
Prospect: 
A Library and Compiler 
for High-Level, High-Performance 
Scientific Computing in Julia

Lindsey Kuper

Parallel Computing Lab, Intel Labs

April 14, 2016


High Performance Scripting Project 
Contributors: Todd Anderson, Raj Barik, Chunling Hu, Victor Lee, Hai Liu,  

       Geoff Lowney, Paul Petersen, Hongbo Rong, Tatiana Shpeisman, 
        Ehsan Totoni, Leonard Truong, Youfeng Wu 
  



Your problem: designing a bridge, decrypting a 
message, picking a stock portfolio, processing 
audio signals, training a car to drive itself, …

Your expertise: differential equations, Fourier 
analysis, linear algebra, matrix computations, …

Not your expertise: memory management, 
scheduling parallel tasks






2


You’re a scientist or engineer...




Productivity languages: Matlab, Python, R, Julia, …

How do you “scale up” a productivity-language 
prototype?  The answer today: Get an expert to 
port the code to an efficiency language

The result is fast…and also brittle, hard to 
experiment with, and hard to maintain

Can we do better?


3


Productivity languages and the 
“human compiler” problem




4


How about high-performance DSLs?

Idea: trade off generality for 
productivity and efficiency




[Olokutun et al., 2012] 

Delite (Brown et al. 2011),

SEJITS (Catanzaro et al. 2009),

Halide (Ragan-Kelley et al. 2013),

Copperhead (Catanzaro et al. 2011), …


Amazing results!  But, two challenges:

§  The learning curve

§  The rest of the productivity story…




Several dimensions to productivity beyond offering 
the “right” abstractions for a domain:

§  Fast compilation time

§  Robust to a wide variety of inputs

§  Debuggable using familiar techniques

§  Available on the platforms users want to use






5


The rest of the DSL productivity story




A combination compiler-library solution

§  Accelerate existing language constructs:

§  map, reduce, comprehension


§  Support additional domain-specific constructs 
(runStencil)

§  …with two implementations: library-only and native


Run in library-only mode during development and 
debugging

Run in native mode for high performance at deployment


6


Our system: Prospect




Implemented as a            package: 



Provides an @acc macro to annotate code to be optimized

Under the hood, it’s a Julia-to-C++ compiler, written in Julia



Approach:

§  Identify implicit parallel patterns in a subset of Julia code

§  Compile to explicit parallel for loops

§  Eliminate run-time overheads




7


Prospect in practice


github.com/IntelLabs/ParallelAccelerator.jl 



8


A quick preview of results…


Data from 01/31/2016

2 Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.3GHz processors, 18 cores each (36 cores total)

128 GB RAM




§  Open source

§  Faster than many scientific computing 

languages

§  Good support for array-style programming

§  Under active development, strong community

§  A Julia compiler in Julia works pretty well!


9


Aside: why Julia?




§  Map: Translate pointwise array operations like .+, ._, .*, 
and ./ to data-parallel map operations


§  Reduce: Translate minimum, maximum, sum, prod, any, 
and all to data-parallel reduce operations


§  Array comprehensions: Translate to in-place map 
operations


 

§  Special runStencil form for stencil computations	

10


Parallel patterns


avg(x)	=		
[	0.25*x[i-1]	+	0.5*x[i]	+	0.25*x[i+1]	for	i	=	2:length	(x)-1	]	





Domain Transformations: replaces some Julia AST 
nodes with new “domain nodes” for map, reduce, 
comprehension, and stencil

Parallel Transformations: replaces domain nodes 
with “parfor” nodes representing parallel for loops

CGen: converts parfor nodes into OpenMP loops


11


Prospect compiler pipeline




using	ParallelAccelerator	
	
@acc	function	blackscholes(sptprice::Array{Float64,1},	
																											strike::Array{Float64,1},	
																											rate::Array{Float64,1},	
																											volatility::Array{Float64,1},	
																											time::Array{Float64,1})	
				logterm	=	log10(sptprice	./	strike)	
				powterm	=	.5	.*	volatility	.*	volatility	
				den	=	volatility	.*	sqrt(time)	
				d1	=	(((rate	.+	powterm)	.*	time)	.+	logterm)	./	den	
				d2	=	d1	.-	den	
				NofXd1	=	cndf2(d1)	
				...	
				put	=	call	.-	futureValue	.+	sptprice	
end	
	
put	=	blackscholes(sptprice,	initStrike,	rate,	volatility,	time)	

12


Example: Black-Scholes




Black-Scholes demo


13




using	ParallelAccelerator	
	
@acc	function	blur(img::Array{Float32,2},	iterations::Int)	
				buf	=	Array(Float32,	size(img)...)		
				runStencil(buf,	img,	iterations,	:oob_skip)	do	b,	a	
							b[0,0]	=		
												(a[-2,-2]	*	0.003		+	a[-1,-2]	*	0.0133	+	a[0,-2]	*	...	
													a[-2,-1]	*	0.0133	+	a[-1,-1]	*	0.0596	+	a[0,-1]	*	...	
													a[-2,	0]	*	0.0219	+	a[-1,	0]	*	0.0983	+	a[0,	0]	*	...	
													a[-2,	1]	*	0.0133	+	a[-1,	1]	*	0.0596	+	a[0,	1]	*	...	
													a[-2,	2]	*	0.003		+	a[-1,	2]	*	0.0133	+	a[0,	2]	*	...	
							return	a,	b	
				end	
				return	img	
end	
	
img	=	blur(img,	iterations)	



14


runStencil example: Gaussian blur




Gaussian blur demo


15




16


More results


Data from 03/02/2016

2 Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.3GHz processors, 18 cores each (36 cores total)

128 GB RAM




Package load time

§  
 Can be mitigated using ParallelAccelerator.embed()	
Compiler limitations 

§  Only a subset of Julia is accelerated

§  Compiler tries to transitively compile the whole call chain

§  If anything fails to compile, fall back to standard Julia


17


Caveats




Guest post on the Julia blog:

julialang.org/blog/2016/03/parallelaccelerator

Our GitHub repo:

github.com/IntelLabs/ParallelAccelerator.jl 
 
Thanks! 



18


To learn more…



