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What do we want?

= A deterministic program is one that always

produces the same observable result on
multiple runs.

= A deterministic-by-construction programming
model is one that only allows deterministic
programs to be written.

= Examples: Kahn process networks, Intel Concurrent
Collections, Haskell’s monad-par, ...



let _=put ! 3 in
let par v = get [

_=putl 4




let _=put ! 3 in
let par v = get [

_=putl 4




let _=put ! 3 in
let@ar v =get | /»

/le? _ =putl 4

N v




let _=put ! 3 in
let par v = get [

_=putl 4




let _=put ! 3 in
let par v = get [

_=putl 4




Iet_:putZSin

let par v =




let _=put ! 3 in
let par v = get [

_=putl 4




let _=put ! 3 in
let par v = get [

_=putl 4




et _ = {- 

let par - get l




A few single-assignment languages



A few single-assignment languages

= Historically:
= Compel (Tesler and Enea, 1968)



A few single-assignment languages

= Historically:

= Compel (Tesler and Enea, 1968)
m |d, [-Structures and IVars (Arvind et al., 1989)




A few single-assignment languages

= Historically:

= Compel (Tesler and Enea, 1968)
m |d, [-Structures and IVars (Arvind et al., 1989)

= Today:

= [ntel Concurrent Collections (Budimlic¢ et al., 2010)

s Specifically, Featherweight CnC



A few single-assignment languages

= Historically:

= Compel (Tesler and Enea, 1968)
m |d, [-Structures and IVars (Arvind et al., 1989)

= Today:

= [ntel Concurrent Collections (Budimlic¢ et al., 2010)

s Specifically, Featherweight CnC
= monad-par for Haskell (Marlow et al., 2011)
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hist(in(C3)): [3, O, 5, ...]

hist(lout(C3)): [6, 1, 120, ...]
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Monotonicity in KPNs

f is monotonic iff x <y = f(x) < f(y)

120 1 6
C —_— —_—
1 |in(Cs) 3 lout(C3) >

For KPNs, the <relation is just prefix-of:

[3] prefix-of [3, 0] ==[6] prefix-of [6, 1]
[3, O] prefix-of [3, 0, 5] ==1[6, 1] prefix-of [6, 1, 120]



Monotonicity causes deterministic parallelism!
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Monotonically increasing writes
+ restricted reads
= deterministic-by-construction parallelism
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let p = new In (O, 0) 0,1) .. (1,0) (1,1)

let _.=putp {(L,4)}in
let par v; = getFst p

_ =putp {(374)}

"tripwire"

Pair of IVars
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More in our paper draft and TR

= Complete syntax and semantics
= Proof of determinism

= A “frame-rule-like” property
= Location renaming is surprisingly tricky!

= Subsuming existing models

= KPNs, CnC, monad-par
= Support for controlled nondeterminism

= “probation” state
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