A %
A Lattice-Based Approach to
Deterministic Parallelism
with Shared State

Lindsey Kuper and Ryan R. Newton .
Indiana University R

University of California, Berkeley
August 16, 2012

DR

let _=put ! 3 in
let par v = get [

_=putl 4

What do we want?

What do we want?

= A deterministic program is one that always
produces the same observable result on
multiple runs.

What do we want?

= A deterministic program is one that always

produces the same observable result on
multiple runs.

= A deterministic-by-construction programming
model is one that only allows deterministic
programs to be written.

What do we want?

= A deterministic program is one that always

produces the same observable result on
multiple runs.

= A deterministic-by-construction programming
model is one that only allows deterministic
programs to be written.

= Examples: Kahn process networks, Intel Concurrent
Collections, Haskell’s monad-par, ...

let _=put ! 3 in
let par v = get [

_=putl 4

let _=put ! 3 in
let par v = get [

_=putl 4

let _=put ! 3 in
let@ar v =get | /»

/le? _ =putl 4

N v

let _=put ! 3 in
let par v = get [

_=putl 4

let _=put ! 3 in
let par v = get [

_=putl 4

Iet_:putZSin

let par v =

let _=put ! 3 in
let par v = get [

_=putl 4

let _=put ! 3 in
let par v = get [

_=putl 4

et _ = {-

let par - get l

A few single-assignment languages

A few single-assignment languages

= Historically:
= Compel (Tesler and Enea, 1968)

A few single-assignment languages

= Historically:

= Compel (Tesler and Enea, 1968)
m |d, [-Structures and IVars (Arvind et al., 1989)

A few single-assignment languages

= Historically:

= Compel (Tesler and Enea, 1968)
m |d, [-Structures and IVars (Arvind et al., 1989)

= Today:

= [ntel Concurrent Collections (Budimlic¢ et al., 2010)

s Specifically, Featherweight CnC

A few single-assignment languages

= Historically:

= Compel (Tesler and Enea, 1968)
m |d, [-Structures and IVars (Arvind et al., 1989)

= Today:

= [ntel Concurrent Collections (Budimlic¢ et al., 2010)

s Specifically, Featherweight CnC
= monad-par for Haskell (Marlow et al., 2011)

et _ = {-

let par - get l

let _=put! 3 in
let par v = get [

_=putl 3

let _=put ! 3in letpar - = put [(4, 1)
let par v = get { _=putl (L,3)

_=putl3 inletv=getlinuv

Kahn process networks (Kahn, 1974)

Kahn process networks (Kahn, 1974)

o)
1 //.)/0 3 V

hist(in(C3)): [3, O, 5, ...]

Kahn process networks (Kahn, 1974)

C

0y C
\P 5
o ()

3 out

hist(in(C3)): [3, O, 5, ...]

hist(lout(C3)): [6, 1, 120, ...]

Monotonicity

Monotonicity

fly)T

f(x)T

f(x)T
fy)T

Monotonicity

A A

f(y)7 (X7

£y)4
f(x)T ()

Xy Xy

f is monotonic iff x <y = f(x) < f(y)

> I : >

Monotonicity in KPNs

f is monotonic iff x <y == f(x) < f(y)

Monotonicity in KPNs

f is monotonic iff x <y == f(x) < f(y)

C

— C

1 1in(Cs) 3 lout(C3) >

Monotonicity in KPNs

f is monotonic iff x <y == f(x) < f(y)

C

— C

1 1in(Cs) 3 lout(C3) >

Monotonicity in KPNs

f is monotonic iff x <y == f(x) < f(y)

C

— C

1 1in(Cs) 3 lout(C3) >

Monotonicity in KPNs

f is monotonic iff x <y == f(x) < f(y)

C

— C

1 1in(Cs) 3 lout(C3) >

Monotonicity in KPNs

f is monotonic iff x <y == f(x) < f(y)

C

— C

1 1in(Cs) 3 lout(C3) >

Monotonicity in KPNs

f is monotonic iff x <y == f(x) < f(y)

1 6
—

1 in(C3) 3 lout(C3) >

Monotonicity in KPNs

f is monotonic iff x <y == f(x) < f(y)

120 1 6
— C, — C

1 in(C3) 3 lout(C3) >

Monotonicity in KPNs

f is monotonic iff x <y = f(x) < f(y)

120 1 6
C —_— —_—
1 |in(Cs) 3 lout(C3) >

For KPNs, the <relation is just prefix-of:

[3] prefix-of [3, 0] ==[6] prefix-of [6, 1]
[3, O] prefix-of [3, 0, 5] ==1[6, 1] prefix-of [6, 1, 120]

Monotonicity causes deterministic parallelism!

let _ = put ll 4 1n
let _ = put o 3 in

letpar _ =put {4 3

_ = put [3 O
in get [4

let _ = put ll 4 1n
let _ = put o 3 in

letpar _ =put {4 3

_ = put [3 O
in get [4

let _ = put ll 4 1n
let _ = put o 3 in

letpar _ =put {4 3

_ = put [3 O
in get [4

let _ = put ll 4 1n
let _ = put o 3 in

letpar _ =put {4 3

_ = put [3 O
in get [4

let _ = put ll 4 1n
let _ = put o 3 in

letpar _ =put {4 3

_ = put [3 O
in get [4

let _ = put ll 4 1n
let _ = put o 3 in

letpar _ =put {4 3

_ = put [3 O
in get [4

Generalizing our notion of monotonicity

For stores, the < relation is C:

1h—4, b=3} € {h—4, b—3, b—=5} =
{h—4, b—3, L—3} ¢ {L—4, b—3, —5, 1—3}

= Given stores S and S, we say that § < 57 iff:
= dom(S) € dom(S5’), and
s for all locations / in dom(S), S(/) = S(/)

Generalizing our notion of monotonicity

For stores, the < relation is C:

1h—4, b=3} € {h—4, b—3, b—=5} =
{h—4, b—3, L—3} ¢ {L—4, b—3, —5, 1—3}

= Given stores S and S, we say that § < 57 iff:
= dom(S) € dom(S5’), and
s for all locations / in dom(S), S(h&) S ()

let _=put! 3 in
let par v =get [4

_=putl 4

let _=put! 3 in

let par v = get [4

let _=put ! 3 in let _=put/ 3 in

et par v = get [(4) let par v = get [4

_=putl 4 _=putl 4
_=putl s

let _=put ! 3 in let _=put/ 3 in

et par v = get [(4) et parv—getl4

_=putl 4

let _=put ! 3 in let _=put/ 3 in

et par v = get [(4) let par v = get [4

_=putl 4 _=putl 4
_=putl s

let _=put ! 3 in let _=putl3in / 4

let par v = get [(4) let par v o

_:pUtl4 _ = put 4
_=putlbd

Monotonically increasing writes
+ restricted reads
= deterministic-by-construction parallelism

(O,

X

(L,

Pair of IVars

=\

Pair of IVars

=\

Pair of IVars

AN

(0,0) (0,1) .. (1,0) (1,1)

"tripwire”

Pair of IVars

AN

let p = new In (O, 0) 0,1) .. (1,0) (1,1)

let _.=putp {(L,4)}in
let par v; = getFst p

_ =putp {(374)}

"tripwire"

Pair of IVars

More in our paper draft and TR

More in our paper draft and TR

= Complete syntax and semantics

More in our paper draft and TR

= Complete syntax and semantics
= Proof of determinism

= A “frame-rule-like” property
= Location renaming is surprisingly tricky!

More in our paper draft and TR

= Complete syntax and semantics
= Proof of determinism

= A “frame-rule-like” property
= Location renaming is surprisingly tricky!

= Subsuming existing models

= KPNs, CnC, monad-par

More in our paper draft and TR

= Complete syntax and semantics
= Proof of determinism

= A “frame-rule-like” property
= Location renaming is surprisingly tricky!

= Subsuming existing models

= KPNs, CnC, monad-par
= Support for controlled nondeterminism

= “probation” state

Thanks!

Email:
lkuper@cs.indiana.edu
Twitter: @lindsey

Web: cs.indiana.edu/~lkuper
Research group:
lambda.cs.indiana.edu

