Vars:

_attice-based Data Structures
for Deterministic Parallel
and Distributed Programming

Lindsey Kuper
Indiana University

Intel Labs - Santa Clara, CA
March 21,2014

controlles

including
Display;

DMl and

Misa 1/0

e

.| ;A||||I|.|"_!'-

Toad o ool bt 000
: o Memory Controller 1/0 wemarmas

Parallel systems Distributed systems

including
Display;
DMl and
Misa 1/0

—

o 1.‘.1.)‘|"L| f 8 l ' s R eN BN
— o Memory Controller 1/0 uemarmes

Deterministic Parallel Programming

including
Display;
DMl and
Misa 1/0

—

o 1.‘.1.)‘|"L| f 8 l ' s R eN BN
— o Memory Controller 1/0 uemarmes

(observably)
Deterministic Parallel Programming

data Item = Book | Shoes | ...

data Item = Book | Shoes | ...

p :: IO (Map Item Int)

data Item = Book | Shoes | ...

p :: IO (Map Item Int)
p = do cart <- newIORef empty

data Item = Book | Shoes | ..

:: IO (Map Item Int)
do cart <- newIORef empty

P
P

Introduction to
Lattices and Order

Sefond Edition

,,,,,,

data Item = Book | Shoes | ...
p :: IO (Map Item Int)
p = do cart <- newIORef empty

T — TTT—— <
e

v ! v'VW'
OO
’,/,.”"?0” 4 ¢
EOUOOOOGRES Y
RVUOOOS e
OO0
OO
| t"ﬁ’."’"‘(/’ 4 ///’

-
, .~/
[/

data Item = Book | Shoes | ...

p :: IO (Map Item Int)

p = do cart <- newIORef empty

async (atomicModifyIORef cart
(\m -> (insert Book 1 m, ())))
T — T —— -
I
PR
,:,:,:0:‘:,:,. L0
WOOOOTEFS

AAGQCS T

o—

data Item = Book | Shoes | ...
p :: IO (Map Item Int)
p = do cart <- newIORef empty

async (atomicModifyIORef cart
(\m -> (insert Book 1 m, ())))

A\ A AN

LT COXOXXY
OO
DOOOOONS
OO0

(& ¢ /
""»’0‘6‘6’0 ARARS

¥ 4
|
{ |

data Item = Book | Shoes | ...
p :: IO (Map Item Int)
p = do cart <- newIORef empty
async (atomicModifyIORef cart
(\m -> (insert Book 1 m, ())))
e
RN
ﬁj“&% SO0
OO T
go‘«.o OO

;‘_ :) _:

data Item = Book | Shoes | ...

p :: IO (Map Item Int)
p = do cart <- newIORef empty
async (atomicModifyIORef cart
(\m -> (insert Book 1 m, ())))
async (atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ())))

,f,fzk‘@f~“¢' i

WX

OO
DOOOOO S T:
OO0
OO0
>A0"0 ‘0‘ Qée‘f,‘o‘./ 6/

o O

data Item = Book | Shoes | ...

p :: IO (Map Item Int)
p = do cart <- newIORef empty
async (atomicModifyIORef cart
(\m -> (insert Book 1 m, ())))
async (atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ())))
res <- async (readIORef cart)

T — *‘
HEDN

HOORNK
s
OO
$000 44
X X000 4
9‘9’00‘,6 4°4 ¢ ¢
’A’.,Q.‘\.Qéﬁ".’,‘, &L/

O O

data Item = Book | Shoes | ...

p :: IO (Map Item Int)
p = do cart <- newIORef empty
async (atomicModifyIORef cart
(\m -> (insert Book 1 m, ())))
async (atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ())))
res <- async (readIORef cart)
walit res

T — T————

SOOO0NX
VOOOO0
).Q ‘Qé" 0“06*“6 AA
OO0

O O

e MO Terminal — bash — 90x27

| bash |

landin:lvar-examples lkuper$ make map-ioref-data-race

ghc -02 map-ioref-data-race.hs -rtsopts -threaded

[1 of 1] Compiling Main (map-ioref-data-race.hs, map-ioref-data-race.o)
Linking map-ioref-data-race ...

while true; do ./map-ioref-data-race +RTS -N2; done
[(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Shoes,1)][(Book,1
), (Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1
)1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1
), (Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1
)1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1
), (Shoes,1)][(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Shoes
,1)]1[(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe
s,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Boo
k,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe
s,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Sho
es,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Bo
ok,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Shoes,1)][(B
ook,1),(Shoes,1)][(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(
Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][
(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]
[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),
(Shoes,1)][(Book,1),(Shoes,1)][(Book,1)]1[(Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)
1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1)][(Book,1),(Shoes,1)
1[(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes
,1)1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book |§
,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Boo E
k,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe §

e MO Terminal — bash — 90x27

| bash |

landin:lvar-examples lkuper$ make map-ioref-data-race .
ghc -02 map-ioref-data-race.hs -rtsopts -threaded
[1 of 1] Compiling Main (map-ioref-data-race.hs, map-ioref-data-race.o)
L1nk1ng map-1oref -data-race ...
man_ioref-data-race +RTS -N2; done
(Book 1), (Shoes 1)]1R(Shoes,1)][(Book,1), (Shoes 1)]1[(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1
500K, 1), (Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1

)][(Book 1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1
), (Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1
)1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1
), (Shoes,1)][(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Shoes
,1)]1[(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe
s,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Boo
k,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe
s,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Sho
es,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Bo
ok,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Shoes,1)][(B
ook,1),(Shoes,1)][(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(
Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][
(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]
[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),
(Shoes,1)][(Book,1),(Shoes,1)][(Book,1)]1[(Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)
1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1)][(Book,1),(Shoes,1)
1[(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes
,1)1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book [§
,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Boo E
k,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe §

oM O Terminal — bash — 90x27

| bash |
landin:lvar-examples lkuper$ make map-ioref-data-race .
ghc -02 map-ioref-data-race.hs -rtsopts -threaded
[1 of 1] Compiling Main (map-ioref-data-race.hs, map-ioref-data-race.o)
L1nk1ng map-1oref -data-race ...
an-ioraf_data-race +RTS -N2; done

[(Book 1), (Shoes 1) l(Shoes 1)] (Book,1), (Shoes 1) [(Shoes,1)]l (Book,1),(Shoes,1)]1[(Book,1

. SOUK , L, onves, 1) | [(Book,1),(Shoes, 1, (buuK, L), Shoes,1)][(Book,1),(Shoes,1
)][(Book 1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1
), (Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1
)1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1
), (Shoes,1)][(Shoes,1)][CRaok 11 (Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Shoes
,1)]1[(Book,1),(Shoes,1) [(Shoes,1)] (Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe
s,1)]1[(Book,1),(Shoes,1)]\ buuK, L), Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Boo
k,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe
s,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Sho
es,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Bo
ok,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Shoes,1)][(B
ook,1),(Shoes,1)][(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(
Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][
(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]
[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),
(Shoes,1)][(Book,1),(Shoes,1)][(Book,1)]1[(Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)
ALCRaok 17 (Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1)][(Book,1),(Shoes,1)
" [(Shoes,1)] (Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes
»LJJL\DUUK, 1/, (Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1) CShoas ANIT(Book [i§
,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1) [(Shoes,1)] (Boo E
k,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1) \ booUR, L), Shoe ¥

oM O Terminal — bash — 90x27

| bash |
landin:lvar-examples lkuper$ make map-ioref-data-race .
ghc -02 map-ioref-data-race.hs -rtsopts -threaded
[1 of 1] Compiling Main (map-ioref-data-race.hs, map-ioref-data-race.o)
L1nk1ng map-1oref -data-race ...
an-ioraf_data-race +RTS -N2; done

[(Book 1), (Shoes 1) l(Shoes 1)] (Book,1), (Shoes 1) [(Shoes,1)]l (Book,1),(Shoes,1)]1[(Book,1

. SOUK , L, onves, 1) | [(Book,1),(Shoes, 1, (buuK, L), Shoes,1)][(Book,1),(Shoes,1
)][(Book 1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1
), (Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1
)1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1
), (Shoes,1)][(Shoes,1)][CRaok 11 (Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Shoes
,1)]1[(Book,1),(Shoes,1) [(Shoes,1)] (Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe
s,1)]1[(Book,1),(Shoes,1)]\ buuK, L), Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Boo
k,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoe
s,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Book,1),(Sho
es,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Bo
ok,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Shoes,1)][(B
ook,1),(Shoes,1)][(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(
Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][
(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)]
[(Book,1),(Shoes,1)]1[(Book,1) LShae (Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),
(Shoes,1)][(Book,1),(Shoes,1)§[(Book,1)]R8 (Book,1),(Shoes,1)]LLShas (Book,1),(Shoes,1)
ALCRaok 17 (Shoes,1)][(Book,1),Csrnoes,)] [(Book,1),(Shoes,1)R[(Book,1)]8(Book,1),(Shoes,1)
" [(Shoes,1)] (Shoes,1)][(Book,1),(Shoes,1)][(Shoes,1)][(Book;L), oes, 1)]1[(Book,1),(Shoes
»LJJL\DUUK, 1/, (Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1) CShoas ANIT(Book [i§
,1),(Shoes,1)]1[(Book,1),(Shoes,1)]1[(Book,1),(Shoes,1)][(Book,1),(Shoes,1) [(Shoes,1)] (Boo E
k,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1)][(Book,1),(Shoes,1) \ booUR, L), Shoe ¥

data Item = Book | Shoes | ...

p :: IO (Map Item Int)
p = do cart <- newIORef empty
async (atomicModifyIORef cart
(\m -> (insert Book 1 m, ())))
async (atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ())))
res <- async (readIORef cart)
wait res

T — T————

\/
OO
.’.@.\'00.0’0{
DOOOO0
OOOOOIEN%
XOOOOOOOTS

O O

data Item = Book | Shoes | ...

p :: IO (Map Item Int)
p = do cart <- newIORef empty
async (atomicModifyIORef cart
(\m -> (insert Book 1 m, ())))
async (atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ())))
res <- async (readIORef cart)
wait res

‘l A/
SOOOODN

OGN |
OO IA
XOOOCOOOCTS

A0 5A0H

O O

data Item = Book | Shoes | ...

p :: IO (Map Item Int)
p = do cart <- newIORef empty
al <- async (atomicModifyIORef cart
(\m -> (insert Book 1 m, ())))
async (atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ())))
res <- async (readIORef cart)
wait res

‘l \/
OO

AOOAAS v
OO
OOV

O O

data Item = Book | Shoes | ...

p :: IO (Map Item Int)
p = do cart <- newIORef empty
al <- async (atomicModifyIORef cart
(\m -> (insert Book 1 m, ())))
a2 <- async (atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ())))
res <- async (readIORef cart)
wait res

| Ill

y YY.T.r vy
RO
-ﬁ"’ A
T — $OO000N
OO000C |
ooeatele
OO0

O O

data Item = Book | Shoes | ...

p :: IO (Map Item Int)
p = do cart <- newIORef empty
al <- async (atomicModifyIORef cart
(\m -> (insert Book 1 m, ())))
a2 <- async (atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ())))
res <- async (do waitBoth al a2

wait res readIORef cart)
i!‘!.ﬂ
— *€ /e ‘f““_‘ “‘v’q
f‘&&?}}ﬁ
AAOOX

OOOOOOTN4
OOOCOOOCTS

O O

data Item = Book | Shoes | ...

p :: IO (Map Item Int)
p = do cart <- newIORef empty
al <- async (atomicModifyIORef cart
(\m -> (insert Book 1 m, ())))
a2 <- async (atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ())))
res <- async (do waitBoth al a2
readIORef cart)

walt res
i A/
SO0
"‘vv§§}§
OO

OOOOOOTN4
OOOCOOOCTS

O O

p :: IO (Map Item Int)
p = do
cart <- newIORef empty
al <- async (atomicModifyIORef cart
(\m -> (insert Book 1 m, ())))
a2 <- async (atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ())))
res <- async (do waitBoth al a2
readIORef cart)
walt res

main = do v <- p
print v

T — -

deterministic

= do

cart <- newIORef empty

al <- async (atomicModifyIORef cart
(\m -> (insert Book 1 m, ())))

a2 <- async (atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ())))

res <- async (do waitBoth al a2

readIORef cart)

p :: IO (Map Item Int)
p

walit res

main = do v <- p
print v

T — -

deterministic...now

= do

cart <- newIORef empty

al <- async (atomicModifyIORef cart
(\m -> (insert Book 1 m, ())))

a2 <- async (atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ())))

res <- async (do waitBoth al a2

readIORef cart)

p :: IO (Map Item Int)
p

walit res

main = do v <- p
print v

T — -

deterministic..now..we hope

P IO (Map Item Int) P Par Det (IMap Item Int)
p = do p = do
cart <- newIORef empty cart <- newEmptyMap
al <- async (atomicModifyIORef cart fork (insert Book 1 cart)
(\m -> (insert Book 1 m, ()))) fork (insert Shoes 1 cart)
a2 <- async (atomicModifyIORef cart return cart
(\m -> (insert Shoes 1 m, ())))
res <- async (do waitBoth al a2 main = print (runParThenFreeze p)
readIORef cart) |
wait res T — T —

deterministic by construction

main = do v <- p [FHPC '13,POPL '14]

print v

T — ———————TTT

deterministic..now..we hope

The deterministic by construction parallel programming landscape:

The deterministic by construction parallel programming landscape:

The deterministic by construction parallel programming landscape:

V
0 9

imperative disjoint -calculus

The deterministic by construction parallel programming landscape:

V
0 9

imperative disjoint -calculus

The deterministic by construction parallel programming landscape:

V
0 Y

_ A TN -calculus oA -,
imperative disjoint (& array langs, .) Ly

The deterministic by construction parallel programming landscape:

© O o
V
;JI-* ;:U.'g'!u 9 @

_ A TN -calculus oA -,
imperative disjoint (& array langs, .) Ly

The deterministic by construction parallel programming landscape:

(o) ®
Q v

_ A TN -calculus oA -,
imperative disjoint (& array langs, .) Ly

The deterministic by construction parallel programming landscape:

(©mo () 0
Y
S V,:u.g'sw_, 0 @

_ A TN -calculus oA -,
imperative disjoint (& array langs, .) Ly

The deterministic by construction parallel programming landscape:

(Oma (H) ®
Y
‘JI-* ;:u.'g'su 9 : @

_ A TN -calculus oA -,
imperative disjoint (& array langs, .) Ly

The deterministic by construction parallel programming landscape:

(Oma (H) ®
Y
‘JI-* ;:u.'g'su 9 : @

imperative disjoint -calculus

/\ (& array langs, ...) v h /

g(left) (rght)
EEEEEEEEEEEEEE

The deterministic by construction parallel programming landscape:

(Oma (H) ®
Y
‘JI-* ;:u.'g'su 9 : @

imperative disjoint -calculus

/\ (& array langs, ...) v h /

g(left) (rght)
HEEEEREEEEEEEN

The deterministic by construction parallel programming landscape:

©ns ® .

imperative disjoint A-calculus

/\ (& array langs, ...) K h

g(left) (rght)
HEEEREREREENENES

The deterministic by construction parallel programming landscape:

©ns ® .

imperative disjoint A-calculus

/NDPJ’) (& array langs, ...) hy

g(left) (rght)
HEEEREREREENENES

The deterministic by construction parallel programming landscape:

(©mo () ®

imperative disjoint A-calculus

/NDPJ,) (& array langs, ...) Y

g(left) (rght)
EEEEEERENENNES

Can we generalize and unify these points on the map!?

The deterministic by construction parallel programming landscape:

©ns ® .

imperative disjoint A-calculus

/NDPJ,) (& array langs, ...) hy

g(left) (rght)
HEEEREREREENENES

Can we generalize and unify these points on the map? Yes!

data Item = Book | Shoes | ...

p :: IO (Map Item Int)
p = do cart <- newIORef empty
async (atomicModifyIORef cart
(\m -> (insert Book 1 m, ())))
async (atomicModifyIORef cart
(\m -> (insert Shoes 1 m, ())))
res <- async (readIORef cart)
walit res
T — ——— -

A/
DN
.’.@.\'00.0’0{
L0000
OO0 ¢
'066&- \0’0 8,050
ATA o‘a a‘?a"‘r ¢

O O

data Item = Book | Shoes | ...
p :: IO (Map Item Int)
p = do cart <- newIQRef empty ‘
async,atomicModifyIORef cart’
(\m" (insert Book 1 m, (
async A“om1CMo-1‘yIORefgcart‘
(\m >>_(insert Shoes 1 m, (
res <- async (readIORef cart)
walit res
T — —— <
A
e
AAAFOOO 00 &/

o ¥ X X Y Y

o O

data Item = Book | Shoes | ...

p :: IO (Map Item Int)
p = do cart <- newIQRef empty :
AatomicModifyIORef cart

| (insert Book 1 m,

A/om1CM0o1*yIORefgcart
(insert Shoes 1 m, (

res <- async (readIORef cart)

walit res

T — B ——

[Vars: single writes, blocking (but exact) reads
[Arvind et dl., 1989]

-

vvvvv

&A4’1

”;”,0 AR XX

o
WAOOOG 6

AAAAXK ‘0‘5 g '

O O

data Item = Book | Shoes | ...

p :: IO (Map Item Int)

p = do cart <- newlIQRef empty :
(atomicModifyIORef cart

| (insert Book 1 m, ()

async rtomicModifyTORef cart
(\m =>—(insert Shoes 1 m, (
res <- async (readIORef cart)
walit res
Vars: smgle writes, blocking (but exact) reads T
[Arvind et al,, 1989] ’.’.“.’.’.’4
SO,
WAOOVO0 0 4
IOOOCK 6‘6.0‘6 &)

o O

data Item = Book | Shoes | ...

p :: IO (Map Item Int)
p = do cart <- newIQRef empty :
AatomicModifyIORef cart

| (insert Book 1 m,

A“om1CMo-1*yIORefgcart

(insert Shoes 1 m, (
res <- async (readIORef cart)
walit res

T — T ———_—_— "

[Vars: single writes, blocking (but exact) reads
[Arvind et dl., 1989]

[Vars: multiple least-upper-bound writes,

blocking threshold reads
[FHPC '13]

VVVVV

&54’1

fgoo¢ooo

o
WAOOVO0 6

0).&.9 6‘9 ‘o‘a g ;

o—0

data Item = Book | Shoes | ...

p :: IO (Map Item Int)

p = do cart <- newIQRef empty :
AatomicModifyIORef cart

| (insert Book 1 m, ()

async rtomicModifyIORef cart
(\m =>—(insert Shoes 1 m, (
res <- async (readIORef cart)
walt res
Vars: smgle writes, blocking (but exact) reads R
[Arvind et al., 1989] iy ’.’,‘x’.’,ﬂ
| AABANY s
[Vars: multiple least-upper-bound writes, e
blocking threshold reads :
[FHPC 'I3] O O

* actually a bounded join-semilattice

Raises an error;since 3 u4 =T

num 1o
! fork (put num 3)
// \\\ fork (put num 4)

0123 4 ..

\\ // Works fine,since 4 u 4 =4

- do
— — fork (put num 4)
fork (put num 4)

w -

10

data Item = Book | Shoes | ...

p = do
cart <- newEmptyMap
fork (insert Shoes 1 cart)
fork (insert Book 2 cart)
getKey Book cart -- returns 2

— T —

data Item = Book | Shoes | ...

p = do
cart <- newEmptyMap
fork (insert Shoes 1 cart)
fork (insert Book 2 cart)
getKey Book cart -- returns 2

— T —

data Item = Book | Shoes | ...

p = do
cart <- newEmptyMap
fork (insert Shoes 1 cart)
fork (insert Book 2 cart)
getKey Book cart -- returns 2

— T —

data Item = Book | Shoes | ...

p = do
cart <- newEmptyMap
fork (insert Shoes 1 cart)
fork (insert Book 2 cart)
getKey Book cart -- returns 2

— T —

<);7 data Item = Book | Shoes | ...
p = do
cart <- newEmptyMap
fork (insert Shoes 1 cart)
fork (insert Book 2 cart)
getKey Book cart -- returns 2

— T ——

data Item = Book | Shoes | ...

p = do
cart <- newEmptyMap
fork (insert Shoes 1 cart)
fork (insert Book 2 cart)
getKey Book cart -- returns 2

— T ——

data Item = Book | Shoes | ...

p = do
cart <- newEmptyMap
fork (insert Shoes 1 cart)
fork (insert Book 2 cart)
getKey Book cart -- returns 2

— T —

data Item = Book | Shoes | ...

p = do
cart <- newEmptyMap
fork (insert Shoes 1 cart)
fork (insert Book 2 cart)
getKey Book cart -- returns 2

— T ——

data Item = Book | Shoes | ...

{(Book,l),(Book,Z),.”}- p = do

cart <- newEmptyMap

fork (insert Shoes 1 cart)
fork (insert Book 2 cart)
getKey Book cart -- returns 2

— T ——

=3

getKey-Book

T — data Item = Book | Shoes | ...

{(Book,l),(Book,Z),.”}- p = do

cart <- newEmptyMap

fork (insert Shoes 1 cart)
fork (insert Book 2 cart)
getKey Book cart -- returns 2

— T —

data Item = Book | Shoes |

{(Book,l),(Book,Z),.”}- p = do
P emmeeemmeeme . . cart <- newEmptyMap
Thethresholdsetmust be fork (insert Shoes 1 cart)
. : : fork (insert Book 2 cart)
pa/rvwse mcompat/b/e getKey Book cart -- returns 2

I — T—

R — data Item = Book | Shoes |
{(Book,l)7 (Book, 2), } p = do
P emmeeemmeeme . . cart <- newEmptyMap
Thethreghddgetmugt be fork (insert Shoes 1 cart)
. : : fork (insert Book 2 cart)
p(JlI’WISG mcompat/b/e getKey Book cart -- returns 2
\ T — —

proof obligation

T ——— data Item = Book | Shoes |
{(Book,l)7 (Book,2), } p = do
P emmeeemmeeme . . cart <- newEmptyMap
Theithreshold set:must be fork (insert Shoes 1 cart)
N T y fork (insert Book 2 cart)
p(JlI’WISG mcompat/b/e getKey Book cart -- returns 2
\ /

proof obligation client guarantee

seen nodes

12

seen nodes

12

seen nodes

@

12

seen nodes

@

12

; @OO6
- 00O
HOCIC

; @OO6
- 00O
HOCIC

already seen

seen nodes

OIOIOIO,
OO
OIOC)

|3

already seen

already seen

seen nodes

OIOIOIO,
OO
OIOC)

|3

already seen

already seen

already seen

already seen

seen nodes

OIOIOIO,
OO
OIOC)

|3

already seen

already seen

already seen

already seen

seen nodes

OIOIOIO,
OO
OIOC)

|3

already seen

already seen

already seen

already seen

seen nodes

OIOIOIO,
OO
OIOC)

|3

Events are updates that change an LVar's state

already seen

already seen

already seen

already seen

seen nodes

OIOIOIO,
OO
OIOC)

|3

Events are updates that change an LVar's state

Event handlers listen for events and launch callbacks in response

already seen

already seen

already seen

already seen

seen nodes

OIOIOIO,
OO
OIOC)

|3

Events are updates that change an LVar's state

Event handlers listen for events and launch callbacks in response

traverse g startNode = do

already seen

already seen

|3

Events are updates that change an LVar's state

Event handlers listen for events and launch callbacks in response

traverse g startNode = do
seen <- newkEmptySet

already seen

already seen

|3

Events are updates that change an LVar's state

Event handlers listen for events and launch callbacks in response

traverse g startNode = do
seen <- newkEmptySet
h <- newHandler seen
(\node -> do
mapM (\v -> insert v seen)
(neighbors g node)
return ())

— T

already seen

already seen

|3

Events are updates that change an LVar's state

Event handlers listen for events and launch callbacks in response

2

traverse g startNode = do
seen <- newkEmptySet
h <- newHandler seen
(\node -> do
mapM (\v -> insert v seen)
(neighbors g node)

return ())

insert startNode seen

— T

already seen

already seen

Events are updates that change an LVar's state

Event handlers listen for events and launch callbacks in response

quiesce blocks until all callbacks launched by a given handler are done running

2

traverse g startNode = do
seen <- newkEmptySet
h <- newHandler seen
(\node -> do
mapM (\v -> insert v seen)
(neighbors g node)

return ())

insert startNode seen

— T

already seen

already seen

|3

Events are updates that change an LVar's state

Event handlers listen for events and launch callbacks in response

quiesce blocks until all callbacks launched by a given handler are done running

2

traverse g startNode = do
seen <- newkEmptySet
h <- newHandler seen
(\node -> do
mapM (\v -> insert v seen)
(neighbors g node)
return ())
insert startNode seen
quiesce h

— T

already seen

already seen

|3

Events are updates that change an LVar's state

Event handlers listen for events and launch callbacks in response

quiesce blocks until all callbacks launched by a given handler are done running

2

traverse g startNode = do
seen <- newkEmptySet
h <- newHandler seen
(\node -> do
mapM (\v -> insert v seen)
(neighbors g node)
return ())
insert startNode seen
quiesce h

I T

already seen

already seen

|3

freeze: exact non-blocking read

traverse g startNode = do
seen <- newkEmptySet
h <- newHandler seen
(\node -> do
mapM (\v -> insert v seen)
(neighbors g node)
return ())
insert startNode seen
quiesce h

T — |

| 4

freeze: exact non-blocking read

Attempts to write to a frozen LVar raise a write-after-freeze exception

traverse g startNode = do
seen <- newkEmptySet
h <- newHandler seen
(\node -> do
mapM (\v -> insert v seen)
(neighbors g node)
return ())
insert startNode seen
quiesce h

T — B

| 4

freeze: exact non-blocking read

Attempts to write to a frozen LVar raise a write-after-freeze exception

traverse g startNode = do
seen <- newkEmptySet
h <- newHandler seen
(\node -> do
mapM (\v -> insert v seen)
(neighbors g node)
return ())
insert startNode seen
quiesce h
freeze seen

T — e ——

| 4

freeze: exact non-blocking read

Attempts to write to a frozen LVar raise a write-after-freeze exception
Two possible outcomes: erther the same final value or an exception

traverse g startNode = do
seen <- newkEmptySet
h <- newHandler seen
(\node -> do
mapM (\v -> insert v seen)
(neighbors g node)
return ())
insert startNode seen
quiesce h
freeze seen

T — B ——

| 4

freeze: exact non-blocking read

Attempts to write to a frozen LVar raise a write-after-freeze exception
Two possible outcomes: erther the same final value or an exception

Theorem 1 (Quasi-Determinism). If o0 —* ¢’ and 0 —* o, ‘o
and neither o' nor o'’ can take a step, then either:

] / !/ . .
. o' = o up to a permutation on locations w, or
2. o' = error or o’/ = error.

[POPL’14] :nsert v seen)
w—'—'——'- — ‘—w node)

return ())
insert startNode seen
quiesce h
freeze seen

T — |

| 4

freeze: exact non-blocking read

Attempts to write to a frozen LVar raise a write-after-freeze exception
Two possible outcomes: erther the same final value or an exception

Theorem 1 (Quasi-Determinism). If o0 —* ¢’ and 0 —* o, ‘o
and neither o' nor o'’ can take a step, then either:

] / !/ . .
. o' = o up to a permutation on locations w, or
2. o' = error or o’/ = error.

[POPL’14] :nsert v seen)
w—'—'——'- — ‘—w node)

return ())
[(Book,1),(Shoes,1)] insert startNode seen

[(Book,1)] quliesce h
freeze seen

[(Shoes,1)] L — ———

| 4

freeze: exact non-blocking read

Attempts to write to a frozen LVar raise a write-after-freeze exception
Two possible outcomes: erther the same final value or an exception

Theorem 1 (Quasi-Determinism). If o0 —* ¢’ and 0 —* o, ‘o
and neither o' nor o'’ can take a step, then either:

] / !/ . .
. o' = o up to a permutation on locations w, or
2. o' = error or o’/ = error.

[POPL’14] :nsert v seen)
w—'—'——'- — ‘—w node)

return ())
[(Book,1),(Shoes,1)] insert startNode seen

mum quiesce h
freeze seen

[(Shoes,1)] L — ———

| 4

freeze: exact non-blocking read

Attempts to write to a frozen LVar raise a write-after-freeze exception
Two possible outcomes: erther the same final value or an exception

Theorem 1 (Quasi-Determinism). If o0 —* ¢’ and 0 —* o, ‘o
and neither o' nor o'’ can take a step, then either:

] / !/ . .
. o' = o up to a permutation on locations w, or
2. o' = error or o’/ = error.

[POPL’14] :nsert v seen)
DR —— -—-—N node)

return ())
[(Book,1),(Shoes,1)] insert startNode seen

mum quiesce h

freeze seen

T — B

| 4

freeze: exact non-blocking read

Attempts to write to a frozen LVar raise a write-after-freeze exception
Two possible outcomes: erther the same final value or an exception

Theorem 1 (Quasi-Determinism). If o0 —* ¢’ and 0 —* o, ‘o
and neither o' nor o'’ can take a step, then either:

1. o' = ¢" up to a permutation on locations , or
2. ¢’ = error or o'’ = error.
[POPL’14] :nsert v seen)
T Re—— e : node)
return ())
or error. insert startNode seen

mum quiesce h
freeze seen

T — B

| 4

freeze: exact non-blocking read

Attempts to write to a frozen LVar raise a write-after-freeze exception
Two possible outcomes: erther the same final value or an exception

traverse g startNode = do
seen <- newkEmptySet
h <- newHandler seen
(\node -> do
mapM (\v -> insert v seen)
(neighbors g node)
return ())
insert startNode seen
quiesce h
freeze seen

T — B ——

|5

freeze: exact non-blocking read

Attempts to write to a frozen LVar raise a write-after-freeze exception
Two possible outcomes: erther the same final value or an exception

traverse g startNode = do
seen <- newkEmptySet
h <- newHandler seen
(\node -> do
mapM (\v -> insert v seen)
(neighbors g node)
return ())

\freeze seep/

— = -

|5

freeze: exact non-blocking read

Attempts to write to a frozen LVar raise a write-after-freeze exception
Two possible outcomes: erther the same final value or an exception

traverse g startNode = do
seen <- newkEmptySet
h <- newHandler seen
(\node -> do
mapM (\v -> insert v seen)
(neighbors g node)

return ())
Let the system insert startNode seen

handle this for us: ——y/4ui

" N\freeze seep/

— = -

|5

freeze: exact non-blocking read

Attempts to write to a frozen LVar raise a write-after-freeze exception
Two possible outcomes: erther the same final value or an exception

traverse g startNode = do
seen <- newkEmptySet
h <- newHandler seen
(\node -> do
mapM (\v -> insert v seen)
(neighbors g node)

return ())
Let the system insert startNode seen

handle this for us: ——y/4ui

runParThenFreeze NoEE e

S = -

|5

[Vish

a Haskell library for parallel programming with [Vars

|6

[Vish

a Haskell library for parallel programming with [Vars

[Var operations run in Par computations

|6

[Vish

a Haskell library for parallel programming with [Vars

[Var operations run in Par computations
Lightweight threads

|6

[Vish

a Haskell library for parallel programming with [Vars

[Var operations run in Par computations
Lightweight threads

Par computations indexed by effect level

p ::

p

Par Det (IMap Item Int)
= do

cart <- newEmptyMap

fork (insert Book 1 cart)

fork (insert Shoes 1 cart)
return cart

|6

[Vish

a Haskell library for parallel programming with [Vars

[Var operations run in Par computations

Lightweight threads p :: Par Det (IMap Item Int)
p = do
Par computations indexed by effect level cart <- newEmptyMap

fork (insert Book 1 cart)
runParThenFreeze captures the

fork (insert Shoes 1 cart)
freeze-after-writing idiom return cart

|6

[Vish

a Haskell library for parallel programming with [Vars

[Var operations run in Par computations

Lightweight threads p :: Par Det (IMap Item Int)
p = do
Par computations indexed by effect level cart <- newEmptyMap

fork (insert Book 1 cart)
runParThenFreeze captures the fork (insert Shoes 1 cart)

freeze-after-writing idiom return cart

main = print (runParThenFreeze p)

|6

[Vish

a Haskell library for parallel programming with [Vars

[Var operations run in Par computations

IJghtwmﬂghtthreads p :: Par Det (IMap Item Int)
p = do
Par computations indexed by effect level cart <- newEmptyMap
fork (insert Book 1 cart)
runParThenFreeze captures the fork (insert Shoes 1 cart)

freeze-after-writing idiom return cart

Efficient lock-free sets, maps, etc.

main = print (runParThenFreeze p)

|6

[Vish

a Haskell library for parallel programming with [Vars

[Var operations run in Par computations

Lightweight threads p :: Par Det (IMap Item Int)
p = do
Par computations indexed by effect level cart <- newEmptyMap

fork (insert Book 1 cart)
runParThenFreeze captures the fork (insert Shoes 1 cart)

freeze-after-writing idiom return cart

Efficient lock-free sets, maps, etc.

main = print (runParThenFreeze p)

Implement your own LVars, too

|6

[Vish

a Haskell library for parallel programming with [Vars

[Var operations run in Par computations

Lightweight threads p :: Par Det (IMap Item Int)
p = do
Par computations indexed by effect level cart <- newEmptyMap

fork (insert Book 1 cart)
runParThenFreeze captures the fork (insert Shoes 1 cart)

freeze-after-writing idiom return cart

Efficient lock-free sets, maps, etc.

main = print (runParThenFreeze p)

Implement your own LVars, too

hackage.haskell.org/package/lvish

|6

including
Display;
DMl and
Misa 1/0

—

o 1.‘.1.)‘|"L| f 8 l ' s R eN BN
— o Memory Controller 1/0 uemarmes

Deterministic Parallel Programming

|7

including
Display;
DMl and
Misa 1/0

—

o 1.‘.1.)‘|"L| f 8 l ' s R eN BN
— o Memory Controller 1/0 uemarmes

(observably)
Deterministic Parallel Programming

|7

213 Controller

including

Display;

DMl and
_ Mis& [/0

‘ ‘ ‘l‘LI lll!lllllvlllll' "_!-
20 sgMemory Controller /0 semarmas

(observably) (irregular)
Deterministic Parallel Programming

|7

Case study: k-CFA static analysis parallelized with LVish [POPL '14]

D b e e .

[Earl et al, ICFP '12]

— —

Case study: k-CFA static analysis parallelized with LVish [POPL '14]

P up to 20x speedup, even on one core, from not having to copy data

[]
= — =
[Earl et al, ICFP '12]
T — T ——

18

Case study: k-CFA static analysis parallelized with LVish [POPL '14]

P up to 20x speedup, even on one core, from not having to copy data

P 7-8x parallel speedup

Speedup over one processor

12

10

/ =
Parallel Speedup
— linear speedup O Dblur/lockfree blur ,x"
% notChain/lockfree ~ # notChain el
¢"“ ;\
e’ —
P
2 4 6 8 10 12

Processors

—

18

Case study: k-CFA static analysis parallelized with LVish [POPL '14]

P up to 20x speedup, even on one core, from not having to copy data

P 7-8x parallel speedup

Speedup over one processor

12

10

— linear speedup
2¢ notChain/lockfree

/
/ ol <
Parallel Speedup
O blur/lockfree blur
Zx notChain "

~q 1

T

6 8 10 12

Processors

-

18

Case study: k-CFA static analysis parallelized with LVish [POPL '14]

P up to 20x speedup, even on one core, from not having to copy data

P 7-8x parallel speedup

P Lock-free structures help ,
| / ol
Parallel Speedup
12 : i
— linear speedup O blur/lockfree blur T
5 , % notChain/lockfree ~ # notChain .’
2 10 ==
O
8 >
g 8 \
)
C
° 6
2
) P
g 4 s
O
5
Q 2
CD S —
P—
0
2 4 6 8 10 12
Processors

e —————

18

Case study: k-CFA static analysis parallelized with LVish [POPL '14]

P up to 20x speedup, even on one core, from not having to copy data

P 7-8x parallel speedup

P Lock-free structures help ,
| / ol
Parallel Speedup
12 : i
— linear speedup O blur/lockfree blur T
5 , % notChain/lockfree ~ # notChain .’
2 10 ==
O
8 >
g 8 \
)
C
° 6
2
) P
g 4 s
O
5
Q 2
CD S —
P—
0
2 4 6 8 10 12
Processors

e —————

18

Case study: k-CFA static analysis parallelized with LVish [POPL '14]

P up to 20x speedup, even on one core, from not having to copy data

P 7-8x parallel speedup

P Lock-free structures help ,
| / ol <
Parallel Speedup
12 : i
— linear speedup O blur/lockfree blur T
5 , % notChain/lockfree ~ # notChain .’
2 10 =—
O
8 >
g 8 \
)
C
° 6
2
) B
g 4 s
O
5
Q 2
CD S —
e
0
2 4 6 8 10 12
Processors

-

18

Case study: k-CFA static analysis parallelized with LVish [POPL '14]

P up to 20x speedup, even on one core, from not having to copy data

P 7-8x parallel speedup

» Lock-free structures help

Speedup over one processor

12

10

— linear speedup
2¢ notChain/lockfree

Parallel Speedup

O Dblur/lockfree
Zr notChain

Processors

~q 1

T

18

Case study: k-CFA static analysis parallelized with LVish [POPL '14]

P up to 20x speedup, even on one core, from not having to copy data

P 7-8x parallel speedup

» Lock-free structures help , -

Speedup over one processor

12

10

— linear speedup
2¢ notChain/lockfree

Parallel Speedup

O Dblur/lockfree blur .7
Zr notChain Lo’

6 |
w
Processors

parallelized with [Vish [PLDI"14]

18

[Vars and LVish across the landscape:

©ma ® .

Y

imperative disjoint A-calculus

/\ h o'

g(left) (rght)
HEEEREREREENENES

[Vars and LVish across the landscape:

©ma ® .

v

imperative disjoint A-calculus

/\ h o'

g(left) (rght)
HEEEREREREENENES

[Vars and LVish across the landscape:

(om0 (H) 0.,

v

imperative disjoint A-calculus

/\ h o'

g(left) (rght)
HEEEREREREENENES

[Vars and LVish across the landscape:

(Omo (&) °./,
Y 4
N”!‘!' ‘:’o'&'!m 9 @\JI

imperative disjoint A-calculus

/\ h o'

g(left) (rght)
HEEEREREREENENES

[Vars and LVish across the landscape:

24
@ N @ € /4 quasi-det.

4
N”!‘!' ‘:’o'&'!m 9 @\JI

imperative disjoint A-calculus

/\ h o'

g(left) (rght)
HEEEREREREENENES

[Vars and LVish across the landscape:

XY
€/ quasi-det.

9 o o

imperative disjoint A-calculus

VSO Ly

g(left) (rght)
HEEEEREREREEEEE

controlles

including
Display;

DMl and

Misa 1/0

e

: a2, .’,‘),] SN R P 1iT 5t N e T
Adpacs ."_Memory_Cpnt_roller 1/0 sapemapenay.

Parallel systems

Distributed systems

20

Distributed systems

21

22

22

22

_aslk

getKey Book

| &1

22

-
-

W

|

| &1

getKey Book

22

Eventual consistency.

-
-

=
. %
s ‘

getKey Book

| &1

getKey Book

22

Eventual consistency. How?

- - -'...‘0 -

€ o

| &1

getKey Book

3
getKey Book

22

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels

Amazon.com

ABSTRACT

Reliability at massive scale is one of the biggest challenges we
face at Amazon.com, one of the largest e-commerce operations in
the world; even the slightest outage has significant financial
consequences and impacts customer trust. The Amazon.com
platform, which provides services for many web sites worldwide,
is implemented on top of an infrastructure of tens of thousands of
servers and network components located in many datacenters
around the world. At this scale, small and large components fail
continuously and the way persistent state is managed in the face
of these failures drives the reliability and scalability of the
software systems.

This paper presents the design and implementation of Dynamo, a
highly available key-value storage system that some of Amazon’s
core services use to provide an “always-on” experience. To
achieve this level of availability, Dynamo sacrifices consistency
under certain failure scenarios. It makes extensive use of object
versioning and application-assisted conflict resolution in a manner
that provides a novel interface for developers to use.

Categories and Subject Descriptors

D.4.2 [Operating Systems]: Storage Management; D.4.5
[Operating Systems]: Reliability; D.4.2 [Operating Systems]:
Performance;

General Terms
Algorithms, Management, Measurement, Performance, Design,
Reliability.

1. INTRODUCTION

Amazon runs a world-wide e-commerce platform that serves tens
of millions customers at peak times using tens of thousands of
servers located in many data centers around the world. There are
strict operational requirements on Amazon’s platform in terms of
performance, reliability and efficiency, and to support continuous
growth the platform needs to be highly scalable. Reliability is one
of the most important requirements because even the slightest
outage has significant financial consequences and impacts
customer trust. In addition, to support continuous growth, the
platform needs to be highly scalable.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SOSP’07, October 14-17, 2007, Stevenson, Washington, USA.
Copyright 2007 ACM 978-1-59593-591-5/07/0010...$5.00.

One of the lessons our organization has learned from operating
Amazon’s platform is that the reliability and scalability of a
system is dependent on how its application state is managed.
Amazon uses a highly decentralized, loosely coupled, service
oriented architecture consisting of hundreds of services. In this
environment there is a particular need for storage technologies
that are always available. For example, customers should be able
to view and add items to their shopping cart even if disks are
failing, network routes are flapping, or data centers are being
destroyed by tornados. Therefore, the service responsible for
managing shopping carts requires that it can always write to and
read from its data store, and that its data needs to be available
across multiple data centers.

Dealing with failures in an infrastructure comprised of millions of
components is our standard mode of operation; there are always a
small but significant number of server and network components
that are failing at any given time. As such Amazon’s software
systems need to be constructed in a manner that treats failure
handling as the normal case without impacting availability or
performance.

To meet the reliability and scaling needs, Amazon has developed
a number of storage technologies, of which the Amazon Simple
Storage Service (also available outside of Amazon and known as
Amazon S3), is probably the best known. This paper presents the
design and implementation of Dynamo, another highly available
and scalable distributed data store built for Amazon’s platform.
Dynamo is used to manage the state of services that have very
high reliability requirements and need tight control over the
tradeoffs between availability, consistency, cost-effectiveness and
performance. Amazon’s platform has a very diverse set of
applications with different storage requirements. A select set of
applications requires a storage technology that is flexible enough
to let application designers configure their data store appropriately
based on these tradeoffs to achieve high availability and
guaranteed performance in the most cost effective manner.

There are many services on Amazon’s platform that only need
primary-key access to a data store. For many services, such as
those that provide best seller lists, shopping carts, customer
preferences, session management, sales rank, and product catalog,
the common pattern of using a relational database would lead to
inefficiencies and limit scale and availability. Dynamo provides a
simple primary-key only interface to meet the requirements of
these applications.

Dynamo uses a synthesis of well known techniques to achieve
scalability and availability: Data is partitioned and replicated
using consistent hashing [10], and consistency is facilitated by
object versioning [12]. The consistency among replicas during
updates is maintained by a quorum-like technique and a
decentralized replica synchronization protocol. Dynamo employs

v ‘

[DeCandia et al,, SOSP '07]

23

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels

Amazon.com

ABSTRACT

Reliability at massive scale is one of the biggest challenges we
face at Amazon.com, one of the largest e-commerce operations in
the world; even the slightest outage has significant financial
consequences and impacts customer trust. The Amazon.com
platform, which provides services for many web sites worldwide,
is implemented on top of an infrastructure of tens of thousands of
servers and network components located in many datacenters
around the world. At this scale, small and large components fail
continuously and the way persistent state is managed in the face
of these failures drives the reliability and scalability of the
software systems.

This paper presents the design and implementation of Dynamo, a
highly available key-value storage system that some of Amazon’s
core services use to provide an “always-on” experience. To
achieve this level of availability, Dynamo sacrifices consistency
under certain failure scenarios. It makes extensive use of object
versioning and application-assisted conflict resolution in a manner
that provides a novel interface for developers to use.

Categories and Subject Descriptors

One of the lessons our organization has learned from operating
Amazon’s platform is that the reliability and scalability of a
system is dependent on how its application state is managed.
Amazon uses a highly decentralized, loosely coupled, service
oriented architecture consisting of hundreds of services. In this
environment there is a particular need for storage technologies
that are always available. For example, customers should be able
to view and add items to their shopping cart even if disks are
failing, network routes are flapping, or data centers are being
destroyed by tornados. Therefore, the service responsible for
managing shopping carts requires that it can always write to and
read from its data store, and that its data needs to be available
across multiple data centers.

Dealing with failures in an infrastructure comprised of millions of
components is our standard mode of operation; there are always a
small but significant number of server and network components
that are failing at any given time. As such Amazon’s software
systems need to be constructed in a manner that treats failure
handling as the normal case without impacting availability or
performance.

To meet the reliahilitv ard scaling needs, Amazon has developed
s, of which the Amazon Simple
itside of Amazon and known as

known. This paper presents the
ynamo, another highly available

since the application 1s aware of the data schema 1t i amons parom

state of services that have very
*d need tight control over the

can decide on the contlict resolution method that 1s best suited for e cmemensm

¢ requirements. A select set of

its client’s experience. For instance, the application that maintains & i

chieve high availability and
st cost effective manner.

customer shopping carts can choose to “merge” the conflicting 5. w oy e
versions and return a single unified shopping cart.

DR ——

3. For many services, such as
sts, shopping carts, customer
sales rank, and product catalog,
lational database would lead to
vailability. Dynamo provides a

to meet the requirements of

personal or classroom use is granted withou T s of well known techniques to achieve
not made or distributed for profit or commercial advantage and that scalability and availability: Data is partitioned and replicated

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SOSP’07, October 14-17, 2007, Stevenson, Washington, USA.
Copyright 2007 ACM 978-1-59593-591-5/07/0010...$5.00.

using consistent hashing [10], and consistency is facilitated by
object versioning [12]. The consistency among replicas during
updates is maintained by a quorum-like technique and a
decentralized replica synchronization protocol. Dynamo employs

-——

——
[DeCandia et al,, SOSP '07]

23

Conflict-Free Replicated Data Types*

Marc Shapiro®, Nuno Preguica'-?, Carlos Baquero®, and Marek Zawirski‘*

INRIA, Paris, France
* CITI, Universidade Nova de Lisboa, Portugal
Universidade do Minho, Portugal
" UPMNC, Paris, France
" LIP6, Pasis, France

Abstract. Replicating data under Eventual Consistency (EC) allows
any replica to accept updates wi

yut remote synchronisation. This en-
sures performance and scalability in large-scale distributed systems (e.g.,
clouds). However, published EC approaches are ad-hoc and error-prone
£

sl

Under a formal Strong Eventual Consistency (SEC) model, we stud

ficlent conditions for convergence. A data type that satisfies these con-
ditions is called a Conflict-free Replicated Data Type (CRDT), Replicas
of any CRDT are guaranteed to converge in a self-stabilising manner,
despite any number of failures. This paper formalises two popular ap-
proaches (state- and operation-based) and their relevant sufficient con-

ditions. We study a number of useful CRDTs, such as sets with clean
semantics, supporting both add and remove operations, and consider in
depth the more complex Graph data type. CRDT types can be composed

to develop large-scale distributed applications, and have Interesting the-

oretical properties,

Keywords: Eventual Consistency, Replicated Shared Objects, Large-
Scale Distributed Systems

1 Introduction

Replication and consistency are essential features of any large distributed system,
such as the WWW, peer-to-peer, or cloud computing platforms. The standard
“strong consistency”™ approach serialises updates in a global total order [10].
This constitutes a performance and scalability bottleneck. Furthermore, strong
consistency conflicts with availability and partition-tolerance [8].

When network delays are large or partitioning is an issue, as in delay-tolerant
networks, disconnected operation, cloud computing, or P2P systems, evenfual
consistency promiscs better availability and performance [17]21]. An update ex-
ecutes at some replica, without synchronisation; later, it is sent to the other

T —
[Shapiro et al.,, SSS "I]

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels

Amazon.com

——

ABSTRACT

Reliability at massive scale is one of the biggest challenges we
face at Amazon.com, one of the largest e-commerce operations in
the world; even the slightest outage has significant financial
consequences and impacts customer trust. The Amazon.com
platform, which provides services for many web sites worldwide,
is implemented on top of an infrastructure of tens of thousands of
servers and network components located in many datacenters
around the world. At this scale, small and large components fail
continuously and the way persistent state is managed in the face
of these failures drives the reliability and scalability of the
software systems.

This paper presents the design and implementation of Dynamo, a
highly available key-value storage system that some of Amazon’s
core services use to provide an “always-on” experience. To
achieve this level of availability, Dynamo sacrifices consistency
under certain failure scenarios. It makes extensive use of object
versioning and application-assisted conflict resolution in a manner
that provides a novel interface for developers to use.

Categories and Subject Descriptors

nh 1s aware of the data schema it
n method that 1s best suited for
, the application that maintains
)se to “merge” the conflicting

ed shopping cart.

personal or classroom use is grante
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SOSP’07, October 14-17, 2007, Stevenson, Washington, USA.
Copyright 2007 ACM 978-1-59593-591-5/07/0010...$5.00.

One of the lessons our organization has learned from operating
Amazon’s platform is that the reliability and scalability of a
system is dependent on how its application state is managed.
Amazon uses a highly decentralized, loosely coupled, service
oriented architecture consisting of hundreds of services. In this
environment there is a particular need for storage technologies
that are always available. For example, customers should be able
to view and add items to their shopping cart even if disks are
failing, network routes are flapping, or data centers are being
destroyed by tornados. Therefore, the service responsible for
managing shopping carts requires that it can always write to and
read from its data store, and that its data needs to be available
across multiple data centers.

Dealing with failures in an infrastructure comprised of millions of
components is our standard mode of operation; there are always a
small but significant number of server and network components
that are failing at any given time. As such Amazon’s software
systems need to be constructed in a manner that treats failure
handling as the normal case without impacting availability or
performance.

To meet the relinhilitv ard scaling needs, Amazon has developed
s, of which the Amazon Simple
itside of Amazon and known as

own. This paper presents the
amo, another highly available
built for Amazon’s platform.
state of services that have very

*d need tight control over the
‘sistency, cost-effectiveness and

has a very diverse set of
equirements. A select set of
ology that is flexible enough

e their data store appropriately
ieve high availability and
ost effective manner.

n’s platform that only need
». For many services, such as
, shopping carts, customer
les rank, and product catalog,
lational database would lead to
yggilability. Dynamo provides a
‘*to meet the requirements of

nown techniques to achieve
scalability and ava s partitioned and replicated
using consistent hashing [10], and consistency is facilitated by
object versioning [12]. The consistency among replicas during
updates is maintained by a quorum-like technique and a
decentralized replica synchronization protocol. Dynamo employs

B |
[DeCandia et al,, SOSP '07]

23

Conflict-Free Replicated Data Types*

Marc Shapiro®, Nuno Preguica'-?, Carlos Baquero®, and Marek Zawirski‘*

INRIA, Paris, France
* CITI, Universidade Nova de Lisboa, Portugal
Universidade do Minho, Portugal
" UPMC, Paris, France
* LIP6, Paris, France

Abstract. Replicating data under Eventual Consistency (EC) allows
any replica to accept updates without remote synchronisation. This en-
sures performance and scalability in large-scale distributed systems (e.g.,
clouds). However, published EC approaches are ad-hoc and error-prone
Under a formal Strong Eventual Consistency (SEC) model, we study suf-
ficlent conditions for convergence. A data type that satisfies these con-
ditions is called a Conflict-free Replicated Data Type (CRDT), Replicas
of any CRDT are guaranteed to converge in a self-stabilising manner,
despite any number of failures. This paper formalises two popular ap-
proaches (state- and operation-based) and their relevant sufficent con-
ditions. We study a number of useful CRDTs, such as sets with clean
semantics, supporting both add and remove operations, and consider in
depth the more complex Graph data type. CRDT types can be composed
to develop large-scale distributed applications, and have Interesting the-

oretical properties,

Keywords: Eventual Consistency, Replicated Shared Objects, Large-
Scale Distributed Systems

1 Introduction

Replication and consistency are essential features of any large distributed system,
such as the WWW, peer-to-peer, or cloud computing platforms. The standard
“strong consistency™ approach serialises updates in a global total order [10].
This constitutes a performance and scalability bottleneck. Furthermore, strong
consistency conflicts with availability and partition-tolerance [8].

When network delays are large or partitioning is an issue, as in delay-tolerant
networks, disconnected operation, cloud computing, or P2P systems, evenfual
consistency promiscs better availability and performance [17]21]. An update ex-
ecutes at some replica, without synchronisation; later, it is sent to the other

T —
[Shapiro et al.,, SSS "I]

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels

Amazon.com

One of the lessons our organization has learned from operating
ABSTRACT * azon’s platform is that the reliability and scalability of a
em is dependent on how its application state is managed.
azon uses a highly decentralized, loosely coupled, service
nted architecture consisting of hundreds of services. In this
ironment there is a particular need for storage technologies
are always available. For example, customers should be able
iew and add items to their shopping cart even if disks are
ng, network routes are flapping, or data centers are being
iroyed by tornados. Therefore, the service responsible for
1aging shopping carts requires that it can always write to and
1 from its data store, and that its data needs to be available
ss multiple data centers.

ling with failures in an infrastructure comprised of millions of
1ponents is our standard mode of operation; there are always a
11 but significant number of server and network components
are failing at any given time. As such Amazon’s software
ems need to be constructed in a manner that treats failure
dling as the normal case without impacting availability or
‘ormance.

n method that 1s best suited for

meet the reli~hilitv ard scaling needs, Amazon has developed
s, of which the Amazon Simple
itside of Amazon and known as
own. This paper presents the
mo, another highly available
built for Amazon’s platform.
_state of services that have very
*d need tight control over the
‘sistency, cost-effectiveness and
has a very diverse set of
equirements. A select set of
ology that is flexible enough
e their data store appropriately
ieve high availability and

ost effective manner.

1s aware of the data schema it

, the application that maintains
se to “merge” the conflicting
d shopping cart.

n’s platform that only need
For many services, such as
, shopping carts, customer
les rank, and product catalog,
iational database would lead to
ilability. Dynamo provides a
meet the requirements of

personal or classroom use is grante
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SOSP’07, October 14-17, 2007, Stevenson, Washington, USA.
Copyright 2007 ACM 978-1-59593-591-5/07/0010...$5.00.

own techniques to achieve
scalability and aval s partitioned and replicated
using consistent hashing [10], and consistency is facilitated by
object versioning [12]. The consistency among replicas during
updates is maintained by a quorum-like technique and a
decentralized replica synchronization protocol. Dynamo employs

[DeCandia et al,, SOSP '07]

—

23

Two “styles” of Conflict-Free Replicated Data Types:
“Convergent” “Commutative”
CvRDTs CmRDTs

“state-based” "op-based

24

Two “styles” of Conflict-Free Replicated Data Types:
“Convergent” “Commutative”
CVvRDTs & CmRDTs

('y Shapiro et al., SSS ' |
state-based [>hap]

“op-based

24

Iwo “'styles

=S

~=

CvRDTs

N\ state-based”

/ “Convergent”

—

/' [Shapiro et al,, SSS "I]

"Commutative”
CmRDTs
‘op-based”

" of Conflict-Free Replicated Data lypes:

24

L Vars vs. CvRD Ts

Threshold reads
(deterministic)

| east-upper-bound writes
(every write computes a join)

Shared memory

Ordinary reads
(nondeterministic)

General inflationary writes
(only merges must be joins)

Replicated!

25

L Vars vs. CvRD Ts

”/ reshold rel@\

\. (deterministic) ,

| east-upper-bound writes
(every write computes a join)

Shared memory

Ordinary reads
(nondeterministic)

General inflationary writes
(only merges must be joins)

Replicated!

25

L Vars vs. CvRD Ts

/

reshbld rel@\

{
_ (deterministic) ,

| east-upper-bound writes
(every write computes a join)

Shared memory

Ordinary reads
(nondeterministic)

[General inflationary writes \

'\\(\Omy merges must be JOi”S)

Replicated

25

L Vars vs. CvRD Ts

(Threshold reads \| Ordinary reads
(deterministicz/’ (nondeterministic)

Least-upper-bound writes | / General inflationary writes \
(every write computes a join) \iny merges must be joins) |

Shared memory Replica‘ggd!

SO

we're
proposing
[WoDet '| 4]

25

L Vars vs. CvRD Ts

/

(Threshold reads \| Ordinary reads
(deterministicz// (nondeterministic)

Least-upper-bound writes | / General inflationary writes \
(every write computes a join) \(\only merges must be joins) |

Shared memory Replica‘ggd!

SO One framework for reasoning about both
we're eventual and strong consistency
proposing
[WoDet ' 4]

25

L Vars vs. CvRD Ts

(Threshold reads \| Ordinary reads
(deterministic:ﬂ)/’ (nondeterministic)

Least-upper-bound writes | / General inflationary
(every write computes a join) \(\only merges must be joins) |

Shared memory Replica‘ggd!

SO One framework for reasoning about both
we're eventual and strong consistency
proposing |) Adding general inflationary writes to LVars

[veliet 4] Non-idempotent, incrementable counters

25

controlles

including
Display;

DMl and

Misa 1/0

e

: a2, .’,‘),] SN R P 1iT 5t N e T
Adpacs ."_Memory_Cpnt_roller 1/0 sapemapenay.

Parallel systems

Distributed systems

26

[Vars and LVish across the landscape:

24
@ N @ € /4 quasi-det.

4
N”!‘!' ‘:’o'&'!m '</ @\Jl

imperative disjoint A-calculus

/\ h o'

g(left) (rght)
HEEERERREENEEES

\ dtb?!Wh
CVRDTS ISLrioyUute |S

[Vars and LVish across the landscape:

2V

@ID @ ®. Y quasi-det.
/4

;JI-* ;:U.'g'!u 9 </ @y

imperative disjoint -calculus

g(left) (rght)
HEEERERREENEEES

N dtb?;Wh
CVRDTS ISLrioyUute |S

[Vars and LVish across the landscape:

Y4
@.D @ @ S/ quasi-det.
4

Cretworis . 94 o
imperative disjoint it e

/\ 5y

g(left) (rght)
[]][

Thank you!

Emaill: Ikuper@cs.indiana.edu

[Vars project repo: github.com/iu-parfunc/lvars
Code from this talk: github.com/Ikuper/lvar-examples
Papers: cs.indiana.edu/~lkuper

Research blog: composition.al

