
IFL 2022
Copenhagen, Denmark

31 August 2022

Patrick Redmond Gan Shen Niki Vazou Lindsey Kuper

Veri!ed Causal Broadcast
with Liquid Haskell

github.com/lsd-ucsc/cbcast-lh

IFL 2022
Copenhagen, Denmark

31 August 2022

Patrick Redmond Gan Shen Niki Vazou Lindsey Kuper

Veri!ed Causal Broadcast
with Liquid Haskell

github.com/lsd-ucsc/cbcast-lh

IFL 2022
Copenhagen, Denmark

31 August 2022

Patrick Redmond Gan Shen Niki Vazou Lindsey Kuper

Veri!ed Causal Broadcast
with Liquid Haskell

github.com/lsd-ucsc/cbcast-lh

IFL 2022
Copenhagen, Denmark

31 August 2022

Patrick Redmond Gan Shen Niki Vazou Lindsey Kuper

Veri!ed Causal Broadcast
with Liquid Haskell

github.com/lsd-ucsc/cbcast-lh

IFL 2022
Copenhagen, Denmark

31 August 2022

Patrick Redmond Gan Shen Niki Vazou Lindsey Kuper

Veri!ed Causal Broadcast
with Liquid Haskell

github.com/lsd-ucsc/cbcast-lh

IFL 2022
Copenhagen, Denmark

31 August 2022

Patrick Redmond Gan Shen Niki Vazou Lindsey Kuper

Veri!ed Causal Broadcast
with Liquid Haskell

github.com/lsd-ucsc/cbcast-lh

IFL 2022
Copenhagen, Denmark

31 August 2022

Patrick Redmond Gan Shen Niki Vazou Lindsey Kuper

Veri!ed Causal Broadcast
with Liquid Haskell

github.com/lsd-ucsc/cbcast-lh

2

Lost my …

2

Lost my …

Found it!

2

Lost my …

Found it!

!

2

Lost my …

Found it!

!

happens-before

2

Lost my …

Found it!

!

happens-before

2

Lost my …

Found it!

"
FIFO delivery

happens-before

2

Lost my …

Found it!

" Yay!
FIFO delivery

happens-before

2

Lost my …

Found it!

"

#

Yay!
FIFO delivery

#

happens-before

2

Lost my …

Found it!

"

#

Yay!
FIFO delivery

#

happens-before

2

Lost my …

Found it!

"

#

Yay!
FIFO delivery

#

happens-before

2

Lost my …

Found it!

" Yay!
FIFO delivery

happens-before

""

2

Causal broadcast with vector clocks [Birman et al., 1991] 3

[0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0]

Causal broadcast with vector clocks [Birman et al., 1991] 3

Lost my …
[0,0,0,1]

[0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0]

Causal broadcast with vector clocks [Birman et al., 1991] 3

Lost my …
[0,0,0,1]

[0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0]

A message is deliverable
if its VC is:
• 1 greater than recipient’s

VC in sender’s position
• ≤ recipient’s VC elsewhere

✅

Causal broadcast with vector clocks [Birman et al., 1991] 3

Lost my …
[0,0,0,1]

[0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0]

✅

A message is deliverable
if its VC is:
• 1 greater than recipient’s

VC in sender’s position
• ≤ recipient’s VC elsewhere

✅

Causal broadcast with vector clocks [Birman et al., 1991] 3

Lost my …
[0,0,0,1]

[0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0]

✅
[0,0,0,1]

A message is deliverable
if its VC is:
• 1 greater than recipient’s

VC in sender’s position
• ≤ recipient’s VC elsewhere

✅

Causal broadcast with vector clocks [Birman et al., 1991] 3

Lost my …
[0,0,0,1]

[0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0]

✅

✅
[0,0,0,1]

A message is deliverable
if its VC is:
• 1 greater than recipient’s

VC in sender’s position
• ≤ recipient’s VC elsewhere

✅

Causal broadcast with vector clocks [Birman et al., 1991] 3

Lost my …
[0,0,0,1]

[0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0]

✅

✅
[0,0,0,1]

[0,0,0,1]

A message is deliverable
if its VC is:
• 1 greater than recipient’s

VC in sender’s position
• ≤ recipient’s VC elsewhere

✅

Causal broadcast with vector clocks [Birman et al., 1991] 3

Lost my …

Found it!

[0,0,0,1]

[0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0]

✅

✅
[0,0,0,1]

[0,0,0,1]
[0,0,0,2]

A message is deliverable
if its VC is:
• 1 greater than recipient’s

VC in sender’s position
• ≤ recipient’s VC elsewhere

✅

Causal broadcast with vector clocks [Birman et al., 1991] 3

Lost my …

Found it!

[0,0,0,1]

[0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0]

✅

✅

❌

[0,0,0,1]

[0,0,0,1]
[0,0,0,2]

A message is deliverable
if its VC is:
• 1 greater than recipient’s

VC in sender’s position
• ≤ recipient’s VC elsewhere

✅

Causal broadcast with vector clocks [Birman et al., 1991] 3

Lost my …

Found it!

[0,0,0,1]

[0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0]

✅

✅

✅

❌

[0,0,0,1]

[0,0,0,1]
[0,0,0,2]

A message is deliverable
if its VC is:
• 1 greater than recipient’s

VC in sender’s position
• ≤ recipient’s VC elsewhere

✅

Causal broadcast with vector clocks [Birman et al., 1991] 3

Lost my …

Found it!

[0,0,0,1]

[0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0]

✅

✅

✅

❌

[0,0,0,1]

[0,0,0,1]
[0,0,0,2]

[0,0,0,1]

A message is deliverable
if its VC is:
• 1 greater than recipient’s

VC in sender’s position
• ≤ recipient’s VC elsewhere

✅

Causal broadcast with vector clocks [Birman et al., 1991] 3

Lost my …

Found it!

[0,0,0,1]

[0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0]

✅

✅

✅

✅

❌

[0,0,0,1]

[0,0,0,1]
[0,0,0,2]

[0,0,0,1]

A message is deliverable
if its VC is:
• 1 greater than recipient’s

VC in sender’s position
• ≤ recipient’s VC elsewhere

✅

Causal broadcast with vector clocks [Birman et al., 1991] 3

Lost my …

Found it!

[0,0,0,1]

[0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0]

✅

✅

✅

✅

❌

[0,0,0,1]

[0,0,0,1]
[0,0,0,2]

[0,0,0,2]
[0,0,0,1]

A message is deliverable
if its VC is:
• 1 greater than recipient’s

VC in sender’s position
• ≤ recipient’s VC elsewhere

✅

Causal broadcast with vector clocks [Birman et al., 1991] 3

Lost my …

Found it!

Yay!

[0,0,0,1]

[0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0]

✅

✅

✅

✅

❌

[0,0,0,1]

[0,0,0,1]
[0,0,0,2]

[0,0,0,2]
[0,0,0,1]

[1,0,0,2]

A message is deliverable
if its VC is:
• 1 greater than recipient’s

VC in sender’s position
• ≤ recipient’s VC elsewhere

✅

Causal broadcast with vector clocks [Birman et al., 1991] 3

Lost my …

Found it!

Yay!

[0,0,0,1]

[0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0]

✅

✅

✅

✅

✅

❌

[0,0,0,1]

[0,0,0,1]
[0,0,0,2]

[0,0,0,2]
[0,0,0,1]

[1,0,0,2]

[1,0,0,2]

A message is deliverable
if its VC is:
• 1 greater than recipient’s

VC in sender’s position
• ≤ recipient’s VC elsewhere

✅

Causal broadcast with vector clocks [Birman et al., 1991] 3

Lost my …

Found it!

Yay!

[0,0,0,1]

[0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0]

✅

✅

✅

✅

✅

❌
❌

❌

[0,0,0,1]

[0,0,0,1]
[0,0,0,2]

[0,0,0,2]
[0,0,0,1]

[1,0,0,2]

[1,0,0,2]

A message is deliverable
if its VC is:
• 1 greater than recipient’s

VC in sender’s position
• ≤ recipient’s VC elsewhere

✅

Causal broadcast with vector clocks [Birman et al., 1991] 3

Lost my …

Found it!

Yay!

[0,0,0,1]

[0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0]

✅

✅

✅

✅

✅

✅

❌
❌

❌

[0,0,0,2]

[0,0,0,1]

[0,0,0,1]
[0,0,0,2]

[0,0,0,2]
[0,0,0,1]

[0,0,0,2]

[1,0,0,2]

✅

[1,0,0,2]

A message is deliverable
if its VC is:
• 1 greater than recipient’s

VC in sender’s position
• ≤ recipient’s VC elsewhere

✅

Causal broadcast with vector clocks [Birman et al., 1991] 3

Lost my …

Found it!

Yay!

[0,0,0,1]

[0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0]

✅

✅

✅

✅

✅

✅

❌
❌

❌

[0,0,0,2]

[0,0,0,1]

[0,0,0,1]
[0,0,0,2]

[0,0,0,2]
[0,0,0,1]

[0,0,0,2]

[1,0,0,2]

✅

✅✅

[1,0,0,2]

[1,0,0,2][1,0,0,2]

A message is deliverable
if its VC is:
• 1 greater than recipient’s

VC in sender’s position
• ≤ recipient’s VC elsewhere

✅

Causal broadcast with vector clocks [Birman et al., 1991] 3

4

type Nat = { v:Int | v >= 0 }

Re!nement types

4

type Nat = { v:Int | v >= 0 }

Re!nement types

4

type VectorClock = [Nat]
type Nat = { v:Int | v >= 0 }

Re!nement types

4

vcMerge ::

type VectorClock = [Nat]
type Nat = { v:Int | v >= 0 }

VectorClock -> VectorClock -> VectorClock

Re!nement types

4

vcMerge ::

type VectorClock = [Nat]
type Nat = { v:Int | v >= 0 }

vcMerge = zipWith max
VectorClock -> VectorClock -> VectorClock

e.g., vcMerge [1,0,0,0] [0,2,0,1] = [1,2,0,1]

Re!nement types

4

vcMerge ::

type VectorClock = [Nat]
type Nat = { v:Int | v >= 0 }

vcMerge = zipWith max
VectorClock -> VectorClock -> VectorClock

e.g., vcMerge [1,0,0,0] [0,2,0,1] = [1,2,0,1]

type VCsized N = { vc:VectorClock | len vc == N }

Re!nement types

4

vcMerge ::

type VectorClock = [Nat]
type Nat = { v:Int | v >= 0 }

vcMerge = zipWith max
VectorClock -> VectorClock -> VectorClock

e.g., vcMerge [1,0,0,0] [0,2,0,1] = [1,2,0,1]

type VCsized N = { vc:VectorClock | len vc == N }
type VCsameLength V = VCsized {len V}

Re!nement types

4

vcMerge ::

type VectorClock = [Nat]
type Nat = { v:Int | v >= 0 }

vcMerge = zipWith max
VectorClock -> VectorClock -> VectorClock

e.g., vcMerge [1,0,0,0] [0,2,0,1] = [1,2,0,1]

type VCsized N = { vc:VectorClock | len vc == N }
type VCsameLength V = VCsized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsameLength {v}

Re!nement types

5

type VectorClock = [Nat]
type Nat = { v:Int | v >= 0 }

type VCsized N = { vc:VectorClock | len vc == N }
type VCsameLength V = VCsized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsameLength {v}
vcMerge = zipWith max

Re!nement types

5

type VectorClock = [Nat]
type Nat = { v:Int | v >= 0 }

type VCsized N = { vc:VectorClock | len vc == N }
type VCsameLength V = VCsized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsameLength {v}
vcMerge = zipWith max

Re!nement re!ection

5

type VectorClock = [Nat]
type Nat = { v:Int | v >= 0 }

type VCsized N = { vc:VectorClock | len vc == N }
type VCsameLength V = VCsized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsameLength {v}
vcMerge = zipWith max

type Commutative a A = x:a -> y:a -> { _:Proof | A x y == A y x }

Re!nement re!ection

5

type VectorClock = [Nat]
type Nat = { v:Int | v >= 0 }

type VCsized N = { vc:VectorClock | len vc == N }
type VCsameLength V = VCsized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsameLength {v}
vcMerge = zipWith max

type Commutative a A = x:a -> y:a -> { _:Proof | A x y == A y x }

Re!nement re!ection

5

type VectorClock = [Nat]
type Nat = { v:Int | v >= 0 }

type VCsized N = { vc:VectorClock | len vc == N }
type VCsameLength V = VCsized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsameLength {v}
vcMerge = zipWith max

type Commutative a A = x:a -> y:a -> { _:Proof | A x y == A y x }

Re!nement re!ection

5

type VectorClock = [Nat]
type Nat = { v:Int | v >= 0 }

type VCsized N = { vc:VectorClock | len vc == N }
type VCsameLength V = VCsized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsameLength {v}
vcMerge = zipWith max

type Commutative a A = x:a -> y:a -> { _:Proof | A x y == A y x }

vcMergeComm :: n:Nat -> Commutative (VCsized n) vcMerge

Re!nement re!ection

5

type VectorClock = [Nat]
type Nat = { v:Int | v >= 0 }

type VCsized N = { vc:VectorClock | len vc == N }
type VCsameLength V = VCsized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsameLength {v}
vcMerge = zipWith max

vcMergeComm _n [] [] = ()
vcMergeComm n (_x:xs) (_y:ys) = vcMergeComm (n - 1) xs ys

type Commutative a A = x:a -> y:a -> { _:Proof | A x y == A y x }

vcMergeComm :: n:Nat -> Commutative (VCsized n) vcMerge

Re!nement re!ection

5

type VectorClock = [Nat]
type Nat = { v:Int | v >= 0 }

type VCsized N = { vc:VectorClock | len vc == N }
type VCsameLength V = VCsized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsameLength {v}
vcMerge = zipWith max

vcMergeComm _n [] [] = ()
vcMergeComm n (_x:xs) (_y:ys) = vcMergeComm (n - 1) xs ys

type Commutative a A = x:a -> y:a -> { _:Proof | A x y == A y x }

vcMergeComm :: n:Nat -> Commutative (VCsized n) vcMerge

Re!nement re!ection

5

type VectorClock = [Nat]
type Nat = { v:Int | v >= 0 }

type VCsized N = { vc:VectorClock | len vc == N }
type VCsameLength V = VCsized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsameLength {v}
vcMerge = zipWith max

vcMergeComm _n [] [] = ()
vcMergeComm n (_x:xs) (_y:ys) = vcMergeComm (n - 1) xs ys

type Commutative a A = x:a -> y:a -> { _:Proof | A x y == A y x }

vcMergeComm :: n:Nat -> Commutative (VCsized n) vcMerge

Re!nement re!ection

5

type VectorClock = [Nat]
type Nat = { v:Int | v >= 0 }

type VCsized N = { vc:VectorClock | len vc == N }
type VCsameLength V = VCsized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsameLength {v}
vcMerge = zipWith max

vcMergeComm _n [] [] = ()
vcMergeComm n (_x:xs) (_y:ys) = vcMergeComm (n - 1) xs ys

type Commutative a A = x:a -> y:a -> { _:Proof | A x y == A y x }

vcMergeComm :: n:Nat -> Commutative (VCsized n) vcMerge

application code

Re!nement re!ection

5

type VectorClock = [Nat]
type Nat = { v:Int | v >= 0 }

type VCsized N = { vc:VectorClock | len vc == N }
type VCsameLength V = VCsized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsameLength {v}
vcMerge = zipWith max

vcMergeComm _n [] [] = ()
vcMergeComm n (_x:xs) (_y:ys) = vcMergeComm (n - 1) xs ys

type Commutative a A = x:a -> y:a -> { _:Proof | A x y == A y x }

vcMergeComm :: n:Nat -> Commutative (VCsized n) vcMerge

veri!cation code

application code

Re!nement re!ection

6

Birman et al., “Lightweight Causal and Atomic Group Multicast”
ACM TOCS, 1991

[0,0,0,1]

[0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0]

✅

✅

✅

✅

✅

✅

❌
❌

❌

[0,0,0,2]

[0,0,0,1]

[0,0,0,1]
[0,0,0,2]

[0,0,0,2]
[0,0,0,1]

[0,0,0,2]

[1,0,0,2]

✅

✅
✅

[1,0,0,2]

[1,0,0,2][1,0,0,2]

type CausalDelivery p =
 { m : Message | elem (Deliver m) (pHist p) }
 -> { m': Message | elem (Deliver m') (pHist p)
 && causallyBefore m m' }
 -> { _: Proof | ordered (pHist p) (Deliver m) (Deliver m') }

7

Birman et al., “Lightweight Causal and Atomic Group Multicast”
ACM TOCS, 1991

[0,0,0,1]

[0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0]

✅

✅

✅

✅

✅

✅

❌
❌

❌

[0,0,0,2]

[0,0,0,1]

[0,0,0,1]
[0,0,0,2]

[0,0,0,2]
[0,0,0,1]

[0,0,0,2]

[1,0,0,2]

✅

✅
✅

[1,0,0,2]

[1,0,0,2][1,0,0,2]

type CausalDelivery p =
 { m : Message | elem (Deliver m) (pHist p) }
 -> { m': Message | elem (Deliver m') (pHist p)
 && causallyBefore m m' }
 -> { _: Proof | ordered (pHist p) (Deliver m) (Deliver m') }

7

type CausalDelivery p =
 { m : Message | elem (Deliver m) (pHist p) }
 -> { m': Message | elem (Deliver m') (pHist p)
 && causallyBefore m m' }
 -> { _: Proof | ordered (pHist p) (Deliver m) (Deliver m') }

7

data Op = OpReceive (Message) | OpDeliver | OpBroadcast

step :: Op -> Process -> Process

type CausalDelivery p =
 { m : Message | elem (Deliver m) (pHist p) }
 -> { m': Message | elem (Deliver m') (pHist p)
 && causallyBefore m m' }
 -> { _: Proof | ordered (pHist p) (Deliver m) (Deliver m') }

7

data Op = OpReceive (Message) | OpDeliver | OpBroadcast

step :: Op -> Process -> Process

causalDeliveryPreservation :: ops : [Op]
 -> p : Process
 -> CausalDelivery p
 -> CausalDelivery (foldr step p ops)
causalDeliveryPreservation = … — a few hundred lines

type CausalDelivery p =
 { m : Message | elem (Deliver m) (pHist p) }
 -> { m': Message | elem (Deliver m') (pHist p)
 && causallyBefore m m' }
 -> { _: Proof | ordered (pHist p) (Deliver m) (Deliver m') }

7

data Op = OpReceive (Message) | OpDeliver | OpBroadcast

step :: Op -> Process -> Process

causalDeliveryPreservation :: ops : [Op]
 -> p : Process
 -> CausalDelivery p
 -> CausalDelivery (foldr step p ops)
causalDeliveryPreservation = … — a few hundred lines

Programmers should be able to…

mechanically express and prove correctness properties

8

Programmers should be able to…

mechanically express and prove correctness properties
…of executable implementations of distributed systems

8

Programmers should be able to…

mechanically express and prove correctness properties
…of executable implementations of distributed systems
…using language-integrated veri!cation tools (i.e., types!)

8

Programmers should be able to…

mechanically express and prove correctness properties
…of executable implementations of distributed systems
…using language-integrated veri!cation tools (i.e., types!)

8

[HATRA 2021]

Tak!

Languages, Systems, and Data Lab: lsd.ucsc.edu
Lindsey’s research blog: decomposition.al

9

github.com/lsd-ucsc/cbcast-lh

[0,0,0,1]

[0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0]

✅

✅

✅

✅

✅

✅

❌
❌

❌

[0,0,0,2]

[0,0,0,1]

[0,0,0,1]
[0,0,0,2]

[0,0,0,2]
[0,0,0,1]

[0,0,0,2]

[1,0,0,2]

✅

✅
✅

[1,0,0,2]

[1,0,0,2][1,0,0,2]

http://lsd.ucsc.edu
http://decomposition.al

