Verified Causal Broadcast
with Liquid Haskell

Patrick Redmond Gan Shen Niki Vazou Lindsey Kuper

IFL 2022
Copenhagen, Denmark
31 August 2022

Zunof. UNIVERSITY OF CALIFORNIA .

Q~ WX oN
3@ NS Q’(¥ I
HEOAEREE Dy)
AW B 9/
NG) S
"So 2 4
1868 N\

(’ github.com/lsd-ucsc/cbcast-1h

Verified Causal Broadcast
with Liquid Haskell

Patrick Redmond Gan Shen Niki Vazou Lindsey Kuper

séc

IFL 2022
Copenhagen, Denmark
31 August 2022

Zunof. UNIVERSITY OF CALIFORNIA .

Q~ WX oN
57 B Q’r \: I
HEOAEREE Dy)
AW B 9/
NG) S
"So 2 4
1868 N\

(’ github.com/lsd-ucsc/cbcast-1h

Verified Causal Broadcast
with Liquid Haskell

Patrick Redmond Gan Shen Niki Vazou Lindsey Kuper

IFL 2022
Copenhagen, Denmark
31 August 2022

Zunof. UNIVERSITY OF CALIFORNIA .

Q~ WX oN
57 B Q’r \: I
HEOAEREE Dy)
HR W B0 9/
NG) S
"So 2 4
1868 N\

(’ github.com/lsd-ucsc/cbcast-1h

Verified Causal Broadcast
with Liquid Haskell

Patrick Redmond Gan Shen Niki Vazou Lindsey Kuper

IFL 2022
Copenhagen, Denmark
31 August 2022

Zunof. UNIVERSITY OF CALIFORNIA .

Q~ WX oN
57 B Q’r \: I
HEOAEREE Dy)
HR W B0 9/
NG) S
"So 2 4
1868 N\

(’ github.com/lsd-ucsc/cbcast-1h

Verified Causal Broadcast
with Liquid Haskell

Patrick Redmond Gan Shen Niki Vazou Lindsey Kuper

ﬂ

e
‘_!;,

IFL 2022
Copenhagen, Denmark
31 August 2022

Zunof. UNIVERSITY OF CALIFORNIA .

G WX oN
Ky AQ/ [l S Qy "
N e sl P).
HES ==y ; ‘2
i = :E‘ of:
: =S :

NGRS S

X9 » 4\.._.

1868\

(’ github.com/lsd-ucsc/cbcast-1h

Verified Causal Broadcase

with Liquid Haskell

Patrick Redmond Gan Shen Niki Vazou Lindsey Kuper

& 4 A

IFL 2022
Copenhagen, Denmark
31 August 2022

ainose. UNIVERSITY OF CALIFORNIA u

:-" WX .C‘ '...
el = INGY
: g =22y 1R
HHW ES==0=¢JH
.‘. W = .t 3 ‘.'

R Al

1869 v

O github.com/lsd-ucsc/cbcast-1h

Patrick Redmond Gan Shen Niki Vazou Lindsey Kuper

IFL 2022

Copenhagen, Denmark
31 August 2022

ainose. UNIVERSITY OF CALIFORNIA u

LESCRL e

O github.com/lsd-ucsc/cbcast-1h

happens-before

’ *ﬂl‘\{'/)

happens-before

(2 aiﬁ‘\{'/

2 FIFO delivery

happens-before

A

D2
A\

)
1

2 FIFO delivery

Yay!

happens-before

A

D2
A\

)
1

2 FIFO delivery

Yay!

happens-before

g FIFO delivery

happens-before

g FIFO delivery

happens-before

g FIFO delivery

happens-before

v \4 \4 v

Causal broadcast with vector clocks [Birman et al., 1991]

[0,0,0,0]

v \4 \4 v

Causal broadcast with vector clocks [Birman et al., 1991] 3

 [0,0,0,0]

[0,0,0,1]

v \4 \4 v

Causal broadcast with vector clocks [Birman et al., 1991] 3

| [0,0,0,0]

[0,0,0,1]

if its VC is:
o 1 greater than recipient’s

VC in sender’s position
e =< recipient’s VC elsewhere

v \4 \4 v

Causal broadcast with vector clocks [Birman et al., 1991] 3

| [0,0,0,0]

[0,0,0,1]

if its VC is:
o 1 greater than recipient’s

VC in sender’s position
e =< recipient’s VC elsewhere

v \4 \4 v

Causal broadcast with vector clocks [Birman et al., 1991] 3

| [0,0,0,0]

[0,0,0,1]

if its VC is:
o 1 greater than recipient’s

VC in sender’s position
e =< recipient’s VC elsewhere

v \4 \4 v

Causal broadcast with vector clocks [Birman et al., 1991] 3

| [0,0,0,0]

[0,0,0,1]

if its VC is:
o 1 greater than recipient’s

VC in sender’s position
e =< recipient’s VC elsewhere

v \4 \4 v

Causal broadcast with vector clocks [Birman et al., 1991] 3

| [0,0,0,0]

[0,0,0,1]

if its VC is:
o 1 greater than recipient’s

VC in sender’s position
e =< recipient’s VC elsewhere

v \4 \4 v

Causal broadcast with vector clocks [Birman et al., 1991] 3

 [0,0,0,0]

s : [0,0,0,1]
it its VC is:
o 1 greater than recipient’s
VC in sender’s position
e =< recipient’s VC elsewhere
[0,0,0,2]
v \4 \4 v

Causal broadcast with vector clocks [Birman et al., 1991] 3

 [0,0,0,0]

> : [0,0,0,1]
if its VC is:

o 1 greater than recipient’s
VC in sender’s position
e =< recipient’s VC elsewhere

[0,0,0,2]

v \4 \4 v

Causal broadcast with vector clocks [Birman et al., 1991] 3

 [0,0,0,0]

> : [0,0,0,1]
if its VC is:

o 1 greater than recipient’s
VC in sender’s position
e =< recipient’s VC elsewhere

[0,0,0,2]

v \4 \4 v

Causal broadcast with vector clocks [Birman et al., 1991] 3

 [0,0,0,0]

[0,0,0,1]

it its VC is:

o 1 greater than recipient’s
VC in sender’s position
e =< recipient’s VC elsewhere

[0,0,0,2]

X

[0,0,0,1]

v \4 \4

Causal broadcast with vector clocks [Birman et al., 1991]

 [0,0,0,0]

[0,0,0,1]

it its VC is:

o 1 greater than recipient’s
VC in sender’s position
e =< recipient’s VC elsewhere

[0,0,0,2]

X

[0,0,0,1] 7
o |4

v \4 \4

Causal broadcast with vector clocks [Birman et al., 1991]

 [0,0,0,0]

s : [0,0,0,1]
it its VC is:
o 1 greater than recipient’s
VC in sender’s position
e =< recipient’s VC elsewhere
[0,0,0,2]
—
X
A 2
A\
)
|
[0,0,0,1] ‘¢
[0,0,0,2]
v \4 \4 v

Causal broadcast with vector clocks [Birman et al., 1991]

| [0,0,0,0]

- : [0,0,0,1]

if its VC is:

o 1 greater than recipient’s
VC in sender’s position

e =< recipient’s VC elsewhere

[0,0,0,2]

v \4 \4 v

Causal broadcast with vector clocks [Birman et al., 1991] 3

| [0,0,0,0]

- : [0,0,0,1]

if its VC is:

o 1 greater than recipient’s
VC in sender’s position

e =< recipient’s VC elsewhere

[0,0,0,2]

| [1,0,0,2]

v \4 \4

Causal broadcast with vector clocks [Birman et al., 1991] 3

 [0,0,0,0]

[0,0,0,1]

if its VC is:

o 1 greater than recipient’s
VC in sender’s position

e =< recipient’s VC elsewhere

[0,0,0,2]

| [1,0,0,2]

v \4 \4

Causal broadcast with vector clocks [Birman et al., 1991] 3

if its VC is:
o 1 greater than recipient’s
VC in sender’s position

e =< recipient’s VC elsewhere

[0,0,0,

v \4

\4

[0,0,0,2]

Causal broadcast with vector clocks [Birman et al., 1991]

| [0,0,0,0]

[0,0,0,1]

[0,0,0,2]

| [1,0,0,2]

 [0,0,0,0]

[0,0,0,0]
- : [0,0,0,1]
if its VC is:
o 1 greater than recipient’s
VC in sender’s position
e < recipient’s VC elsewhere [0,0,0,1]
[0,0,0,2]
——
X
A 2
A\
)
|
[0,0,0,1] ‘¢
[0,0,0,2] Yay!
[1,0,0,2] | %¢
Y4
24
! 4

’ [}

! I

| J— : —

[0,0,0, "B [0,0,0,2]

sl wr)
%/[@[1,0,0,2] 4ti>0,0,2]
| | | [1,0,0,2]

v
Causal broadcast with vector clocks [Birman et al., 1991]

type Nat = { v:Int | v >= 0 }

Refinement types

type Nat = { v:Int | v >= 0 }

Refinement types

type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]

Refinement types

type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]

vcMerge :: Vector(Clock -> VectorClock -> VectorClock

Refinement types

type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]

vcMerge :: Vector(Clock -> VectorClock -> VectorClock
vcMerge = zipWith max

e.g., vcMerge [1,0,0,0] [0,2,0,1] = [1,2,0,1]

Refinement types

type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]

vcMerge :: Vector(Clock -> VectorClock -> VectorClock
vcMerge = zipWith max

e.g., vcMerge [1,0,0,0] [0,2,0,1] = [1,2,0,1]

type VCsized N = { vc:VectorClock | len vc == N }

Refinement types

type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]

vcMerge :: Vector(Clock -> Vector(Clock -> VectorClock
vcMerge = zipWith max

e.g., vcMerge [1,0,0,0] [0,2,0,1] = [1,2,0,1]

type VCsized N = { vc:VectorClock | len vc == N }
type VCsamelLength V = V(Csized {len V}

Refinement types

type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]

vcMerge :: Vector(Clock -> Vector(Clock -> VectorClock
vcMerge = zipWith max

e.g., vcMerge [1,0,0,0] [0,2,0,1] = [1,2,0,1]

type VCsized N = { vc:VectorClock | len vc == N }
type VCsamelLength V = V(Csized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsamelLength {v}

Refinement types

type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]

type VCsized N = { vc:VectorClock | len vc == N }
type VCsamelLength V = V(Csized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsamelLength {v}
vcMerge = zipWith max

Refinement types

type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]

type VCsized N = { vc:VectorClock | len vc == N }
type VCsamelLength V = V(Csized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsamelLength {v}
vcMerge = zipWith max

Refinement reflection

type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]

type VCsized N = { vc:VectorClock | len vc == N }
type VCsamelLength V = V(Csized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsamelLength {v}
vcMerge = zipWith max

type Commutative a A = x:a -> y:a -> { _:Proof | Axy =AYy X}

Refinement reflection

type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]

type VCsized N = { vc:VectorClock | len vc == N }
type VCsamelLength V = V(Csized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsamelLength {v}
vcMerge = zipWith max

type Commutative a A = x:a -> y:a -> { _:Proof | Axy =AYy X}

Refinement reflection

type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]

type VCsized N = { vc:VectorClock | len vc == N }
type VCsamelLength V = V(Csized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsamelLength {v}
vcMerge = zipWith max

type Commutative a A = x:a -> y:a -> { _:Proof | Axy =AYy x }

Refinement reflection

type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]

type VCsized N = { vc:VectorClock | len vc == N }
type VCsamelLength V = V(Csized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsamelLength {v}
vcMerge = zipWith max

type Commutative a A = x:a -> y:a -> { _:Proof | Axy =AYy x }

vcMergeComm :: n:Nat -> Commutative (VCsized n) vcMerge

Refinement reflection

type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]

type VCsized N = { vc:VectorClock | len vc == N }
type VCsamelLength V = V(Csized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsamelLength {v}
vcMerge = zipWith max

type Commutative a A = x:a -> y:a -> { _:Proof | Axy =AYy x }

vcMergeComm :: n:Nat -> Commutative (VCsized n) vcMerge

vcMergeComm _n [] [] = ()
vcMergeComm n (_x:xs) (_y:ys) = vcMergeComm (n - 1) Xxs ys

Refinement reflection

type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]

type VCsized N = { vc:VectorClock | len vc == N }
type VCsamelLength V = V(Csized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsamelLength {v}
vcMerge = zipWith max

type Commutative a A = x:a -> y:a -> { _:Proof | Axy =AYy x }

vcMergeComm :: n:Nat -> Commutative (VCsized n) vcMerge

vcMergeComm _n [] [] = ()
vcMergeComm n (_x:xs) (_y:ys) = vcMergeComm (n - 1) Xxs ys

Refinement reflection

type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]

type VCsized N = { vc:VectorClock | len vc == N }
type VCsamelLength V = V(Csized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsamelLength {v}
vcMerge = zipWith max

type Commutative a A = x:a -> y:a -> { _:Proof | Axy =AYy x }

vcMergeComm :: n:Nat -> Commutative (VCsized n) vcMerge

vcMergeComm _n [] L] = O
vcMergeComm n (_x:xs) (_y:ys) = vcMergeComm (n - 1) xs ys

Refinement reflection

type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]

type VCsized N = { vc:VectorClock | len vc == N }
type VCsamelLength V = V(Csized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsamelLength {v}

vcMerge = zipWith max application code

type Commutative a A = x:a -> y:a -> { _:Proof | Axy =AYy x }

vcMergeComm :: n:Nat -> Commutative (VCsized n) vcMerge

vcMergeComm _n [] L] = O
vcMergeComm n (_x:xs) (_y:ys) = vcMergeComm (n - 1) xs ys

Refinement reflection

type Nat = { v:Int | v >= 0 }
type VectorClock = [Nat]

type VCsized N = { vc:VectorClock | len vc == N }
type VCsamelLength V = V(Csized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsamelLength {v}

vcMerge = zipWith max application code

verification code

type Commutative a A = x:a -> y:a -> { _:Proof | Axy =AYy x}

vcMergeComm :: n:Nat -> Commutative (VCsized n) vcMerge

vcMergeComm _n [] [] =)
vcMergeComm n (_x:xs) (_y:ys) = vcMergeComm (n - 1) Xxs ys

Refinement reflection

a
@ [0,0,0,0] ; [0,0,0,0] [0,0,0,0] ;? [0,0,0,0]
|

P

[010!011] (4
[0.0.0,2]
[1,0,0,2]

5.1 CBCAST Protocol

Suppose that a set of processes P communicate using only broadcasts to the
full set of processes in the system; that is, vm: dests(m) = P. We now develop
a delivery protocol by which each process p receives messages sent to it,
delays them if necessary, and then delivers them in an order consistent with

causality:
m — m’ = ¥p: deliver ,(m) 5 deliver (m').
e
Birman et al., “Lightweight Causal and Atomic Group Multicast”
ACM TOCS, 1991

—P1
K4
4
V4
’

[0,0,0,2]

,0,2]

R e ——

[0,0,0,1]

[0,0,0,2]

[1,0,0,2]

5.1 CBCAST Protocol

Suppose that a set of processes P communicate using only broadcasts to the
full set of processes in the system; that is, Vvm: dests(m) = P. We now develop
a delivery protocol by which each process p receives messages sent to it,

A
g [0,0,0,0] ~ [0,0,0,0] [0,0,0,0] _y [0,0,0,0]
L ;

/ [0,0,0,1]

X~1

Al

A

1

[0,0,0,1] 7

[0.0.0,2]
[1,0,0,2]

L4
L4
4
1
]

delays them if necessary, and then delivers them in an order consistent with

causality:

m — m’ = ¥p: deliver ,(m) 5 deliver (m').

w

ACM TOCS, 1991

type CausalDelivery p
{ m : Message |
-> { m': Message |

-> { _:

elem (Del
elem (De

e
Birman et al., “Lightweight Causal and Atomic Group Multicast”

&& causdal

. LyBefore m m' }

iver m) (pHist p) }
iver m') (pHist p)

[0,0,0,2]

,0,2]

Proof | ordered (pHist p) (Deliver m) (Deliver m') }

[0,0,0,1]

[0,0,0,2]

[1,0,0,2]

type CausalDelivery p =
{ m : Message | elem (Deliver m) (pHist p) }
-> { m': Message | elem (Deliver m') (pHist p)
&& causallyBefore m m' }
-> { _: Proof | ordered (pHist p) (Deliver m) (Deliver m') }

type

—->

data

step ::

CausalDelivery p =
{ m : Message | elem (Deliver m) (pHist p) }
{ m': Message | elem (Deliver m') (pHist p)
&& causallyBefore m m' }
{ _: Proof | ordered (pHist p) (Deliver m) (Deliver m') }

Op = OpReceive (Message) | OpDeliver | OpBroadcast

Op -> Process -> Process

type CausalDelivery p =
{ m : Message | elem (Deliver m) (pHist p) }
-> { m': Message | elem (Deliver m') (pHist p)
&& causallyBefore m m' }
-> { _: Proof | ordered (pHist p) (Deliver m) (Deliver m') }

data Op = OpReceive (Message) | OpDeliver | OpBroadcast
step :: Op -> Process -> Process

causalDeliveryPreservation :: ops : [Op]

-> p : Process

-> CausalDelivery p

-> CausalDelivery (foldr step p ops)
causalDeliveryPreservation = .. — a few hundred lines

type CausalDelivery p =
{ m : Message | elem (Deliver m) (pHist p) }
-> { m': Message | elem (Deliver m') (pHist p)
&& causallyBefore m m' }
-> { _: Proof | ordered (pHist p) (Deliver m) (Deliver m') }

data Op = OpReceive (Message) | OpDeliver | OpBroadcast
step :: Op -> Process -> Process

causalDeliveryPreservation :: ops : [Op]

-> p : Process

-> CausalDelivery p

-> CausalDelivery (foldr step p ops)
causalDeliveryPreservation = .. — a few hundred lines

Programmers should be able to...

mechanically express and prove correctness properties

...of executable implementations of distributed systems

Programmers should be able to...

mechanically express and prove correctness properties
...of executable implementations of distributed systems

...using language-integrated verification tools (i.e., types!)

Programmers should be able to...

mechanically express and prove correctness properties
...of executable implementations of distributed systems

...using language-integrated verification tools (i.e., types!)

[HATRA 2021]

Toward Hole-Driven Development in Liquid Haskell

PATRICK REDMOND, University of California, Santa Cruz, USA
GAN SHEN, University of California, Santa Cruz, USA
LINDSEY KUPER, University of California, Santa Cruz, USA

Liquid Haskell is an extension to the Haskell programming language that adds support for refinement types:
data types augmented with SMT-decidable logical predicates that refine the set of values that can inhabit a
type. Furthermore, Liquid Haskell's support for refinement reflection enables the use of Haskell for general
purpose mechanized theorem proving. A growing list of large-scale mechanized proof developments in Liquid
Haskell take advantage of this capability. Adding theorem-proving capabilities to a “legacy” language like
Haskell lets programmers directly verify properties of real-world Haskell programs (taking advantage of
the existing highly tuned compiler, run-time system, and libraries), just by writing Haskell. However, more
established proof assistants like Agda and Coq offer far better support for interactive proof development and
insight into the proof state (for instance, what subgoals still need to be proved to finish a partially-complete
proof). In contrast, Liquid Haskell provides only coarse-grained feedback to the user — either it reports a type
error, or not — unfortunately hindering its usability as a theorem prover.

In this paper, we propose improving the usability of Liquid Haskell by extending it with support for Agda
style typed holes and interactive editing commands that take advantage of them. In Agda, typed holes allow
programmers to indicate unfinished parts of a proof, and incrementally complete the proof in a dialogue
with the comniler While GHC Hackell alreadyv hac ite awn Acda-inenired suinnort for tvned holee we nocit

Languages, Systems, and Data Lab: Isd.ucsc.edu
Lindsey's research blog: decomposition.al

N
@ [9.0.0.0] .!‘ [0.0.0.0] ﬂ [0,@,0,0] [0‘0'0‘0]
N | @ |
[0,0,0,1]
/ [0-0-6-1]
L4

[0,0,0,1]
/ [0,0,0,2]

—>4
L4
’
L
1
'

[0,0,0,2]
[1,0,0,2]

X &
‘5
‘
1
[0,0,0,1] 7
%
4

]
) [0.0,0,2 [0,0,0,2]
)

.
‘l [1,0,0,2] ,0,2]

v \/ v [1,0,0,2]

Q github.com/lsd-ucsc/cbcast-1lh

http://lsd.ucsc.edu
http://decomposition.al

