Deterministic Threshold Queries of Distributed
Data Structures

Lindsey Kuper and Ryan R. Newton

Indiana University
{lkuper, rrnewton}@cs.indiana.edu

Abstract. Convergent replicated data types, or CvRDTSs, are lattice-
based data structures for enforcing the eventual consistency of repli-
cated objects in a distributed system. Although CvRDTs are provably
eventually consistent, queries of CvRDT's nevertheless allow inconsistent
intermediate states of replicas to be observed; and although in practice,
many systems allow a mix of eventually consistent and strongly consis-
tent queries, CvRDTs only support the former. Taking inspiration from
our previous work on LVars for deterministic parallel programming, we
show how to extend CvRDTs to support deterministic, strongly consis-
tent queries using a mechanism called threshold queries. The threshold
query technique generalizes to any lattice, and hence any CvRDT, and
allows deterministic observations to be made of replicated objects before
the replicas’ states have converged.

Keywords: Replication, eventual consistency, strong consistency, lat-
tices, determinism

1 Introduction

Distributed systems typically involve replication of data objects across a number
of physical locations. Replication is of fundamental importance in such systems:
it makes them more robust to data loss and allows for good data locality. But
the well-known CAP theorem [6/1] of distributed computing imposes a trade-off
between consistency, in which every replica sees the same data, and availability,
in which all data is available for both reading and writing by all replicas. Highly
available distributed systems, such as Amazon’s Dynamo key-value store [3],
relax strong consistency in favor of eventual consistency [I5], in which replicas
need not agree at all times. Instead, updates execute at a particular replica and
are sent to other replicas later. All updates eventually reach all replicas, albeit
possibly in different orders. Informally speaking, eventual consistency says that
if updates stop arriving, all replicas will eventually come to agree.

Although giving up on strong consistency makes it possible for a distributed
system to offer high availability, even an eventually consistent system must have
some way of resolving conflicts between replicas that differ. One approach is
to try to determine which replica was written most recently, then declare that
replica the winner. But, even in the presence of a way to reliably synchronize

clocks between replicas and hence reliably determine which replica was written
most recently, having the last write win might not make sense from a semantic
point of view. For instance, if a replicated object represents a set, then, depending
on the application, the appropriate way to resolve a conflict between two replicas
could be to take the set union of the replicas’ contents. Such a conflict resolution
policy might be more appropriate than a “last write wins” policy for, say, a object
representing the contents of customer shopping carts for an online store [3].

1.1 Convergent replicated data types and eventual consistency

Implementing application-specific conflict resolution policies in an ad-hoc way
for every application is tedious and error—proneﬂ Fortunately, we need not im-
plement them in an ad-hoc way. Shapiro et al.’s convergent replicated data types
(CvRDTs) [13I12] provide a simple mathematical framework for reasoning about
and enforcing the eventual consistency of replicated objects, based on viewing
replica states as elements of a lattice and replica conflict resolution as the lat-
tice’s join operation.

In a CvRDT, the contents of a replica can only grow over time—that is,
updates must be inflationary with respect to the given lattice—and replicas
merge with remote replicas by taking the join of the remote state and the local
state. CvRDTs offer a simple and theoretically-sound approach to eventual con-
sistency. Still, even with CvRDTs, it is always possible to observe inconsistent
intermediate states of replicated shared objects, and high availability requires
that reads return a value immediately, even if that value is stale.

1.2 Strong consistency at the query level

In practice, applications call for both strong consistency and high availability
at different times [I4], and increasingly, they support consistency choices at the
granularity of individual queries, not that of the entire system. For example, the
Amazon SimpleDB database service gives customers the choice between eventu-
ally consistent and strongly consistent read operations on a per-read basis [16].
Ordinarily, strong consistency is a global property: all replicas agree on the
data. When we make consistency choices at a per-query granularity, though, a
global strong consistency property need not hold. We define a strongly consistent
query to be one that, if it returns a result £ when executed at a replica :

— will always return = on subsequent executions at 7, and
— will eventually return & when executed at any replica, and will block until
it does so.

That is, a strongly consistent query of a distributed data structure, if it re-
turns, will return a result that is a deterministic function of all updates to the
data structure in the entire distributed execution, regardless of when the query
executes or which replica it occurs on.

! Indeed, as the developers of Dynamo have noted [B], Amazon’s shopping cart presents
an anomaly whereby removed items may re-appear in the cart!

1.3 Our contribution: bringing threshold queries to CvRDTs

As they are today, CvRDTs only support eventually consistent queries. We could
get strong consistency by waiting until all replicas agree before allowing a query
to return—but in practice, such agreement may never happen. In this paper,
we offer an alternative approach to supporting strongly consistent queries that
takes advantage of the existing lattice structure of CvRDTs and does not require
waiting for all replicas to agree.

To do so we take inspiration from our previous work [7[T0[9] on LVars, or
lattice-based data structures for shared-memory deterministic parallelism. Like
CvRDTs, LVars are data structures whose states are elements of an application-
specific lattice, and whose contents can only grow with respect to the given
lattice. Unlike CvRDTs, though, LVars make it impossible to observe the order
of updates to their state. This is because LVar read operations are threshold
reads: an attempt to read will block until the data structure’s contents reach or
surpass a particular “threshold” (which we explain in more detail in Section ,
and then return a deterministic result. The combination of inflationary writes
and threshold reads allow LVars to serve as the basis for a deterministic-by-
construction shared-memory parallel programming model: concurrent programs
in which all shared data structures are LVars are guaranteed to produce a de-
terministic outcome on every run, regardless of parallel execution and schedule
nondeterminism.

Although LVars and CvRDTs were developed independently, both models
leverage the mathematical properties of join-semilattices to ensure that a prop-
erty of the model holds—determinism in the case of LVars; eventual consistency
in the case of CvRDTs. Our contribution in this paper is to bring LVar-style
threshold queries to CvRDTs and show that threshold queries of CvRDTs are
strongly consistent queries, according to the criteria given above. After review-
ing the fundamentals of threshold queries (Section |2) and CvRDTs (Section ,
we introduce CvRDTs extended with threshold queries (Section and prove
that threshold queries in our extended model are strongly consistent queries
(Section . That is, we show that a threshold query that returns an answer
when executed on a replica will return the same answer every subsequent time
that it is executed on that replica, and that executing that threshold query on
a different replica will eventually return the same answer, and will block until
it does so. It is therefore impossible to observe different results from the same
threshold query, whether at different times on the same replica, or whether on
different replicas.

A preliminary version of some of the material in this paper appeared in a
non-archival workshop [g].

2 How threshold queries work

A threshold query is a way of reading the contents of a lattice-based data struc-
ture that allows only limited observations of the state of the data structure. It

Top

D R —

(T,T) (F,T) (T,F) (F,F)
(T,Bot) (Bot,T) (F,Bot) (Bot,F)
(Bot,Bot)

Fig. 1. Lattice of states that an AndLV can take on. The five red states in the lattice
correspond to a false result, and the one green to a true one.

only returns a value when the data structure’s state meets a certain (monotonic)
criterion, or “threshold”, and the value returned is the same regardless of how
far above the threshold the data structure’s state goes.

By a lattice-based data structure, we mean a data structure whose possi-
ble states are elements of a latticeﬂ and that can only change over time in a
way that is inflationary with respect to the lattice. Both CvRDTs [13/12] and
LVars [7/10] are examples of lattice-based data structures. In this section, we
illustrate threshold queries with an example before formally describing them in
the context of CvRDTs.

2.1 An example: parallel “and”

Consider a lattice-based data structure that stores the result of a parallel logical
“and” operation. We will call this data structure an AndLV. For this example,
we assume two inputs, called “left” and “right”, each of which may be either
T or F. To understand this example, it is sufficient to consider a single replica;
in Section [we will go on to discuss replication and communication between
replicas.

We can represent the states an AndLV can take on as pairs (x,y), where each
of x and y are T, F, or Bot. The Bot value, short for “bottom”, means that no
input has yet been received, and so (Bot,Bot) is the least element of the lattice of
states that our AndLV can take on, shown in Figure[ll An additional state, which

2 We use “lattice” as a shorthand; formally, the “lattice” of states is a 4-tuple (D, C
, L, T), where D is a set, C is a partial order on D, L is D’s least element according
to C, T is D’s greatest element, and every two elements in D have a least upper
bound. Hence (D,C, L, T) is really a bounded join-semilattice with a designated
greatest element of T.

we call Top, is the greatest element of the lattice; it represents the situation in
which an error has occurred—if, for instance, one of the inputs writes T and then
later changes its mind to F.

The result of the parallel “and” computation—if it completes successfully—
will be either True or False, but it might also block indefinitely if not enough
writes occur (say, if the left input is (T,Bot) and the right input never arrives),
or it could end in the error state, Top, if conflicting writes from the same input
occur. (Each update to the lattice takes the form of a complete state, such as
(T,Bot) to write the left input.)

The lattice induces a join, or least upper bound, operation on pairs of states;
for instance, the join of (T,Bot) and (Bot,F) is (T,F), and the join of (T,Bot)
and (F,Bot) is Top since the overlapping T and F values conflict. Importantly,
whenever a write occurs, it updates the AndLV’s state to the join of the incoming
state and the current state. (With CvRDTs, this join is computed when replicas
merge. In this example, though, we are dealing with only one replica, and up-
dating to the join of the new state and the current state is sufficient to ensure
that all writes are inflationary.)

2.2 Threshold queries of an AndLV

Given that we want the result of a threshold query to be a deterministic function
of the writes to a data structure—and not of the particular moment in time
the query is made—what sorts of observations are safe to make of an AndLV?
We cannot, for instance, test whether one or both inputs have been written at
a particular point in time, because the result will depend on how the test is
interleaved with the writes.

Instead, we can describe a partial function of the data structure’s state that
is undefined for all states except those that are at or above a certain thresh-
old in the lattice. One way to describe such a function is to define a thresh-
old set of sets of “activation” states. In the case of our AndLV, one of these
sets of activation states is the set of states containing an F—that is, the set
{(F,Bot), (Bot,F), (F,T), (T,F), (F,F)}. The elements of this set are shown in
red in Figure [I} The other set of activation states is the singleton set {(T,T)},
shown in green in Figure [1} Therefore the entire threshold set is

{{(F,Bot), (Bot,F), (F,T), (T,F), (F,F)},{(T,T)}}

The semantics of a threshold query is as follows: if a data structure’s state
reaches (or surpasses) any state or states in a particular set of activation states,
the threshold query returns the entire set of activation states, regardless of which
of those activation states was reached. If no state in any set of activation states
has yet been reached, the threshold query will block; blocking corresponds to
states on which the partial function is undefined.

In the case of our AndLV, as soon as either input writes an F, our thresh-
old query will unblock and return the first set of activation states, that is,
{(F,Bot), (Bot,F), (F,T), (T,F), (F,F)}. Hence AndLV has the expected “short-
circuit” behavior and does not have to wait for a second input if the first input

is F. If, on the other hand, both inputs write a T, the threshold query will unblock
and return {(T,T)}.

In a real implementation, of course, the value returned from the query could
be more meaningful to the client—for instance, we could return False instead
of returning the set of activation states. However, doing so would only be a
convenience, and the translation from {(F,Bot), (Bot,F), (F,T), (T,F), (F,F)}
to False could just as easily take place on the client side. In either case, the
result returned from the threshold query is the same regardless of which of the
activation states caused it to unblock, and it is impossible for the client to tell
whether the actual state of the lattice is, say, (T,F) or (F,F) or some other state
containing F.

2.3 Pairwise incompatibility

In order for the behavior of a threshold query to be deterministic, it must be
unblocked by a unique set of activation states in the threshold set. We ensure
this by requiring that elements in a set of activation states must be pairwise
incompatible with elements in every other set of activation states. That is, for all
distinct sets of activation states @ and R in a given threshold set: Vg € Q. Vr €
R. qUr = T. In our AndLV example, there are two distinct sets of activation
states, so if we let @ = {(T,T) } and R = {(F,Bot), (Bot,F), (F,T), (T,F), (F,F)},
the least upper bound of (T,T) and r must be Top, where r is any element of R.
We can easily verify that this is the case. Furthermore, since the lattice of states
that an AndLV can take on is finite, the join function can be verified to compute
a least upper bound.

Why is pairwise incompatibility necessary? Consider the following (illegal)
“threshold set” that does not meet the pairwise incompatibility criterion:

{{(F,Bot), (Bot,F)}, {(T,Bot), (Bot,T)}}

A threshold query corresponding to this so-called threshold set will unblock
and return {(F,Bot), (Bot,F)} as soon as a state containing an F is reached, and
{(T,Bot), (Bot,T)} as soon as a state containing a T is reached. The trouble with
such a threshold query is that there exist states, such as (F,T) and (T,F), that
could unblock either set of activation states. If the left input writes F and the
right input writes T, and these writes occur in arbitrary order, then the threshold
query will return a nondeterministic result, depending on the order in which the
two writes arrive. But with the original, pairwise-incompatible threshold set we
showed, the threshold query would deterministically return False—although if
the T arrived first, the query would have to block until the F arrived, whereas if
the F arrived first, it could unblock immediately. Hence threshold queries enforce
consistency at the expense of availability, but it is still possible to do a “short-
circuit” computation that unblocks as soon as an F is written.

The threshold set mechanism we describe in this section is part of the LVars
programming model discussed in section [T} in fact, our AndLV example is precisely
an LVar [9]. But the utility of threshold queries is not limited to LVars. In the

following sections, we review the basics of the CvRDT model from the work of
Shapiro et al., then show how to add threshold queries to the CvRDT model,
and prove that they are strongly consistent queries.

2.4 Discussion: the model versus reality

The use of explicit threshold sets should be understood as a mathematical mod-
eling technique, not an implementation approach or practical API. To put it
another way, read operations on a data structure exposed as an LVar, or queries
of a CvRDT extended with threshold reads, must have the semantic effect of a
threshold, but threshold sets need not be visible to clients, or even written ex-
plicitly in the code. Rather, the authors of data structure libraries can use unsafe
(but efficient and scalable) operations (such as those provided by our own LVars
library implementation [10]) to implement their own library internals, and then
make functions that perform threshold queries available as a safe interface for
application writers, implicitly baking in the particular threshold sets that make
sense for a given data structure without ever explicitly constructing them. Any
such data structure APT that has the semantics of a threshold CvRDT (which
we describe in detail in Section is guaranteed to provide the determinism
property that we state and prove in Section

Furthermore, although our AndLV example shows a finite threshold set for
querying a finite lattice, since threshold queries (and lattices themselves) are a se-
mantic modeling tool with no runtime representation, our model accommodates
infinite threshold sets (for querying infinite lattices) as easily as it accommodates
finite ones; indeed, infinite threshold sets and infinite lattices (for instance, rep-
resenting the states that an integer counter can take on, or a shopping cart) are
typical in practice.

3 Background: CvRDTs and eventual consistency

Shapiro et al. [13[12] define an eventually consistent object as one that meets
three conditions. One of these conditions is the property of convergence: all
correct replicas of an object at which the same updates have been delivered
eventually have equivalent state. The other two conditions are eventual delivery,
meaning that all replicas receive all update messages, and termination, meaning
that all method executions terminate (we discuss methods in more detail below).

Shapiro et al. further define a strongly eventually consistent (SEC) object as
one that is eventually consistent and, in addition to being merely convergent,
is strongly convergent, meaning that correct replicas at which the same updates
have been delivered have equivalent stateﬂ A conflict-free replicated data type
(CRDT), then, is a data type (i.e., a specification for an object) satisfying certain

3 Strong eventual consistency is not to be confused with strong consistency: it is the
combination of eventual consistency and strong convergence. Contrast with ordinary
convergence, in which replicas only eventually have equivalent state. In a strongly
convergent object, knowing that the same updates have been delivered to all correct

conditions that are sufficient to guarantee that the object is SEC. (The term
“CRDT” is used interchangeably to mean a specification for an object, or an
object meeting that specification.)

There are two “styles” of specifying a CRDT: state-based, also known as
convergentﬁ; or operation-based (or “op-based”), also known as commutative.
CRDTs specified in the state-based style are called convergent replicated data
types, abbreviated CvRDTs, while those specified in the op-based style are called
commutative replicated data types, abbreviated CmRDTs. Of the two styles, we
focus on the CvRDT style in this paper because CvRDTs are lattice-based data
structures and therefore amenable to threshold queries described in Section
although, as Shapiro et al. show, CmRDTSs can emulate CvRDTs and vice versa.

3.1 State-based objects

The Shapiro et al. model specifies a state-based object as a tuple (S, 5%, q,u, m),
where S is a set of states, s is the initial state, ¢ is the query method, u is the
update method, and m is the merge method. Objects are replicated across some
finite number of processes, with one replica at each process, and each replica
begins in the initial state s°. The state of a local replica may be queried via the
method ¢ and updated via the method u. Methods execute locally, at a single
replica, but the merge method m can merge the state from a remote replica with
the local replica. The model assumes that each replica sends its state to the other
replicas infinitely often, and that eventually every update reaches every replica,
whether directly or indirectly.

The assumption that replicas send their state to one another “infinitely often”
refers not to the frequency of these state transmissions; rather; it says that,
regardless of what event (such as an update, via the u method) occurs at a
replica, a state transmission is guaranteed to occur after that event. We can
therefore conclude that all updates eventually reach all replicas in a state-based
object, meeting the “eventual delivery” condition discussed above. However, we
still have no guarantee of strong convergence or even convergence. This is where
Shapiro et al.’s notion of a CvRDT comes in: a state-based object that meets
the criteria for a CvRDT is guaranteed to have the strong-convergence property.

A state-based or convergent replicated data type (CvRDT) is a state-based
object equipped with a partial order <, written as a tuple (S, <, s°, ¢, u, m), that
has the following properties:

— S forms a join-semilattice ordered by <.
— The merge method m computes the join of two states with respect to <.
— State is inflationary across updates: if u updates a state s to s’, then s < &'.

replicas is sufficient to ensure that those replicas have equivalent state, whereas in
an object that is merely convergent, there might be some further delay before all
replicas agree.

4 There is a potentially misleading terminology overlap here: the definitions of con-
vergence and strong convergence above pertain not only to CvRDTs (where the C
stands for “Convergent”), but to all CRDTs.

Shapiro et al. show that a state-based object that meets the criteria for a CvRDT
is strongly convergent. Therefore, given the eventual delivery guarantee that all
state-based objects have, and given an additional assumption that all method

executions terminate, a state-based object that meets the criteria for a CvRDT
is SEC [13].

3.2 Discussion: the need for inflationary updates

Although CvRDT updates are required to be inflationary, we note that it is not
clear that inflationary updates are necessarily required for convergence. Con-
sider, for example, a scenario in which replicas 1 and 2 both have the state
{a,b}. Replica 1 updates its state to {a}, a non-inflationary update, and then
sends its updated state to replica 2. Replica 2 merges the received state {a}
with {a,b}, and its state remains {a,b}. Then replica 2 sends its state back to
replica 1; replica 1 merges {a,b} with {a}, and its state becomes {a,b}. The
non-inflationary update has been lost, and was, perhaps, nonsensical—but the
replicas are nevertheless convergent.

However, once we introduce threshold queries of CvRDTSs, as we will do in
the following section, inflationary updates become necessary for the determin-
ism of threshold queries. This is because a non-inflationary update could cause
a threshold query that had been unblocked to block again, and so arbitrary
interleaving of non-inflationary writes and threshold queries would lead to non-
deterministic behavior. Therefore the requirement that updates be inflationary
will not only be sensible, but actually crucial.

4 Adding threshold queries to CvRDTSs

In Shapiro et al.’s CvRDT model, the query operation g reads the exact contents
of its local replica, and therefore different replicas may see different states at the
same time, if not all updates have been propagated yet. That is, it is possible to
observe intermediate states of a CvRDT replica. Such intermediate observations
are not possible with threshold queries. In this section, we show how to extend
the CvRDT model to accommodate threshold queries.

4.1 Objects with threshold queries

Definition [1| extends Shapiro et al.’s definition of a state-based object with a
threshold query method t:

Definition 1 (state-based object with threshold queries). A state-based
object with threshold queries (henceforth object) is a tuple (S,s°, q,t,u,m),
where S is a set of states, s° € S is the initial state, ¢ is a query method, t is
a threshold query method, u is an update method, and m is a merge method.

In order to give a semantics to the threshold query method ¢, we need to
formally define the notion of a threshold set described in Section [2}

Definition 2 (threshold set). A threshold set with respect to a lattice (.5, <)
is a set S = {Sq, Sp,...} of one or more sets of activation states, where each
set of activation states is a subset of S, the set of lattice elements, and where
the following pairwise incompatibility property holds:

For all S,,Sy € S, if Sq # Sy, then for all activation states s, € S, and for
all activation states sy € Sy, sq U s, = T, where U is the join operation induced
by < and T is the greatest element of (S, <).

In our model, we assume a finite set of n processes p1,...,pn, and consider a
single replicated object with one replica at each process, with replica ¢ at process
p;. Processes may crash silently; we say that a non-crashed process is correct.

Every replica has initial state s°. Methods execute at individual replicas,
possibly updating that replica’s state. The kth method execution at replica i is
written fF(a), where k is > 1 and f is either ¢, ¢, u, or m, and a is the arguments
to f, if any. Methods execute sequentially at each replica. The state of replica
i after the kth method execution at i is s¥. We say that states s and s’ are
equivalent, written s = ', if ¢(s) = ¢(s').

4.2 Causal histories

An object’s causal history is a record of all the updates that have happened at all
replicas. The causal history does not track the order in which updates happened,
merely that they did happen. The causal history at replica i after execution
k is the set of all updates that have happened at replica i after execution k.
Definition [3|updates Shapiro et al.’s definition of causal history for a state-based
object to account for ¢ (a trivial change, since execution of ¢ does not change a
replica’s causal history):

Definition 3 (causal history). A causal history is a sequence [cy,...,cy),
where ¢; is a set of the updates that have occurred at replica i. Each c¢; is initially
(0. If the kth method execution at replica i is:

— a query q or a threshold query t, then the causal history at replica i after
execution k does not change: cf = cF=1.

— an update uf(a) : then the causal history at replica i after execution k is
k=T uuk(a).

— a merge mf(sf,/): then the causal history at replica i after execution k is the

. . . _ ’
union of the local and remote histories: cf = cF=t Uk’

We say that an update is delivered at replica i if it is in the causal history at
replica 1.
4.3 Threshold CvRDTs and the semantics of blocking

With the previous definitions in place, we can give the definition of a CvRDT
that supports threshold queries:

Definition 4 (CvRDT with threshold queries). A convergent replicated
data type with threshold queries (henceforth threshold CvRDT) is an object
equipped with a partial order <, written (S, <, s°, q,t,u, m), that has the following
properties:

— S forms a join-semilattice ordered by <.

— S has a greatest element T according to <.

— The query method q takes no arguments and returns the local state.

— The threshold query method t takes a threshold set S as its argument, and
has the following semantics: let tfH(S) be the k + 1th method execution at
replica i, where k > 0. If, for some activation state s, in some (unique) set
of activation states S, € S, the condition s, < s¥ is met, t"71(S) returns
the set of activation states S,. Otherwise, tf“(S) returns the distinguished
value block.

— The update method u takes a state as argument and updates the local state
to it.

— State is inflationary across updates: if u updates a state s to s', then s < s'.

— The merge method m takes a remote state as its argument, computes the
join of the remote state and the local state with respect to <, and updates
the local state to the result.

and the q, t, u, and m methods have no side effects other than those listed above.

We use the block return value to model ¢’s “blocking” behavior as a mathematical
function with no intrinsic notion of running duration. When we say that a call
to t “blocks”, we mean that it immediately returns block, and when we say that
a call to t “unblocks”, we mean that it returns a set of activation states S,.

Modeling blocking as a distinguished value introduces a new complication:
we lose determinism, because a call to ¢t at a particular replica may return either
block or a set of activation states S,, depending on the replica’s state at the time
it is called. However, we can conceal this nondeterminism with an additional layer
over the nondeterministic API exposed by ¢. This additional layer simply polls
t, calling it repeatedly until it returns a value other than block. Calls to ¢ at
a replica that are made by this “polling layer” count as method executions at
that replica, and are arbitrarily interleaved with other method executions at the
replica, including updates and merges. The polling layer itself need not do any
computation other than checking to see whether ¢ returns block or something
else; in particular, the polling layer does not need to compare activation states
to replica states, since that comparison is done by t itself.

The set of activation states S, that a call to ¢ returns when it unblocks is
unique because of the pairwise incompatibility property described in Definition 2}
The intuition behind pairwise incompatibility is that described in Section [2.3]
without it, different orderings of updates could allow the same threshold query to
unblock in different ways, introducing nondeterminism that would be observable
beyond the polling layer.

4.4 Threshold CvRDTs are strongly eventually consistent

We can define eventual consistency and strong eventual consistency exactly as
Shapiro et al. do in their model. In the following definitions, a correct replica is
a replica at a correct process, and the symbol ¢ means “eventually”:

Definition 5 (eventual consistency (EC)). An object is eventually consis-
tent (EC) if the following three conditions hold:

— Eventual delivery: An update delivered at some correct replica is eventually
delivered at all correct replicas: Vi,j: f € c; = Of € ¢;.

— Convergence: Correct replicas at which the same updates have been delivered
eventually have equivalent state: ¥i,j : ¢; =c¢; = 0s; = 5;.

— Termination: All method executions halt.

Definition 6 (strong eventual consistency (SEC)). An object is strongly
eventually consistent (SEC) if it is eventually consistent and the following con-
dition holds:

— Strong convergence: Correct replicas at which the same updates have been
delivered have equivalent state: Vi,j :c; = ¢; = 5; = s;.

Since we model blocking threshold queries with block, we need not be concerned
with threshold queries not necessarily terminating. Determinism does not rule
out queries that return block every time they are called (and would therefore
cause the polling layer to block forever). However, we guarantee that if a thresh-
old query returns block every time it is called during a complete run of the
system, it will do so on every run of the system, regardless of scheduling. That
is, it is not possible for a query to cause the polling layer to block forever on
some runs, but not on others.

Finally, we can directly leverage Shapiro et al.’s SEC result for CvRDT's to
show that a threshold CvRDT is SEC:

Theorem 1 (strong eventual consistency of threshold CvRDTs). As-
suming eventual delivery and termination, an object that meets the criteria for
a threshold CvRDT is SEC.

Proof. From Shapiro et al., we have that an object that meets the criteria for a
CvRDT is SEC [13]. Shapiro et al.’s proof also assumes that eventual delivery
and termination hold for the object, and proves that strong convergence holds —
that is, that given causal histories ¢; and ¢; for respective replicas ¢ and j, that
their states s; and s; are equivalent. The proof relies on the commutativity of
the least upper bound operation. Since, according to our Definition [3} threshold
queries do not affect causal history, we can leverage Shapiro et al.’s result to say
that a threshold CvRDT is also SEC. ad

5 Determinism of threshold queries

Neither eventual consistency nor strong eventual consistency imply that inter-
mediate results of the same query ¢ on different replicas of a threshold CvRDT
will be deterministic. For deterministic intermediate results, we must use the
threshold query method t. We can show that ¢ is deterministic without requiring
that the same updates have been delivered at the replicas in question at the time
that ¢ runs.

In our previous work on LVars [7/10], we showed that a threshold read of the
contents of a shared-memory lattice-based data structure returns a determinis-
tic result regardless of how that query is interleaved with updates to the data
structure. Theorem [2]establishes that the same is true for threshold queries of dis-
tributed, replicated lattice-based data structures—mnamely, threshold CvRDTs.

Theorem 2 (determinism of threshold queries). Suppose a given threshold
query t on a given threshold CvRDT returns a set of activation states S, when
executed at a replica i. Then, assuming eventual delivery and that no replica’s
state is ever T at any point in the execution:

1. t will always return S, on subsequent executions at i, and
2. t will eventually return S, when executed at any replica, and will block until
it does so.

Proof. The proof relies on transitivity of < and eventual delivery of updates.
See Appendix [A] for the complete proof.

Although Theorem [2] must assume eventual delivery, it does not need to assume
strong convergence or even ordinary convergence. It so happens that we have
strong convergence as part of strong eventual consistency of threshold CvRDT's
(by Theorem , but we do not need it to prove Theorem [2| In particular, there
is no need for replicas to have the same state in order to return the same result
from a particular threshold query. The replicas merely both need to be above an
activation state from a unique set of activation states in the query’s threshold
set. Indeed, the replicas’ states may in fact trigger different activation states
from the same set of activation states.

Theorem [J's requirement that no replica’s state is ever T rules out situations
in which replicas disagree in a way that cannot be resolved normally. This would
happen if, for instance, updates at two different replicas took their states to acti-
vation states from two distinct sets of activation states from the same threshold
set. The join of the two replicas’ states would be T, which by eventual delivery
would become the state of both replicas, but in the meantime, threshold queries
of the two replicas would return different results. We rule out this situation by
assuming that no replica’s state goes to T. (In a replicated version of the parallel
“and” example from Section [2] this would happen if, for instance, one replica
received a write of T on its left input while another received a write of F, also
on its left input—a disagreement for which the only resolution is the error state,

Top).

6 Related work

The extended CvRDT model we present in this paper is based on Shapiro et
al’s work on conflict-free replicated data types [I3I12], discussed in Section
Various other authors [23/4] have used lattices as a framework for establish-
ing formal guarantees about eventually consistent systems and distributed pro-
grams. Burckhardt et al. [2] propose a formalism for eventual consistency based
on graphs called revision diagrams. Burckhardt and Leijen [3] show that revision
diagrams are semilattices, and Leijen, Burckhardt, and Fahndrich apply the re-
vision diagrams approach to guaranteed-deterministic concurrent functional pro-
gramming [I1]. Conway et al.’s Bloom” language for distributed programming
leverages the lattice-based semantics of CvRDTs to guarantee confluence [4].
The concept of threshold queries comes from our previous work on the LVars
model for lattice-based deterministic parallel programming [7IT0/9].

As mentioned in Section[I] database services such as Amazon’s SimpleDB [16]
allow for both eventually consistent and strongly consistent reads, chosen at a
per-query granularity. Terry et al.’s Pileus key-value store [14] takes the idea of
mixing consistency levels further: instead of requiring the application developer
to choose the consistency level of a particular query at development time, the
system allows the developer to specify a service-level agreement that can dynam-
ically adapt to changing network conditions, for instance. However, we are not
aware of previous work on using lattice-based data structures as a foundation
for both eventually consistent and strongly consistent queries.

7 Conclusion

In this paper we show how to extend CvRDTs with support for deterministic
queries. Borrowing from our previous work on LVars for deterministic parallel
programming, we propose threshold queries, which, rather than returning the
exact contents of a CvRDT, only reveal whether the contents have crossed a
given “threshold” in the CvRDT’s lattice, blocking until the threshold is reached
and then returning a deterministic result. We prove that a threshold query that
returns a given result is guaranteed to return that result on subsequent queries
of the same replica, regardless of the replica’s state. Moreover, executions of
the same query on other replicas are guaranteed to eventually return the same
answer, and to block until they do so. The technique generalizes to any lattice,
and hence any CvRDT, allowing CvRDTs to support both eventually consistent
and strongly consistent queries without waiting for all replicas to agree.

Since real applications call for a combination of strongly consistent and even-
tually consistent queries, threshold queries offer a way to support a mix of con-
sistency choices within a single, lattice-based reasoning framework. Furthermore,
since threshold queries behave deterministically regardless of whether all replicas
agree, they suggest a way to save on synchronization costs: existing operations
that require all replicas to agree could be done with threshold queries instead,
and retain behavior that is observably strongly consistent while avoiding unnec-
essary synchronization.

References

@

10.

11.

12.

13.

14.

15.
16.

. Brewer, E.: CAP twelve years later: How the “rules” have changed. http://www.

infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed
(2012)

Burckhardt, S., Fahndrich, M., Leijen, D., Sagiv, M.: Eventually consistent trans-
actions. In: ESOP (2012)

Burckhardt, S., Leijen, D.: Semantics of concurrent revisions. In: ESOP (2011)
Conway, N., Marczak, W., Alvaro, P., Hellerstein, J.M., Maier, D.: Logic and lat-
tices for distributed programming. In: SOCC (2012)

DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s highly avail-
able key-value store. In: SOSP (2007)

Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. SIGACT News 33(2) (Jun 2002)

Kuper, L., Newton, R.R.: LVars: lattice-based data structures for deterministic
parallelism. In: FHPC (2013)

Kuper, L., Newton, R.R.: Joining forces: Toward a unified account of LVars and
convergent replicated data types. In: Workshop on Deterministic and Correctness
in Parallel Programming (WoDet’14) (2014)

. Kuper, L., Todd, A., Tobin-Hochstadt, S., Newton, R.R.: Taming the parallel effect

zoo: Extensible deterministic parallelism with LVish. In: PLDI (2014)

Kuper, L., Turon, A., Krishnaswami, N.R., Newton, R.R.: Freeze after writing:
Quasi-deterministic parallel programming with LVars. In: POPL (2014)

Leijen, D., Fahndrich, M., Burckhardt, S.: Prettier concurrency: purely functional
concurrent revisions. In: Haskell (2011)

Shapiro, M., Preguica, N., Baquero, C., Zawirski, M.: A comprehensive study of
Convergent and Commutative Replicated Data Types. Tech. Rep. RR-7506, INRTA
(Jan 2011)

Shapiro, M., Preguica, N., Baquero, C., Zawirski, M.: Conflict-free replicated data
types. In: SSS (2011)

Terry, D.B., Prabhakaran, V., Kotla, R., Balakrishnan, M., Aguilera, M.K., Abu-
Libdeh, H.: Consistency-based service level agreements for cloud storage. In: SOSP
(2013)

Vogels, W.: Eventually consistent. Commun. ACM 52(1) (Jan 2009)

Vogels, W.: Choosing consistency. http://www.allthingsdistributed.com/2010/
02/strong_consistency_simpledb.html (2010)

http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed
http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed
http://www.allthingsdistributed.com/2010/02/strong_consistency_simpledb.html
http://www.allthingsdistributed.com/2010/02/strong_consistency_simpledb.html

A Proof of Theorem (2|

Theorem 2 (determinism of threshold queries). Suppose a given threshold
query t on a given threshold CvRDT returns a set of activation states S, when
executed at a replica i. Then, assuming eventual delivery and that no replica’s
state is ever T at any point in the execution:

1. t will always return S, on subsequent executions at i, and
2. t will eventually return S, when executed at any replica, and will block until
it does so.

Proof. Consider replica i of a threshold CvRDT (S, <, 5%, ¢,t,u,m). Let S be a
threshold set with respect to (S, <). Consider a method execution t¥(S) (i.e., a
threshold query that is the k4 1th method execution on replica ¢, with threshold
set S as its argument) that returns some set of activation states S, € S.

For part 1] of the theorem, we have to show that threshold queries with S as
their argument will always return S, on subsequent executions at ¢. That is, we
have to show that, for all k' > (k + 1), the threshold query ¥ (S) on i returns
Sa.

Since tfH(S) returns S, from Definition we have that for some activation
state s, € S, the condition s, < sf holds. Consider arbitrary k' > (k+1). Since
state is inflationary across updates, we know that the state sf/ after method
execution k' is at least s¥. That is, s¥ < s¥. By transitivity of <, then, s, < s¥".
Hence, by Definition {4} t¥'(S) returns S,,.

For part [2] of the theorem, consider some replica j of (S, <,s’, q,t,u,m),
located at process p;. We are required to show that, for all x > 0, the threshold
query t? +1(5) returns S, eventually, and blocks until it does/’| That is, we must
show that, for all x > 0, there exists some finite n > 0 such that

— for all 7 in the range 0 < i < n — 1, the threshold query tfHH(S) returns
block, and .
— for all ¢ > n, the threshold query t;‘fHJ”(S) returns Sj.

Consider arbitrary x > 0. Recall that s7 is the state of replica j after the zth

method execution, and therefore s7 is also the state of j when tf“(S) runs. We
have three cases to consider:

— sk < 5. (That is, replica i’s state after the kth method execution on i is at or
below replica j’s state after the xzth method execution on j.) Choose n = 0.
We have to show that, for all ¢ > n, the threshold query t?“”(S) returns
S,. Since tf“(S) returns S,;, we know that there exists an s, € S, such that
Sq < sf Since sf < 87, we have by transitivity of < that s, < 57 Therefore,
by Deﬁnition t]z-H(S) returns S,. Then, by partof the theorem, we have

5 The occurrences of k + 1 and z + 1 in this proof are an artifact of how we index
method executions starting from 1, but states starting from 0. The initial state (of
every replica) is s, and so s¥ is the state of replica 4 after method execution k has
completed at .

that subsequent executions ¢7 +T1+(S) at replica j will also return S,, and so

the case holds. (Note that this case includes the possibility sf =50

no updates have executed at replica i.)

— sk > s%. (That is, replica i’s state after the kth method execution on i is
above replica j’s state after the zth method execution on j.)
We have two subcases:

, in which

e There exists some activation state s;, € S, for which s, < s%. In this
case, we choose n = 0. We have to show that, for all ¢ > n, the threshold
query tf“”(S) returns S,. Since s, < s%, by Definition tf“(S)
returns S,. Then, by part [I] of the theorem, we have that subsequent
executions tfH“(S) at replica j will also return S,, and so the case
holds.

e There is no activation state s, € S, for which s, < s%. Since th+1(S)

returns S,, we know that there is some update ufl (a) in i’s causal history,
for some &’ < (k + 1), that updates i from a state at or below s7 to sfﬂ

By eventual delivery, u¥ (a) is eventually delivered at j. Hence some
update or updates that will increase j’s state from s7 to a state at or

above some s/, must reach replica j E|

Let the + 1 + rth method execution on j be the first update on j that
updates its state to some 571" > s/, for some activation state s/, € S,.
Choose n = r 4+ 1. We have to show that, for all ¢ in the range 0 <17 <7,

the threshold query t;HH(S) returns block, and that for all i > r + 1,

the threshold query t§+1+i(8) returns S,.

For the former, since the x + 1 + rth method execution on j is the first
x+1+7r

one that updates its state to s; > s/, we have by Definition [4| that

for all 7 in the range 0 < ¢ < r, the threshold query t;?““(S) returns
block.

For the latter, since s?“” > s, by Deﬁnitionwe have that t;?H”H (S)
returns S,, and by part [I] of the theorem, we have that for ¢ > r + 1,
subsequent executions tf“” (8) at replica j will also return S,, and so
the case holds.

— sk & 57 and s7 £ sk. (That is, replica i’s state after the kth method execution
on i is not comparable to replica j’s state after the xth method execution on
j.) Similar to the previous case.

O

5 We know that i’s state was once at or below s7, because i and j started at the same
state s’ and can both only grow. Hence the least that s7 can be is s°, and we know
that i was originally s° as well.

7 We say “some update or updates” because the exact update uf/(a) may not be the
update that causes the threshold query at j to unblock; a different update or updates
could do it. Nevertheless, the existence of ufl(a) means that there is at least one
update that will suffice to unblock the threshold query.

	Deterministic Threshold Queries of Distributed Data Structures

