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Building apps with causal broadcast
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Building apps with causal broadcast

Self-
actualization

/ Any (?) \
Collaborative App
/Zomposable Unique Set CRDT\
/ Causal broadcast \
/ Internet \
/ Food, water, shelter \

Hierarchy of needs

Credit: Matthew Weidner
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[HATRA 2021]

Toward Hole-Driven Development in Liquid Haskell

PATRICK REDMOND, University of California, Santa Cruz, USA
GAN SHEN, University of California, Santa Cruz, USA
LINDSEY KUPER, University of California, Santa Cruz, USA

Liquid Haskell is an extension to the Haskell programming language that adds support for refinement types:
data types augmented with SMT-decidable logical predicates that refine the set of values that can inhabit a
type. Furthermore, Liquid Haskell's support for refinement reflection enables the use of Haskell for general
purpose mechanized theorem proving. A growing list of large-scale mechanized proof developments in Liquid
Haskell take advantage of this capability. Adding theorem-proving capabilities to a “legacy” language like
Haskell lets programmers directly verify properties of real-world Haskell programs (taking advantage of
the existing highly tuned compiler, run-time system, and libraries), just by writing Haskell. However, more
established proof assistants like Agda and Coq offer far better support for interactive proof development and
insight into the proof state (for instance, what subgoals still need to be proved to finish a partially-complete
proof). In contrast, Liquid Haskell provides only coarse-grained feedback to the user — either it reports a type
error, or not — unfortunately hindering its usability as a theorem prover.

In this paper, we propose improving the usability of Liquid Haskell by extending it with support for Agda
style typed holes and interactive editing commands that take advantage of them. In Agda, typed holes allow
programmers to indicate unfinished parts of a proof, and incrementally complete the proof in a dialogue
with the comniler While GHC Hackell alreadyv hac ite awn Acda-inenired suinnort for tvned holee we nocit
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