Verified Causal Broadcast
with Liquid Haskell

Patrick Redmond Gan Shen Niki Vazou Lindsey Kuper

UC Berkeley Programming Systems Seminar
24 October 2022

Zunof. UNIVERSITY OF CALIFORNIA .

Q~ WX oN
3@ NS Q’(¥ I
HEOAEREE Dy)
AW B 9/
NG) S
"So 2 4
1868 N\

(’ github.com/lsd-ucsc/cbcast-1h

Verified Causal Broadcast
with Liquid Haskell

Patrick Redmond Gan Shen Niki Vazou Lindsey Kuper
2,

UC Berkeley Programming Systems Seminar
24 October 2022

Zunof. UNIVERSITY OF CALIFORNIA .

Q~ WX oN
57 B Q’r \: I
HEOAEREE Dy)
AW B 9/
NG) S
"So 2 4
1868 N\

(’ github.com/lsd-ucsc/cbcast-1h

Verified Causal Broadcast
with Liquid Haskell

Patrick Redmond Gan Shen Niki Vazou Lindsey Kuper

séc

UC Berkeley Programming Systems Seminar
24 October 2022

Zunof. UNIVERSITY OF CALIFORNIA .

Q~ WX oN
57 B Q’r \: I
HEOAEREE Dy)
AW B 9/
NG) S
"So 2 4
1868 N\

(’ github.com/lsd-ucsc/cbcast-1h

Verified Causal Broadcast
with Liquid Haskell

Patrick Redmond Gan Shen Niki Vazou Lindsey Kuper

UC Berkeley Programming Systems Seminar
24 October 2022

Zunof. UNIVERSITY OF CALIFORNIA .

Q~ WX oN
57 B Q’r \: I
HEOAEREE Dy)
HR W B0 9/
NG) S
"So 2 4
1868 N\

(’ github.com/lsd-ucsc/cbcast-1h

Verified Causal Broadcast
with Liquid Haskell

Patrick Redmond Gan Shen Niki Vazou Lindsey Kuper

ﬂ

e
‘_!;,

UC Berkeley Programming Systems Seminar
24 October 2022

Zunof. UNIVERSITY OF CALIFORNIA .

G WX oN
Ky AQ/ [l S Qy "
N e sl P).
HES ==y ; ‘2
i = :E‘ of:
: =S :

NGRS S

X9 » 4\.._.

1868\

(’ github.com/lsd-ucsc/cbcast-1h

Verified Causal Broadcase

with Liquid Haskell

Patrick Redmond Gan Shen Niki Vazou Lindsey Kuper

UC Berkeley Programming Systems Seminar
24 October 2022

ainose. UNIVERSITY OF CALIFORNIA u

:-" WX .C‘ '...
el = INGY
H3MEEE DT
RV AlI=EES o)
.‘. W = .t 3 ‘.'

R L

1869 v

O github.com/lsd-ucsc/cbcast-1h

Patrick Redmond Gan Shen Niki Vazou Lindsey Kuper

UC Berkeley Programming Systems Seminar
24 October 2022

ainose. UNIVERSITY OF CALIFORNIA u

LESCRL e

O github.com/lsd-ucsc/cbcast-1h

happens-before

’ *ﬂl‘\{'/)

happens-before

(2 aiﬁ‘\{'/

2 FIFO delivery

happens-before

A

D2
A\

)
1

2 FIFO delivery

Yay!

happens-before

A

D2
A\

)
1

2 FIFO delivery

Yay!

happens-before

g FIFO delivery

happens-before

g FIFO delivery

happens-before

g FIFO delivery

happens-before

v \4 \4 v

Causal broadcast with vector clocks [Birman et al., 1991]

[0,0,0,0]

v \4 \4 v

Causal broadcast with vector clocks [Birman et al., 1991] 3

 [0,0,0,0]

[0,0,0,1]

v \4 \4 v

Causal broadcast with vector clocks [Birman et al., 1991] 3

| [0,0,0,0]

[0,0,0,1]

if its VC is:
o 1 greater than recipient’s

VC in sender’s position
e =< recipient’s VC elsewhere

v \4 \4 v

Causal broadcast with vector clocks [Birman et al., 1991] 3

| [0,0,0,0]

[0,0,0,1]

if its VC is:
o 1 greater than recipient’s

VC in sender’s position
e =< recipient’s VC elsewhere

v \4 \4 v

Causal broadcast with vector clocks [Birman et al., 1991] 3

| [0,0,0,0]

[0,0,0,1]

if its VC is:
o 1 greater than recipient’s

VC in sender’s position
e =< recipient’s VC elsewhere

v \4 \4 v

Causal broadcast with vector clocks [Birman et al., 1991] 3

| [0,0,0,0]

[0,0,0,1]

if its VC is:
o 1 greater than recipient’s

VC in sender’s position
e =< recipient’s VC elsewhere

v \4 \4 v

Causal broadcast with vector clocks [Birman et al., 1991] 3

| [0,0,0,0]

[0,0,0,1]

if its VC is:
o 1 greater than recipient’s

VC in sender’s position
e =< recipient’s VC elsewhere

v \4 \4 v

Causal broadcast with vector clocks [Birman et al., 1991] 3

 [0,0,0,0]

s : [0,0,0,1]
it its VC is:
o 1 greater than recipient’s
VC in sender’s position
e =< recipient’s VC elsewhere
[0,0,0,2]
v \4 \4 v

Causal broadcast with vector clocks [Birman et al., 1991] 3

 [0,0,0,0]

> : [0,0,0,1]
if its VC is:

o 1 greater than recipient’s
VC in sender’s position
e =< recipient’s VC elsewhere

[0,0,0,2]

v \4 \4 v

Causal broadcast with vector clocks [Birman et al., 1991] 3

 [0,0,0,0]

> : [0,0,0,1]
if its VC is:

o 1 greater than recipient’s
VC in sender’s position
e =< recipient’s VC elsewhere

[0,0,0,2]

v \4 \4 v

Causal broadcast with vector clocks [Birman et al., 1991] 3

 [0,0,0,0]

[0,0,0,1]

it its VC is:

o 1 greater than recipient’s
VC in sender’s position
e =< recipient’s VC elsewhere

[0,0,0,2]

X

[0,0,0,1]

v \4 \4

Causal broadcast with vector clocks [Birman et al., 1991]

 [0,0,0,0]

[0,0,0,1]

it its VC is:

o 1 greater than recipient’s
VC in sender’s position
e =< recipient’s VC elsewhere

[0,0,0,2]

X

[0,0,0,1] 7
o |4

v \4 \4

Causal broadcast with vector clocks [Birman et al., 1991]

 [0,0,0,0]

s : [0,0,0,1]
it its VC is:
o 1 greater than recipient’s
VC in sender’s position
e =< recipient’s VC elsewhere
[0,0,0,2]
—
X
A 2
A\
)
|
[0,0,0,1] ‘¢
[0,0,0,2]
v \4 \4 v

Causal broadcast with vector clocks [Birman et al., 1991]

| [0,0,0,0]

- : [0,0,0,1]

if its VC is:

o 1 greater than recipient’s
VC in sender’s position

e =< recipient’s VC elsewhere

[0,0,0,2]

v \4 \4 v

Causal broadcast with vector clocks [Birman et al., 1991] 3

| [0,0,0,0]

- : [0,0,0,1]

if its VC is:

o 1 greater than recipient’s
VC in sender’s position

e =< recipient’s VC elsewhere

[0,0,0,2]

| [1,0,0,2]

v \4 \4

Causal broadcast with vector clocks [Birman et al., 1991] 3

 [0,0,0,0]

[0,0,0,1]

if its VC is:

o 1 greater than recipient’s
VC in sender’s position

e =< recipient’s VC elsewhere

[0,0,0,2]

| [1,0,0,2]

v \4 \4

Causal broadcast with vector clocks [Birman et al., 1991] 3

if its VC is:
o 1 greater than recipient’s
VC in sender’s position

e =< recipient’s VC elsewhere

[0,0,0,

v \4

\4

[0,0,0,2]

Causal broadcast with vector clocks [Birman et al., 1991]

| [0,0,0,0]

[0,0,0,1]

[0,0,0,2]

| [1,0,0,2]

 [0,0,0,0]

[0,0,0,0]
- : [0,0,0,1]
if its VC is:
o 1 greater than recipient’s
VC in sender’s position
e < recipient’s VC elsewhere [0,0,0,1]
[0,0,0,2]
——
X
A 2
A\
)
|
[0,0,0,1] ‘¢
[0,0,0,2] Yay!
[1,0,0,2] | %¢
Y4
24
! 4

’ [}

! I

| J— : —

[0,0,0, "B [0,0,0,2]

sl wr)
%/[@[1,0,0,2] 4ti>0,0,2]
| | | [1,0,0,2]

v
Causal broadcast with vector clocks [Birman et al., 1991]

Programmers should be able to...

express and prove interesting correctness properties

...of deployable implementations of distributed systems

Programmers should be able to...

express and prove interesting correctness properties
...of deployable implementations of distributed systems

...using language-integrated verification tools

Programmers should be able to...

express and prove interesting correctness properties
...of deployable implementations of distributed systems

...using language-integrated verification tools (i.e., types!)

Refinement types

type Nat = { v:Int | v >= 0 }

Refinement types

type Nat = { v:Int | v >= 0 }

Refinement types

type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]

Refinement types

type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]

vcMerge :: Vector(Clock -> VectorClock -> VectorClock

Refinement types

type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]

vcMerge :: Vector(Clock -> VectorClock -> VectorClock
vcMerge = zipWith max

e.g., vcMerge [1,0,0,0] [0,2,0,1] = [1,2,0,1]

Refinement types

type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]

vcMerge :: Vector(Clock -> VectorClock -> VectorClock
vcMerge = zipWith max

e.g., vcMerge [1,0,0,0] [0,2,0,1] = [1,2,0,1]

type VCsized N = { vc:VectorClock | len vc == N }

Refinement types

type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]

vcMerge :: Vector(Clock -> Vector(Clock -> VectorClock
vcMerge = zipWith max

e.g., vcMerge [1,0,0,0] [0,2,0,1] = [1,2,0,1]

type VCsized N = { vc:VectorClock | len vc == N }
type VCsamelLength V = V(Csized {len V}

Refinement types

type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]

vcMerge :: Vector(Clock -> Vector(Clock -> VectorClock
vcMerge = zipWith max

e.g., vcMerge [1,0,0,0] [0,2,0,1] = [1,2,0,1]

type VCsized N = { vc:VectorClock | len vc == N }
type VCsamelLength V = V(Csized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsamelLength {v}

Refinement types

type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]

type VCsized N = { vc:VectorClock | len vc == N }
type VCsamelLength V = V(Csized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsamelLength {v}
vcMerge = zipWith max

Refinement types

type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]

type VCsized N = { vc:VectorClock | len vc == N }
type VCsamelLength V = V(Csized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsamelLength {v}
vcMerge = zipWith max

Refinement reflection

type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]

type VCsized N = { vc:VectorClock | len vc == N }
type VCsamelLength V = V(Csized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsamelLength {v}
vcMerge = zipWith max

Refinement reflection

type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]

type VCsized N = { vc:VectorClock | len vc == N }
type VCsamelLength V = V(Csized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsamelLength {v}
vcMerge = zipWith max

type Commutative a A = x:a -> y:a -> { _:Proof | Axy =AYy X}

Refinement reflection

type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]

type VCsized N = { vc:VectorClock | len vc == N }
type VCsamelLength V = V(Csized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsamelLength {v}
vcMerge = zipWith max

type Commutative a A = x:a -> y:a -> { _:Proof | Axy =AYy X}

Refinement reflection

type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]

type VCsized N = { vc:VectorClock | len vc == N }
type VCsamelLength V = V(Csized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsamelLength {v}
vcMerge = zipWith max

type Commutative a A = x:a -> y:a -> { _:Proof | Axy =AYy x }

Refinement reflection

type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]

type VCsized N = { vc:VectorClock | len vc == N }
type VCsamelLength V = V(Csized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsamelLength {v}
vcMerge = zipWith max

type Commutative a A = x:a -> y:a -> { _:Proof | Axy =AYy x }

vcMergeComm :: n:Nat -> Commutative (VCsized n) vcMerge

Refinement reflection

type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]

type VCsized N = { vc:VectorClock | len vc == N }
type VCsamelLength V = V(Csized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsamelLength {v}
vcMerge = zipWith max

type Commutative a A = x:a -> y:a -> { _:Proof | Axy =AYy x }

vcMergeComm :: n:Nat -> Commutative (VCsized n) vcMerge

Refinement reflection

type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]

type VCsized N = { vc:VectorClock | len vc == N }
type VCsamelLength V = V(Csized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsamelLength {v}
vcMerge = zipWith max

type Commutative a A = x:a -> y:a -> { _:Proof | Axy =AYy x }

vcMergeComm :: n:Nat -> Commutative (VCsized n) vcMerge

vcMergeComm _n [] [] = ()
vcMergeComm n (_x:xs) (_y:ys) = vcMergeComm (n - 1) Xxs ys

Refinement reflection

type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]

type VCsized N = { vc:VectorClock | len vc == N }
type VCsamelLength V = V(Csized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsamelLength {v}
vcMerge = zipWith max

type Commutative a A = x:a -> y:a -> { _:Proof | Axy =AYy x }

vcMergeComm :: n:Nat -> Commutative (VCsized n) vcMerge

vcMergeComm _n [] [] = ()
vcMergeComm n (_x:xs) (_y:ys) = vcMergeComm (n - 1) Xxs ys

Refinement reflection

type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]

type VCsized N = { vc:VectorClock | len vc == N }
type VCsamelLength V = V(Csized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsamelLength {v}
vcMerge = zipWith max

type Commutative a A = x:a -> y:a -> { _:Proof | Axy =AYy x }

vcMergeComm :: n:Nat -> Commutative (VCsized n) vcMerge

vcMergeComm _n [] L] = O
vcMergeComm n (_x:xs) (_y:ys) = vcMergeComm (n - 1) xS ys

Refinement reflection

type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]

type VCsized N = { vc:VectorClock | len vc == N }
type VCsamelLength V = V(Csized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsamelLength {v}

vcMerge = zipWith max application code

type Commutative a A = x:a -> y:a -> { _:Proof | Axy =AYy x }

vcMergeComm :: n:Nat -> Commutative (VCsized n) vcMerge

vcMergeComm _n [] L] = O
vcMergeComm n (_x:xs) (_y:ys) = vcMergeComm (n - 1) xS ys

Refinement reflection

type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]

type VCsized N = { vc:VectorClock | len vc == N }
type VCsamelLength V = V(Csized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsamelLength {v}

vcMerge = zipWith max application code

verification code

type Commutative a A = x:a -> y:a -> { _:Proof | Axy =AYy x}

vcMergeComm :: n:Nat -> Commutative (VCsized n) vcMerge

vcMergeComm _n [] [] =)
vcMergeComm n (_x:xs) (_y:ys) = vcMergeComm (n - 1) Xxs ys

Refinement reflection

(Local) causal delivery as a refinement type

80s process history (pHist):
[(Deliver ® “Lost my @),

(Deliver © “Found it!”),
(Broadcast “Yay!”),

]

(Local) causal delivery as a refinement type

verification code

type LocalCausalDelivery P =
= { ml : Message | elem (Deliver (pID P) ml) (pHist P) }
-> { m2 : Message | elem (Deliver (pID P) m2) (pHist P)
&& vclLess (mVC m1l) (mVC m2) }
-> { _: Proof | processOrder (pHist P) (Deliver (pID P) ml)
(Deliver (pID P) m2) }

©7s process history (pHist):
[(Deliver © “Lost my ©7),
(Deliver ® “Found it!”),
(Broadcast “Yay!”),
]

(Local) causal delivery as a refinement type

verification code

type LocalCausalDelivery P =
= { ml : Message | elem (Deliver (pID P) ml) (pHist P) }
-> { m2 : Message | elem (Deliver (pID P) m2) (pHist P)
&& vclLess (mVC m1l) (mVC m2) }
-> { _: Proof | processOrder (pHist P) (Deliver (pID P) ml)
(Deliver (pID P) m2) }

©7s process history (pHist):
[(Deliver © “Lost my ©7),
(Deliver ® “Found it!”),
(Broadcast “Yay!”),
]

(Local) causal delivery as a refinement type

verification code

type LocalCausalDelivery P =
= { ml : Message | elem (Deliver (pID P) ml) (pHist P) }
-> { m2 : Message | elem (Deliver (pID P) m2) (pHist P)
&& vclLess (mVC m1l) (mVC m2) }
-> { _: Proof | processOrder (pHist P) (Deliver (pID P) ml)
(Deliver (pID P) m2) }

©7s process history (pHist):
[(Deliver © “Lost my ©7),
(Deliver ® “Found it!”),
(Broadcast “Yay!”),
]

(Local) causal delivery as a refinement type

verification code

type LocalCausalDelivery P =
= { ml : Message | elem (Deliver (pID P) ml) (pHist P) }
-> { m2 : Message | elem (Deliver (pID P) m2) (pHist P)
&& vclLess (mVC ml1l) (mVC m2) }
-> { _: Proof | processOrder (pHist P) (Deliver (pID P) ml)
(Deliver (pID P) m2) }

©7s process history (pHist):
[(Deliver © “Lost my ©7),
(Deliver ® “Found it!”),
(Broadcast “Yay!”),
]

(Local) causal delivery as a refinement type

verification code

type LocalCausalDelivery P =
= { ml : Message | elem (Deliver (pID P) ml) (pHist P) }
-> { m2 : Message | elem (Deliver (pID P) m2) (pHist P)
&& vclLess (mVC ml1l) (mVC m2) }
-> { _: Proof | processOrder (pHist P) (Deliver (pID P) ml)
(Deliver (pID P) m2) }

©7s process history (pHist):
[(Deliver © “Lost my ©7),
(Deliver ® “Found it!”),
(Broadcast “Yay!”),
]

Running the protocol preserves (local) causal delivery

application code

verification code

Running the protocol preserves (local) causal delivery

data Op r = OpBroadcast r | OpReceive (Message r) | OpDeliver

step :: Op r -> Process -> Process

step (OpBroadcast r)
step (OpReceive m)
step (OpDeliver)

D = ..
N =

D = ..

application code

verification code

Running the protocol preserves (local) causal delivery

data Op r = OpBroadcast r | OpReceive (Message r) | OpDeliver

step :: Op r -> Process -> Process

step (OpBroadcast r)
step (OpReceive m)
step (OpDeliver)

lcdStep :: op : Op r

D = ..
N =
D = ..

application code

verification code

-> p . Process
-> LocalCausalDelivery p
-> LocalCausalDelivery (step p op)

lcdStep op p lcdp =

case op 7 step op p of

OpBroadcast r -> ..
OpReceive m -> ..

OpDeliver ->

-- short proof
-- short proof

.. —— long proof

Running the protocol preserves (local) causal delivery

data Op r = OpBroadcast r | OpReceive (Message r) | OpDeliver

step :: Op r -> Process -> Process

step (OpBroadcast r)
step (OpReceive m)
step (OpDeliver)

lcdStep :: op : Op r

D = ..
N =
D = ..

application code

verification code

-> p . Process
-> LocalCausalDelivery p
-> LocalCausalDelivery (step p op)

lcdStep op p lcdp =

case op 7 step op p of

OpBroadcast r -> ..
OpReceive m -> ..

OpDeliver ->

-- short proof
-- short proof

.. —— long proof

Running the protocol preserves (local) causal delivery

data Op r = OpBroadcast r | OpReceive (Message r) | OpDeliver

step :: Op r -> Process -> Process

step (OpBroadcast r)
step (OpReceive m)
step (OpDeliver)

lcdStep :: op : Op r

D = ..
N =
D = ..

application code

verification code

-> p . Process
-> LocalCausalDelivery p
-> LocalCausalDelivery (step p op)

lcdStep op p lcdp =

case op 7 step op p of

OpBroadcast r -> ..
OpReceive m -> ..

OpDeliver ->

-- short proof
-- short proof

.. —— long proof

Running the protocol preserves (local) causal delivery

data Op r = OpBroadcast r | OpReceive (Message r) | OpDeliver

step :: Op r -> Process -> Process

step (OpBroadcast r)
step (OpReceive m)
step (OpDeliver)

lcdStep :: op : Op r

D = ..
N =
D = ..

application code

verification code

-> p . Process
-> LocalCausalDelivery p
-> LocalCausalDelivery (step p op)

lcdStep op p lcdp =

case op 7 step op p of

OpBroadcast r -> ..
OpReceive m -> ..

OpDeliver ->

-- short proof
-- short proof

.. —— long proof

(14 . b))
* = "relies on

Running the protocol
for one step
preserves local causal delivery

(14 . b))
* = "relies on

\C Running the protocol
for one step
preserves local causal delivery

(14 . b))
* = "relies on

&QQ
\Cd Running the protocol

for one step
preserves local causal delivery

\AA

broadcast, receive, deliver

each preserve local causal delivery
(deliver is the hard part)

(14 . b))
* = "relies on

Running the protocol
for one step
preserves causal delivery

SQ’Q *

X
\Cd Running the protocol
for one step
preserves local causal delivery

\AA

broadcast, receive, deliver

each preserve local causal delivery
(deliver is the hard part)

(14 . b))
* = "relies on

Running the protocol
for one step
preserves causal delivery

<;U@Q ‘L

\Cd Running the protocol
for one step
preserves local causal delivery

\AA

broadcast, receive, deliver

each preserve local causal delivery
(deliver is the hard part)

Causal delivery [Birman et al., 1991]: m > m’ = Vp: deliverp(m) 5 deliverp(m’)

(14 . b))
* = "relies on

Running the protocol
for one step
preserves causal delivery

<;C@Q ‘;

\Cd Running the protocol
for one step
preserves local causal delivery

\AA

broadcast, receive, deliver

each preserve local causal delivery
(deliver is the hard part)

Causal delivery [Birman et al., 1991]: m > m’ = Vp: deliverp(m) 5 deliverp(m’)

type CausalDelivery X = verification code
pid : PID -- any pid in the domain of execution X

-> { m : Message | elem (Deliver pid m) (pHist (X pid)) }
-> { m'" : Message | elem (Deliver pid m') (pHist (X pid))
&& happensBefore X (Broadcast m) (Broadcast m') }
-> { _: Proof | procOrder (pHist (X pid)) (Deliver pid m) (Deliver pid m') }

(14 . b))
* = "relies on

Running the protocol
for one step
preserves causal delivery

<;C@Q ‘;

\Cd Running the protocol
for one step
preserves local causal delivery

\AA

broadcast, receive, deliver

each preserve local causal delivery
(deliver is the hard part)

Causal delivery [Birman et al., 1991]: \m —» m/| = Vp: deliverp(m) 5 deliverp(m’)

type CausalDelivery X = verification code
pid : PID -- any pid in the domain of execution X

-> { m : Message | elem (Deliver pid m) (pHist (X pid)) }
-> { m'" : Message | elem (Deliver pid m') (pHist (X pid))
&& happensBefore X (Broadcast m) (Broadcast m') }
-> { _: Proof | procOrder (pHist (X pid)) (Deliver pid m) (Deliver pid m') }

Causal delivery [Birman et al., 1991]: \m — m/| =|Vp: deliverp(m) 5 deliverp(m’)

type

->
->

->

(14 . »
* = "relies on

Running the protocol
for one step
preserves causal delivery

gﬁﬁx> ‘;

'\Cd Running the protocol
for one step
preserves local causal delivery

\Ad

broadcast, receive, deliver

each preserve local causal delivery
(deliver is the hard part)

CausalDelivery X = verification code
pid : PID|-- any pid in the domain of execution X
{ m : Message | elem (Deliver pid m) (pHist (X pid)) }
{ m" : Message | elem (Deliver pid m') (pHist (X pid))
&&|happensBeFore X (Broadcast m) (Broadcast m')|}
{ _: Proof | |procOrder (pHist (X pid)) (Deliver pid m) (Deliver pid m')| }

Causal delivery [Birman et al., 1991]: \m — m/| =|Vp: deliverp(m) 5 deliverp(m’)

type

—->
->

->

(14 . b))
* = "relies on

Running the protocol
for one step

/ preserves causal delivery
el *

whole execution observes CQS)('
- \
causal delivery —
each process observes
local causal delivery

Running the protocol
for one step
preserves local causal delivery

\AA

broadcast, receive, deliver

each preserve local causal delivery
(deliver is the hard part)

CausalDelivery X = verification code
pid : PID|-- any pid in the domain of execution X
{ m : Message | elem (Deliver pid m) (pHist (X pid)) }
{ m" : Message | elem (Deliver pid m') (pHist (X pid))
&& happensBefore X (Broadcast m) (Broadcast m') }
{ _: Proof | |procOrder (pHist (X pid)) (Deliver pid m) (Deliver pid m')|}

Causal delivery [Birman et al., 1991]: \m — m/| =|Vp: deliverp(m) 5 deliverp(m’)

type

—->
->

->

vector clocks reflect
happens-before

v

(14 . b))
* = "relies on

Running the protocol
for one step

/ preserves causal delivery
e? *

whole execution observes CGS)('
- \
causal delivery —
each process observes
local causal delivery

Running the protocol
for one step
preserves local causal delivery

\AA

broadcast, receive, deliver

each preserve local causal delivery
(deliver is the hard part)

CausalDelivery X = verification code
pid : PID|-- any pid in the domain of execution X
{ m : Message | elem (Deliver pid m) (pHist (X pid)) }
{ m" : Message | elem (Deliver pid m') (pHist (X pid))
&& happensBefore X (Broadcast m) (Broadcast m') }
{ _: Proof | |procOrder (pHist (X pid)) (Deliver pid m) (Deliver pid m')|}

(14 . b))
* = "relies on

Running the protocol
for one step

/ preserves causal delivery \

. &GQ
whole executl.on observes \Cd Running the protocol
causal delivery —

for one step
each process observes local Lt
local causal delivery preserves local causal delivery

v \AA

vector clocks reflect broadcast, receive, deliver

happens-before each preserve local causal delivery
(deliver is the hard part)

each process observes
local causal delivery —
whole execution observes
causal delivery

Causal delivery [Birman et al., 1991]: \m — m/| =|Vp: deliverp(m) 5 deliverp(m’)

type CausalDelivery X = verification code
pid : PID|-- any pid in the domain of execution X

-> { m : Message | elem (Deliver pid m) (pHist (X pid)) }
-> { m'" : Message | elem (Deliver pid m') (pHist (X pid))

&& happensBefore X (Broadcast m) (Broadcast m') }
-> { _: Proof | |procOrder (pHist (X pid)) (Deliver pid m) (Deliver pid m') }

(14 . b))
* = "relies on

Running the protocol
for one step

/ preserves causal delivery \

. &GQ
whole executl.on observes \Cd Running the protocol
causal delivery —

for one ste .
each process observes local P 1 deli whole execution observes
local causal delivery preserves local causal dellvery causal delivery

v \AA v

vector clocks reflect broadcast, receive, deliver

happens-before each preserve local causal delivery
(deliver is the hard part)

each process observes
local causal delivery —

vector clocks preserve
happens-before

Causal delivery [Birman et al., 1991]: \m — m/| =|Vp: deliverp(m) 5 deliverp(m’)

type CausalDelivery X = verification code
pid : PID|-- any pid in the domain of execution X

-> { m : Message | elem (Deliver pid m) (pHist (X pid)) }
-> { m'" : Message | elem (Deliver pid m') (pHist (X pid))

&& happensBefore X (Broadcast m) (Broadcast m') }
-> { _: Proof | |procOrder (pHist (X pid)) (Deliver pid m) (Deliver pid m') }

Running the protocol

for any number of steps * = “relies on”
preserves causal delivery

* (+ induction)

Running the protocol
for one step

/ preserves causal delivery \

. &GQ
whole executl.on observes \Cd Running the protocol
causal delivery —

for one ste .
each process observes local P 1 deli whole execution observes
local causal delivery preserves local causal dellvery causal delivery

v \AA v

vector clocks reflect broadcast, receive, deliver

happens-before each preserve local causal delivery
(deliver is the hard part)

each process observes
local causal delivery —

vector clocks preserve
happens-before

Causal delivery [Birman et al., 1991]: \m — m/| =|Vp: deliverp(m) 5 deliverp(m')

type CausalDelivery X = verification code
pid : PID|-- any pid in the domain of execution X

-> { m : Message | elem (Deliver pid m) (pHist (X pid)) }
-> { m'" : Message | elem (Deliver pid m') (pHist (X pid))

&& happensBefore X (Broadcast m) (Broadcast m') }
-> { _: Proof | |procOrder (pHist (X pid)) (Deliver pid m) (Deliver pid m') }

Building apps with causal broadcast

Node Node

App logic
broadcast
Node
Message
deliver receive transport WAN/
Delay

App state P

¢
: queue
Node
deliverable?

Building apps with causal broadcast

Node @1 Node
e
/ PO
App logic '
P08 broadcast
Node
Message

deliver receive transport WAN// ﬂ

Dela
App state P v

¢
: queue
Node
deliverable?

Building apps with causal broadcast

Node Node

App logic
broadcast
Node
Message
deliver receive transport WAN/
Delay

App state P

¢
: queue
Node
deliverable?

Building apps with causal broadcast

Client

I

Client

Client /

App logic

i

App state

broadcast

deliver

« f

Delay
queue

B

receive

deliverable?

Message
transport

Node

7
WAN //

Node

Client

Client

Client

Building apps with causal broadcast

Client Node
50
App logic
Client ¢
ﬁ@}? -
A App state

broadcast

deliver

« f

Delay
queue

receive

B

Client /

deliverable?

Message
transport

Node

/ s
WAN//

Node

Client

Client

Client

Building apps with causal broadcast

Self-
actualization

/ Any (?) \
Collaborative App
/Zomposable Unique Set CRDT\
/ Causal broadcast \
/ Internet \
/ Food, water, shelter \

Hierarchy of needs

Credit: Matthew Weidner

Programmers should be able to...

express and prove interesting correctness properties
...of deployable implementations of distributed systems

...using language-integrated verification tools (i.e., types!)

11

Programmers should be able to...

express and prove interesting correctness properties
...of deployable implementations of distributed systems

...using language-integrated verification tools (i.e., types!)

[HATRA 2021]

Toward Hole-Driven Development in Liquid Haskell

PATRICK REDMOND, University of California, Santa Cruz, USA
GAN SHEN, University of California, Santa Cruz, USA
LINDSEY KUPER, University of California, Santa Cruz, USA

Liquid Haskell is an extension to the Haskell programming language that adds support for refinement types:
data types augmented with SMT-decidable logical predicates that refine the set of values that can inhabit a
type. Furthermore, Liquid Haskell's support for refinement reflection enables the use of Haskell for general
purpose mechanized theorem proving. A growing list of large-scale mechanized proof developments in Liquid
Haskell take advantage of this capability. Adding theorem-proving capabilities to a “legacy” language like
Haskell lets programmers directly verify properties of real-world Haskell programs (taking advantage of
the existing highly tuned compiler, run-time system, and libraries), just by writing Haskell. However, more
established proof assistants like Agda and Coq offer far better support for interactive proof development and
insight into the proof state (for instance, what subgoals still need to be proved to finish a partially-complete
proof). In contrast, Liquid Haskell provides only coarse-grained feedback to the user — either it reports a type
error, or not — unfortunately hindering its usability as a theorem prover.

In this paper, we propose improving the usability of Liquid Haskell by extending it with support for Agda
style typed holes and interactive editing commands that take advantage of them. In Agda, typed holes allow
programmers to indicate unfinished parts of a proof, and incrementally complete the proof in a dialogue
with the comniler While GHC Hackell alreadyv hac ite awn Acda-inenired suinnort for tvned holee we nocit

Thank you!

Languages, Systems, and Data Lab: Isd.ucsc.edu
Lindsey's research blog: decomposition.al

@ [0,0,0,0] ;l:;' [0,0,0,0] ﬂ [0,0,0,0] ﬂ [0,0,0,0]
7.1 PO
[0,0,0,1]
/ [0,0,0,1]
4

[e.0.0.11
/ [0,0,0,2]

—>4
24
’
’
1
L}

[0,0,0,2]
[1,0,0,2]

[0,0,0,2 [0,0,0,2]

X~‘
‘5
A Y
1
[0,0,0,11 7
%
4
Y
’
1
)
A

,0,2]

[1,0,0,2]

[1,0,0,2]

O github.com/lsd-ucsc/cbcast-1lh

12

http://lsd.ucsc.edu
http://decomposition.al

Languages, Systems, and Data Lab: Isd.ucsc.edu
Lindsey’s research blog: decomposition.al

A
Q [0.0.0.91 ﬁ [e.0.0.0] ﬂ [0,0,0,01 [0.0,0,01
.
[0.0,0,1]
/ [0!0-0-1]
L4

[0,0,0,1]
/ [0.,0,0,2]

—>4
L4
’
L
1
'

[0,0,0,2]
[1,0,0,2]

X~1

A Y

A Y

1

[0,0,0,1] 7
%
4

1
' [,0.0,2 N [0,0,0,2]
.

.
‘l [1,0,0,2] ,0,2]

[1,0,0,2]

Q github.com/lsd-ucsc/cbcast-1h

12

http://lsd.ucsc.edu
http://decomposition.al

