the face
of new information. We proposed the CALM theorem, which
established that all monotonic programs are confluent (invari-
ant to message reordering and retry) and hence eventually
consistent [5, 18, 25]. Monotonicity of a Datalog program is
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In recent years there has been interest in achieving application-
level consistency criteria without the latency and availability
costs of strongly consistent storage infrastructure. A stan-
dard technique is to adopt a vocabulary of commutative op-
erations; this avoids the risk of inconsistency due to message
reordering. A more powerful approach was recently captured
by the CALM theorem, which proves that logically mono-
tonic programs are guaranteed to be eventually consistent.
In logic languages such as Bloom, CALM analysis can au-
tomatically verify that program modules achieve consistency
without coordination.

In this paper we present Bloom", an extension to Bloom
that takes inspiration from both these traditions. Bloom" gen-
eralizes Bloom to support lattices and extends the power of
CALM analysis to whole programs containing arbitrary lat-
tices. We show how the Bloom interpreter can be general-
ized to support efficient evaluation of lattice-based code us-
ing well-known strategies from logic programming. Finally,
we use Bloom” to develop several practical distributed pro-
grams, including a key-value store similar to Amazon Dy-
namo, and show how Bloom" encourages the safe composi-
tion of small, easy-to-analyze lattices into larger programs.

1. INTRODUCTION

As cloud computing becomes increasingly common, the
inherent difficulties of distributed systems—as)
currency, and partial failure—affect a growing segment of the
developer community. Traditionally, transactions and other
forms of strong consistency encapsulated these problems at
the data management layer. But in recent years there has
been interest in achieving application-level consistency cri
teria without incurring the latency and availability costs of
strongly consistent storage (8, 17]. Two different frameworks
for these techniques have received significant attention in
recent research: Convergent Modules and Monotonic Logic

nchrony, con-

Convergent Modules: In this approach, a programmer writes
encapsulated modules whose public methods provide certain
guarantees regarding message reordering and retry. For exam-
ple, Statebox s an open-source library that merges conflicting
updates to data items in a key-value store: the user of the li-
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brary need only register commutative, associative, idempotent
merge functions [19]. This approach has roots in research in
databases and systems [12, 14, 17, 27, 39] as well as group-
ware [11,37]. Shapiro, et al. recently proposed a formalism
for these approaches called Conlict-Free Replicated Data
Types (CRDTS), which casts these ideas into the algebraic
framework of semilattices 34, 35].

"RDTS present two main problems: (a) the programmer
bears responsibility for ensuring latiice properties for their
methods (commutativity, associativity, idempotence), and (b)
CRDTS only provide guarantees for individual data objects,
not for application logic in general. As an example of this
second point, consider the following:

Exawrie 1. A replicated, fault-tolerant courseware ap-
plication assigns students into study teams. It uses two set
RDTs: one for Students and another for Teams. The appli-
cation reads a version of Students and inserts the derived
element <Alice,Bob> into Teams. Concurrently, Bob is re-
moved from Students by another application replica. The
use of CRDTs ensures that all replicas will eventually agree
that Bob is absent from Students, but this is not enough
application-level state is inconsistent unless the derived val-
wues in Teams are updated consistently to reflect Bob’s re-
moval. This is outside the scope of CRDT guaranices.

Taken together, the problems with Convergent Modules
present a scope dilemma: a small module (e.g.. a set) makes
lattice properties easy to inspect and test, but provides only
simple semantic guarantees. Large CRDTS (e.g.. an eventu-
ally consistent shopping cart) provide higher-level application
‘guarantees but require the programmer to ensure lattice prop-
erties hold for a large module, resulting in software that is
difficult to test, maintain, and trust.

Monotonic Logic: In recent work, we observed that the
database theory literature on monotonic logic provides a
powerful lens for reasoning about distributed consistency.
Intuitively. a monotonic program makes forward progress
over time: it never “retracts” an earlier conclusion in the face
of new information. We proposed the CALM theorem, which
established that all monotonic programs are confluent (invari-
ant to message reordering and retry) and hence eventually
consistent [5, 18, 25]. Monotonicity of a Datalog program is
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In recent years there has been interest in achieving application-
level consistency criteria without the latency and availability
costs of strongly consistent storage infrastructure. A stan-
dard technique is to adopt a vocabulary of commutative op-
erations; this avoids the risk of inconsistency due to message
reordering. A more powerful approach was recently captured
by the CALM theorem, which proves that logically mono-
tonic programs are guaranteed to be eventually consistent.
In logic languages such as Bloom, CALM analysis can au-
tomatically verify that program modules achieve consistency
without coordination.

In this paper we present Bloom", an extension to Bloom
that takes inspiration from both these traditions. Bloom" gen-
eralizes Bloom to support lattices and extends the power of
CALM analysis to whole programs containing arbitrary lat-
tices. We show how the Bloom interpreter can be general-
ized to support efficient evaluation of lattice-based code us-
ing well-known strategies from logic programming. Finally,
we use Bloom” to develop several practical distributed pro-
grams, including a key-value store similar to Amazon Dy-
namo, and show how Bloom" encourages the safe composi-
tion of small, easy-to-analyze lattices into larger programs.

1. INTRODUCTION

As cloud computing becomes increasingly common, the
inherent difficulties of distributed systems—as)

currency, and partial failure—affect a growing segment of the
developer community. Traditionally, transactions and other
forms of strong consistency encapsulated these problems at
the data management layer. But in recent years there has
been interest in achieving application-level consistency cri-
teria without incurring the latency and availability costs of
strongly consistent storage (8, 17]. Two different frameworks
for these techniques have received significant attention in
recent research: Convergent Modules and Monotonic Logic

nchrony, con-

Convergent Modules: In this approach, a programmer writes
encapsulated modules whose public methods provide certain
guarantees regarding message reordering and retry. For exam-
ple, Statebox s an open-source library that merges conflicting
updates to data items in a key-value store: the user of the li-
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brary need only register commutative, associative, idempotent
merge functions [19]. This approach has roots in research in
databases and systems [12, 14, 17, 27, 39] as well as group-
ware [11,37]. Shapiro, et al. recently proposed a formalism
for these approaches called Conlict-Free Replicated Data
Types (CRDTS), which casts these ideas into the algebraic
framework of semilattices 34, 35].

"RDTS present two main problems: (a) the programmer
bears responsibility for ensuring latiice properties for their
methods (commutativity, associativity, idempotence), and (b)
CRDTS only provide guarantees for individual data objects,
not for application logic in general. As an example of this
second point, consider the following:

Exawrie 1. A replicated, fault-tolerant courseware ap-
plication assigns students into study teams. It uses two set
RDTs: one for Students and another for Teams. The appli-
cation reads a version of Students and inserts the derived
element <Alice,Bob> into Teams. Concurrently, Bob is re-
moved from Students by another application replica. The
use of CRDTs ensures that all replicas will eventually agree
that Bob is absent from Students, but this is not enough
application-level state is inconsistent unless the derived val-
wues in Teams are updated consistently to reflect Bob’s re-
moval. This is outside the scope of CRDT guaranices.

Taken together, the problems with Convergent Modules
present a scope dilemma: a small module (e.g.. a set) makes
lattice properties easy to inspect and test, but provides only
simple semantic guarantees. Large CRDTS (e.g.. an eventu-
ally consistent shopping cart) provide higher-level application
‘guarantees but require the programmer to ensure lattice prop-
erties hold for a large module, resulting in software that is
difficult to test, maintain, and trust.

Monotonic Logic: In recent work, we observed that the
database theory literature on monotonic logic provides a
powerful lens for reasoning about distributed consistency.
Intuitively. a monotonic program makes forward progress
over time: it never “retracts” an earlier conclusion in the face
of new information. We proposed the CALM theorem, which
established that all monotonic programs are confluent (invari-
ant to message reordering and retry) and hence eventually
consistent [5, 18, 25]. Monotonicity of a Datalog program is
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ABSTRACT

Inrecent years there has been interest in ach lication-
level consistency criteria without the latency and availability
costs of strongly consistent storage infrastructure. A stan-
dard technique is 1o adopt a vocabulary of commutative op-
erations; this avoids the risk of inconsistency due to message
reordering. A more powerful approach was recently captured
by the CALM theorem, which proves that logically mono-
tonic programs are guaranteed to be eventually consistent.
In logic languages such as Bloom, CALM analysis can au-
tomatically verify that program modules achieve consistency
without coordination.

In this paper we present Bloom", an extension to Bloom
that takes inspiration from both these traditions. Bloom gen-
eralizes Bloom to support lattices and extends the power of
CALM analysis to whole programs containing arbitrary lat-
tices. We show how the Bloom interpreter can be general-
ized to support efficient evaluation of lattice-based code us-
ing well-known strategies from logic programming. Finally,
we use Bloom" to develop several practical distributed pro-
grams, including a key-value store similar to Amazon Dy-
namo, and show how Bloom* encourages the safe composi-
tion of small, easy-to-analyze lattices into larger programs.

1. INTRODUCTION

As cloud computing becomes increasingly common, the
inherent difficulties of distributed systems—asynchrony, con-
currency. and partial failure—affect a growing segment of the
developer community. Traditionally, transactions and other
forms of strong consistency encapsulated these problems at
the data management layer. But in recent years there has
been interest in achieving application-level consistency cri-
teria without incurring the latency and availability costs of
strongly consistent storage [8, 17]. Two different frameworks
for these techniques have received significant atiention in
recent research: Convergent Modules and Monotonic Logic.
Convergent Modules: In this approach, a programmer writes
encapsulated modules whose public methods provide certain
‘guarantees regarding message reordering and retry. For exam-
ple, Statebox is an open-source library that merges conflicting
updates to data items in a key-value store: the user of the li-

brary need only register commutative, associative, idempotent
merge functions [19]. This approach has roots in research in
databases and systems [12. 14, 17. 27, 39] as
ware [11,37]. Shapiro, et al. recently proposed a formalism
for these approaches called Conflict-Free Replicated Data
Types (CRDTS), which casts these ideas into the algebraic
framework of semilattices [34, 351.

CRDTS present two main problems: (a) the programmer
bears responsibility for ensuring lattice properties for their
methods (commutativity, associativity, idempotence), and (b)
CRDTS only provide guarantees for individual data objects,
not for application logic in general. As an example of this
second point, consider the following:

Exawris 1. A replicated, fault-tolerant courseware ap-
plication assigns students into study teams. It uses two set
CRDTS: one for Students and another for Teams. The appli-
cation reads a version of Students and inserts the derived
element <Alice,Bob> into Teams. Concurrently, Bob is re-
moved from Students by another application replica. The
use of CRDTS ensures that all replicas will eventually agree
that Bob is absent from Students, but this is not enough:
application-level state is inconsistent unless the derived val-
ues in Teams are updated consistently to reflect Bob's re-
moval. This is outside the scope of CRDT guaranices.

Taken together, the problems with Convergent Modules
present a scope dilemma: a small module (e.g.. a set) makes
lattice properties easy to inspect and test, but provides only
simple semantic guarantees. Large CRDTS (e.g. an even
ally consistent shopping cart) provide higher-level application
‘guarantees but require the programmer to ensure lattice prop-
erties hold for a large module, resulting in software that is
difficult t0 test, maintain, and trust.

tu-

Monotonic Logic: In recent work, we observed that the
database theory literature on monotonic logic provides a
powerful lens for reasoning about distributed consistency.
Intitively, a monotonic program makes forward progress
over time: it never “retracts” an carlier conclusion in the face
of new information. We proposed the CALM theorem, which
established that all monotonic programs are confluent (invari-
ant o message reordering and retry) and hence eventually
consistent [, 18, 25). Monotonicity of a Datalog program is
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Abstract
D stic-by parallel models of-

fer programmers the prom dom from subtle, hard-to-
reproduce nondeterministic bugs in parallel code. A principled ap-
proach arallel with
shared state is offered by Liars: shared memry Tocations whose
semantics are defined in terms of a user-specified lattice. Writes to
an LVar take the least upper bound of the old and new values with
respect 1o the lattice, while reads from an LVar can observe only
that its contents have crossed a ed threshold in the latice.
Although it guarantees determinism, this interface is quite limited.

We extend LVars in two ways. First, we add the ability to
“freeze” and then read the contents of an LVar directly. Second,
we add the ability to attach callback functions to an LVar, allowing
events 1o be triggered by wites 10 it Together, callbacks and frecz-
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prevent them from observing the effects of scheduling, a restri
that must be enforced at the language or runtime level.

The simplest strategy is to allow 5o communication, forc-
ing concurrent tasks to produce values independently. Pure data-
prale languages follow tis strategy (22], s do languages tht
force references to be cither task-unique or immutable [5]. But
some algorithms are more l\dlllml]y or efficiently written using
state or message passing. A variety of deterministic-by-
Consruction models allow Tmied communication along these
lines, but they tend to be narrow in scope and centered around a
single data structure: for instance, FIFO queues in Kahn process
networks [13] and Streamlt [11], or shared write-only tables in
Intel Concurrent Collections [6]

Big-tentdeterminisic paralleism _ Our goulis 0 reate a broader,

ing enable an expressive and useful style of parallel
We prove that in a language where communication takes place
through freezable LVars, programs are at worst quasi-deterministic:
on every run, they either produce the same answer or raise an er-
ror. We demonstrate the viability of our approach by implementing
alibray for Haskell supporting 2 varicty of L based daa s

ol yild promising parale 3p¢=dup

1. Introduction

Nondeterminism is essential for achieving flexible parallelism: it
allows tasks to be scheduled onto cores dynamically, in response
o the vagaries of an execution. But if schedule nondeterminism s
observable within a program, it becomes much more difficult for
programmers to discover and correct bugs by testing, let alone to
reason about their programs in the first place.

‘While much work has focused on identifying methods of de-
terministic parallel programming (5, 6, 13, 16, 17, 26, guaranteed
determinism in real parallel programs remains a lofty and rarely
achieved goal. It places stringent constraints on the programming
model: concurrent tasks must communicate in restricted ways that
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fonment to increase the appeal and applicability of the method. We
seek an approach that is not tied to a particular data structure and
that supports familiar idioms from both functional and imperative
languages. Our starting point is the idea of monotonic data struc-
tures, in which (1) information can only be added. never removed.
and (2) the order in which information is added is not observable.
A paradigmatic example s a set that supports insertion but not re-
‘moval, but there are many others.

“The LVars programming model recently proposed by Kuper and
Newton makes an initial foray into programming with monotonic
data srctwves 151, ntheir model (ki we evien i Section 2,

alled LVars) are monotonic, and U
e ot o e ke on Fom o o, Weo 6 an L¥ar
must correspond (0 a join (least upper bound) in the lattice, which
‘means that they monotonically increase the information in the LVar,
and that they commute with one another. But commuting writes
are not enough to guarantee determinism: if a read can observe
‘whether or not a concurrent write has happened. then it can observe
differences in scheduling. So, in the LVar model, the answer to the
question “has a write occurred?” (i.e., is the LVar above a certain
lattice value?) is always yes: the reading thread will block until the
LVar goes over a desired threshold. In a monotonic data structure,
the absence of information is transient—another thread could add
that information at any time—but the presence of information is

model guarantees determinism, supports an unlim-
e variey of dta ircturs (anyihing viewsble s e, and
provides a familiar AP so it already achieves several of our goals.
Unfortunately. it is not as general-purpose as one might hope.
Many algorithms are presented explicily as fixpoints of mono-
tonic functions.  For example, an unordered graph traversal can
be understood in ferms of  monotoncally growing st o “secn
ighbors of seen nodes are fed back into the set until it
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ABSTRACT

In recent years there has been interest in achi licats

level cnlm\lency criteria without the latency and availability
strongly consistent storage infrastructure. A stan-
dard !cchmqnc is 10 adopt a vocabulary of commutative op-
erations; this avoids the risk of inconsistency due to message
reordering. A more powerful approach was recently captured
by the CALM theorem, which proves that logically mono-
tonic programs are guaranteed to be eventually consistent.
In logic languages such as Bloom, CALM analysis can au-
tomatically verify that program modules achieve consistency
without coordination.

In this paper we present Bloom", an extension to Bloom
that takes inspiration from both these traditions. Bloom® gen-
eralizes Bloom to support lattices and extends the power of
CALM analysis to whole programs containing arbitrary lat-
tices. We show how the Bloom interpreter can be general-
ized to support efficient evaluation of lattice-based code us-
ing well-known strategies from logic programming. Finally,
we use Bloom" to develop several practical distributed pro-
grams, including a key-value store similar to Amazon Dy-
namo, and show how Bloom* encourages the safe composi-
tion of small, easy-to-analyze lattices into larger programs.

1. INTRODUCTION

As cloud computing becomes increasingly common, the
inherent difficulties of distributed systems—asynchrony, con-
currency. and partial failure—affect a growing segment of the
developer community. Traditionally, transactions and other
forms of strong consistency encapsulated these problems at
the data management layer. But in recent years there has
been interest in achieving application-level consistency cri-
teria without incurring the latency and availability costs of
strongly consistent storage [8, 17]. Two different frameworks
for these techniques have received significant atiention in
recent research: Convergent Modules and Monotonic Logic.
Convergent Modules: In this approach, a programmer writes
encapsulated modules whose public methods provide certain
‘guarantees regarding message reordering and retry. For exam-
ple, Statebox is an open-source library that merges conflicting
updates to data items in a key-value store: the user of the li-

brary need only register commutative, associative, idempotent
merge functions [19]. This approach has roots in research i
databases and systems [12. 14, 17, 27, 39] as well as group-
ware [11,37]. Shapiro, et al. recently proposed a formalism
for these approaches called Conflict-Free Replicated Data
Types (CRDTS), which casts these ideas into the algebraic
framework of semilattices [34, 351.

CRDTS present two main problems: (a) the programmer
bears responsibility for ensuring lattice properties for their
methods (commutativity, associativity, idempotence), and (b)
CRDTS only provide guarantees for individual data objects,
not for application logic in general. As an example of this
second point, consider the following:

Exawris 1. A replicated, fault-tolerant courseware ap-
plication assigns students into study teams. It uses o set
CRDTS: one for Students and another for Teams. The appli-
cation reads a version of Students and inserts the derived
element <Alice,Bob> into Teams. Concurrently, Bob is re-
moved from Students by another application replica. The
use of CRDTS ensures that all replicas will eventually agree
that Bob is absent from Students, but this is not enough:
application-level state is inconsistent unless the derived val-
ues in Teams are updated consistently to reflect Bob's re-
moval. This is outside the scope of CRDT guarantees.

Taken together, the problems with Convergent Modules
present a scope dilemma: a small module (¢.g., a set) makes
lattice properties easy to inspect and test, but pmvldes nnly
simple semantic guarantees. Large CRDTS (e.
ally consistent shopping cart) provide higher-level apphcauon
‘guarantees but require the programmer to ensure lattice prop-
erties hold for a large module, resulting in software that is
difficult to test, maintain, and trust

ntu-

Monotonic Logic: In recent work, we observed that the
database theory literature on monotonic logic provides a
powerful lens for reasoning about distributed consistency.
Intitively, a monotonic program makes forward progres
over time: it never “retracts” an carlier conclusion in the face
of new information. We proposed the CALM theorem. whmh
established that all monotonic programs are confluent
ant o message reordering and retry) and hence ev:mual]y
consistent [3, 18, 25]. Monotonicity of a Datalog program is
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Abstract

ot c-b arallel models of-

fer programmers the promise of freedom from subtle, hard-to-
reproduce nondeterministic bugsinparallelcode. A prnciped -
proach parallel
shared state is offered by Tiars: shared memory locations »\nm
semantics are defined in terms of a user-specified lattice. Writes to
an LVar take the least upper bound of the old and new values with
respect to the lattice, while reads from an LVar can observe only
that its contents have crossed a specified threshold in the lattice.
Allhough it guarantcesdeterminis,tis incrface s guielimited
We extend LVars in two ways. First, we add the
“freese” and. then read the contents of an LVar directly. Second,
we add the ability to attach callback functions to an LVar, allowing
events 10 be triggered by writes o it. Together, callbacks and freez-
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prevent them from observing the effects of scheduling, a restriction
that must be enforced at the language or runtime level.

The simplest strategy is to allow 5o communication, forc-
ing concurrent tasks to produce values independently. Pure data-
prale languages follo this strategy (22], s do languages that
force references to be cither task-unique or immutable [5]. B
some algorithms are more naturally or efficiently written u
hared sise or message pasing. A varity of derminitic-by:
construction models allow limited communication along these
lines, but they tend to be narrow in nd centered around a
single data structure: for instance, FIFO queues in Kahn process
networks [13] and Streamlt [11], or shared write-only tables in
Intel Concurrent Collections [6]

Big-tentdeterminisic paralleism _ Our goulis 0 reate a broader,

ing enable an expressive and useful style of parallel
We prove that in a language where communication takes plact
through freezable LVars, programs are at worst quasi-deter erminitie
on every run, they either produce the same answer or raise an er-
ror. We demonstrate the viability of our approach by implementing
a library for Haskell supporting a variety of LVar-based data struc-
tures, together with two case studies that illustrate the programming
model and yield promising parallel speedup.

1. Introduction
Nondeterminism is essential for achieving flexible parallelism: it
allows tasks to be scheduled onto cores dynamically, in response
o the vagaries of an execution. But if schedule nondeterminism s
observable Wi jeram, it becomes much more difficult for
s to discover and correct hun\ m testing, let alone to
Teason sbout ther programe in he f
While much work has focused on .murqu methods of de-
terministic parallel programming (5,6, 13, . 26), guaranteed
determinism in real parallel r ns a lofty and rarely
achieved goal. It places m.nw.\ constraints on the programming
model: concurrent tasks must communicate in restricted ways that
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envi-
fonment to increase the appeal and applicability of the method. We

seck an approach that is not tied to a particular data structure and
that supports familiar idioms from both functional and imperative
languages. Our starting point is the idea of monofonic data struc-
tures, in which (1) information can only be added, never removed,
and (2) the order in which information is added is not observable.
A paradigmatic example is a set that supports insertion but not re-
moval, but there are many others.

The LVars programming model recently proposed by Kuper and
Newton makes an initial foray into programming with monotonic
data structures [15]. In their model (which we review in Section 2),
all shared data structures (called LVars) are monotonic, and the
states that an LVar can take on form a lartice. Wites to an L
must correspond to a join (least upper bound) in the lattice, which
means that they monotonically increase the information in the LVar,
and that they commute with one another. But commuting writes
are not enough to guarantee determinism: if a read can observe
‘whether or not a concurrent write has happened, then it can observe
differences in scheduling. So, in the LVar model, the answer to the
question “has a write occurred?” (i.e., is the LVar above a certain
lattice value?) is always yes: the reading thread will block until the
LVar goes over a desired threshold. In a monotonic data structure,
the absence of information is transient—another thread could add
that information at any time—but the presence of information is
forever.

‘The LVars model guarantees determinism, supports an unlim-
ited variety of data structures (anything viewable as a lattice), and
provides a familiar AP, so it already achieves several of our goals.
Unfortunately, it is not as general-purpose as one might hope.

Many algorithms are presented explicitly as fixpoints of mono-
tonic functions. For example, an unordered graph traversal can
be understood in terms of a monotonically growing set of “scen
des”; neighbors of seen nodes are fed back into the set until it
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ABSTRACT

In recent years there has been interest in achieving application-
level consistency criteria without the latency and availability
costs of strongly consistent storage infrastructure. A stan-
dard technique is 10 adopt a vocabulary of commutative op-

reordering. A more powerful approach was recently captured
by the CALM theorem, which proves that logically mono-
tonic programs are guaranteed to be eventually consistent
In logic languages such as Bloom, CALM analysis can au-

tomatically verify that program modules achieve consistency
without coordination.

In this paper we present Bloom", an extension to Bloom
that takes inspiration from both these traditions. Bloom” gen-
eralizes Bloom to support lattices and extends the power of
CALM analysis to whole programs containing arbitrary lat-
tices. We show how the Bloom interpreter can be general-
ized to support efficient evaluation of lattice-based code us-
ing well-known strategies from logic programming. Finally,
we use Bloom" 1o develop several practical distributed pro-
ncluding a key-value store similar to Amazon Dy-
namo, and show how Bloom" encourages the safe composi-
tion of small, easy-to-analyze lattices into larger programs

gram:

1. INTRODUCTION

As cloud computing becomes increasingly common, the
inherent difficulties of distributed systems—asynchron
currency. and partial failure—affect a growing segment of the
developer community. Traditionally, transactions and other
forms of strong consistency encapsulated these problems at
the data management layer. But in recent years there has
been interest in achieving application-level consistency cri-
teria without incurring the latency and availability costs of
strongly consistent storage [8, 17]. Two different frameworks
for these techniques have received significant attention in
recent research: Convergent Modules and Monotonic Logic
Convergent Modules: In this approach, a programmer writes
encapsulated modules whose public methods provide certain
arantees regarding message reordering and retry. For exam-
ple, Statebox is an open-source library that merges conflicting
updates to data items in a key-value store; the user of the li-

on-

brary need only register commutative, associative, idempotent
merge functions [19]. This approach has roots in rescarch i
databases and systems [12. 14, 17, 27, 39] as well as group-
ware [11,37]. Shapiro, et al. recently proposed a formalism
for these approaches called Conflici-Free Replicated Data
Types (CRDTS), which casts these ideas into the algebraic
framework of semilattices [34, 35]

CRDTS present two main problems: (a) the programmer
bears responsibility for ensuring lattice properties for their
methods (commutativity, associativity, idempotence), and (b)
CRDTS only provide guarantees for individual data objects,
not for application logic in general. As an example of this
second point, consider the following

Exampie 1. A replicated, fault-tolerant courseware ap-
plication assigns students into study teams. It uses two set
CRDTs: one for Students and another for Teams. The appli-
cation reads a version of Students and inserts the derived
element <Alice,Bob> into Teams. Concurrently, Bob is re-
moved from Swdents by another application replica. The
use of CRDTs ensures that all replicas will eventually agree
that Bob is absent from Students, but this is not enough
application-level state is inconsistent unless the derived val-
ues in Teams are updated consistently to reflect Bob’s re-
moval. This is outside the scope of CRDT guarantees.

Taken together, the problems with Convergent Modules
present a scope dilemma: a small module (e.g., a set) makes
lattice properties easy to inspect and test, but provides only
simple semantic guarantees. Large CRDTS (e.
ally consistent shopping cart) provide higher-level application
‘guarantees but require the programmer to ensure lattice prop-
erties hold for a large module, resulting in software that is
difficult t0 test, maintain, and trust.

ntu-

Monotonic Logic: In recent work, we observed that the
database theory literature on monotonic logic provides a
powerful lens for reasoning about distributed consistency
Intitively, a monotonic program makes forward progress
over time: it never “retracts” an earlier conclusion in the face
of new information. We proposed the CALM theorem, which
established that all monotonic programs are confluent (invari-
ant to message reordering and retry) and hence eventually
consistent [, 18, 25). Monotonicity of a Datalog program is
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Many dlgorithms e presented explcily 4 ixpaints of mono-
tonic functions. For example, an unordered graph traversal can
be understood in terms of a monotonically growing set of “seen
nodes”; neighbors of seen nodes are fed back into the set until it
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updates to data items in a key-value store; the user of the li-

consistent [, 18, 25]. Monotonicity of a Datalog program is
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Unfortunately, it is not as general-purpose as one might hope.
Many algorithms are presented explicitly as fixpoints of mono-
tonic functions. For example, an unordered graph traversal can
be understood in terms of a monotonically growing set of “scen
nodes”; neighbors of seen nodes are fed back into the set until it

ple, Statebox is an open-source library that merges conflicting
updates to data items in a key-value store; the user of the li-

ant to message reordering and retry) and hence eventually
consistent [, 18, 25]. Monotonicity of a Datalog program is
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