
LATTICE-BASED DATA STRUCTURES FOR
DETERMINISTIC PARALLEL AND DISTRIBUTED

PROGRAMMING

Lindsey Kuper

Submitted to the faculty of the University Graduate School
in partial fulfillment of the requirements

for the degree
Doctor of Philosophy

in the School of Informatics and Computing
Indiana University
September 2015

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the requirements for the
degree of Doctor of Philosophy.

Ryan R. Newton, Ph.D.

Lawrence S. Moss, Ph.D.

Amr Sabry, Ph.D.

Chung-chieh Shan, Ph.D.

09/08/2014

ii

Copyright 2015
Lindsey Kuper

All rights reserved

iii

Acknowledgements

Not long ago, someone asked me if knew I wanted to work on LVars at the time I applied to grad school,

and I had to laugh. Not only did I not know then that I wanted to work on LVars, I didn’t even knowwhat

subfield of computer science I wanted to study. I had an idea of what kinds of problems I thought were

interesting, but I didn’t really grasp that there was actually a field of study devoted to those problems

and that “programming languages” was what it was called. As it happened, one of the Ph.D. programs

to which I applied turned out to be a very good place to study PL, and that program was also the only

one that accepted me. So the first acknowledgement I want to make here is to the Indiana University

computer science program for taking a chance on me and making this dissertation possible.

I took Dan Friedman’s programming languages course in my first semester at IU in fall 2008, and the

following spring, Dan invited me to be a teaching assistant for the undergraduate edition of the course,

known as C311, together with his student and collaborator Will Byrd. This led to my first PL research

experience, which consisted of playing with a fantastic little language called miniKanren1 during the

summer of 2009 with Dan, Will, and a group of relational programming aficionados fueled by intense

curiosity and Mother Bear’s pizza. At the time, I was utterly unprepared to do research and was in way

over my head, but we had a lot of fun, and I went on to help out with C311 and another course, H211,

for three more semesters under Dan and Will’s expert guidance.

Amal Ahmed joined the IU faculty in 2009 and was a tremendous influence onme as I began truly learn-

ing how to read research papers and, eventually, write them. Although Amal and I never worked on

determinism as such, it was nevertheless from Amal that I learned how to design and prove properties

of calculi much like the λLVar and λLVish calculi in this dissertation. Amal also had a huge influence on

the culture of the PL group at IU. Weekly “PL Wonks” meetings are a given these days, but it wasn’t so

very long ago that the PL group didn’t have regular meetings or even much of a group identity. It was

1http://www.minikanren.org — not that any such website existed at the time!

iv

http://www.minikanren.org

Amal who rounded us all up and told us that from then on, we were all going to give talks every semes-

ter. (Happily, this process has now become entirely student-driven and self-sustaining.) It was also at

Amal’s urging that I attended my first PL conference, ICFP 2010 in Baltimore, and got to know many

of the people who have since become my mentors, colleagues, collaborators, and dear friends in the

PL community, including Neel Krishnaswami, Chung-chieh Shan, Tim Chevalier, Rob Simmons, Jason

Reed, Ron Garcia, Stevie Strickland, Dan Licata, and Chris Martens.

When Amal left IU for Northeastern in 2011, I had to make the difficult decision between staying at IU

or leaving, and although I chose to stay and work with Ryan Newton on what would eventually become

this dissertation, I think that Amal’s influence on the flavor of the work I ended up doing is evident. (In

fact, it was Amal who originally pointed out the similarity between the Independence Lemma and the

frame rule that I discuss in Section 2.5.5.)

Ryan’s first act as a new faculty member at Indiana in 2011 was to arrange for our building to get a fancy

espresso machine (and to kick-start a community of espresso enthusiasts who lovingly maintain it).

Clearly, we were going to get along well! That fall I took Ryan’s seminar course on high-performance

DSLs, which was how I started learning about deterministic parallel programming models. Soon, we

began discussing the idea of generalizing single-assignment languages, and Ryan suggested that I help

him write a grant proposal to continue working on the idea. We submitted our proposal in December

2011, and tomy surprise, it was funded onour first try. I gratefully acknowledge everyone at theNational

Science Foundation who was involved in the decision to fund grant CCF-1218375, since without that

early vote of confidence, I’m not sure I would have been able to keep my spirits up during the year that

followed, inwhich it took us four attempts to get our first LVars paper published. Ryan’s non-stop energy

and enthusiasm were crucial ingredients, too. (And, although I didn’t feel thankful at the time, I’m now

also thankful to the anonymous reviewers of POPL 2013, ESOP 2013, and ICFP 2013, whose constructive

criticism helped us turn LVars from a half-baked idea into a convincing research contribution.)

v

In addition to Ryan, I was lucky to have a wonderful dissertation committee consisting of Amr Sabry,

Larry Moss, and Chung-chieh Shan. Amr, Larry, and Ken all played important roles in the early devel-

opment of LVars and helped resolve subtle issues with the semantics of λLVar and its determinism proof.

What appears now in Chapter 2 is relatively simple— but it is only simple because of considerable effort

spent making it so! I’m also grateful to all my committeemembers for showing up tomy thesis proposal

at eight-thirty in the morning in the middle of an Indiana December snowstorm. Additionally, I want

to offer special thanks to Sam Tobin-Hochstadt, Neel Krishnaswami, and Aaron Turon — all of whom

gave me so much guidance, encouragement, and support throughout this project that I think of them

as de facto committee members, too.

By fall 2012, working on LVars had gotten me interested in the idea of developing a separation logic for

deterministic parallelism. Aaron and Neel liked the idea, too, and expressed interest in working on it

with me. When we all met up in Saarbrücken in January 2013, though, we realized that we should first

focus on making the LVars programming model more expressive, and we put the separation logic idea

on hold while we went on an exciting side trip into language design. That “side trip” eventually took us

all the way to event handlers, quiescence, freezing, and quasi-determinism, the topics of Chapter 3 and

of our POPL 2014 paper. It also led to the LVish Haskell library, the topic of Chapter 4, which was largely

implemented by Aaron and Ryan. Neel and I collaborated on the original proof of quasi-determinism

for λLVish, and Neel also provided lots of essential guidance as I worked on the revised versions of the

proofs that appear in this dissertation. I also want to acknowledge Derek Dreyer for helping facilitate

our collaboration, as well as for giving me an excuse to give a Big Lebowski-themed talk at MPI-SWS.

One of themost exciting and rewarding parts of my dissertation work has been pursuing the connection

between LVars and distributed data consistency, the topic of Chapter 5. It can be a challenge for people

coming from different subfields to find common ground, and I’m indebted to the many distributed sys-

tems researchers and practitioners who have met me much more than halfway, particularly the BOOM

vi

group at Berkeley and the Riak folks at Basho. Speaking at RICON 2013 about LVars was one of the

highlights of my Ph.D. experience; thanks to everyone who made it so.

Katerina Barone-Adesi, José Valim, and Zach Allaun — not coincidentally, all members of the Recurse

Center community, which is the best programming community in the world — gave feedback on drafts

of this dissertation and helped me improve the presentation. Thanks to all of them.

Jason Reed contributed the wonderful spot illustrations that appear throughout. My hope is that they’ll

make the pages a bit more inviting and offer some comic relief to the frustrated student. They’ve cer-

tainly done that for me.

Finally, this dissertation is dedicated to my amazing husband, Alex Rudnick, without whose love, sup-

port, advice, and encouragement I would never have started grad school, let alone finished.

vii

For Alex, who said,
“You’re gonna destroy grad school.”

viii

Lindsey Kuper

LATTICE-BASED DATA STRUCTURES FOR DETERMINISTIC PARALLEL AND DISTRIBUTED
PROGRAMMING

Deterministic-by-construction parallel programming models guarantee that programs have the same

observable behavior on every run, promising freedom from bugs caused by schedule nondeterminism.

To make that guarantee, though, they must sharply restrict sharing of state between parallel tasks,

usually either by disallowing sharing entirely or by restricting it to one type of data structure, such as

single-assignment locations.

I show that lattice-based data structures, or LVars, are the foundation for a guaranteed-deterministic

parallel programming model that allows a more general form of sharing. LVars allow multiple assign-

ments that are inflationary with respect to a given lattice. They ensure determinism by allowing only

inflationary writes and “threshold” reads that block until a lower bound is reached. After presenting

the basic LVars model, I extend it to support event handlers, which enable an event-driven programming

style, and non-blocking “freezing” reads, resulting in a quasi-deterministic model in which programs

behave deterministically modulo exceptions.

I demonstrate the viability of the LVars model with LVish, a Haskell library that provides a collection of

lattice-based data structures, a work-stealing scheduler, and a monad in which LVar computations run.

LVish leverages Haskell’s type system to index such computations with effect levels to ensure that only

certain LVar effects can occur, hence statically enforcing determinism or quasi-determinism. I present

two case studies of parallelizing existing programs using LVish: a k-CFA control flow analysis, and a

bioinformatics application for comparing phylogenetic trees.

Finally, I show how LVar-style threshold reads apply to the setting of convergent replicated data types

(CvRDTs), which specify the behavior of eventually consistent replicated objects in a distributed system.

I extend the CvRDTmodel to support deterministic, strongly consistent threshold queries. The technique

ix

generalizes to any lattice, and hence any CvRDT, and allows deterministic observations to be made of

replicated objects before the replicas’ states converge.

x

Contents

Chapter 1. Introduction 1

1.1. The deterministic-by-construction parallel programming landscape 2

1.2. Monotonic data structures as a basis for deterministic parallelism 4

1.3. Quasi-deterministic and event-driven programming with LVars 5

1.4. The LVish library 7

1.5. Deterministic threshold queries of distributed data structures 8

1.6. Thesis statement, and organization of the rest of this dissertation 9

1.7. Previously published work 10

Chapter 2. LVars: lattice-based data structures for deterministic parallelism 11

2.1. Motivating example: a parallel, pipelined graph computation 14

2.2. LVars by example 17

2.3. Lattices, stores, and determinism 21

2.4. λLVar: syntax and semantics 27

2.5. Proof of determinism for λLVar 31

2.6. Generalizing the put and get operations 42

Chapter 3. Quasi-deterministic and event-driven programming with LVars 50

3.1. LVish, informally 52

3.2. LVish, formally 57

3.3. Proof of quasi-determinism for λLVish 68

Chapter 4. The LVish library 80

4.1. The big picture 81

4.2. The LVish library interface for application writers 82

xi

4.3. Par-monad transformers and disjoint parallel update 93

4.4. Case study: parallelizing k-CFA with LVish 97

4.5. Case study: parallelizing PhyBin with LVish 104

Chapter 5. Deterministic threshold queries of distributed data structures 108

5.1. Background: CvRDTs and eventual consistency 111

5.2. Adding threshold queries to CvRDTs 113

5.3. Determinism of threshold queries 118

5.4. Discussion: reasoning about per-query consistency choices 119

Chapter 6. Related work 121

6.1. Deterministic Parallel Java (DPJ) 122

6.2. FlowPools 122

6.3. Bloom and BloomL 123

6.4. Concurrent Revisions 124

6.5. Frame properties and separation logics 124

Chapter 7. Summary and future work 126

7.1. Another look at the deterministic parallel landscape 126

7.2. Distributed programming and the future of LVars and LVish 128

Bibliography 130

Appendix A. Proofs 134

A.1. Proof of Lemma 2.1 134

A.2. Proof of Lemma 2.2 137

A.3. Proof of Lemma 2.3 139

A.4. Proof of Lemma 2.4 141

A.5. Proof of Lemma 2.5 142

A.6. Proof of Lemma 2.6 147

A.7. Proof of Lemma 2.8 150

A.8. Proof of Lemma 2.9 161

xii

A.9. Proof of Lemma 2.10 162

A.10. Proof of Lemma 3.2 163

A.11. Proof of Lemma 3.3 172

A.12. Proof of Lemma 3.4 177

A.13. Proof of Lemma 3.5 181

A.14. Proof of Lemma 3.6 184

A.15. Proof of Lemma 3.7 187

A.16. Proof of Lemma 3.8 192

A.17. Proof of Lemma 3.10 197

A.18. Proof of Lemma 3.11 225

A.19. Proof of Lemma 3.12 227

A.20. Proof of Theorem 5.2 230

Appendix B. A PLT Redex Model of λLVish 234

Curriculum Vitae

xiii

CHAPTER 1

Introduction

Parallel programming—that is, writing programs that can take advantage of parallel hardware to go

faster—is notoriously difficult. A fundamental reason for this difficulty is that programs can yield in-

consistent results, or even crash, due to unpredictable interactions between parallel tasks.

Deterministic-by-construction parallel programming models, though, offer the promise of freedom from

subtle, hard-to-reproducenondeterministic bugs in parallel code. Although there aremanyways to con-

struct individual deterministic programs and verify their determinism, deterministic-by-construction

programming models provide a language-level guarantee of determinism that holds for all programs

written using the model.

A deterministic program is one that has the same observable behavior every time it is run. How do we

define what is observable about a program’s behavior? Certainly, we do not wish to preserve behav-

iors such as running time across multiple runs—ideally, a deterministic parallel program will run faster

when more parallel resources are available. Moreover, we do not want to count scheduling behavior as

observable—in fact, we want to specifically allow tasks to be scheduled dynamically and unpredictably,

without allowing such schedule nondeterminism to affect the observable behavior of a program. There-

fore, in this dissertation I will define the observable behavior of a program to be the value to which the

program evaluates.

This definition of observable behavior ignores side effects other than state. But even with such a lim-

ited notion of what is observable, schedule nondeterminism can affect the outcome of a program. For

instance, if a computation writes 3 to a shared location while another computation writes 4, then a

subsequent third computation that reads and returns the location’s contents will nondeterministically

return 3 or 4, depending on the order in which the first two computations ran. Therefore, if a parallel

1

1. INTRODUCTION

programming model is to guarantee determinism by construction, it must necessarily limit sharing of

mutable state between parallel tasks in some way.

1.1. The deterministic-by-construction parallel programming landscape

There is long-standing work on deterministic-by-construction parallel programming models that limit

sharing of state between tasks. The possibilities include:

• No-shared-state parallelism. One classic approach to guaranteeing determinism in a parallel pro-

grammingmodel is to allow no sharedmutable state between tasks, forcing tasks to produce values

independently. An example of no-shared-state parallelism is pure functional programming with

function-level task parallelism, or futures—for instance, in Haskell programs that use the par and

pseq combinators [35]. The key characteristic of this style of programming is lack of side effects:

because programs do not have side effects, expressions can evaluate simultaneously without af-

fecting the eventual value of the program. Also belonging in this category are parallel program-

mingmodels based on pure data parallelism, such as Data Parallel Haskell [44, 14] or the River Trail

API for JavaScript [25], each of which extend existing languages with parallel array data types and

(observably) pure operations on them.

• Data-flow parallelism. In Kahn process networks (KPNs) [29], as well as in the more restricted syn-

chronous data flow systems [32], a network of independent “computing stations” communicatewith

each other through first-in, first-out (FIFO) queues, or channels. In this model, each computing

station is a task, and channels are the only means of sharing state between tasks. Furthermore,

reading data from a channel is a blocking operation: once an attempt to read has started, a comput-

ing station cannot do anything else until the data to be read is available. Each station computes a

sequential, monotonic function from the history of its input channels (i.e., the input it has received

so far) to the history of its output channels (the output it has produced so far). KPNs are the basis

for deterministic stream-processing languages such as StreamIt [24].

• Single-assignment parallelism. In parallel single-assignment languages, “full/empty” bits are asso-

ciated with memory locations so that they may be written to at most once. Single-assignment

2

1. INTRODUCTION

locations with blocking read semantics are known as IVars [3] and are a well-established mech-

anism for enforcing determinism in parallel settings: they have appeared in Concurrent ML as

SyncVars [46]; in the Intel Concurrent Collections (abbreviated “CnC”) system [11]; and have even

been implemented in hardware in CrayMTAmachines [5]. Althoughmost of these uses of IVars in-

corporate them into already-nondeterministic programming environments, themonad-parHaskell

library [36] uses IVars in a deterministic-by-construction setting, allowing user-created threads

to communicate through IVars without requiring the IO monad. Rather, operations that read and

write IVarsmust run inside a Parmonad, thus encapsulating them inside otherwise pure programs,

and hence a program in which the only effects are Par effects is guaranteed to be deterministic.

• Imperative disjoint parallelism. Finally, yet another approach to guaranteeing determinism is to en-

sure that the state accessed by concurrent threads is disjoint. Sophisticated permissions systems

and type systems can make it possible for imperative programs to mutate state in parallel, while

guaranteeing that the same state is not accessed simultaneously by multiple threads. I will re-

fer to this style of programming as imperative disjoint parallelism, with Deterministic Parallel Java

(DPJ) [8, 7] as a prominent example.

The four parallel programming models listed above—

no-shared-state parallelism, data-flow parallelism,

single-assignment parallelism, and imperative dis-

joint parallelism—all seem to embody rather differ-

ent mechanisms for exposing parallelism and for en-

suring determinism. If we view these different programming models as a toolkit of unrelated choices,

though, it is not clear how to proceed when we want to implement an application with multiple par-

allelizable components that are best suited to different programming models. For example, suppose

we have an application in which we want to exploit data-flow pipeline parallelism via FIFO queues, but

we also want to mutate disjoint slices of arrays. It is not obvious how to compose two programming

models that each only allow communication through a single type of shared data structure—and if we

do manage to compose them, it is not obvious whether the determinism guarantee of the individual

3

1. INTRODUCTION

models is preserved by their composition. Therefore, we seek a general, broadly-applicable model for

deterministic parallel programming that is not tied to a particular data structure.

1.2. Monotonic data structures as a basis for deterministic parallelism

In KPNs and other data-flow models, communication takes place over blocking FIFO queues with ever-

increasing channel histories, while in IVar-based programming models such as CnC and monad-par, a

shared data store of blocking single-assignment memory locations grows monotonically. Hence mono-

tonic data structures—data structures towhich information can only be added and never removed, and for

which the timing of updates is not observable—emerge as a common theme of guaranteed-deterministic

programming models.

In this dissertation, I show that lattice-based data structures, or LVars, offer a general approach to deter-

ministic parallel programming that takes monotonicity as a starting point. The states an LVar can take

on are elements of a given lattice. This lattice determines the semantics of the put and get operations

that comprise the interface to LVars (which I will explain in detail in Chapter 2):

• The put operation can only make the state of an LVar “grow” with respect to the lattice, because it

updates the LVar to the least upper bound of the current state and the new state. For example, on

LVars of collection type, such as sets, the put operation typically inserts an element.

• The get operation allows only limited observations of the contents of an LVar. It requires the

user to specify a threshold set of minimum values that can be read from the LVar, where every two

elements in the threshold setmust have the lattice’s greatest element⊤ as their least upper bound.

A call to get blocks until the LVar in question reaches a (unique) value in the threshold set, then

unblocks and returns that value.

Together, least-upper-bound writes via put and threshold reads via get yield a programming model

that is deterministic by construction. That is, a program in which put and get operations on LVars

are the only side effects will have the same observable result every time it is run, regardless of parallel

4

1. INTRODUCTION

execution and schedule nondeterminism. Aswewill see inChapter 2, no-shared-state parallelism, data-

flow parallelism and single-assignment parallelism are all subsumed by the LVars programming model,

and as we will see in Section 4.3, imperative disjoint parallel updates are compatible with LVars as well.

Furthermore, as I show in Section 2.6, we can generalize the behavior of the put and get operations

while retaining determinism: we can generalize from the least-upper-bound put operation to a set

of arbitrary update operations that are not necessarily idempotent (but are still inflationary and com-

mutative), and we can generalize the get operation to allow a more general form of threshold reads.

Generalizing from put to arbitrary inflationary and commutative updates turns out to be a particularly

useful extension to the LVars model; I formally extend the model to support these update operations in

Chapter 3, and in Chapter 4 I discuss how arbitrary update operations are useful in practice.

1.3. Quasi-deterministic and event-driven programming with LVars

The LVars model described above guarantees determinism and supports an unlimited variety of shared

data structures: anything viewable as a lattice. However, it is not as general-purpose as onemight hope.

Consider, for instance, an algorithm for unordered graph traversal. A typical implementation involves

a monotonically growing set of “seen nodes”; neighbors of seen nodes are fed back into the set until it

reaches a fixed point. Such fixpoint computations are ubiquitous, and would seem to be a perfect match

for the LVars model due to their use of monotonicity. But they are not expressible using the threshold

get and least-upper-bound put operations, nor even with the more general alternatives to get and put

mentioned above.

The problem is that these computations rely on negative information about a monotonic data structure,

i.e., on the absence of certain writes to the data structure. In a graph traversal, for example, neighboring

nodes should only be explored if the current node is not yet in the set; a fixpoint is reached only if no

new neighbors are found; and, of course, at the end of the computation it must be possible to learn

exactly which nodes were reachable (which entails learning that certain nodes were not). In Chapter 3,

I describe two extensions to the basic LVars model that make such computations possible:

5

1. INTRODUCTION

• First, I add the ability to attach event handlers to an LVar. When an event handler has been registered

with an LVar, it causes a callback function to run, asynchronously, whenever events arrive (in the

form of monotonic updates to the LVar). Crucially, it is possible to check for quiescence of a group

of handlers, discovering that no callbacks are currently enabled—a transient, negative property.

Since quiescence means that there are no further changes to respond to, it can be used to tell that

a fixpoint has been reached.

• Second, I extend the model with a primitive operation freeze for freezing an LVar, which allows

its contents to be read immediately and exactly, rather than the blocking threshold read that get

allows. The freeze primitive imposes the following trade-off: once an LVar has been frozen, any

further writes that would change its value instead raise an exception; on the other hand, it becomes

possible to discover the exact value of the LVar, learning both positive and negative information

about it, without blocking. Therefore, LVar programs that use freeze are not guaranteed to be de-

terministic, because they could nondeterministically raise an exception depending on how writes

and freeze operations are scheduled. However, such programs satisfy quasi-determinism: all exe-

cutions that produce a final value (instead of raising an exception) produce the same final value.

Writes to an LVar could cause more events to occur after a group of handlers associated with that LVar

has quiesced, and those events could trigger more invocations of callback functions. However, since

the contents of the LVar can only be read through get or freeze operations anyway, early quiescence

poses no risk to determinism or quasi-determinism, respectively. In fact, freezing and quiescence work

particularly well together because freezing provides a mechanism by which the programmer can safely

“place a bet” that all writes to an LVar have completed. Hence freezing and handlers make it possible to

implement fixpoint computations like the graph traversal described above. Moreover, if we can ensure

that a freeze does indeed happen after all writes to the LVar in question have completed, then we can

ensure that the entire computation is deterministic, and it is possible to enforce this “freeze-last” idiom

at the implementation level, as I discuss below (and, in more detail, in Section 4.2.5).

6

1. INTRODUCTION

1.4. The LVish library

To demonstrate the practicality of the LVars programming model, in Chapter 4 I will describe LVish, a

Haskell library1 for deterministic and quasi-deterministic programming with LVars.

LVish provides a Par monad for encapsulating parallel computations.2 A Par computation can create

lightweight, library-level threads that are dynamically scheduled by a custom work-stealing scheduler.

LVar operations run inside the Par monad, which is indexed by an effect level, allowing fine-grained

specification of the effects that a given computation is allowed to perform. For instance, since freeze

introduces quasi-determinism, a computation indexed with a deterministic effect level is not allowed

to use freeze. Thus, the type of an LVish computation reflects its determinism or quasi-determinism

guarantee. Furthermore, if a freeze is guaranteed to be the last effect that occurs in a computation,

then it is impossible for that freeze to race with a write, ruling out the possibility of a runtime write-

after-freeze exception. LVish exposes a runParThenFreeze operation that captures this “freeze-last”

idiom and has a deterministic effect level.

LVish also provides a variety of lattice-based data structures (e.g., sets, maps, arrays) that support con-

current insertion, but not deletion, during Par computations. Users may also implement their own

lattice-based data structures, and LVish provides tools to facilitate the definition of user-defined LVars.

I will describe the proof obligations for LVar implementors and give examples of applications that use

user-defined LVars as well as those that the library provides.

Finally, Chapter 4 illustrates LVish through two case studies, drawn from my collaborators’ and my

experience using the LVish library, both of which make use of handlers and freezing:

• First, I describe using LVish to parallelize a control flow analysis (k-CFA) algorithm. The goal of

k-CFA is to compute the flow of values to expressions in a program. The k-CFA algorithm proceeds

in two phases: first, it explores a graph of abstract states of the program; then, it summarizes the

results of the first phase. Using LVish, these two phases can be pipelined; moreover, the original

1Available at http://hackage.haskell.org/package/lvish.
2The Par monad exposed by LVish generalizes the original Par monad exposed by the monad-par library (http://
hackage.haskell.org/package/monad-par, described by Marlow et al. [36]), which allows determinism-preserving
communication between threads, but only through IVars, rather than LVars.

7

http://hackage.haskell.org/package/lvish
http://hackage.haskell.org/package/monad-par
http://hackage.haskell.org/package/monad-par

1. INTRODUCTION

graph exploration phase can be internally parallelized. I contrast our LVish implementation with

the original sequential implementation from which it was ported and give performance results.

• Second, I describe using LVish to parallelize PhyBin [40], a bioinformatics application for compar-

ing sets of phylogenetic trees that relies heavily on a parallel tree-edit distance algorithm [52]. The

PhyBin application crucially relies on the aforementioned ability to perform arbitrary inflationary

and commutative (but not idempotent) updates on LVars (in contrast to the idempotent put oper-

ation). We show that the performance of the parallelized PhyBin application compares favorably

to existing widely-used software packages for analyzing collections of phylogenetic trees.

1.5. Deterministic threshold queries of distributed data structures

The LVars model is closely related to the concept of conflict-free replicated data types (CRDTs) [49] for

enforcing eventual consistency [56] of replicated objects in a distributed system. In particular, state-

based or convergent replicated data types, abbreviated as CvRDTs [49, 48], leverage the mathematical

properties of lattices to guarantee that all replicas of an object (for instance, in a distributed database)

eventually agree.

Although CvRDTs are provably eventually consistent, queries of CvRDTs (unlike threshold reads of

LVars) nevertheless allow inconsistent intermediate states of replicas to be observed. That is, if two

replicas of a CvRDTobject are updated independently, reads of those replicasmay disagree until a (least-

upper-bound) merge operation takes place.

Taking inspiration from LVar-style threshold reads, in Chapter 5 I show how to extend CvRDTs to sup-

port deterministic, strongly consistent queries using a mechanism called threshold queries (or, seen from

another angle, I show how to port threshold reads from a shared-memory setting to a distributed one).

The threshold query technique generalizes to any lattice, and hence any CvRDT, and allows determin-

istic observations to be made of replicated objects before the replicas’ states have converged. This work

has practical relevance since, while real distributed database applications call for a combination of even-

tually consistent and strongly consistent queries, CvRDTs only support the former. Threshold queries

8

1. INTRODUCTION

extend the CvRDTmodel to support both kinds of querieswithin a single, lattice-based reasoning frame-

work. Furthermore, since threshold queries behave deterministically regardless of whether all replicas

agree, they suggest a way to save on synchronization costs: existing operations that require all replicas

to agree could be done with threshold queries instead, and retain behavior that

is observably strongly consistent while avoiding unnecessary synchronization.

1.6. Thesis statement, and organization of the rest of this dissertation

With the above background, I can state my thesis:

Lattice-based data structures are a general andpractical unifying abstraction for deterministic

and quasi-deterministic parallel and distributed programming.

The rest of this dissertation supports my thesis as follows:

• Lattice-based data structures: In Chapter 2, I formally define LVars and use them to define λLVar, a

call-by-value parallel calculuswith a store of LVars that support least-upper-bound put and thresh-

old get operations. In Chapter 3, I extend λLVar to add support for arbitrary update operations,

event handlers, and the freeze operation, calling the resulting language λLVish. Appendix B con-

tains runnable versions ofλLVar andλLVish implemented using the PLT Redex semantics engineering

system [19] for interactive experimentation.

• general: In Chapter 2, I show how previously existing deterministic parallel programming models

(single-assignment languages, Kahn process networks) are subsumed by the lattice-generic LVars

model. Additionally, I show how to generalize the put and get operations on LVars while preserv-

ing their determinism.

• deterministic: In Chapter 2, I show that the basic LVars model guarantees determinism by giving a

proof of determinism for the λLVar language with put and get.

• quasi-deterministic: InChapter 3, I define quasi-determinismand give a proof of quasi-determinism

forλLVish, which adds arbitrary update operations, the freeze operation, and event handlers to the

λLVar language of Chapter 2.

9

1. INTRODUCTION

• practical and parallel: InChapter 4, I describe the interface and implementation of the LVishHaskell

library, which is based on the LVars programming model, and demonstrate how it is used for prac-

tical programming with the two case studies described above, including performance results on

parallel hardware.

• distributed programming: In Chapter 5, I show how LVar-style threshold reads apply to the setting

of distributed, replicated data structures. In particular, I extend convergent replicated data types

(CvRDTs) to support strongly consistent threshold queries, which take advantage of the existing

lattice structure of CvRDTs and allow deterministic observations to bemade of their contents with-

out requiring all replicas to agree.

1.7. Previously published work

The material in this dissertation is based on research done jointly with several collaborators, some of

which appears in the following previously published papers:

• Lindsey Kuper and Ryan R. Newton. 2013. LVars: lattice-based data structures for determinis-

tic parallelism. In Proceedings of the 2nd ACM SIGPLAN Workshop on Functional High-Performance

Computing (FHPC ’13).

• Lindsey Kuper, Aaron Turon, Neelakantan R. Krishnaswami, and Ryan R. Newton. 2014. Freeze

after writing: quasi-deterministic parallel programming with LVars. In Proceedings of the 41st ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’14).

• Lindsey Kuper and Ryan R. Newton. 2014. Joining forces: toward a unified account of LVars and

convergent replicated data types. In the 5th Workshop on Determinism and Correctness in Parallel

Programming (WoDet ’14).

• Lindsey Kuper, Aaron Todd, SamTobin-Hochstadt, and Ryan R. Newton. 2014. Taming the parallel

effect zoo: extensible deterministic parallelismwith LVish. In Proceedings of the 35th ACMSIGPLAN

Conference on Programming Language Design and Implementation (PLDI ’14).

10

http://doi.acm.org/10.1145/2502323.2502326
http://doi.acm.org/10.1145/2502323.2502326
http://doi.acm.org/10.1145/2535838.2535842
http://doi.acm.org/10.1145/2535838.2535842
http://wodet.cs.washington.edu/wp-content/uploads/2014/02/wodet2014-final1.pdf
http://wodet.cs.washington.edu/wp-content/uploads/2014/02/wodet2014-final1.pdf
http://doi.acm.org/10.1145/2594291.2594312
http://doi.acm.org/10.1145/2594291.2594312

CHAPTER 2

LVars: lattice-based data structures for deterministic parallelism

Programs written using a deterministic-by-construction model of parallel computation are guaranteed

to always produce the same observable results, offering programmers freedom from subtle, hard-to-

reproduce nondeterministic bugs. While a number of popular languages and language extensions (e.g.,

Cilk [22]) encourage deterministic parallel programming, few of them guarantee determinism at the

language level—that is, for all programs that can be written using the model.

Of the options available for parallel programming with a language-level determinism guarantee, per-

haps the most mature and broadly available choice is pure functional programming with function-level

task parallelism, or futures. For example, Haskell programs using futures by means of the par and pseq

combinators can provide real speedups on practical programs while guaranteeing determinism [35].1

Yet pure programming with futures is not ideal for all problems. Consider a producer/consumer compu-

tation in which producers and consumers can be scheduled onto separate processors, each able to keep

their working sets in cache. Such a scenario enables pipeline parallelism and is common, for instance,

in stream processing. But a clear separation of producers and consumers is difficult with futures, be-

cause whenever a consumer forces a future, if the future is not yet available, the consumer immediately

switches roles to begin computing the value (as explored by Marlow et al. [36]).

Since pure programming with futures is a poor fit for producer/consumer computations, onemight then

turn to stateful deterministic parallel models. Shared state between computations allows the possibility

for race conditions that introduce nondeterminism, so any parallel programming model that hopes to

guarantee determinism must do something to tame sharing—that is, to restrict access to mutable state

shared among concurrent computations. Systems such as Deterministic Parallel Java [8, 7], for instance,
1When programming with par and pseq, a language-level determinism guarantee obtains if user programs are written in
the Safe Haskell [53] subset of Haskell (which is implemented in GHC Haskell by means of the SafeHaskell language
pragma), and if they do not use the IO monad.

11

2. LVARS: LATTICE-BASED DATA STRUCTURES FOR DETERMINISTIC PARALLELISM

accomplish this by ensuring that the state accessed by concurrent threads is disjoint. Alternatively, a

programming model might allow data to be shared, but limit the operations that can be performed on it

to only those operations that commute with one another and thus can tolerate nondeterministic thread

interleavings. In such a setting, although the order in which side-effecting operations occur can differ

on multiple runs, a program will always produce the same observable result.2

In Kahn process networks (KPNs) [29] and other data-

flow parallel models—which are the basis for determinis-

tic stream-processing languages such as StreamIt [24]—

communication among processes takes place over block-

ing FIFO queues with ever-increasing channel histories.

Meanwhile, in single-assignment [55] or IVar-based [3] pro-

gramming models, such as the Intel Concurrent Collec-

tions system (CnC) [11] and the monad-par Haskell library [36], a shared data store of blocking single-

assignment memory locations grows monotonically. Hence both programming models rely on mono-

tonic data structures: data structures to which information can only be added and never removed, and

for which the timing of updates is not observable.

Because state modifications that only add information and never destroy it can be structured to com-

mute with one another and thereby avoid race conditions, it stands to reason that diverse deterministic

parallel programming models would leverage the principle of monotonicity. Yet systems like StreamIt,

CnC, and monad-par emerge independently, without recognition of their common basis. Moreover,

since each one of these programming models is based on a single type of shared data structure, they

lack generality: IVars or FIFO streams alone cannot support all producer/consumer applications, as I

discuss in Section 2.1.

Instead of limiting ourselves to a single type of shared data structure, though, we can take the more

general notion of monotonic data structures as the basis for a new deterministic parallel programming

model. In this chapter, I show how to generalize IVars to LVars, thus named because the states an LVar

2There are many ways to define what is observable about a program. As noted in Chapter 1, I define the observable behavior
of a program to be the value to which it evaluates.

12

2. LVARS: LATTICE-BASED DATA STRUCTURES FOR DETERMINISTIC PARALLELISM

can take on are elements of a given lattice.3 This lattice determines the semantics of the put and get

operations that comprise the interface to LVars (which I will explain in detail in the sections that follow):

the put operation takes the least upper bound of the current state and the new state with respect to the

lattice, and the get operation performs a threshold read that blocks until a lower bound in the lattice is

reached.

Section 2.2 introduces the concept of LVars through a series of small code examples. Then, in Sec-

tions 2.3 and 2.4 I formally define λLVar, a deterministic parallel calculus with shared state, based on

the call-by-value λ-calculus. The λLVar language is general enough to subsume existing deterministic

parallel languages because it is parameterized by the choice of lattice. For example, a lattice of channel

histories with a prefix ordering allows LVars to represent FIFO channels that implement a Kahn process

network, whereas instantiating λLVar with a lattice with one “empty” state and multiple “full” states

(where ∀i. empty < fulli) results in a parallel single-assignment language. Different instantiations of

the lattice result in a family of deterministic parallel languages.

Because lattices are composable, any number of diversemonotonic data structures can be used together

safely. Moreover, as long as a data structure presents the LVar interface, it is fine to wrap an existing,

optimized concurrent data structure implementation; we need not rewrite the world’s data structures

to leverage the λLVar determinism result.

Themain technical result of this chapter is a proof of determinism forλLVar (Section 2.5). The key lemma,

Independence (Section 2.5.5), gives a kind of frame property that captures the commutative effects of

LVar computations. Such a property would not hold in a typical language with shared mutable state, but

holds in the setting of λLVar because of the semantics of put and get.

Finally, in Section 2.6, I consider some alternative semantics for the put and get operations that gen-

eralize their behavior while retaining the determinism of the original semantics: I generalize the put

operation from least-upper-bound writes to inflationary, commutative writes, and I generalize the get

operation to allow a more general form of threshold reads.

3This “lattice” need only be a bounded join-semilattice augmented with a greatest element ⊤, in which every two elements
have a least upper bound but not necessarily a greatest lower bound; see Section 2.3.1. For brevity, I use the term “lattice”
in place of “bounded join-semilattice with a designated greatest element” throughout this dissertation.

13

2. LVARS: LATTICE-BASED DATA STRUCTURES FOR DETERMINISTIC PARALLELISM

2.1. Motivating example: a parallel, pipelined graph computation

What applications motivate going beyond IVars and FIFO streams? Consider applications in which in-

dependent subcomputations contribute results to shared mutable data structures. Hindley-Milner type

inference is one example: in a parallel type-inference algorithm, each type variable monotonically ac-

quires information through unification. Likewise, in control-flow analysis, the set of locations to which

a variable refersmonotonically shrinks. In logic programming, a parallel implementation of conjunction

might asynchronously add information to a logic variable from different threads.

To illustrate the issues that arise in computations of this nature, consider a specific problem, drawn

from the domain of graph algorithms, where issues of ordering create a tension between parallelism and

determinism:

In a directed graph, find the connected component containing a vertex v, and compute

a (possibly expensive) function f over all vertices in that component, making the set of

results available asynchronously to other computations.

For example, in a directed graph representing user profiles on a social network and the connections

between them, where v represents a particular user’s profile, we might wish to find all (or the first k

degrees of) profiles connected to v, then map a function f over each profile in that set in parallel.

This is a challenge problem for deterministic-by-

construction parallel programming models. Ex-

isting parallel solutions (such as, for instance, the

parallel breadth-first graph traversal implementa-

tion from the Parallel Boost Graph Library [1]) of-

ten traverse the connected component in a non-

deterministic order—even though the outcome of

the program, that is, the final connected component, is deterministic. Neither IVars nor streams pro-

vide a way to orchestrate this traversal. For example, IVars cannot accumulate sets of visited nodes,

nor can they be used as “mark bits” on visited nodes, since they can only be written once and not tested

14

2. LVARS: LATTICE-BASED DATA STRUCTURES FOR DETERMINISTIC PARALLELISM

-- Traverse each level of the graph `g' in parallel, maintaining at
-- each recursive step a set of nodes that have been seen and a set of
-- nodes left to process. `nbrs g n' is the neighbor nodes of node
-- `n' in graph `g'.
bf_traverse :: Graph -> Set NodeLabel -> Set NodeLabel -> Set NodeLabel
bf_traverse g seen nu =

if nu == empty
then seen
else let seen' = union seen nu

allNbr = parFold union (parMap (nbrs g) nu)
nu' = difference allNbr seen'

in bf_traverse g seen' nu'

-- Find the connected component containing the vertex `profile0', and
-- map `analyze` over all nodes in it:
connected_component = bf_traverse profiles empty (singleton profile0)
result = parMap analyze connected_component

Listing 2.1. A purely functional Haskell program that finds the connected component of
the profiles graph that is reachable from the node profile0, then maps the analyze
function over the nodes found. Although component discovery proceeds in parallel, we
cannot call analyze on any of the nodes in the connected component until they have
all been discovered.

for emptiness. Streams, on the other hand, impose an excessively strict ordering for computing the

unordered set of vertex labels in a connected component. Before turning to an LVar-based approach,

though, let us consider whether a purely functional (and therefore deterministic by construction) pro-

gram can meet the specification.

Listing 2.1 gives a Haskell implementation of a level-synchronized breadth-first graph traversal that finds

the connected component reachable from a starting vertex. Nodes at distance one from the starting

vertex are discovered—and set-unioned into the connected component—before nodes of distance two

are considered. Level-synchronization necessarily sacrifices some parallelism: parallel tasks cannot

15

2. LVARS: LATTICE-BASED DATA STRUCTURES FOR DETERMINISTIC PARALLELISM

continue discovering nodes in the component before synchronizing with all other tasks at a given dis-

tance from the start. Nevertheless, level-synchronization is a popular strategy for implementing paral-

lel breadth-first graph traversal. (In fact, the aforementioned implementation from the Parallel Boost

Graph Library [1] uses level-synchronization.)

Unfortunately, the code given in Listing 2.1 does not quite implement the problem specification given

above. Even though connected-component discovery is parallel, members of the output set do not be-

come available to analyze until component discovery is finished, limiting parallelism: the first nodes

in the connected component to be discovered must go un-analyzed until all of the nodes in the con-

nected component have been traversed. We could manually push the analyze invocation inside the

bf_traverse function, allowing the analyze computation to start sooner, but doing so just passes the

problem to the downstream consumer, unless we are able to perform a heroic whole-program fusion.

If bf_traverse returned a list, lazy evaluation could make it possible to stream results to consumers

incrementally. But since it instead returns a set, such pipelining is not generally possible: consuming

the results early would create a proof obligation that the determinism of the consumer does not depend

on the order in which results emerge from the producer.4

A compromise would be for bf_traverse to return a list of “level-sets”: distance one nodes, distance

two nodes, and so on. Thus level-one results could be consumed before level-two results are ready.

Still, at the granularity of the individual level-sets, the problem would remain: within each level-set,

one would not be able to launch all instances of analyze and asynchronously use those results that

finished first. Moreover, we would still have to contend with the problem of separating the scheduling

of producers and consumers that pure programming with futures presents [36].

4As intuition for this idea, consider that purely functional set data structures, such as Haskell’s Data.Set, are typically
represented with balanced trees. Unlike with lists, the structure of the tree is not known until all elements are present.

16

2. LVARS: LATTICE-BASED DATA STRUCTURES FOR DETERMINISTIC PARALLELISM

2.1.2. An LVar-based solution. Consider a version of bf_traverse written using a programming

model with limited effects that allows any data structure to be shared among tasks, including sets and

graphs, so long as that data structure grows monotonically. Consumers of the data structure may ex-

ecute as soon as data is available, enabling pipelining, but may only observe irrevocable, monotonic

properties of it. This is possible with a programming model based on LVars. In the rest of this chapter, I

will formally introduce LVars and the λLVar language and give a proof of determinism for λLVar. Then, in

Chapter 3, I will extend the basic LVars model with additional features that make it easier to implement

parallel graph traversal algorithms and other fixpoint computations, and I will return to bf_traverse

and show how to implement a version of it using LVars that makes pipelining possible and truly satisfies

the above specification.

2.2. LVars by example

IVars [3, 41, 36] are a well-known mechanism for deterministic parallel programming.5 An IVar is a

single-assignment variable [55] with a blocking read semantics: an attempt to read an empty IVar will

block until the IVar has been filled with a value. The “I” in IVar stands for “immutable”: an IVar can only

be written to once, and thereafter its contents cannot change. LVars are a generalization of IVars: an

LVar allows multiple writes, but only so long as those writes are monotonically increasing with respect

to a given lattice of states.

Consider a program in which two parallel computations write to an LVar lv, with one thread writing the

value 2 and the other writing 3:

let par _ = put lv 3

_ = put lv 2

in get lv

(Example 2.1)

Here, put and get write and read LVars, respectively, and the expression

let par x1 = e1; x2 = e2; . . . in e3
5IVars are so named because they are a special case of I-structures [3]—namely, those with only one cell.

17

2. LVARS: LATTICE-BASED DATA STRUCTURES FOR DETERMINISTIC PARALLELISM

⊥

⊤

1 2 3 ...

(a)

⊥

⊤

(⊥, 0) (⊥, 1) ... (0, ⊥) (1, ⊥) ...

(0, 0) (0, 1) ... (1, 0) ...(1, 1)

(b)

getFstgetSnd "tripwire"
⊥

⊤

1

2

⋮

(c)

3

Figure 2.1. Example LVar lattices: (a) positive integers ordered by≤; (b) IVar contain-
ing a positive integer; (c) pair of natural-number-valued IVars, annotated with example
threshold sets that would correspond to a blocking read of the first or second element
of the pair. Any state transition crossing the “tripwire” for getSnd causes it to unblock
and return a result.

has fork-join semantics: it launches concurrent subcomputations e1, e2, . . . whose executions arbitrar-

ily interleave, but must all complete before the expression e3 runs.

The put operation is defined in terms of the specified lattice of LVar states; it updates the LVar to the

least upper bound (lub) of its current state and the new state being written. If lv’s lattice is the≤ ordering

on positive integers, as shown in Figure 2.1(a), then lv’s state will always be max(3, 2) = 3 by the time

get lv runs, since the lub of two positive integers n1 and n2 is max(n1, n2). Therefore Example 2.1 will

deterministically evaluate to 3, regardless of the order in which the two put operations occur.

On the other hand, if lv’s lattice is that shown in Figure 2.1(b), in which the lub of any two distinct posi-

tive integers is⊤, then Example 2.1 will deterministically raise an exception, indicating that conflicting

writes to lv have occurred. This exception is analogous to the “multiple put” error raised upon multiple

writes to an IVar. Unlike with a traditional IVar, though, multiple writes of the same value (say, put lv 3

and put lv 3) will not raise an exception, because the lub of any positive integer and itself is that integer—

corresponding to the fact that multiple writes of the same value do not allow any nondeterminism to be

observed.

18

2. LVARS: LATTICE-BASED DATA STRUCTURES FOR DETERMINISTIC PARALLELISM

2.2.1. Threshold reads. However, merely ensuring that writes to an LVar are monotonically increas-

ing is not enough to guarantee that programs behave deterministically. Consider again the lattice of

Figure 2.1(a) for lv, but suppose we change Example 2.1 to allow a direct, non-blocking read of the LVar

to be interleaved with the two puts:

let par _ = put lv 3

_ = put lv 2

x = read lv

in x

(Example 2.2)

Since the two puts and the read can be scheduled in any order, Example 2.2 is nondeterministic: x

might be either 2 or 3, depending on the order in which the LVar effects occur. Therefore, to maintain

determinism, LVars allow only blocking, restricted get operations. Rather than observing the exact

value of the LVar, the get operation can only observe that the LVar has reached one of a specified set of

lower bound states. This set of lower bounds, which we provide as an extra argument to get, is called a

threshold set because the values in it form a “threshold” that the state of the LVar must cross before the

call to get is allowed to unblock and return. When the threshold has been reached, get unblocks and

returns not the exact contents of the LVar, but instead, the (unique) element of the threshold set that

has been reached or surpassed.

We can then change Example 2.2 to behave deterministically using get with a threshold set:

let par _ = put lv 3

_ = put lv 2

x = get lv {3}
in x

(Example 2.3)

Here we chose the singleton set {3} as the threshold set. Since lv’s value can only increase with time,

we know that once it is at least 3, it will remain at or above 3 forever; therefore the program will deter-

ministically evaluate to 3. Had we chosen {2} as the threshold set, the programwould deterministically

evaluate to 2; had we chosen {4}, it would deterministically block forever.

19

2. LVARS: LATTICE-BASED DATA STRUCTURES FOR DETERMINISTIC PARALLELISM

As long aswe only access LVars with put and get, we can arbitrarily share thembetween threadswithout

introducing nondeterminism. That is, the put and get operations in a given program can happen in any

order, without changing the value to which the program evaluates.

2.2.2. Incompatibility of threshold sets. While Example 2.3 is deterministic, the style of program-

ming it illustrates is only useful for synchronization, not for communicating data: we must specify in

advance the single answer we expect to be returned from the call to get. In general, though, threshold

sets do not have to be singleton sets. For example, consider an LVar lv whose states form a lattice of

pairs of natural-number-valued IVars; that is, lv is a pair (m,n), where m and n both start as ⊥ and

may each be updated once with a non-⊥ value, which must be some natural number. This lattice is

shown in Figure 2.1(c).

We can then define getFst and getSnd operations for reading from the first and second entries of lv:

getFst p △
= get p {(m,⊥) |m ∈ N}

getSnd p △
= get p {(⊥, n) | n ∈ N}

This allows us to write programs like the following:

let par _ = put lv (⊥, 4)

_ = put lv (3,⊥)

x = getSnd lv

in x

(Example 2.4)

In the call getSnd lv, the threshold set is {(⊥, 0), (⊥, 1), . . . }, an infinite set. There is no risk of non-

determinism because the elements of the threshold set are pairwise incompatible with respect to lv’s

lattice: informally, since the second entry of lv can only be written once, no more than one state from

the set {(⊥, 0), (⊥, 1), . . . } can ever be reached. (I formalize this incompatibility requirement in Sec-

tion 2.3.3.)

20

2. LVARS: LATTICE-BASED DATA STRUCTURES FOR DETERMINISTIC PARALLELISM

In the case of Example 2.4, getSnd lvmay unblock and return (⊥, 4) any time after the second entry of

lv has been written, regardless of whether the first entry has been written yet. It is therefore possible

to use LVars to safely read parts of an incomplete data structure—say, an object that is in the process of

being initialized by a constructor.

2.2.3. The model versus reality. The use of explicit threshold sets in the LVars model should be un-

derstood as a mathematical modeling technique, not an implementation approach or practical API. The

core of the LVish library (which I will discuss in Chapter 4) provides unsafe operations to the authors of

LVar data structure libraries, who can then export operations like getFst and getSnd as a safe interface

for application writers, implicitly baking in the particular threshold sets that make sense for a given

data structure without ever explicitly constructing them.

To put it another way, operations on a data structure exposed as an LVar must have the semantic effect

of a lub for writes or a threshold for reads, but none of this need be visible to clients (or even written

explicitly in the code). Any data structure API that provides such a semantics is guaranteed to provide

deterministic concurrent communication.

2.3. Lattices, stores, and determinism

As a minimal substrate for LVars, I introduce λLVar, a parallel call-by-value λ-calculus extended with

a store and with communication primitives put and get that operate on data in the store. The class

of programs that I am interested in modeling with λLVar are those with explicit effectful operations on

shared data structures, in which parallel subcomputations may communicate with each other via the

put and get operations.

In λLVar, stores contain LVars. Whereas IVars are single-assignment variables—either empty or filled

with an immutable value—an LVar may have an arbitrary number of states forming a set D, which is

partially ordered by a relation ⊑. An LVar can take on any sequence of states from D, so long as that

sequence respects the partial order—that is, so long as updates to the LVar (made via the put operation)

21

2. LVARS: LATTICE-BASED DATA STRUCTURES FOR DETERMINISTIC PARALLELISM

are inflationary with respect to⊑. Moreover, the get operation allows only limited observations of the

LVar’s state. In this section, I discuss how lattices and stores work inλLVar and explain how the semantics

of put and get together enforce determinism in λLVar programs.

2.3.1. Lattices. The definition of λLVar is parameterized by D: to write concrete λLVar programs, we

must specify the set of LVar states that we are interested in working with, and an ordering on those

states. Therefore λLVar is actually a family of languages, rather than a single language.

Formally, D is a bounded join-semilattice augmented with a greatest element ⊤. That is, D has the

following structure:

• D has a least element⊥, representing the initial “empty” state of an LVar.

• D has a greatest element⊤, representing the “error” state that results from conflicting updates to

an LVar.

• D comes equipped with a partial order⊑, where⊥ ⊑ d ⊑ ⊤ for all d ∈ D.

• Every pair of elements in D has a lub, written ⊔. Intuitively, the existence of a lub for every two

elements inDmeans that it is possible for two subcomputations to independently update an LVar,

and then deterministically merge the results by taking the lub of the resulting two states.

We can specify all these components as a 4-tuple (D,⊑,⊥,⊤) whereD is a set,⊑ is a partial order on

the elements ofD,⊥ is the least element ofD according to⊑, and⊤ is the greatest element. However,

I useD as a shorthand for the entire 4-tuple (D,⊑,⊥,⊤) when its meaning is clear from the context.

Virtually any data structure to which information is added gradually can be represented as a lattice,

including pairs, arrays, trees, maps, and infinite streams. In the case of maps or sets,⊔ could be defined

as union; for pointer-based data structures like tries,⊔ could allow for unification of partially-initialized

structures.

22

2. LVARS: LATTICE-BASED DATA STRUCTURES FOR DETERMINISTIC PARALLELISM

The simplest example of a usefulD is one that represents the states that a single-assignment variable

(that is, an IVar) can take on. The states of a natural-number-valued IVar, for instance, are the elements

of the lattice in Figure 2.1(b), that is,

D = ({⊤,⊥} ∪ N,⊑,⊥,⊤),

where the partial order⊑ is defined by setting⊥ ⊑ d ⊑ ⊤ and d ⊑ d for all d ∈ D. This is a lattice

of height three and infinite width, where the naturals are arranged horizontally. After the initial write

of some n ∈ N, any further conflicting writes would push the state of the IVar to ⊤ (an error). For

instance, if one thread writes 2 and another writes 1 to an IVar (in arbitrary order), the second of the

two writes would result in an error because 2 ⊔ 1 = ⊤.

In the lattice of Figure 2.1(a), on the other hand, the⊤ state is unreachable, because the lub of any two

writes is just the maximum of the two. If one thread writes 2 and another writes 1, the resulting state

will be 2, since 2⊔1 = 2. Here, the unreachability of⊤models the fact that no conflicting updates can

occur to the LVar.

2.3.2. Stores. During the evaluation of a λLVar program, a store

S keeps track of the states of LVars. Each LVar is represented by

a binding that maps a location l, drawn from a countable set Loc,

to a state, which is some element d ∈ D. Although each LVar in

a program has its own state, the states of all the LVars are drawn

from the same latticeD.6

Definition 2.1 (store, λLVar). A store is either a finite partial mapping S : Loc
fin→ (D − {⊤}), or the

distinguished element⊤S .

6In practice, different LVars in a program might correspond to different lattices (and, in the LVish Haskell library that I will
present in Chapter 4, they do). Multiple lattices can in principle be encoded using a sum construction, so this modeling
choice is just to keep the presentation simple.

23

2. LVARS: LATTICE-BASED DATA STRUCTURES FOR DETERMINISTIC PARALLELISM

I use the notation S[l 7→ d] to denote extending S with a binding from l to d. If l ∈ dom(S), then

S[l 7→ d] denotes an update to the existing binding for l, rather than an extension. Another way to

denote a store is by explicitly writing out all its bindings, using the notation [l1 7→ d1, . . . , ln 7→ dn].

The set of states that a store can take on forms a lattice, just asD does, with the empty store⊥S as its

least element and⊤S as its greatest element. It is straightforward to lift the⊑ and⊔ operations defined

on elements ofD to the level of stores:

Definition 2.2 (store ordering, λLVar). A store S is less than or equal to a store S ′ (written S ⊑S S ′) iff:

• S ′ = ⊤S , or

• dom(S) ⊆ dom(S ′) and for all l ∈ dom(S), S(l) ⊑ S ′(l).

Definition 2.3 (lub of stores, λLVar). The lub of stores S1 and S2 (written S1⊔S S2) is defined as follows:

• S1 ⊔S S2 = ⊤S iff there exists some l ∈ dom(S1) ∩ dom(S2) such that S1(l) ⊔ S2(l) = ⊤.

• Otherwise, S1 ⊔S S2 is the store S such that:

– dom(S) = dom(S1) ∪ dom(S2), and

– For all l ∈ dom(S):

S(l) =


S1(l) ⊔ S2(l) if l ∈ dom(S1) ∩ dom(S2)

S1(l) if l /∈ dom(S2)

S2(l) if l /∈ dom(S1).

Equivalence of stores is also straightforward. Two stores are equal if they are both ⊤S or if they both

have the same set of bindings:

Definition 2.4 (equality of stores, λLVar). Two stores S and S ′ are equal iff:

(1) S = ⊤S and S ′ = ⊤S , or

(2) dom(S) = dom(S ′) and for all l ∈ dom(S), S(l) = S ′(l).

24

2. LVARS: LATTICE-BASED DATA STRUCTURES FOR DETERMINISTIC PARALLELISM

By Definition 2.3, if d1 ⊔ d2 = ⊤, then [l 7→ d1] ⊔S [l 7→ d2] = ⊤S . Notice that a store containing

a binding l 7→ ⊤ can never arise during the execution of a λLVar program, because (as I will show in

Section 2.4) an attempted write that would take the state of some location l to⊤ would raise an error

before the write can occur.

2.3.3. Communication primitives. The new, put, and get operations create, write to, and read from

LVars, respectively. The interface is similar to that presented by mutable references:

• new extends the storewith a binding for a newLVarwhose initial state is⊥, and returns the location

l of that LVar (i.e., a pointer to the LVar).

• put takes a pointer to an LVar and a new state and updates the LVar’s state to the lub of the current

state and the new state, potentially pushing the state of the LVar upward in the lattice. Any update

that would take the state of an LVar to⊤ results in an error.

• get performs a blocking “threshold” read that allows limited observations of the state of an LVar.

It takes a pointer to an LVar and a threshold set T , which is a non-empty subset ofD that is pairwise

incompatible, meaning that the lub of any two distinct elements in T is⊤. If the LVar’s state d1 in

the lattice is at or above some d2 ∈ T , the get operation unblocks and returns d2. Note that d2 is

a unique element of T , for if there is another d′2 ̸= d2 in the threshold set such that d′2 ⊑ d1, it

would follow that d2 ⊔ d′2 ⊑ d1, and so d2 ⊔ d′2 cannot be⊤, which contradicts the requirement

that T be pairwise incompatible.

The intuition behind get is that it specifies a subset of the lattice that is “horizontal”: no two elements

in the threshold set can be above or below one another. Intuitively, each element in the threshold set is

an “alarm” that detects the activation of itself or any state above it. One way of visualizing the thresh-

old set for a get operation is as a subset of edges in the lattice that, if crossed, set off the corresponding

alarm. Together these edges form a “tripwire”. Figure 2.1(c) shows what the “tripwire” looks like for

an example get operation. The threshold set {(⊥, 0), (⊥, 1), ...} (or a subset thereof) would pass the

25

2. LVARS: LATTICE-BASED DATA STRUCTURES FOR DETERMINISTIC PARALLELISM

incompatibility test, as would the threshold set {(0,⊥), (1,⊥), ...} (or a subset thereof), but a combi-

nation of the two would not pass.

The requirement that the elements of a threshold set be pairwise incompatible limits the expressivity

of threshold sets. In fact, it is a stronger requirement than we need to ensure determinism. Later on, in

Section 2.6, I will explain how to generalize the definition of threshold sets to allow more programs to

be expressed. For now, I will proceed with the simpler definition above.

2.3.4. Monotonic store growth and determinism. In IVar-based languages, a store can only change

in one of two ways: a new, empty location (pointing to ⊥) is created, or a previously ⊥ binding is

permanently updated to a meaningful value. It is therefore straightforward in such languages to define

an ordering on stores and establish determinism based on the fact that stores grow monotonically with

respect to the ordering. For instance, Featherweight CnC [11], a single-assignment imperative calculus

that models the Intel Concurrent Collections (CnC) system, defines ordering on stores as follows:7

Definition 2.5 (store ordering, Featherweight CnC). A store S is less than or equal to a store S ′ (written

S ⊑S S ′) iff dom(S) ⊆ dom(S ′) and for all l ∈ dom(S), S(l) = S ′(l).

Our Definition 2.2 is reminiscent of Definition 2.5, but Definition 2.5 requires that S(l) and S ′(l) be

equal, instead of our weaker requirement that S(l) be less than or equal to S ′(l) according to the given

lattice ⊑. In λLVar, stores may grow by updating existing bindings via repeated puts, so Definition 2.5

would be too strong; for instance, if⊥ ⊏ d1 ⊑ d2 for distinct d1, d2 ∈ D, the relationship [l 7→ d1] ⊑S

[l 7→ d2] holds under Definition 2.2, but would not hold under Definition 2.5. That is, in λLVar an LVar

could take on the state d1, and then later the state d2, which would not be possible in Featherweight

CnC.
7Aminor difference betweenλLVar and Featherweight CnC is that, in Featherweight CnC, no store location is explicitly bound
to⊥. Instead, if l /∈ dom(S), then l is defined to point to⊥.

26

2. LVARS: LATTICE-BASED DATA STRUCTURES FOR DETERMINISTIC PARALLELISM

Given a lattice (D,⊑,⊥,⊤) with elements d ∈ D:

configurations σ ::= ⟨S; e⟩ | error

expressions e ::= x | v | e e | get e e | put e e | new

values v ::= () | d | l | T | λx. e

threshold sets T ::= {d1, d2, . . .}

stores S ::= [l1 7→ d1, . . . , ln 7→ dn] | ⊤S

evaluation contexts E ::= [] | E e | e E | get E e | get e E | put E e | put e E

Figure 2.2. Syntax for λLVar.

I establish in Section 2.5 that λLVar remains deterministic despite the relatively weak⊑S relation given

in Definition 2.2. The key to maintaining determinism is the blocking semantics of the get operation

and the fact that it allows only limited observations of the state of an LVar.

2.4. λLVar: syntax and semantics

The syntax ofλLVar appears in Figure 2.2, and Figures 2.3 and 2.4 together give the operational semantics.

Both the syntax and semantics are parameterized by the lattice (D,⊑,⊥,⊤).

A configuration ⟨S; e⟩ comprises a store and an expression. The error configuration, written error, is a

unique element added to the set of configurations, but ⟨⊤S; e⟩ is equal to error for all expressions e.

The metavariable σ ranges over configurations.

Stores are as described in Section 2.3.2, and expressionsmay be variables, values, function applications,

get expressions, put expressions, or new. The value forms include the unit value (), elements d of the

specified lattice, store locations l, threshold sets T , or λ-expressions λx. e. A threshold set is a set

{d1, d2, . . . } of one or more elements of the specified lattice.

27

2. LVARS: LATTICE-BASED DATA STRUCTURES FOR DETERMINISTIC PARALLELISM

Given a lattice (D,⊑,⊥,⊤) with elements d ∈ D:

incomp(T)
△
= ∀ d1, d2 ∈ T. (d1 ̸= d2 =⇒ d1 ⊔ d2 = ⊤) σ ↪−→ σ′

E-Beta

⟨S; (λx. e) v⟩ ↪−→ ⟨S; e[x := v]⟩

E-New

⟨S; new⟩ ↪−→ ⟨S[l 7→ ⊥]; l⟩
(l /∈ dom(S))

E-Put

S(l) = d1 d1 ⊔ d2 ̸= ⊤

⟨S; put l d2⟩ ↪−→ ⟨S[l 7→ d1 ⊔ d2]; ()⟩

E-Put-Err

S(l) = d1 d1 ⊔ d2 = ⊤

⟨S; put l d2⟩ ↪−→ error

E-Get

S(l) = d1 incomp(T) d2 ∈ T d2 ⊑ d1

⟨S; get l T ⟩ ↪−→ ⟨S; d2⟩

Figure 2.3. Reduction semantics for λLVar.

σ 7−→ σ′

E-Eval-Ctxt

⟨S; e⟩ ↪−→ ⟨S ′; e′⟩

⟨S; E [e]⟩ 7−→ ⟨S ′; E [e′]⟩

Figure 2.4. Context semantics for λLVar.

The operational semantics is split into twoparts: a reduction semantics, shown in Figure 2.3, and a context

semantics, shown in Figure 2.4.

The reduction relation ↪−→ is defined on configurations. There are five rules in the reduction semantics:

the E-Beta rule is standard β-reduction, and the rules E-New, E-Put/E-Put-Err, and E-Get respectively

28

2. LVARS: LATTICE-BASED DATA STRUCTURES FOR DETERMINISTIC PARALLELISM

express the semantics of the new, put, and get operations described in Section 2.3.3. The E-New rule

creates a new binding in the store and returns a pointer to it; the side condition l /∈ dom(S) ensures

that l is a fresh location. The E-Put rule updates the store and returns (), the unit value. The E-Put-Err

rule applies when a put to a location would take its state to⊤; in that case, the semantics steps to error.

The incompatibility of the threshold set argument to get is enforced in the E-Get rule by the incomp(T)

premise, which requires that the lub of any two distinct elements in T must be⊤.8

The context relation 7−→ is also defined on configurations. It has only one rule, E-Eval-Ctxt, which is a

standard context rule, allowing reductions to apply within a context. The choice of context determines

where evaluation can occur; in λLVar, the order of evaluation is nondeterministic (that is, a given expres-

sion can generally reduce in more than one way), and so it is generally not the case that an expression

has a unique decomposition into redex and context.9 For example, in an application e1 e2, either e1 or

e2 might reduce first. The nondeterminism in choice of evaluation context reflects the nondetermin-

ism of scheduling between concurrent threads, and in λLVar, the arguments to get, put, and application

expressions are implicitly evaluated concurrently.

2.4.1. Fork-join parallelism. λLVar has a call-by-value semantics: arguments must be fully evaluated

before function application (β-reduction, via the E-Beta rule) can occur. We can exploit this property to

define the syntactic sugar let par for parallel composition that we first saw earlier in Example 2.1. With

let par, we can evaluate two subexpressions e1 and e2 in parallel before evaluating a third subexpres-

sion e3:

let par x1 = e1; x2 = e2 in e3
△
= ((λx1. (λx2. e3)) e1) e2

8Although incomp(T) is given as a premise of the E-Get reduction rule (suggesting that it is checked at runtime), as I noted
earlier in Section 2.2.3, in a real implementation of LVars threshold sets need not have any runtime representation, nor
do they need to be written explicitly in the code. Rather, it is the data structure author’s responsibility to ensure that any
operations provided for reading from LVars have threshold semantics.
9In fact, my motivation for splitting the operational semantics into a reduction semantics and a context semantics is to
isolate the nondeterminism of the context semantics, which simplifies the determinism proof of Section 2.5.

29

2. LVARS: LATTICE-BASED DATA STRUCTURES FOR DETERMINISTIC PARALLELISM

a = ...
b = ...

let par

let par

x = ...
y = ...

in ...
in ...

put

get

(a) (b)

Figure 2.5. A series-parallel graph induced by parallel λ-calculus evaluation (a); a non-
series-parallel graph induced by put/get operations (b).

Although e1 and e2 can be evaluated in parallel, e3 cannot be evaluated until both e1 and e2 are values,

because the call-by-value semantics does not allow β-reduction until the operand is fully evaluated,

and because it further disallows reduction under λ-terms (sometimes called “full β-reduction”). In the

terminology of parallel programming, a let par expression executes both a fork and a join. Indeed, it

is common for fork and join to be combined in a single language construct, for example, in languages

with parallel tuple expressions such as Manticore [21].

Since let par expresses fork-join parallelism, the evaluation of a program comprising nested let par

expressions would induce a runtime dependence graph like that pictured in Figure 2.5(a). The λLVar lan-

guage (minus put and get) can support any series-parallel dependence graph. Adding communication

through put and get introduces “lateral” edges between branches of a parallel computation, as in Fig-

ure 2.5(b). This adds the ability to construct arbitrary non-series-parallel dependency graphs, just as

with first-class futures [50].

Because we do not reduce under λ-terms, we can sequentially compose e1 before e2 by writing let _ =

e1 in e2, which desugars to (λ_. e2) e1. Sequential composition is useful for situations in which expres-

sions must run in a particular order, e.g., if we want to first allocate a new LVar with new and then write

to it using put.

30

2. LVARS: LATTICE-BASED DATA STRUCTURES FOR DETERMINISTIC PARALLELISM

2.4.2. Errors and observable determinism. Is the get operation deterministic? Consider two lattice

elements d1 and d2 that have no ordering and have⊤ as their lub, and suppose that puts of d1 and d2

and a get with {d1, d2} as its threshold set all race for access to an LVar lv:

let par _ = put lv d1
_ = put lv d2

x = get lv {d1, d2}
in x

(Example 2.5)

Eventually, Example 2.5 is guaranteed to raise error by way of the E-Put-Err rule, because d1⊔d2 = ⊤.

Before that happens, though, get lv {d1, d2} could return either d1 or d2. Therefore, get can behave

nondeterministically—but this behavior is not observable in the final outcome of the program, since

one of the two puts will raise error before the x in the body of the let par can be evaluated, and under

our definition of observable determinism, only the final outcome of a program counts.

2.5. Proof of determinism for λLVar

The main technical result of this chapter is a proof of determinism for the λLVar language. The deter-

minism theorem says that if two executions starting from a given configuration σ terminate in config-

urations σ′ and σ′′, then σ′ and σ′′ are the same configuration, up to a permutation on locations. (I

discuss permutations in more detail below, in Section 2.5.1.)

In order to prove determinism forλLVar, I first prove several supporting lemmas. Lemma 2.1 (Permutabil-

ity) deals with location names, and Lemma 2.3 (Locality) establishes a useful property for dealing with

expressions that decompose into redex and context in multiple ways. After that point, the structure

of the proof is similar to that of the proof of determinism for Featherweight CnC given by Budimlić et

al. [11]. I reuse the naming conventions of Budimlić et al. for Lemmas 2.4 (Monotonicity), 2.5 (Indepen-

dence), 2.6 (Clash), 2.7 (Error Preservation), and 2.8 (Strong Local Confluence). However, the statements

and proofs of those properties differ considerably in the setting of λLVar, due to the generality of LVars

and other differences between the λLVar language and Featherweight CnC.

31

2. LVARS: LATTICE-BASED DATA STRUCTURES FOR DETERMINISTIC PARALLELISM

On the other hand, Lemmas 2.9 (Strong One-Sided Confluence), 2.10 (Strong Confluence), and 2.11

(Confluence) are nearly identical to the corresponding lemmas in the Featherweight CnC determinism

proof. This is the case because, once Lemmas 2.4 through 2.8 are established, the remainder of the

determinism proof does not need to deal specifically with the semantics of LVars, lattices, or the store,

and instead deals only with execution steps at a high level.

2.5.1. Permutations and permutability. The E-New rule allocates a fresh location l ∈ Loc in the

store, with the only requirement on l being that it is not (yet) in the domain of the store. Therefore,

multiple runs of the same program may differ in what locations they allocate, and therefore the reduc-

tion semantics is nondeterministic with respect to which locations are allocated. Since this is not a kind

of nondeterminism that we care about, we work modulo an arbitrary permutation on locations.

Recall from Section 2.3.2 that we have a countable set of locations Loc. Then, a permutation is defined

as follows:

Definition 2.6 (permutation, λLVar). A permutation is a function π : Loc → Loc such that:

(1) π is invertible, that is, there is an inverse functionπ−1 : Loc → Locwith the property thatπ(l) = l′

iff π−1(l′) = l; and

(2) π is the identity on all but finitely many elements of Loc.

Condition (1) inDefinition 2.6 ensures thatwe only consider location renamings thatwe can “undo”, and

condition (2) ensures that we only consider renamings of a finite number of locations. Equivalently, we

can say that π is a bijection from Loc to Loc such that it is the identity on all but finitely many elements.

Definitions 2.7, 2.8, and 2.9 lift Definition 2.6 to expressions, stores, and configurations, respectively.

There is nothing surprising about these definitions: to apply a permutation π to an expression, we

just apply π to any locations that occur in the expression. We can also lift π to evaluation contexts,

structurally: π([]) = [], π(E e = π(E) π(e), and so on. To lift π to stores, we apply π to all locations

in the domain of the store. (We do not have to do any renaming in the codomain of the store, since

32

2. LVARS: LATTICE-BASED DATA STRUCTURES FOR DETERMINISTIC PARALLELISM

location names cannot occur in elements of the lattice D and hence cannot occur in the contents of

other store locations.) Since π is a bijection, it follows that if some location l is not in the domain of

some store S, then π(l) /∈ dom((π(S)), a fact that will be useful to us shortly.

Definition 2.7 (permutation of an expression, λLVar). A permutation of an expression e is a function π

defined as follows:

π(x)
△
= x

π(()) △
= ()

π(d)
△
= d

π(l)
△
= π(l)

π(T)
△
= T

π(λx. e)
△
= λx. π(e)

π(e1 e2)
△
= π(e1) π(e2)

π(get e1 e2)
△
= get π(e1) π(e2)

π(put e1 e2)
△
= put π(e1) π(e2)

π(new) △
= new

Definition 2.8 (permutation of a store, λLVar). A permutation of a store S is a function π defined as

follows:

π(⊤S)
△
= ⊤S

π([l1 7→ d1, . . . , ln 7→ dn])
△
= [π(l1) 7→ d1, . . . , π(ln) 7→ dn]

Definition 2.9 (permutation of a configuration, λLVar). A permutation of a configuration ⟨S; e⟩ is a func-

tion π defined as follows: if ⟨S; e⟩ = error, then π(⟨S; e⟩) = error; otherwise, π(⟨S; e⟩) =

⟨π(S); π(e)⟩.

With these definitions in place, I can prove Lemma 2.1, which says that the names of locations in a

configuration do not affect whether or not that configuration can take a step: a configuration σ can step

to σ′ exactly when π(σ) can step to π(σ′).

33

2. LVARS: LATTICE-BASED DATA STRUCTURES FOR DETERMINISTIC PARALLELISM

Lemma 2.1 (Permutability, λLVar). For any finite permutation π,

(1) σ ↪−→ σ′ if and only if π(σ) ↪−→ π(σ′).

(2) σ 7−→ σ′ if and only if π(σ) 7−→ π(σ′).

Proof. See Section A.1. The forward direction of part 1 is by cases on the rule in the reduction semantics

by which σ steps to σ′; the only interesting case is the E-New case, in which we make use of the fact

that if l /∈ dom(S), then π(l) /∈ dom(π(S)). The reverse direction of part 1 relies on the fact that if π

is a permutation, then π−1 is also a permutation. Part 2 of the proof builds on part 1. □

Because the names of locations in a configuration do not affect whether it can step, we can rename loca-

tions as needed, which will be important later on when proving the confluence lemmas of Section 2.5.8.10

2.5.2. Internal determinism. My goal is to show that λLVar is deterministic according to the definition

of observable determinism that I gave in Chapter 1—that is, that a λLVar program always evaluates to the

same value. In the context of λLVar, a “program” can be understood as a configuration, and a “value” can

be understood as a configuration that cannot step, either because the expression in that configuration

is actually a λLVar value, or because it is a “stuck” configuration that cannot step because no rule of the

operational semantics applies. In λLVar, the latter situation could occur if, for instance, a configuration

contains a blocking get expression and there are no other expressions left to evaluate that might cause

it to unblock.

This definition of observable determinism does not require that a configuration takes the same sequence

of steps on the way to reaching its value at the end of every run. Borrowing terminology from Blelloch et

al. [6], I will use the term internally deterministic to describe a program that does, in fact, take the same

10For another example of using permutations in the metatheory of a language to account for an allocator’s nondeterministic
choice of locations in an otherwise deterministic setting, see Krishnaswami [31].

34

2. LVARS: LATTICE-BASED DATA STRUCTURES FOR DETERMINISTIC PARALLELISM

sequence of steps on every run.11 Although λLVar is not internally deterministic, all of its internal non-

determinism is due to the E-Eval-Ctxt rule! This is the case because the E-Eval-Ctxt rule is the only

rule in the operational semantics by which a particular configuration can step in multiple ways. The

multiple ways in which a configuration can step via E-Eval-Ctxt correspond to the ways in which the

expression in that configuration can be decomposed into a redex and an evaluation context. In fact, it is

exactly this property that makes it possible for multiple subexpressions of a λLVar expression (a let par

expression, for instance) to be evaluated in parallel.

But, leaving aside evaluation contexts for themoment—wewill return to them in the following section—

let us focus on the rules of the reduction semantics in Figure 2.3. Here we can see that if a given config-

uration can step by the reduction semantics, then there is only one rule by which it can step, and only

one configuration to which it can step. The only exception is the E-New rule, which nondeterministi-

cally allocates locations and returns pointers to them—but we can account for this by saying that the

reduction semantics is internally deterministic up to a permutation on locations. Lemma 2.2 formalizes

this claim, which we will later use in the proof of Strong Local Confluence (Lemma 2.8).

Lemma 2.2 (Internal Determinism, λLVar). If σ ↪−→ σ′ and σ ↪−→ σ′′, then there is a permutation π such

that σ′ = π(σ′′).

Proof. Straightforward by cases on the rule of the reduction semantics by which σ steps to σ′; the only

interesting case is for the E-New rule. See Section A.2. □

2.5.3. Locality. In order to prove determinism forλLVar, we will have to consider situations in which we

have an expression that decomposes into redex and context in multiple ways. Suppose that we have an

11I am using “internally deterministic” in a more specific way than Blelloch et al.: they define an internally deterministic
program to be one for which the trace of the program is the same on every run, where a trace is a directed acyclic graph of
the operations executed by the program and the control dependencies among them. This definition, in turn, depends on
the definition of “operation”, which might be defined in a fine-grained way or a coarse-grained, abstract way, depending on
which aspects of program execution one wants the notion of internal determinism to capture. The important point is that
internal determinism is a stronger property than observable determinism.

35

2. LVARS: LATTICE-BASED DATA STRUCTURES FOR DETERMINISTIC PARALLELISM

expression e such that e = E1 [e1] = E2 [e2]. The configuration ⟨S; e⟩ can then step in two different

ways by the E-Eval-Ctxt rule: ⟨S; E1 [e1]⟩ 7−→ ⟨S1; E1 [e
′
1]⟩, and ⟨S; E2 [e2]⟩ 7−→ ⟨S2; E2 [e

′
2]⟩.

The interesting case is the one where E1 and E2 are different. The key observation we can make here

is that the 7−→ relation acts “locally”. That is, when e1 steps to e′1 within its context, the expression e2

will be left alone, because it belongs to the context. Likewise, when e2 steps to e′2 within its context,

the expression e1 will be left alone. Lemma 2.3 formalizes this claim.

Lemma 2.3 (Locality, λLVar). If ⟨S; E1 [e1]⟩ 7−→ ⟨S1; E1 [e
′
1]⟩ and ⟨S; E2 [e2]⟩ 7−→ ⟨S2; E2 [e

′
2]⟩ and

E1 [e1] = E2 [e2], then:

IfE1 ̸= E2, then there exist evaluation contextsE ′
1 andE

′
2 such that:

• E ′
1 [e1] = E2 [e

′
2], and

• E ′
2 [e2] = E1 [e

′
1], and

• E ′
1 [e

′
1] = E ′

2 [e
′
2].

Proof. Let e = E1 [e1] = E2 [e2]. The proof is by induction on the structure of the expression e. See

Section A.3. □

2.5.4. Monotonicity. TheMonotonicity lemma says that, as evaluation proceeds according to the ↪−→

relation, the store can only grow with respect to the⊑S ordering.

Lemma 2.4 (Monotonicity, λLVar). If ⟨S; e⟩ ↪−→ ⟨S ′; e′⟩, then S ⊑S S ′.

Proof. Straightforward by cases on the rule of the reduction semantics by which ⟨S; e⟩ steps to ⟨S ′; e′⟩.

The interesting cases are for the E-New and E-Put rules. See Section A.4. □

2.5.5. Independence. Figure 2.6 shows a frame rule, due to O’Hearn et al. [43], which captures the idea

of local reasoning about programs that alter state. In it,C is a program, and {p}C {q} is a Hoare triple

(in the style of Hoare logic [27]) specifying the behavior ofC: it says that if the assertion p is true before

36

2. LVARS: LATTICE-BASED DATA STRUCTURES FOR DETERMINISTIC PARALLELISM

Frame rule:

{p}C {q}

{p ∗ r}C {q ∗ r}

Lemma 2.5 (Independence), simplified:

⟨S; e⟩ ↪−→ ⟨S ′; e′⟩

⟨S ⊔S S ′′; e⟩ ↪−→ ⟨S ′ ⊔S S ′′; e′⟩

Figure 2.6. Comparison of O’Hearn et al.’s frame rule [43] and a simplified version of
the Independence lemma. The separating conjunction connective ∗ in the frame rule
requires that its arguments be disjoint; the Independence lemma uses the⊔S operation
in place of ∗.

C runs, then the assertion q will be true afterwards. For example, p and q might respectively describe

the state of the heap before and after a heap location is updated byC.

Given a program C with precondition p and postcondition q, the frame rule tells us that running C

starting from a state satisfying the precondition p ∗ r will result in a state satisfying the postcondition

q ∗ r. These two assertions use the separating conjunction connective ∗, which combines two assertions

that can be satisfied in a non-overlapping manner. For instance, the assertion p ∗ r is satisfied by a heap

if the heap can be split into two non-overlapping parts satisfying p and r, respectively.

Therefore, if C can run safely starting from a state satisfying p and end in a state satisfying q, then

it does not do any harm to also have the disjoint property r be true when C runs: the truth of r will

not interfere with the safe execution of C. Furthermore, if r is true to begin with, running C will not

interfere with the truth of r. The frame rule gets its name from the fact that r is a “frame” around C:

everything that is not explicitly changed byC is part of the frame and is inviolate.12 O’Hearn et al. refer

12The “frame” terminology was originally introduced in 1969 byMcCarthy and Hayes [37], who observed that specifying only
what is changed by an action does not generally allow an intelligent agent to conclude that nothing else is changed; they
called this dilemma the frame problem.

37

2. LVARS: LATTICE-BASED DATA STRUCTURES FOR DETERMINISTIC PARALLELISM

to the resources (such as heap locations) actually used by C as the “footprint” of C; r is an assertion

about resources outside of that footprint.

The Independence lemma establishes a similar “frame property” for λLVar that captures the idea that

independent effects commute with each other. Consider an expression e that runs starting in store S

and steps to e′, updating the store to S ′. The Independence lemma provides a double-edged guarantee

about what will happen if we evaluate e starting from a larger store S ⊔S S ′′: we know both that e will

update the store to S ′ ⊔S S ′′, and that e will step to e′ as it did before. Here, S ⊔S S ′′ is the lub of the

original S and some other store S ′′ that is “framed on” to S; intuitively, S ′′ is the store resulting from

some other independently-running computation.13

Lemma 2.5 requires as a precondition that the store S ′′ must be non-conflicting with the original tran-

sition from ⟨S; e⟩ to ⟨S ′; e′⟩, meaning that locations in S ′′ cannot share names with locations newly

allocated during the transition; this rules out location name conflicts caused by allocation.

Definition 2.10 (non-conflicting store). A store S ′′ is non-conflicting with the transition ⟨S; e⟩ ↪−→

⟨S ′; e′⟩ iff (dom(S ′)− dom(S)) ∩ dom(S ′′) = ∅.

Lemma 2.5 (Independence). If ⟨S; e⟩ ↪−→ ⟨S ′; e′⟩ (where ⟨S ′; e′⟩ ̸= error), then for all S ′′ such that

S ′′ is non-conflicting with ⟨S; e⟩ ↪−→ ⟨S ′; e′⟩ and S ′ ⊔S S ′′ ̸= ⊤S:

⟨S ⊔S S ′′; e⟩ ↪−→ ⟨S ′ ⊔S S ′′; e′⟩.

Proof. By cases on the rule of the reduction semantics by which ⟨S; e⟩ steps to ⟨S ′; e′⟩. The interesting

cases are for the E-New and E-Put rules. Since ⟨S ′; e′⟩ ̸= error, we do not need to consider the E-Put-

Err rule. See Section A.5. □

2.5.6. Clash. The Clash lemma, Lemma 2.6, is similar to the Independence lemma, but handles the

case where S ′ ⊔S S ′′ = ⊤S . It establishes that, in that case, ⟨S ⊔S S ′′; e⟩ steps to error.
13See Section 6.5 for a more detailed discussion of frame properties and where they manifest in the LVars model.

38

2. LVARS: LATTICE-BASED DATA STRUCTURES FOR DETERMINISTIC PARALLELISM

Lemma 2.6 (Clash). If ⟨S; e⟩ ↪−→ ⟨S ′; e′⟩ (where ⟨S ′; e′⟩ ̸= error), then for all S ′′ such that S ′′ is

non-conflicting with ⟨S; e⟩ ↪−→ ⟨S ′; e′⟩ and S ′ ⊔S S ′′ = ⊤S:

⟨S ⊔S S ′′; e⟩ ↪−→i error, where i ≤ 1.

Proof. By cases on the rule of the reduction semantics by which ⟨S; e⟩ steps to ⟨S ′; e′⟩. As with

Lemma 2.5, the interesting cases are for the E-New and E-Put rules, and since ⟨S ′; e′⟩ ̸= error, we

do not need to consider the E-Put-Err rule. See Section A.6. □

2.5.7. Error preservation. Lemma 2.7, Error Preservation, says that if a configuration ⟨S; e⟩ steps to

error, then evaluating e in the context of some larger store will also result in error.

Lemma 2.7 (Error Preservation, λLVar). If ⟨S; e⟩ ↪−→ error and S ⊑S S ′, then ⟨S ′; e⟩ ↪−→ error.

Proof. Suppose ⟨S; e⟩ ↪−→ error and S ⊑S S ′. We are required to show that ⟨S ′; e⟩ ↪−→ error.

By inspection of the operational semantics, the only rule by which ⟨S; e⟩ can step to error is E-Put-Err.

Hence e = put l d2. From the premises of E-Put-Err, we have that S(l) = d1. Since S ⊑S S ′, it must

be the case that S ′(l) = d′1, where d1 ⊑ d′1. Since d1 ⊔ d2 = ⊤, we have that d′1 ⊔ d2 = ⊤. Hence, by

E-Put-Err, ⟨S ′; put l d2⟩ ↪−→ error, as we were required to show. □

2.5.8. Confluence. Lemma 2.8, the Strong Local Confluence lemma, says that if a configuration σ can

step to configurations σa and σb, then there exists a configuration σc that σa and σb can each reach in

at most one step, modulo a permutation on the locations in σb. Lemmas 2.9 and 2.10 then generalize

that result to arbitrary numbers of steps.

The structure of this part of the proof differs from the Budimlić et al. determinism proof for Feather-

weight CnC in two ways. First, Budimlić et al. prove a diamond property, in which σa and σb each step

to σc in exactly one step. They then get a property like Lemma 2.8 as an immediate consequence of the

diamond property, by choosing i = j = 1. But a true diamond property with exactly one step “on each

39

2. LVARS: LATTICE-BASED DATA STRUCTURES FOR DETERMINISTIC PARALLELISM

side of the diamond” is stronger than we need here, and, in fact, does not hold for λLVar; so, instead, I

prove the weaker “at most one step” property directly.

Second, Budimlić et al. do not have to deal with permutations in their proof, because the Featherweight

CnC language does no allocation; there is no counterpart to λLVar’s new expression in Featherweight

CnC. Instead, Featherweight CnC models the store as a pre-existing array of locations, where every

location has a default initial value of⊥. Because there is no way (and no need) to allocate new locations

in Featherweight CnC, it is never the case that two subexpressions independently happen to allocate

locations with the same name—which is exactly the situation that requires us to be able to rename

locations in λLVar. In fact, that situation is what makes the entire notion of permutations described in

Section 2.5.1 a necessary part of the metatheory of λLVar.

Taking the approach of Featherweight CnC, and therefore avoiding allocation entirely, would simplify

both the λLVar language and its determinism proof. On the other hand, when programming with the

LVish Haskell library of Chapter 4, one does have to explicitly create and allocate new LVars by calling

the equivalent of new, and so by modeling the new operation in λLVar, we keep the semantics a bit more

faithful to the implementation.

Lemma 2.8 (Strong Local Confluence). If σ 7−→ σa and σ 7−→ σb, then there exist σc, i, j, π such that

σa 7−→i σc and π(σb) 7−→j σc and i ≤ 1 and j ≤ 1.

Proof. Since the original configuration σ can step in two different ways, its expression decomposes into

redex and context in two different ways: σ = ⟨S; Ea [ea1]⟩ = ⟨S; Eb [eb1]⟩, whereEa [ea1] = Eb [eb1],

but Ea and Eb may differ and ea1 and eb1 may differ. In the special case where Ea = Eb, the result

follows by Internal Determinism (Lemma 2.2).

If Ea ̸= Eb, we can apply the Locality lemma (Lemma 2.3); at a high level, it shows that ea1 and eb1

can be evaluated independently within their contexts. The proof is then by a double case analysis on

the rules of the reduction semantics by which ⟨S; ea1⟩ steps and by which ⟨S; eb1⟩ steps. In order to

40

2. LVARS: LATTICE-BASED DATA STRUCTURES FOR DETERMINISTIC PARALLELISM

combine the results of the two independent steps, the proof makes use of the Independence lemma

(Lemma 2.5). The most interesting case is that in which both steps are by the E-New rule and they

allocate locations with the same name. In that case, we can use the Permutability lemma (Lemma 2.1)

to rename locations so as not to conflict. See Section A.7. □

Lemma 2.9 (Strong One-Sided Confluence). If σ 7−→ σ′ and σ 7−→m σ′′, where 1 ≤ m, then there exist

σc, i, j, π such that σ′ 7−→i σc and π(σ′′) 7−→j σc and i ≤ m and j ≤ 1.

Proof. By induction onm; see Section A.8. □

Lemma 2.10 (Strong Confluence). If σ 7−→n σ′ and σ 7−→m σ′′, where 1 ≤ n and 1 ≤ m, then there

exist σc, i, j, π such that σ′ 7−→i σc and π(σ′′) 7−→j σc and i ≤ m and j ≤ n.

Proof. By induction on n; see Section A.9. □

Lemma 2.11 (Confluence). If σ 7−→∗ σ′ and σ 7−→∗ σ′′, then there exist σc and π such that σ′ 7−→∗ σc

and π(σ′′) 7−→∗ σc.

Proof. Strong Confluence (Lemma 2.10) implies Confluence. □

2.5.9. Determinism. Finally, the determinism theorem, Theorem 2.1, is a direct result of Lemma 2.11:

Theorem 2.1 (Determinism). If σ 7−→∗ σ′ and σ 7−→∗ σ′′, and neither σ′ nor σ′′ can take a step, then

there exists π such that σ′ = π(σ′′).

Proof. We have from Confluence (Lemma 2.11) that there exists σc and π such that σ′ 7−→∗ σc and

π(σ′′) 7−→∗ σc. Since σ′ cannot step, we must have σ′ = σc.

By Permutability (Lemma 2.1), σ′′ can step iff π(σ′′) can step, so since σ′′ cannot step, π(σ′′) cannot

step either.

Hence we must have π(σ′′) = σc. Since σ′ = σc and π(σ′′) = σc, σ′ = π(σ′′). □

41

2. LVARS: LATTICE-BASED DATA STRUCTURES FOR DETERMINISTIC PARALLELISM

2.5.10. Discussion: termination. I have followed Budimlić et al. [11] in treating determinism sepa-

rately from the issue of termination. Yet one might legitimately be concerned that in λLVar, a configu-

ration could have both an infinite reduction path and one that terminates with a value. Theorem 2.1

says that if two runs of a given λLVar program reach configurations where no more reductions are possi-

ble, then they have reached the same configuration. Hence Theorem 2.1 handles the case of deadlocks

already: a λLVar program can deadlock (e.g., with a blocked get), but it will do so deterministically.

However, Theorem 2.1 has nothing to say about livelocks, in which a program reduces infinitely. It would

be desirable to have a consistent termination property which would guarantee that if one run of a given

λLVar program terminates with a non-error result, then every run will. I conjecture (but do not prove)

that such a consistent termination property holds for λLVar. Such a property could be paired with Theo-

rem 2.1 to guarantee that if one run of a given λLVar program terminates in a non-error configuration σ,

then every run of that program terminates in σ. (The “non-error configuration” condition is necessary

because it is possible to construct a λLVar program that can terminate in error on some runs and diverge

on others. By contrast, the existing determinism theorem does not have to treat error specially.)

2.6. Generalizing the put and get operations

The determinism result for λLVar shows that adding LVars (with their accompanying new/put/get oper-

ations) to an existing deterministic parallel language (the λ-calculus) preserves determinism. But it is

not the case that the put and get operations are the most general determinism-preserving operations

on LVars. In this section, I consider some alternative semantics for put and get that generalize their

behavior while retaining the determinism of the model.

2.6.1. Generalizing from least-upper-bound writes to inflationary, commutative writes. In the

LVars model as presented in this chapter so far, the only way for the state of an LVar to evolve over time

is through a series of put operations. Unfortunately, this way of updating an LVar provides no efficient

way to model, for instance, an atomically incremented counter that occupies one memory location.

42

2. LVARS: LATTICE-BASED DATA STRUCTURES FOR DETERMINISTIC PARALLELISM

Consider an LVar based on the lattice of Figure 2.1(a). Under the semantics of put, if two independent

writes each take the LVar’s contents from, say, 1 to 2, then after both writes, its contents will be 2,

because put takes the maximum of the previous value and the current value. Although this semantics

is deterministic, it is not the desired semantics for every application. Instead, wemight want each write

to increment the contents of the LVar by one, resulting in 3.

To support this alternative semantics in the LVars model, we generalize the model as follows. For an

LVar with lattice (D,⊑,⊥,⊤), we can define a family of update operations ui : D → D, which must

meet the following two conditions:

• ∀d, i. d ⊑ ui(d)

• ∀d, i, j. ui(uj(d)) = uj(ui(d))

The first of these conditions says that each update operation is inflationary with respect to ⊑. The

second condition says that update operations commute with each other. These two conditions corre-

spond to the two informal criteria that we set forth for monotonic data structures at the beginning of

this chapter: the requirement that updates be inflationary corresponds to the fact that monotonic data

structures can only “grow”, and the requirement that updates be commutative corresponds to the fact

that the timing of updates must not be observable.14

In fact, the put operation meets the above two conditions, and therefore can be viewed as a special case

of an update operation that, in addition to being inflationary and commutative, also happens to com-

pute a lub. However, when generalizing LVars to support update operations, we must keep in mind that

put operations do not necessarily mix with arbitrary update operations on the same LVar. For example,

consider a family of update operations {u(+1), u(+2), . . . } for atomically incrementing a counter rep-

resented by a natural number LVar, with a lattice ordered by the usual≤ on natural numbers. The u(+1)

operation increments the counter by one, u(+2) increments it by two, and so on. It is easy to see that

14Of course, commutativity of updates alone is not enough to assure that the timing of updates is not observable; for that
we also need threshold reads.

43

2. LVARS: LATTICE-BASED DATA STRUCTURES FOR DETERMINISTIC PARALLELISM

these operations commute. However, a put of 4 and a u(+1) do not commute: if we start with an initial

state of 0 and the put occurs first, then the state of the LVar changes to 4 since max(0, 4) = 4, and

the subsequent u(+1) updates it to 5. But if the u(+1) happens first, then the final state of the LVar will

be max(1, 4) = 4. Furthermore, multiple distinct families of update operations only commute among

themselves and cannot be combined.

In practice, the author of a particular LVar data structuremust choosewhich update operations that data

structure should provide, and it is the data structure author’s responsibility to ensure that they com-

mute. For example, the LVishHaskell library of Chapter 4 provides a set data structure, Data.LVar.Set,

that supports only put, whereas the counter data structure Data.LVar.Counter supports only incre-

ments; an attempt to call put on a Counter would be ruled out by the type system. However, composing

LVars that support different families of update operations is fine. For example, an LVar could represent

a monotonically growing collection (which supports put) of counter LVars, where each counter is itself

monotonically increasing and supports only increment. Indeed, the PhyBin case study that I describe

in Section 4.5 uses just such a collection of counters.

In Chapter 3, in addition to extending λLVar to support the new features of freezing and event handlers,

I generalize the put operation to allow arbitrary update operations. More precisely, I replace the put

operation with a family of operations puti, with each corresponding to an update operation ui. The

resulting generalized language definition is therefore parameterized not only by a given lattice, but

also by a given family of update operations. Furthermore, as we will see in Section 3.3.5, we will need to

generalize the Independence lemma (Lemma 2.5) in order to accommodate this change to the language.

2.6.2. A more general formulation of threshold sets. Certain deterministic computations are diffi-

cult to express using the definition of threshold sets presented in Section 2.3.3. For instance, consider

an LVar that stores the result of a parallel logical “and” operation on two Boolean inputs. I will call this

data structure an AndLV, and its two inputs the left and right inputs, respectively.

44

2. LVARS: LATTICE-BASED DATA STRUCTURES FOR DETERMINISTIC PARALLELISM

(Bot,Bot)

(Bot,T)(T,Bot)

(T,T)

Top

(F,F)

(F,Bot) (Bot,F)

(T,F)(F,T)

Figure 2.7. The lattice of states that an AndLV can take on. The five red states in the
lattice correspond to a false result, and the one green state corresponds to a true one.

We can represent the states an AndLV can take on as pairs (x, y), where each of x and y are T, F, or

Bot. The (Bot, Bot) state is the state in which no input has yet been received, and so it is the least

element in the lattice of states that our AndLV can take on, shown in Figure 2.7. An additional state,

Top, is the greatest element of the lattice; it represents the situation in which an error has occurred—if,

for instance, one of the inputs writes T and then later changes its mind to F.

The lattice induces a lub operation on pairs of states; for instance, the lub of (T, Bot) and (Bot, F) is

(T, F), and the lub of (T, Bot) and (F, Bot) is Top since the overlapping T and F values conflict. The

put operation updates the AndLV’s state to the lub of the incoming state and the current state.

We are interested in learning whether the result of our parallel “and” computation is “true” or “false”.

Let us consider what observations it is possible to make of an AndLV under our existing definition of

threshold reads. The states (T, T), (T, F), (F, T), and (F, F) are all pairwise incompatible with one an-

other, and so {(T, T), (T, F), (F, T), (F, F)}—that is, the set of states in which both the left and right

inputs have arrived—is a legal threshold set argument to get. The trouble with this threshold read is

that it does not allow us to get early answers from the computation. It would be preferable to have a

get operation that would “short circuit” and unblock immediately if a single input of, say, (F, Bot) or

(Bot, F)was written, since no later write could change the fact that the result of the whole computation

45

2. LVARS: LATTICE-BASED DATA STRUCTURES FOR DETERMINISTIC PARALLELISM

would be “false”.15 Unfortunately, we cannot include (F, Bot) or (Bot, F) in our threshold set, because

the resulting threshold set would no longer be pairwise incompatible, and therefore would compromise

determinism.

In order to get short-circuiting behavior from an AndLV without compromising determinism, we need

tomake a slight generalization to how threshold sets and threshold reads work. In the new formulation,

we divide up threshold sets into subsets that we call activation sets, each consisting of activation states.

In the case of the observation we want to make of our AndLV, one of those activation sets is the set of

states that the data structuremight be in when a state containing at least one F value has been written—

that is, the set {(F, Bot), (Bot, F), (F, T), (T, F), (F, F)}. When we reach a point in the lattice that is

at or above any of those states, we know that the result will be “false”. The other activation set is the

singleton set {(T, T)}, since we have to wait until we reach the state (T, T) to know that the result is

“true”; a state like (T, Bot) does not appear in any of our activation sets.

We can now redefine “threshold set” to mean a set of activation sets. Under this definition, the entire

threshold set that we would use to observe the contents of our AndLV is:

{{(F, Bot), (Bot, F), (F, T), (T, F), (F, F)} , {(T, T)}}

We redefine the semantics of get as follows: if an LVar’s state reaches (or surpasses) any state or

states in a particular activation set in the threshold set, get returns that entire activation set, regard-

less of which of its activation states was reached. If no state in any activation set in the threshold

set has yet been reached, the get operation will block. In the case of our AndLV, as soon as either

input writes a state containing an F, our get will unblock and return the first activation set, that is,

{(F, Bot), (Bot, F), (F, T), (T, F), (F, F)}. Hence AndLV has the expected “short-circuit” behavior and

15Actually, this is not quite true: a write of (F, Bot) followed by a write of (T, Bot) would lead to a result of Top, and to the
program stepping to the error state, which is certainly different from a result of “false”. But, even if a write of (T, Bot) is
due to come along sooner or later to take the state of the AndLV to Top and thus raise error, it should still be fine for the
get operation to allow “short-circuit” unblocking, because the result of the get operation does not count as observable
under our definition of observable determinism (as discussed in Section 2.4.2).

46

2. LVARS: LATTICE-BASED DATA STRUCTURES FOR DETERMINISTIC PARALLELISM

does not have to wait for a second input if the first input contains an F. If, on the other hand, the inputs

are (T, Bot) and (Bot, T), the get will unblock and return {(T, T)}.

In practice, the value returned from the get could be more meaningful to the client—for instance, a

Haskell implementation could return False instead of returning the actual activation set that corre-

sponds to “false”. However, the translation from {(F, Bot), (Bot, F), (F, T), (T, F), (F, F)} to False

could just as easily take place on the client side. In either case, the activation set returned from the

threshold read is the same regardless of which of its activation states caused the read to unblock, and it

is impossible for the client to tell whether the actual state of the lattice is, say, (T, F), (F, F), or some

other state containing F.

As part of this activation-set-based formulation of threshold sets, we need to adjust our criterion for

pairwise incompatibility of threshold sets. Recall that the purpose of the pairwise incompatibility re-

quirement (see Section 2.3.3) was to ensure that a threshold read would return a unique result. We need

to generalize this requirement, since although more than one element in the same activation set might

be reached or surpassed by a given write to an LVar, it is still the case that writes should only unblock a

unique activation set in the threshold set. The pairwise incompatibility requirement then becomes that

elements in an activation set must be pairwise incompatible with elements in every other activation set.

That is, for all distinct activation setsQ andR in a given threshold set:

∀q ∈ Q. ∀r ∈ R. q ⊔ r = ⊤

In our AndLV example, there are two distinct activation sets, so if we let Q = {(T, T)} and R =

{(F, Bot), (Bot, F), (F, T), (T, F), (F, F)}, the lub of (T, T) and r must be Top, where r is any element

ofR. We can easily verify that this is the case.

To illustrate whywe need pairwise incompatibility to be defined this way, consider the following (illegal)

“threshold set” that does not meet the pairwise incompatibility criterion:

{{(F, Bot), (Bot, F)} , {(T, Bot), (Bot, T)}}
47

2. LVARS: LATTICE-BASED DATA STRUCTURES FOR DETERMINISTIC PARALLELISM

A get corresponding to this so-called threshold set will unblock and return {(F, Bot), (Bot, F)} as

soon as a state containing an F is reached, and {(T, Bot), (Bot, T)} as soon as a state containing a

T is reached. If, for instance, the left input writes (F, Bot) and the right input writes (Bot, T), and

these writes occur in arbitrary order, the threshold readwill return a nondeterministic result, depending

on the order of the two writes. But if get uses the properly pairwise-incompatible threshold set that

has Q and R as its two activation sets, it will block until the write of (F, Bot) arrives, and then will

deterministically return Q, the “false” activation set, regardless of whether the write of (Bot, T) has

arrived yet. Hence “short-circuit” evaluation is possible.

Finally, we canmechanically translate the old way of specifying threshold sets into activation-set-based

threshold sets and retain the old semantics (and therefore the new way of specifying threshold sets

generalizes the old way). In the translation, every member of the old threshold set simply becomes a

singleton activation set. For example, if we wanted a non-short-circuiting threshold read of our AndLV

under the activation-set-based semantics, our threshold set would simply be

{{(T, T)} , {(T, F)} , {(F, T)} , {(F, F)}} ,

which is a legal threshold set under the activation-set-based semantics, but has the same behavior as

the old, non-short-circuiting version.

I use the activation-set-based formulation of threshold sets in Chapter 5, where I bring threshold reads

to the setting of replicated, distributed data structures. I prove that activation-set-based threshold

queries of distributed data structures behave deterministically (according to a definition of determinism

that is particular to the distributed setting; see Section 5.3 for the details). That said, there is nothing

about activation-set-based threshold sets thatmakes themparticularly suited to the distributed setting;

either the original formulation of threshold sets or the even more general threshold functions I discuss

in the following section would have worked as well.

48

2. LVARS: LATTICE-BASED DATA STRUCTURES FOR DETERMINISTIC PARALLELISM

2.6.3. Generalizing from threshold sets to threshold functions. The previous section’s general-

ization to activation-set-based threshold sets prompts us to ask: are further generalizations possible

while retaining determinism? The answer is yes: both the original way of specifying threshold sets and

the more general, activation-set-based formulation of them can be described by threshold functions. A

threshold function is a partial function that takes a lattice element as its argument and is undefined for

all inputs that are not at or above a given element in the lattice (which I will call its threshold point),

and constant for all inputs that are at or above its threshold point. (Note that “not at or above” is more

general than “below”: a threshold function is undefined for inputs that are neither above nor below its

threshold point.)

Threshold functions capture the semantics of both the original style of threshold sets and the activation-

set-based style:

• In the original style of threshold sets, every element d of a threshold set can be described by a

threshold function that has d as its threshold point and returns d for all inputs at or above that

point.

• In the activation-set-based style of threshold sets, every element d of an activation set Q can be

described by a threshold function that has d as its threshold point and returnsQ for all inputs at

or above that point.

In both cases, inputs for which the threshold functions are undefined correspond to situations in which

the threshold read blocks.

Seen from this point of view, it becomes clear that the key insight in generalizing from the original

style of threshold sets to the activation-set-based style of threshold sets is that, for inputs for which a

threshold function is defined, its return value need not be its threshold point. The activation setQ is a

particularly useful return value, but any constant return value will suffice.

49

CHAPTER 3

Quasi-deterministic and event-driven programming with LVars

The LVars programming model presented in Chapter 2 is based on the idea ofmonotonic data structures,

in which information can only be added, never removed, and the timingwithwhich information is added

(andhence the order inwhich it is added) is not observable. Aparadigmatic example is a set that supports

insertion but not removal, but there are many others. In the LVars model, all shared data structures

(called LVars) are monotonic, and the states that an LVar can take on form a lattice. Writes to an LVar

must correspond to a lub operation in the lattice, which means that they monotonically increase the

information in the LVar, and that they commutewith one another. But commutingwrites are not enough

to guarantee determinism: if a read can observe whether or not a concurrent write has happened, then

it can observe differences in scheduling. So, in the LVars model, the answer to the question “has a

write occurred?” (i.e., is the LVar above a certain lattice value?) is always yes; the reading thread will

block until the LVar’s contents reach a desired threshold. In a monotonic data structure, the absence of

information is transient—another thread could add that information at any time—but the presence of

information is forever.

Wewant to use LVars to implement fixpoint computations like the parallel graph traversal of Section 2.1.

But we cannot do so using only least-upper-boundwrites and threshold reads, because in order to deter-

mine when the set of traversed nodes in the graph has reached a fixpoint, we need to be able to see the

exact contents of that set, and it is impossible to learn the exact contents of the set using only threshold

reads.

50

3. QUASI-DETERMINISTIC AND EVENT-DRIVEN PROGRAMMING WITH LVARS

In this chapter, I describe two extensions to the basic LVars

model of Chapter 2 that give us a new way to approach prob-

lems like the parallel graph traversal problem. First, I add the

ability to attach event handlers to an LVar that allow callback

functions to run in response to updates to the LVar. We say

that a group of event handlers is quiescent when no callbacks are currently enabled to run. Second, I add

a new primitive operation, freeze, that returns the exact contents of an LVar without blocking. Using

freeze to read an LVar comes with the following tradeoff: once an LVar has been read, it is frozen, and

any further writes that would change its value instead throw an exception.

The threshold reads that we have seen so far encourage a synchronous, pull model of programming

in which threads ask specific questions of an LVar, potentially blocking until the answer is “yes”. The

addition of handlers, quiescence, and freezing, by contrast, enables an asynchronous, push model of

programming. We will refer to this extended programming model as the LVish programming model.

Because quiescence makes it possible to tell when the fixpoint of a computation has been reached, the

LVish model is particularly well suited to problems like the graph traversal problem that we saw in

Section 2.1.

Unfortunately, freezing does not commute with writes that change an LVar.1 If a freeze is interleaved

before such a write, the write will raise an exception; if it is interleaved afterwards, the program will

proceed normally. It would appear that the price of negative information is the loss of determinism!

Fortunately, the loss is not total. Although LVar programs with freezing are not guaranteed to be de-

terministic, they do satisfy a related property that I call quasi-determinism: all executions that produce

a final value produce the same final value. To put it another way, a quasi-deterministic program can

be trusted to never change its answer due to nondeterminism; at worst, it might raise an exception on

1The same is true for quiescence detection, as we will see in Section 3.1.2.

51

3. QUASI-DETERMINISTIC AND EVENT-DRIVEN PROGRAMMING WITH LVARS

some runs. This exception can in principle pinpoint the exact pair of freeze and write operations that

are racing, greatly easing debugging.

In general, the ability tomake exact observations of the contents of data structures is in tensionwith the

goal of guaranteed determinism. Since pushing towards full-featured, general monotonic data struc-

tures leads to flirtation with nondeterminism, perhaps the best way of ultimately getting deterministic

outcomes is to traipse a short distance into nondeterministic territory, and make our way back. The

identification of quasi-deterministic programs as a useful intermediate class of programs is a contribu-

tion of this dissertation. That said, in many cases the freeze construct is only used as the very final

step of a computation: after a global barrier, freezing is used to extract an answer. In this common case,

determinism is guaranteed, since no writes can subsequently occur.

I will refer to the LVarsmodel, extendedwith handlers, quiescence, and freezing, as the LVishmodel. The

rest of this chapter introduces the LVish programming model, first informally through a series of exam-

ples, and then formally, by extending the λLVar calculus of Chapter 2 to add support for handlers, quies-

cence, freezing, and the arbitrary update operations described in Section 2.6.1, resulting in a calculus I

call λLVish. I will also return to our parallel graph traversal problem and show an solution implemented

using the LVish Haskell library.

Finally, the main technical result of this chapter is a proof of quasi-determinism for λLVish. The key

to the proof is a generalized version of the Independence lemma of Chapter 2 that accounts for both

freezing and the arbitrary update operations that λLVish allows.

3.1. LVish, informally

While LVars offer a deterministic programmingmodel that allows communication through awide variety

of data structures, they are not powerful enough to express common algorithmic patterns, like fixpoint

computations, that require both positive and negative queries. In this section, I explain our extensions

to the LVars model at a high level; Section 3.2 then formalizes them.

52

3. QUASI-DETERMINISTIC AND EVENT-DRIVEN PROGRAMMING WITH LVARS

3.1.1. Asynchrony through event handlers. Our first extension to LVars is the ability to do asynchro-

nous, event-driven programming through event handlers. An event for an LVar can be represented by a

lattice element; the event occurs when the LVar’s current value reaches a point at or above that lattice

element. An event handler ties together an LVar with a callback function that is asynchronously invoked

whenever some events of interest occur.

To illustrate how event handlers work, consider again the lattice of Figure 2.1(a) from Chapter 2. Sup-

pose that lv is an LVar whose states correspond to this lattice. The expression

(Example 3.6) addHandler lv {1, 3, 5, . . . } (λx. put lv x+ 1)

registers a handler for lv that executes the callback function λx. put lv x+ 1 for each odd number that

lv is at or above. When Example 3.6 is finished evaluating, lvwill contain the smallest even number that

is at or above what its original value was. For instance, if lv originally contains 4, the callback function

will be invoked twice, once with 1 as its argument and once with 3. These calls will respectively write

1 + 1 = 2 and 3 + 1 = 4 into lv; since both writes are≤ 4, lv will remain 4. On the other hand, if lv

originally contains 5, then the callback will run three times, with 1, 3, and 5 as its respective arguments,

and with the latter of these calls writing 5 + 1 = 6 into lv, leaving lv as 6.

In general, the second argument to addHandler, which I call an event set, is an arbitrary subset Q of

the LVar’s lattice, specifying which events should be handled.2 Event handlers in the LVish model are

somewhat unusual in that they invoke their callback for all events in their event setQ that have taken

place (i.e., all values in Q less than or equal to the current LVar value), even if those events occurred

prior to the handler being registered. To see why this semantics is necessary, consider the following,

more subtle example (written in a hypothetical language with a semantics similar to that of λLVar, but

with the addition of addHandler):
2Like threshold sets, these event sets are a mathematical modeling tool only; they have no explicit existence in the LVish
library implementation.

53

3. QUASI-DETERMINISTIC AND EVENT-DRIVEN PROGRAMMING WITH LVARS

let par _ = put lv 0

_ = put lv 1

_ = addHandler lv {0, 1} (λx. if x = 0 then put lv 2)

in get lv {2}

(Example 3.7)

Can Example 3.7 ever block? If a callback only executed for events that arrived after its handler was

registered, or only for the largest event in its event set that had occurred, then the example would be

nondeterministic: it would block, or not, depending on how the handler registration was interleaved

with the puts. By instead executing a handler’s callback once for each and every element in its event

set below or at the LVar’s value, we guarantee quasi-determinism—and, for Example 3.7, guarantee the

result of 2.

The power of event handlers is most evident for lattices that model collections, such as sets. For exam-

ple, if we are working with lattices of sets of natural numbers, ordered by subset inclusion, then we can

write the following function:

forEach = λlv. λf. addHandler lv {{0}, {1}, {2}, . . . } f

Unlike the usual forEach function found in functional programming languages, this function sets up a

permanent, asynchronous flow of data from lv into the callback f . Functions like forEach can be used

to set up complex, cyclic data-flow networks, as we will see in Chapter 4.

In writing forEach, we consider only the singleton sets to be events of interest, which means that if

the value of lv is some set like {2, 3, 5} then f will be executed once for each singleton subset ({2},

{3}, {5})—that is, once for each element. In Chapter 4, we will see that this kind of event set can be

specified in a lattice-generic way, and that it corresponds closely to our implementation strategy.

3.1.2. Quiescence through handler pools. Because event handlers are asynchronous, we need a sep-

arate mechanism to determine when they have reached a quiescent state, i.e., when all callbacks for

the events that have occurred have finished running. Detecting quiescence is crucial for implementing

54

3. QUASI-DETERMINISTIC AND EVENT-DRIVEN PROGRAMMING WITH LVARS

fixpoint computations. To build flexible data-flow networks, it is also helpful to be able to detect quies-

cence of multiple handlers simultaneously. Thus, our design includes handler pools, which are groups

of event handlers whose collective quiescence can be tested.

The simplest way to program with handler pools is to use a pattern like the following:

let h = newPool
in addHandlerInPool h lvQ f ;

quiesce h

where lv is an LVar, Q is an event set, and f is a callback. Handler pools are created with the newPool

function, and handlers are registered with addHandlerInPool, a variant of addHandler that takes a

handler pool as an additional argument. Finally, quiesce takes a handler

pool as its argument and blocks until all of the handlers in the pool have

reached a quiescent state.

Whether or not a handler is quiescent is a non-monotonic property: we

can move in and out of quiescence as more writes to an LVar occur, and even if all states at or below the

current state have been handled, there is no way to know that more writes will not arrive to move the

LVar’s state upwards in the lattice and trigger more callbacks. Early quiescence poses no risk to quasi-

determinism, however, because quiesce does not yield any information about which events have been

handled—any such questions must be asked through LVar functions like get. In practice, quiesce is

almost always used together with freezing, which I explain next.

3.1.3. Freezing and the “freeze-after” pattern. Our final addition to the LVar model is the ability

to freeze an LVar, which forbids further changes to it, but in return allows its exact value to be read.

We expose freezing through the function freeze, which takes an LVar as its sole argument and returns

the exact value of the LVar as its result. Any writes that would change the value of a frozen LVar instead

raise an exception, and it is the potential for races between suchwrites and freeze thatmakes the LVish

model quasi-deterministic, rather than fully deterministic.

55

3. QUASI-DETERMINISTIC AND EVENT-DRIVEN PROGRAMMING WITH LVARS

traverse g startNode = do
seen <- newEmptySet
h <- newHandler seen

(\node -> do
mapM (\v -> insert v seen) (neighbors g node)
return ())

insert startNode seen -- Kick things off
quiesce h
freeze seen

Listing 3.1. A deterministic parallel graph traversal that uses runParThenFreeze.

Putting all the above pieces together, we arrive at a particularly common pattern of programming in the

LVish model:

freezeAfter = λlv. λQ. λf. let h = newPool
in addHandlerInPool h lvQ f ;

quiesce h;
freeze lv

In this pattern, an event handler is registered for an LVar, subsequently quiesced, and then the LVar is

frozen and its exact value is returned.

3.1.4. A parallel graph traversal using handlers, quiescence, and freezing. We can use the new

features in LVish to write a parallel graph traversal in the simple fashion shown in Listing 3.1. This code,

written using the LVishHaskell library, discovers (in parallel) the set of nodes in a graph g reachable from

a given node startNode, and is guaranteed to produce a deterministic result. It works by first creating

a new LVar, seen, to represent the set of seen nodes, then adding startNode to the set. newHandler

is a helper function similar to addHandlerInPool. It takes the LVar seen as its first argument, and its

second argument is the callback to be run whenever an event occurs (that is, whenever a new element is

added to the set of seen nodes): for each new element that is seen, we look up its neighbors in g and then

insert each of those elements into the set of seen nodes as well. The computation continues until there

are no more events to handle and quiesce h returns. We will return to this example in Section 4.2,

which discusses the LVish library API in more detail.

56

3. QUASI-DETERMINISTIC AND EVENT-DRIVEN PROGRAMMING WITH LVARS

3.2. LVish, formally

In this section, I present λLVish, a core calculus for the LVish programming model. It extends the λLVar

language of Chapter 2. Rather than modeling the full ensemble of event handlers, handler pools, qui-

escence, and freezing as separate primitives in λLVish, though, I instead formalize the “freeze-after”

pattern—which combined them—directly as a primitive. This simplifies the calculus while still captur-

ing the essence of the programming model. I also generalize the put operation to allow the arbitrary

update operations of Section 2.6.1, which are inflationary and commutative but do not necessarily com-

pute a lub.

3.2.1. Freezing. To model freezing, we need to generalize the notion of the state of an LVar to include

information about whether it is “frozen” or not. Thus, in λLVish an LVar’s state is a pair (d, frz), where

d is an element of the setD and frz is a “status bit” of either true or false. A state where frz is false is

“unfrozen”, and one where frz is true is “frozen”.

I define an ordering⊑p on LVar states (d, frz) in terms of the given ordering⊑ on elements ofD. Every

element ofD is “freezable” except⊤. Informally:

• Two unfrozen states are ordered according to the given⊑; that is, (d, false) ⊑p (d
′, false) exactly

when d ⊑ d′.

• Two frozen states do not have an order, unless they are equal: (d, true) ⊑p (d
′, true) exactly when

d = d′.

• An unfrozen state (d, false) is less than or equal to a frozen state (d′, true) exactly when d ⊑ d′.

• The only situation in which a frozen state is less than an unfrozen state is if the unfrozen state is

⊤; that is, (d, true) ⊑p (d
′, false) exactly when d′ = ⊤.

Adding status bits to each element (except⊤) of the lattice (D,⊑,⊥,⊤) results in a new lattice (Dp,⊑p

,⊥p,⊤p). (The p stands for pair, since elements of this new lattice are pairs (d, frz).) I write ⊔p for the

lub operation that⊑p induces. Definitions 3.1 and 3.2 and Lemmas 3.1 and 3.2 formalize this notion.

57

3. QUASI-DETERMINISTIC AND EVENT-DRIVEN PROGRAMMING WITH LVARS

Definition 3.1 (lattice with status bits). Suppose (D,⊑,⊥,⊤) is a lattice. We define an operation

Freeze(D,⊑,⊥,⊤)
△
= (Dp,⊑p,⊥p,⊤p) as follows:

(1) Dp is a set defined as follows:

Dp
△
= {(d, frz) | d ∈ (D − {⊤}) ∧ frz ∈ {true, false}}

∪ {(⊤, false)}

(2) ⊑p ∈ P(Dp ×Dp) is a binary relation defined as follows:

(d, false) ⊑p (d′, false) ⇐⇒ d ⊑ d′

(d, true) ⊑p (d′, true) ⇐⇒ d = d′

(d, false) ⊑p (d′, true) ⇐⇒ d ⊑ d′

(d, true) ⊑p (d′, false) ⇐⇒ d′ = ⊤

(3) ⊥p
△
= (⊥, false).

(4) ⊤p
△
= (⊤, false).

Lemma 3.1 (Partition ofDp). If (D,⊑,⊥,⊤) is a lattice and (Dp,⊑p,⊥p,⊤p) = Freeze(D,⊑,⊥,⊤),

andX = D − {⊤}, then every member ofDp is either

• (d, false), with d ∈ D, or

• (x, true), with x ∈ X .

Proof. Immediate from Definition 3.1. □

58

3. QUASI-DETERMINISTIC AND EVENT-DRIVEN PROGRAMMING WITH LVARS

Definition 3.2 (lub of states, λLVish). We define a binary operator ⊔p ∈ Dp ×Dp → Dp as follows:

(d1, false) ⊔p (d2, false)
△
= (d1 ⊔ d2, false)

(d1, true) ⊔p (d2, true)
△
=

 (d1, true) if d1 = d2

(⊤, false) otherwise

(d1, false) ⊔p (d2, true)
△
=

 (d2, true) if d1 ⊑ d2

(⊤, false) otherwise

(d1, true) ⊔p (d2, false)
△
=

 (d1, true) if d2 ⊑ d1

(⊤, false) otherwise

Lemma 3.2 says that if (D,≤,⊥,⊤) is a lattice, then (Dp,⊑p,⊥p,⊤p) is as well:

Lemma 3.2 (Lattice structure). If (D,⊑,⊥,⊤) is a lattice and (Dp,⊑p,⊥p,⊤p) = Freeze(D,⊑,⊥,⊤),

then:

(1) ⊑p is a partial order overDp.

(2) Every nonempty finite subset ofDp has a lub.

(3) ⊥p is the least element ofDp.

(4) ⊤p is the greatest element ofDp.

Therefore (Dp,⊑p,⊥p,⊤p) is a lattice.

Proof. See Section A.10. □

3.2.2. Update operations. λLVish generalizes the put operation of λLVar to a family of operations puti,

in order to allow the generalized update operations of Section 2.6.1 that are commutative and inflation-

ary, but do not necessarily compute a lub. To make this possible we parameterize λLVish not only by the

lattice (D,⊑,⊥,⊤), but also by a set U of update operations, as discussed previously in Section 2.6.1:

Definition 3.3 (set of update operations). Given a lattice (D,⊑,⊥,⊤) with elements d ∈ D, a set of

update operations U is a set of functions ui : D → D meeting the following conditions:

59

3. QUASI-DETERMINISTIC AND EVENT-DRIVEN PROGRAMMING WITH LVARS

• ∀d, i. d ⊑ ui(d), and

• ∀d, i, j. ui(uj(d)) = uj(ui(d)).

The first of the conditions in Definition 3.3 says that each update operation is inflationary with respect

to ⊑, and the second condition says that update operations commute with each other. Every set of

update operations always implicitly contains the identity function.

If we want to recover the original semantics of put, we can do so by instantiating U such that there is

one ui for each element di of the latticeD, and defining ui(d) to be d⊔ di. On the other hand, ifD is a

lattice of natural numbers and we want increment-only counters, we can instantiateU to be a singleton

set {u}whereu(d) = d+1. (As described in Section 2.6.1, we could also have a set of update operations

{u(+1), u(+2), . . . }, where u(+1)(d) increments d’s contents by one, u(+2)(d) increments by two, and

so on.) Update operations are therefore general enough to express lub writes as well as non-idempotent

increments. (When a write is specifically a lub write, I will continue to use the notation put, without

the subscript.)

InλLVish, the put operation took two arguments, a location l and a lattice elementd. The puti operations

take a location l as their only argument, and puti l performs the update operation ui(l) on the contents

of l.

More specifically, since l points to a state (d, frz) instead of an element d, puti l must perform upi , a

lifted version of ui that applies to states. Given U , we define the set Up of lifted operations as follows:

Definition 3.4 (set of state update operations). Given a setU of update operationsui, the corresponding

set of state update operations Up is a set of functions upi : Dp → Dp defined as follows:

upi((d, false))
△
= (ui(d), false)

upi((d, true))
△
=

 (d, true) if ui(d) = d

(⊤, false) otherwise

60

3. QUASI-DETERMINISTIC AND EVENT-DRIVEN PROGRAMMING WITH LVARS

Because every set U of update operations implicitly contains the identity function, the same is true

for the set Up of state update operations. Furthermore, it is easy to show that state update operations

commute, just as update operations do; that is, ∀d, i, j. upi(upj(p)) = upj(upi(p)).

3.2.3. Stores. During the evaluation of λLVish programs, a store S keeps track of the states of LVars.

Each LVar is represented by a binding from a location l, drawn from a set Loc, to its state, which is some

pair (d, frz) from the set Dp. The way that stores are handled in λLVish is very similar to how they are

handled in λLVar, except that store bindings now point to states (d, frz), that is, elements ofDp, instead

of merely to d, that is, elements ofD.

Definition 3.5 (store, λLVish). A store is either a finite partial mapping S : Loc
fin→ (Dp − {⊤p}), or the

distinguished element⊤S .

I use the notation S[l 7→ (d, frz)] to denote extending S with a binding from l to (d, frz). If l ∈

dom(S), then S[l 7→ (d, frz)] denotes an update to the existing binding for l, rather than an exten-

sion. Another way to denote a store is by explicitly writing out all its bindings, using the notation

[l1 7→ (d1, frz1), l2 7→ (d2, frz2), . . .].

We can lift the⊑p and ⊔p operations defined on elements ofDp to the level of stores:

Definition 3.6 (store ordering, λLVish). A store S is less than or equal to a store S ′ (written S ⊑S S ′) iff:

• S ′ = ⊤S , or

• dom(S) ⊆ dom(S ′) and for all l ∈ dom(S), S(l) ⊑p S
′(l).

Definition 3.7 (lub of stores, λLVish). The lub of two stores S1 and S2 (written S1 ⊔S S2) is defined as

follows:

• S1 ⊔S S2 = ⊤S if S1 = ⊤S or S2 = ⊤S .

• S1 ⊔S S2 = ⊤S if there exists some l ∈ dom(S1) ∩ dom(S2) such that S1(l) ⊔p S2(l) = ⊤p.

• Otherwise, S1 ⊔S S2 is the store S such that:

61

3. QUASI-DETERMINISTIC AND EVENT-DRIVEN PROGRAMMING WITH LVARS

– dom(S) = dom(S1) ∪ dom(S2), and

– For all l ∈ dom(S):

S(l) =


S1(l) ⊔p S2(l) if l ∈ dom(S1) ∩ dom(S2)

S1(l) if l /∈ dom(S2)

S2(l) if l /∈ dom(S1)

If, for example,

(d1, frz1) ⊔p (d2, frz2) = ⊤p,

then

[l 7→ (d1, frz1)] ⊔S [l 7→ (d2, frz2)] = ⊤S.

Just as a store containing a binding l 7→ ⊤ can never arise during the execution of a λLVar program, a

store containing a binding l 7→ (⊤, frz) can never arise during the execution of a λLVish program. An

attempted write that would take the value of l to (⊤, false)—that is, ⊤p—will raise an error, and there

is no (⊤, true) element ofDp.

3.2.4. λLVish: syntax and semantics. The syntax ofλLVish appears in Figure 3.1, and Figures 3.2 and 3.3

together give the operational semantics. As with λLVar in Chapter 2, both the syntax and semantics

are parameterized by the lattice (D,⊑,⊥,⊤), and the operational semantics is split into two parts, a

reduction semantics, shown in Figure 2.3, and a context semantics, shown in Figure 2.4. The reduction

semantics is also parameterized by the set U of update operations.

TheλLVish grammar hasmost of the expression forms ofλLVar: variables, values, application expressions,

get expressions, and new. Instead of put expressions, it has puti expressions, which are the interface to

the specified set of update operations. λLVish also adds two new language forms, the freeze expression

and the freeze − after − with expression, which I discuss in more detail below.

Values in λLVish include all those from λLVar—the unit value (), lattice elements d, locations l, threshold

sets P , and λ expressions—as well as states p, which are pairs (d, frz), and event sets Q. Instead of

62

3. QUASI-DETERMINISTIC AND EVENT-DRIVEN PROGRAMMING WITH LVARS

Given a lattice (D,⊑,⊥,⊤) with elements d ∈ D:

configurations σ ::= ⟨S; e⟩ | error

expressions e ::= x | v | e e | get e e | puti e | new | freeze e

| freeze e after e with e

| freeze l after Q with λx. e, {e, . . . } , H

values v ::= () | d | p | l | P | Q | λx. e

threshold sets P ::= {p1, p2, . . .}

event sets Q ::= {d1, d2, . . .}

“handled” sets H ::= {d1, . . . , dn}

stores S ::= [l1 7→ p1, . . . , ln 7→ pn] | ⊤S

states p ::= (d, frz)

status bits frz ::= true | false

evaluation contexts E ::= [] | E e | e E | get E e | get e E | puti E

| freeze E | freeze E after e with e

| freeze e after E with e | freeze e after e with E

| freeze v after v with v, {e, . . . , E, e, . . . } , H

Figure 3.1. Syntax for λLVish.

T , I now use the metavariable P for threshold sets, in keeping with the fact that in λLVish, members of

threshold sets are states p.

As with λLVar, the λLVish context relation 7−→ has only one rule, E-Eval-Ctxt, which allows us to apply

reductions within a context. The rule itself is identical to the corresponding rule in λLVar, although the

set of evaluation contexts that the metavariableE ranges over is different.

63

3. QUASI-DETERMINISTIC AND EVENT-DRIVEN PROGRAMMING WITH LVARS
G
iv
en

a
la
tt
ic
e
(D

,⊑
,⊥

,⊤
)
w
it
h
el
em

en
ts
d
∈
D
,a
nd

a
se
to

fU
of

up
da
te

op
er
at
io
ns

u
i
:
D

→
D
:

in
co
m
p(
P
)

△ =
∀
p 1
,p

2
∈
P
.(
p 1

̸=
p 2

=⇒
p 1

⊔ p
p 2

=
⊤ p
)

σ
↪−
→

σ
′

E-
Be

ta

⟨S
;
(λ
x
.e
)
v
⟩↪
−→

⟨S
;
e[
x
:=

v
]⟩

E-
N
ew

⟨S
;

ne
w⟩

↪−
→

⟨S
[l
7→

(⊥
,f
al
se
)]
;
l⟩

(l
/∈
do

m
(S

))

E-
Pu

t

S
(l
)
=

p 1
u
p
i
(p

1
)
̸=

⊤ p

⟨S
;

pu
t i
l⟩
↪−
→

⟨S
[l
7→

u
p
i
(p

1
)]
;

()
⟩

E-
Pu

t-
Er
r

S
(l
)
=

p 1
u
p
i
(p

1
)
=

⊤ p

⟨S
;

pu
t i
l⟩
↪−
→

er
ro
r

E-
G
et

S
(l
)
=

p 1
in
co
m
p(
P
)

p 2
∈
P

p 2
⊑

p
p 1

⟨S
;

ge
t
l
P
⟩↪
−→

⟨S
;
p 2
⟩

E-
Fr
ee
ze
-I
ni
t

⟨S
;

fr
ee

ze
l

af
te

r
Q

wi
th

λ
x
.e
⟩↪
−→

⟨S
;

fr
ee

ze
l

af
te

r
Q

wi
th

λ
x
.e
,{
},

{}
⟩

E-
Sp

aw
n-
H
an

dl
er

S
(l
)
=

(d
1
,f
rz

1
)

d
2
⊑

d
1

d
2
/∈
H

d
2
∈
Q

⟨S
;

fr
ee

ze
l

af
te

r
Q

wi
th

λ
x
.e

0
,{
e,
..
.}

,H
⟩↪
−→

⟨S
;

fr
ee

ze
l

af
te

r
Q

wi
th

λ
x
.e

0
,{
e 0
[x

:=
d
2
],
e,
..
.}

,{
d
2
}
∪
H
⟩

E-
Fr
ee
ze
-F
in
al

S
(l
)
=

(d
1
,f
rz

1
)

∀d
2
.(
d
2
⊑

d
1
∧
d
2
∈
Q

⇒
d
2
∈
H
)

⟨S
;

fr
ee

ze
l

af
te

r
Q

wi
th

λ
x
.e

0
,{
v
,.
..
},

H
⟩↪
−→

⟨S
[l
7→

(d
1
,t
ru
e)
];
d
1
⟩

E-
Fr
ee
ze
-S
im

pl
e S
(l
)
=

(d
1
,f
rz

1
)

⟨S
;

fr
ee

ze
l⟩
↪−
→

⟨S
[l
7→

(d
1
,t
ru
e)
];
d
1
⟩

Fi
gu

re
3.
2.

Re
du

ct
io
n
se
m
an

ti
cs

fo
rλ

LV
is
h
.

64

3. QUASI-DETERMINISTIC AND EVENT-DRIVEN PROGRAMMING WITH LVARS

σ 7−→ σ′

E-Eval-Ctxt

⟨S; e⟩ ↪−→ ⟨S ′; e′⟩

⟨S; E [e]⟩ 7−→ ⟨S ′; E [e′]⟩

Figure 3.3. Context semantics for λLVish.

3.2.5. Semantics of new, puti, and get. Because of the addition of status bits to the semantics, the

E-New and E-Get rules have changed slightly from their counterparts in λLVar:

• new (implemented by the E-New rule) extends the store with a binding for a new LVar whose initial

state is (⊥, false), and returns the location l of that LVar (i.e., a pointer to the LVar).

• get (implemented by the E-Get rule) performs a blocking threshold read. It takes a pointer to an

LVar and a threshold set P , which is a non-empty set of LVar states that must be pairwise incom-

patible, expressed by the premise incomp(P). A threshold set P is pairwise incompatible iff the

lub of any two distinct elements in P is⊤p. If the LVar’s state p1 in the lattice is at or above some

p2 ∈ P , the get operation unblocks and returns p2.

λLVish replaces the λLVar put operation with the puti operation, which is actually a set of operations that

are the interface to the provided update operationsui. For each update operationui, puti (implemented

by the E-Put rule) takes a pointer to an LVar and updates the LVar’s state to the result of calling upi on

the LVar’s current state, potentially pushing the state of the LVar upward in the lattice. The E-Put-Err

rule applies when a puti operation would take the state of an LVar to ⊤p; in that case, the semantics

steps to error.

3.2.6. Freezing and the freeze − after − with primitive. The E-Freeze-Init, E-Spawn-Handler, E-

Freeze-Final, and E-Freeze-Simple rules are all new additions to λLVish. The E-Freeze-Simple rule gives

the semantics for the freeze expression, which takes an LVar as argument and immediately freezes and

returns its contents.

65

3. QUASI-DETERMINISTIC AND EVENT-DRIVEN PROGRAMMING WITH LVARS

More interesting is the freeze − after − with primitive, which models the “freeze-after” pattern I

described in Section 3.1.3. The expression

freeze lv after Q with f

has the following semantics:

• It attaches the callback f to the LVar lv. The callback will be executed, once, for each element of

the event set Q that the LVar’s state reaches or surpasses. The callback is a function that takes a

lattice element as its argument. Its return value is ignored, so it runs solely for effect. For instance,

a callback might itself do a puti to the LVar to which it is attached, triggering yet more callbacks.

• If execution reaches a point where there are nomore elements ofQ left to handle and no callbacks

still running, then we have reached a quiescent state, the LVar lv is frozen, and its exact state is

returned (rather than an underapproximation of the state, as with get).

To keep track of the running callbacks, λLVish includes an auxiliary form,

freeze l after Q with λx. e0, {e, . . . } , H

where:

• The value l is the LVar being handled/frozen;

• The setQ (a subset of the latticeD) is the event set;

• The value λx. e0 is the callback function;

• The set of expressions {e, . . . } is the set of running callbacks; and

• The setH (a subset of the latticeD) represents those values inQ for which callbacks have already

been launched; we callH the “handled” set.

Due to λLVish’s use of evaluation contexts, any running callback can execute at any time, as if each is

running in its own thread. The rule E-Spawn-Handler launches a new callback thread any time the

66

3. QUASI-DETERMINISTIC AND EVENT-DRIVEN PROGRAMMING WITH LVARS

LVar’s current value is at or above some element inQ that has not already been handled. This step can

be taken nondeterministically at any time after the relevant puti has been performed.

The rule E-Freeze-Final detects quiescence by checking that two properties

hold. First, every event of interest (lattice element in Q) that has occurred

(is bounded by the current LVar state) must be handled (be in H). Second, all

existing callback threads must have terminated with a value. In other words,

every enabled callback has completed. When such a quiescent state is detected,

E-Freeze-Final freezes the LVar’s state. Like E-Spawn-Handler, the rule can fire at any time, nondeter-

ministically, that the handler appears quiescent—a transient property! But after being frozen, any fur-

ther puti updates that would have enabled additional callbacks will instead fault, causing the program

to step to error.

Therefore, freezing is a way of “betting” that once a collection of callbacks have completed, no further

updates that change the LVar’s value will occur. For a given run of a program, either all updates to an

LVar arrive before it has been frozen, in which case the value returned by freeze − after − with is

the lub of those values, or some update arrives after the LVar has been frozen, in which case the program

will fault. And thus we have arrived at quasi-determinism: a program will always either evaluate to the

same answer or it will fault.

To ensure that we will win our bet, we need to guarantee that quiescence is a permanent state, rather

than a transient one—that is, we need to perform all updates either prior to freeze − after − with,

or by the callback function within it (as will be the case for fixpoint computations). In practice, freezing

is usually the very last step of an algorithm, permitting its result to be extracted. As we will see in

Section 4.2.5, our LVish library provides a special runParThenFreeze function that does so, and thereby

guarantees full determinism.

67

3. QUASI-DETERMINISTIC AND EVENT-DRIVEN PROGRAMMING WITH LVARS

3.3. Proof of quasi-determinism for λLVish

In this section, I give a proof of quasi-determinism for λLVish that formalizes the claim made earlier in

this chapter: that, for a given program, although some executions may raise exceptions, all executions

that produce a final result will produce the same final result.

The quasi-determinism theorem I show says that if two executions starting from a configuration σ ter-

minate in configurations σ′ and σ′′, then either σ′ and σ′′ are the same configuration (up to a permuta-

tion on locations), or one of them is error. As with the determinism proof for λLVar in Section 2.5, quasi-

determinism follows from a series of supporting lemmas. The basic structure of the proof follows that

of theλLVar determinism proof closely. However, instead of the Independence property that I showed for

λLVar (Lemma 2.5), here I prove a more general property, Generalized Independence (Lemma 3.7), that

accounts for the presence of both freezing and arbitrary update operations in λLVish. Also, in the setting

of λLVish, the Strong Local Confluence property (Lemma 2.8) becomes Strong Local Quasi-Confluence

(Lemma 3.10), which allows the possibility of an error result, and the quasi-confluence lemmas that

follow—Strong One-sided Quasi-Confluence (Lemma 3.11), Strong Quasi-Confluence (Lemma 2.10),

and Quasi-Confluence (Lemma 2.11)—all follow this pattern as well.

3.3.1. Permutations and permutability. As with λLVar, the λLVish language is nondeterministic with

respect to the names of locations it allocates. We therefore prove quasi-determinism up to a permuta-

tion on locations. We can reuse the definition of a permutation verbatim from Section 2.5.1:

Definition 3.8 (permutation, λLVish). A permutation is a function π : Loc → Loc such that:

(1) it is invertible, that is, there is an inverse functionπ−1 : Loc → Locwith the property thatπ(l) = l′

iff π−1(l′) = l; and

(2) it is the identity on all but finitely many elements of Loc.

68

3. QUASI-DETERMINISTIC AND EVENT-DRIVEN PROGRAMMING WITH LVARS

We can lift π to apply expressions, stores, and configurations. Because expressions and stores are de-

fined slightly differently in λLVish than they are in λLVar, we must update our definitions of permutation

of a store and permutation of an expression:

Definition 3.9 (permutation of an expression, λLVish). A permutation of an expression e is a function π

defined as follows:

π(x)
△
= x

π(()) △
= ()

π(d)
△
= d

π(p)
△
= p

π(l)
△
= π(l)

π(P)
△
= P

π(Q)
△
= Q

π(λx. e)
△
= λx. π(e)

π(e1 e2)
△
= π(e1) π(e2)

π(get e1 e2)
△
= get π(e1) π(e2)

π(puti e)
△
= puti π(e)

π(new) △
= new

π(freeze e) △
= freeze π(e)

π(freeze e1 after e2 with e3)
△
= freeze π(e1) after π(e2) with π(e3)

π(freeze l after Q with λx. e, {e, . . . } , H)
△
= freeze π(l) after Q with λx. π(e), {π(e), . . . } , H

Definition 3.10 (permutation of a store, λLVish). A permutation of a store S is a function π defined as

follows:

π(⊤S)
△
= ⊤S

π([l1 7→ p1, . . . , ln 7→ pn])
△
= [π(l1) 7→ p1, . . . , π(ln) 7→ pn]

And the definition of permutation of a configuration is as it was before:

69

3. QUASI-DETERMINISTIC AND EVENT-DRIVEN PROGRAMMING WITH LVARS

Definition 3.11 (permutation of a configuration, λLVish). A permutation of a configuration ⟨S; e⟩ is a

function π defined as follows: if ⟨S; e⟩ = error, then π(⟨S; e⟩) △
= error; otherwise, π(⟨S; e⟩) △

=

⟨π(S); π(e)⟩.

We can then prove a Permutability lemma for λLVish, which says that a configuration σ can step to σ′

exactly when π(σ) can step to π(σ′).

Lemma 3.3 (Permutability, λLVish). For any finite permutation π,

(1) σ ↪−→ σ′ if and only if π(σ) ↪−→ π(σ′).

(2) σ 7−→ σ′ if and only if π(σ) 7−→ π(σ′).

Proof. Similar to the proof of Lemma 2.1 (Permutability for λLVar); see Section A.11. □

3.3.2. Internal Determinism. In Chapter 2, we saw that the reduction semantics for λLVar is internally

deterministic: that is, if a configuration can step by the reduction semantics, there is only one rule by

which it can step, and only one configuration to which it can step, modulo location names. For λLVish,

we can also show an internal determinism property, but with a slight additional wrinkle.

InλLVish, the E-Spawn-Handler rule picks out an eligible elementd2 from the setQ (that is, an event) and

launches a new callback thread to handle that event. But, since there could be more than one eligible

element inQ that E-Spawn-Handler could choose, the choice of event is a source of nondeterminism.

Therefore, we show that λLVish is internally deterministic modulo choice of events, as well as modulo

location names. This property will be useful to us later on in the proof of Strong Local Quasi-Confluence

(Lemma 3.10).

Lemma 3.4 (Internal Determinism, λLVish). If σ ↪−→ σ′ and σ ↪−→ σ′′, then there is a permutation π such

that σ′ = π(σ′′), modulo choice of events.

Proof. Straightforward by cases on the rule of the reduction semantics by which σ steps to σ′; the only

interesting case is for the E-New rule. See Section A.12. □
70

3. QUASI-DETERMINISTIC AND EVENT-DRIVEN PROGRAMMING WITH LVARS

3.3.3. Locality. Just as with the determinism proof for λLVar, proving quasi-determinism for λLVish will

require us to handle expressions that can decompose into redex and context in multiple ways. An ex-

pression e such that e = E1 [e1] = E2 [e2] can step in two different ways by the E-Eval-Ctxt rule:

⟨S; E1 [e1]⟩ 7−→ ⟨S1; E1 [e
′
1]⟩, and ⟨S; E2 [e2]⟩ 7−→ ⟨S2; E2 [e

′
2]⟩.

The Locality lemma says that the 7−→ relation acts “locally” in each of these steps. The statement of

the Locality lemma is the same as that of Lemma 2.3 (Locality for λLVar), but the proof must account for

the set of possible evaluation contexts in λLVish being different (and larger) than the set of evaluation

contexts in λLVar.

Lemma 3.5 (Locality, λLVish). If ⟨S; E1 [e1]⟩ 7−→ ⟨S1; E1 [e
′
1]⟩ and ⟨S; E2 [e2]⟩ 7−→ ⟨S2; E2 [e

′
2]⟩ and

E1 [e1] = E2 [e2], then:

IfE1 ̸= E2, then there exist evaluation contextsE ′
1 andE

′
2 such that:

• E ′
1 [e1] = E2 [e

′
2], and

• E ′
2 [e2] = E1 [e

′
1], and

• E ′
1 [e

′
1] = E ′

2 [e
′
2].

Proof. Let e = E1 [e1] = E2 [e2]. The proof is by induction on the structure of the expression e. See

Section A.13. □

3.3.4. Monotonicity. TheMonotonicity lemma says that, as evaluation proceeds according to the ↪−→

relation, the store can only grow with respect to the⊑S ordering.

Lemma 3.6 (Monotonicity, λLVish). If ⟨S; e⟩ ↪−→ ⟨S ′; e′⟩, then S ⊑S S ′.

Proof. Straightforward by cases on the rule of the reduction semantics by which ⟨S; e⟩ steps to ⟨S ′; e′⟩.

The interesting cases are for the E-New and E-Put rules. See Section A.14. □

71

3. QUASI-DETERMINISTIC AND EVENT-DRIVEN PROGRAMMING WITH LVARS

3.3.5. Generalized Independence. Recall from Chapter 2 that in order to prove determinism for λLVar,

we needed to establish a “frame property” that captures the idea that independent effects commutewith

each other. For λLVar, the Independence lemma (Lemma 2.5) established that property. It shows that,

if a configuration ⟨S; e⟩ can step to ⟨S ′; e′⟩, then it is possible to “frame on” an additional store S ′′

without interfering with the ability to take a step—that is, ⟨S ⊔S S ′′; e⟩ ↪−→ ⟨S ′ ⊔S S ′′; e′⟩, subject

to certain restrictions on S ′′.

For λLVish, we need to establish a similar frame property. However, since we have generalized from put

to puti, we also need to generalize our frame property. In fact, the original Lemma 2.5 does not hold

for λLVish. As an example, consider an LVar whose states form a lattice⊥ < 0 < 1 < ⊤. Consider the

transition

⟨[l 7→ (0, false)] ; puti l⟩ ↪−→ ⟨[l 7→ (1, false)] ; ()⟩,

where the update operation ui happens to increment its argument by one. Now suppose that we wish

to “frame” the store [l 7→ (1, false)] onto this transition using Lemma 2.5; that is, we wish to show that

⟨[l 7→ (0, false)] ⊔S [l 7→ (1, false)] ; puti l⟩ ↪−→ ⟨[l 7→ (1, false)] ⊔S [l 7→ (1, false)] ; ()⟩.

Weknow that [l 7→ (1, false)]⊔S [l 7→ (1, false)] ̸= ⊤S , which is required to be able to apply Lemma 2.5.

Furthermore, [l 7→ (1, false)] is non-conflicting with the original transition, since no new locations are

allocated between [l 7→ (0, false)] and [l 7→ (1, false)]. But it is not the case that ⟨[l 7→ (0, false)] ⊔S

[l 7→ (1, false)] ; puti l⟩ steps to ⟨[l 7→ (1, false)]⊔S [l 7→ (1, false)] ; ()⟩, since upi((S ⊔S S
′′)(l)) =

⊤p. (As before, upi is the update operation ui, lifted from lattice elements d to states (d, frz).)

What went wrong here? The problem is that, as previously discussed in Section 2.6.1, lub operations do

not necessarily commute with arbitrary update operations. In λLVar, where the only “update operation”

is a lub write performed via put, it is fine that the Independence lemma uses a lub operation to frame

S ′′ onto the transition. For λLVish, though, we need to state our frame property in a way that will allow

it to accommodate any update operation from the given set U .

72

3. QUASI-DETERMINISTIC AND EVENT-DRIVEN PROGRAMMING WITH LVARS

Therefore, I define a store update operation US to be a function from stores to stores that can add new

bindings, update the contents of existing locations using operations ui from the given set U of update

operations (or, more specifically, their lifted versions upi), or freeze the contents of existing locations.

Definition 3.12 (store update operation). Given a lattice (D,⊑,⊤,⊥) and a set of state update opera-

tions Up, a store update operation is a function US from stores to stores such that:

• dom(US(S)) ⊇ dom(S);

• for each l ∈ dom(S), either:

– (US(S))(l) = upi(S(l)), where upi ∈ Up, or

– (US(S))(l) = (d, true), where S(l) = (d, frz); and

• for each l ∈ dom(US(S)) that is not a member of dom(S), (US(S))(l) = (d, frz) for some d ∈ D.

Definition 3.12 says that applyingUS toS either updates (using some upi ∈ Up) or freezes the contents

of each l ∈ dom(S). Since the identity function is always implicitly a member of Up, US can act as the

identity on the contents of locations. US can also add new bindings to the store it operates on; however,

it cannot change existing location names.

With Definition 3.12 in hand, we can state a more general version of the Independence lemma:

Lemma 3.7 (Generalized Independence). If ⟨S; e⟩ ↪−→ ⟨S ′; e′⟩ (where ⟨S ′; e′⟩ ̸= error), then we have

that:

⟨US(S); e⟩ ↪−→ ⟨US(S
′); e′⟩,

where US is a store update operation meeting the following conditions:

• US is non-conflicting with ⟨S; e⟩ ↪−→ ⟨S ′; e′⟩,

• US(S
′) ̸= ⊤S , and

• US is freeze-safe with ⟨S; e⟩ ↪−→ ⟨S ′; e′⟩.

73

3. QUASI-DETERMINISTIC AND EVENT-DRIVEN PROGRAMMING WITH LVARS

Proof. By cases on the rule of the reduction semantics by which ⟨S; e⟩ steps to ⟨S ′; e′⟩. The interesting

cases are for the E-New, E-Put, E-Freeze-Final, and E-Freeze-Simple rules. See Section A.15. □

Lemma 3.7 has three preconditions on the store update operation US , two of which mirror the two

preconditions on S ′′ from the original Independence lemma: the requirement that US(S
′) ̸= ⊤S , and

the requirement that US is non-conflicting with the transition from ⟨S; e⟩ to ⟨S ′; e′⟩. Definition 3.13

revises our previous definition of “non-conflicting” to apply to store update operations. It says thatUS

is non-conflicting with the transition ⟨S; e⟩ ↪−→ ⟨S ′; e′⟩ if, for all locations allocated in the transition,

US does not interfere with those locations. For instance, if l is allocated in the transition from ⟨S; e⟩

to ⟨S ′; e′⟩, then l /∈ dom(US(S)) (that is,US cannot add a binding at l to S), and (US(S
′))(l) = S ′(l)

(that is, US cannot update the contents of l in S ′).

Definition 3.13 (non-conflicting store update operation). A store update operationUS is non-conflicting

with the transition ⟨S; e⟩ ↪−→ ⟨S ′; e′⟩ iff, for all l ∈ (dom(S ′) − dom(S)), US neither creates new

bindings at l nor updates existing bindings at l.

The third precondition on US has to do with freezing: US must be

freeze-safe with the transition ⟨S; e⟩ ↪−→ ⟨S ′; e′⟩, which means

that, for any locations that change in status (that is, become frozen)

during the transition, US cannot update the contents of those loca-

tions. This precondition is only needed in the E-Freeze-Final and E-

Freeze-Simple cases, and it has the effect of ruling out interference

from freezing. (Note that US need not avoid updating the contents of locations that are already frozen

before the transition takes place. This corresponds to the fact that, if an LVar is already frozen, arbitrary

updates to it do, in fact, commute with freeze operations on it—those later freeze operations will have

no effect, and updates will either have no effect or raise an error.)

74

3. QUASI-DETERMINISTIC AND EVENT-DRIVEN PROGRAMMING WITH LVARS

Definition 3.14 (freeze-safe store update operation). A store update operationUS is freeze-safewith the

transition ⟨S; e⟩ ↪−→ ⟨S ′; e′⟩ iff, for all locations l such that S(l) = (d1, frz1) and S
′(l) = (d2, frz2)

and frz1 ̸= frz2, US does not update the contents of l (that is, either it freezes the contents of l but has

no other effect on them, or it acts as the identity on the contents of l).

The two changes we have made to the Independence lemma—the use of US , and the requirement that

US be freeze-safe with the transition in question—are orthogonal to each other, in accordance with

the fact that arbitrary update operations are an orthogonal language feature to freezing. A version of

λLVish that had freezing, but retained the lub semantics of put in λLVar, could use the old formulation

of the Independence lemma, taking the lub of the original stores and a frame store S ′′, but it would

still need to have a requirement on S ′′ to rule out interference from freezing. On the other hand, a

version of the language without freezing, but with arbitrary updates, would still use US but could leave

out the requirement that it be freeze-safe (since the requirement would be vacuously true anyway). I

make particular note of the orthogonality of freezing and arbitrary updates because freezing introduces

quasi-determinism, while arbitrary updates do not.3

Finally, although it no longer uses an explicit “frame” store, we can still think of Lemma 3.7 as a frame

property; in fact, it is reminiscent of the generalized frame rule of the “Views” framework [17], which I

discuss in more detail in Section 6.5.

3.3.6. Generalized Clash. The Generalized Clash lemma, Lemma 3.8, is similar to the Generalized

Independence lemma, but handles the case where US(S
′) = ⊤S . It establishes that, in that case,

⟨US(S); e⟩ steps to error in at most one step.

3To rigorously show that arbitrary updates retain full determinism and notmerely quasi-determinism, I would need to define
yet another language, one that generalizes put to puti but does not introduce freezing, and then prove determinism for
that language. Instead, I hope to informally convince you that the quasi-determinism in λLVish comes from freezing, rather
than from arbitrary updates.

75

3. QUASI-DETERMINISTIC AND EVENT-DRIVEN PROGRAMMING WITH LVARS

Lemma 3.8 (Generalized Clash). If ⟨S; e⟩ ↪−→ ⟨S ′; e′⟩ (where ⟨S ′; e′⟩ ̸= error), then we have that:

⟨US(S); e⟩ ↪−→i error,

where i ≤ 1 and where US is a store update operation meeting the following conditions:

• US is non-conflicting with ⟨S; e⟩ ↪−→ ⟨S ′; e′⟩,

• US(S
′) = ⊤S , and

• US is freeze-safe with ⟨S; e⟩ ↪−→ ⟨S ′; e′⟩.

Proof. By cases on the rule of the reduction semantics bywhich ⟨S; e⟩ steps to ⟨S ′; e′⟩. Since ⟨S ′; e′⟩ ̸=

error, we do not need to consider the E-Put-Err rule. See Section A.16. □

3.3.7. Error Preservation. Lemma 3.9, Error Preservation, is theλLVish counterpart of Lemma 2.7 from

Chapter 2. It says that if a configuration ⟨S; e⟩ steps to error, then evaluating e in the context of some

larger store will also result in error.

Lemma 3.9 (Error Preservation, λLVish). If ⟨S; e⟩ ↪−→ error and S ⊑S S ′, then ⟨S ′; e⟩ ↪−→ error.

Proof. Suppose ⟨S; e⟩ ↪−→ error and S ⊑S S ′. We are required to show that ⟨S ′; e⟩ ↪−→ error.

By inspection of the operational semantics, the only rule by which ⟨S; e⟩ can step to error is E-Put-Err.

Hence e = puti l. From the premises of E-Put-Err, we have that S(l) = p1. Since S ⊑S S ′, it must be

the case that S ′(l) = p′1, where p1 ⊑p p′1. Since upi(p1) = ⊤p, we have that upi(p
′
1) = ⊤p. Hence, by

E-Put-Err, ⟨S ′; puti l⟩ ↪−→ error, as we were required to show. □

3.3.8. Quasi-Confluence. Lemma 3.10 says that if a configuration σ can step to configurations σa and

σb, then one of two possibilities is true: either there exists a configuration σc that σa and σb can each

reach in at most one step, modulo a permutation on locations, or at least one of σa or σb steps to error.

Lemmas 3.11 and 3.12 then generalize that result to arbitrary numbers of steps.

76

3. QUASI-DETERMINISTIC AND EVENT-DRIVEN PROGRAMMING WITH LVARS

Lemma 3.10 (Strong Local Quasi-Confluence). If σ 7−→ σa and σ 7−→ σb, then either:

(1) there exist σc, i, j, π such that σa 7−→i σc and π(σb) 7−→j σc and i ≤ 1 and j ≤ 1, or

(2) σa 7−→ error or σb 7−→ error.

Proof. As in the proof of Strong Local Confluence for λLVar (Lemma 2.8), since the original configuration

σ can step in two different ways, its expression decomposes into redex and context in two different

ways: σ = ⟨S; Ea [ea1]⟩ = ⟨S; Eb [eb1]⟩, where Ea [ea1] = Eb [eb1], but Ea and Eb may differ and

ea1 and eb1 may differ. In the special case where Ea = Eb, the result follows by Internal Determinism

(Lemma 3.4).

If Ea ̸= Eb, we can apply the Locality lemma (Lemma 3.5); at a high level, it shows that ea1 and eb1

can be evaluated independently within their contexts. The proof is then by a double case analysis on

the rules of the reduction semantics by which ⟨S; ea1⟩ steps and by which ⟨S; eb1⟩ steps. In order to

combine the results of the two independent steps, the proofmakes use of the Generalized Independence

lemma 3.7. In almost every case, there does exist a σc to which σa and σb both step; the only cases in

which we need to resort to the error possibility are those in which one step is by E-Put and the other

is by E-Freeze-Final or E-Freeze-Simple—that is, the situations in which a write-after-freeze error is

possible. See Section A.17. □

Lemma 3.11 (Strong One-Sided Quasi-Confluence). If σ 7−→ σ′ and σ 7−→m σ′′, where 1 ≤ m, then

either:

(1) there exist σc, i, j, π such that σ′ 7−→i σc and π(σ′′) 7−→j σc and i ≤ m and j ≤ 1, or

(2) there exists k ≤ m such that σ′ 7−→k error, or there exists k ≤ 1 such that σ′′ 7−→k error.

Proof. By induction onm; see Section A.18. □

Lemma 3.12 (Strong Quasi-Confluence). If σ 7−→n σ′ and σ 7−→m σ′′, where 1 ≤ n and 1 ≤ m, then

either:

77

3. QUASI-DETERMINISTIC AND EVENT-DRIVEN PROGRAMMING WITH LVARS

(1) there exist σc, i, j, π such that σ′ 7−→i σc and π(σ′′) 7−→j σc and i ≤ m and j ≤ n, or

(2) there exists k ≤ m such that σ′ 7−→k error, or there exists k ≤ n such that σ′′ 7−→k error.

Proof. By induction on n; see Section A.19. □

Lemma 3.13 (Quasi-Confluence). If σ 7−→∗ σ′ and σ 7−→∗ σ′′, then either:

(1) there exist σc and π such that σ′ 7−→∗ σc and π(σ′′) 7−→∗ σc, or

(2) σ′ = error or σ′′ = error.

Proof. Strong Quasi-Confluence (Lemma 3.12) implies Quasi-Confluence. □

3.3.9. Quasi-Determinism. The Quasi-Determinism theorem, Theorem 3.1, is a straightforward re-

sult of Lemma 3.13. It says that if two executions starting from a configuration σ terminate in configu-

rations σ′ and σ′′, then σ′ and σ′′ are the same configuration, or one of them is error.

Theorem 3.1 (Quasi-Determinism). If σ 7−→∗ σ′ and σ 7−→∗ σ′′, and neither σ′ nor σ′′ can take a step,

then either:

(1) there exists π such that σ′ = π(σ′′), or

(2) σ′ = error or σ′′ = error.

Proof. By Lemma 3.13, one of the following two cases applies:

(1) There exists σc and π such that σ′ 7−→∗ σc and π(σ′′) 7−→∗ σc. Since σ′ cannot step, we must

have σ′ = σc.

By Lemma 3.3 (Permutability), σ′′ can step iff π(σ′′) can step, so since σ′′ cannot step, π(σ′′)

cannot step either.

Hence we must have π(σ′′) = σc. Since σ′ = σc and π(σ′′) = σc, σ′ = π(σ′′).

(2) σ′ = error or σ′′ = error, and so the result is immediate.

□
78

3. QUASI-DETERMINISTIC AND EVENT-DRIVEN PROGRAMMING WITH LVARS

3.3.10. Discussion: quasi-determinism in practice. The quasi-determinism result for λLVish shows

that it is not possible to get multiple “answers” from the same program: every run will either produce

the same answer or an error. Importantly, this property is true not only for programs that use the freeze-

after pattern expressed by the freeze − after − with primitive, but even those that freeze in arbitrary

places using the simpler freeze primitive. This means that in practice, in a programming model based

on LVars with freezing and handlers, even a program that fails to ensure quiescence (introducing the

possibility of a race between a put and a freeze) cannot produce multiple non-error answers.

Therefore the LVish programming model is fundamentally different from one in which the programmer

must manually insert synchronization barriers to prevent data races. In that kind of a model, a program

with a misplaced synchronization barrier can be fully nondeterministic, producing multiple observable

answers. In the LVishmodel, the worst that can happen is that the program raises an error. Moreover, in

the LVishmodel, an error result alwaysmeans that there is an undersynchronization bug in the program,

and in principle the error message can even specify exactly which write operation happened after which

freeze operation, making it easier to debug the race.

However, if we can ensure that an LVar is only ever frozen after all writes to that LVar have completed,

then we can guarantee full determinism, because we will have ruled out races between write operations

and freeze operations. In the next chapter, I discuss how the LVish Haskell library enforces this “freeze

after writing” property.

79

CHAPTER 4

The LVish library

We want the programming model of Chapters 2 and 3 to be realizable in practice. If the determinism

guarantee offered by LVars is to do us any good, however, we need to add LVars to a programmingmodel

that is already deterministic. The monad-par Haskell library [36], which provides the Par monad, is

one such deterministic parallel programming model. Haskell is in general an appealing substrate for

guaranteed-deterministic parallel programmingmodels because it is pure by default, and its type system

enforces separation of pure and effectful code via monads. In order for the determinism guarantee of

any parallel programming model to hold, the only side effects allowed must be those sanctioned by the

programming model.1 In the case of the basic LVars model of Chapter 2, those allowed effects are put

and get operations on LVars; Chapter 3 adds the freeze operation and arbitrary update operations

to the set of allowed effects. Implementing these operations as monadic effects in Haskell makes it

possible to provide compile-time guarantees about determinism and quasi-determinism, because we

can use Haskell’s type system to ensure that the only side effects programs can perform are those that

we have chosen to allow.

Another reason why the existing Par monad is an appealing conceptual starting point for a practical

implementation of LVars is that it already allows inter-task communication through IVars, which, as we

have seen, are a special case of LVars. Finally, the Par monad approach is appealing because it is im-

plemented entirely as a library, with a library-level scheduler. This approach makes it possible to make

changes to the Par scheduling strategy in a modular way, without having to make any modifications to

GHC or its runtime system.

1Haskell is often advertised as a purely functional programming language, that is, one without side effects, but it is perhaps
more useful to think of it as a language that keeps other effects out of the way so that one can use only the effects that one
wants to use!

80

4. THE LVISH LIBRARY

In this chapter, I describe the LVish library, a Haskell library for practical deterministic and quasi-

deterministic parallel programming with LVars. We have already seen an example of an LVish Haskell

program in Section 3.1; in the following two sections, we will take a more extensive tour of what LVish

offers. Then, in Section 4.3, we will consider adding support for DPJ-style imperative disjoint paral-

lelism to LVish. Finally, in Sections 4.4 and 4.5, we will look at two case studies that illustrate how

LVish and LVars can be used in practice.

4.1. The big picture

Our library adopts and builds on the basic approach of the Par monad and the monad-par library [36],

enabling us to employ our own notion of lightweight, library-level threads with a custom scheduler.

It supports the programming model laid out in Section 3.1 in full, including explicit handler pools. It

differs from the formalism of Section 3.2 in following Haskell’s by-need evaluation strategy, which also

means that concurrency in the library is explicitly marked, either through uses of a fork function or

through asynchronous callbacks, which run in their own lightweight threads.

We envision two parties interacting with the LVish library. First, there are data

structure authors, who use the library directly to implement a specific monotonic

data structure (e.g., a monotonically growing finite map). Second, there are appli-

cation writers, who are clients of these data structures. Only the applicationwriters

receive a (quasi-)determinism guarantee; an author of a data structure is respon-

sible for ensuring that the states their data structure can take on correspond to the

elements of a lattice, and that the exposed interface to it corresponds to some use

of update operations, get, freeze, and event handlers.

The LVish library also includes lattice-generic infrastructure: the Par monad itself, a thread scheduler,

support for blocking and signaling threads, handler pools, and event handlers. Since this infrastructure

is unsafe—that is, it does not guarantee determinismor quasi-determinism—only data structure authors

81

4. THE LVISH LIBRARY

should import it, subsequently exporting a limited interface specific to their data structure. For finite

maps, for instance, this interface might include key/value insertion, lookup, event handlers and pools,

and freezing—along with higher-level abstractions built on top of these. Control operators like fork

are the only non-data-structure-specific operations exposed to application writers.

For this approach to scale well with available parallel resources, it is essential that the data structures

themselves support efficient parallel access; a finite map that was simply protected by a global lock

would force all parallel threads to sequentialize their access. Thus, we expect data structure authors

to draw from the extensive literature on scalable parallel data structures, employing techniques like

fine-grained locking and lock-free data structures [26]. Data structures that fit into the LVish model

have a special advantage: because all updates must commute, it may be possible to avoid the expensive

synchronization which must be used for non-commutative operations [4]. And in any case, monotonic

data structures can be simpler to represent and implement than general ones.

4.2. The LVish library interface for application writers

In this section I illustrate the use of the LVish library from the point of view of the application writer,

through a series of short example programs.2

4.2.1. A simple example: IVars in LVish. Recall that IVars are data structures that can be shared

between parallel tasks and that allow single writes and blocking reads. Before looking at LVish, let us

consider an IVar computation implemented with monad-par.

Listing 4.1 shows a program written using monad-par that will deterministically raise an error, because

it tries to write to the IVar num twice. Here, p is a computation of type Par Int, meaning that it runs

in the Par monad (via the call to runPar) and returns a value of Int type. num is an IVar, created with

a call to new and then assigned to twice, via two calls to put, each of which runs in a separately forked
2Code for all the examples in this section is available at https://github.com/lkuper/lvar-examples/.

82

https://github.com/lkuper/lvar-examples/

4. THE LVISH LIBRARY

import Control.Monad.Par

p :: Par Int
p = do num <- new

fork (put num 3)
fork (put num 4)
get num

main = print (runPar p)

Listing 4.1. A basic IVar example using monad-par.

import Control.Monad.Par

p :: Par Int
p = do num <- new

fork (put num 4)
fork (put num 4)
get num

main = print (runPar p)

Listing 4.2. Repeated writes of the same value to an IVar.

task. The runPar function is an implicit global barrier: all forks have to complete before runPar can

return.

The code in Listing 4.1 raises a “multiple put” error at runtime, which is as it should be: differing writes

to the same shared location could cause the subsequent call to get to behave nondeterministically.

Since we are still using monad-par here and not LVish, get has IVar semantics, not LVar semantics:

rather than performing a threshold read, it blocks until num has been written, then unblocks and eval-

uates to the exact contents of num. However, when using monad-par, even multiple writes of the same

value to an IVar will raise a “multiple put” error, as in Listing 4.2. This program differs from the previous

one only in that the two puts are writing 4 and 4, rather than 3 and 4. Even though the call to getwould

produce a deterministic result regardless of which write happened first, the program nevertheless raises

an error because of monad-par’s single-write restriction on IVars.

83

4. THE LVISH LIBRARY

{-# LANGUAGE TypeFamilies #-}

import Control.LVish -- Generic scheduler; works with all LVars.
import Data.LVar.IVar -- The particular LVar we need for this program.

p :: (HasPut e, HasGet e) => Par e s Int
p = do num <- new

fork (put num 4)
fork (put num 4)
get num

main = print (runPar p)

Listing 4.3. Repeated writes of the same value to an LVar.

Now let us consider a version of Listing 4.2 written using the LVish library. (Of course, in LVish we are

not limited to IVars, but we will consider IVars first as an interesting special case of LVars, and then go

on to consider some more sophisticated LVars later in this section.) Listing 4.3 shows an LVish program

that will write 4 to an IVar twice and then deterministically print 4 instead of raising an error.

In Listing 4.3, we need to import the Control.LVish module rather than Control.Monad.Par (since

we now wish to use LVish instead of monad-par), and we must specifically import Data.LVar.IVar

in order to specify which LVar data structure we want to work with (since we are no longer limited to

IVars). Just as with monad-par, the LVish runPar function is a global barrier: both forks must compete

before runPar can return. Also,as before, we have new, put, and get operations that respectively create,

update, and read from num. However, these operations now have LVar semantics: the put operation

computes a lub (with respect to a lattice similar to that of Figure 2.1(b), except including all the Ints),

and the get operation performs a threshold read, where the threshold set is implicitly the set of all

Ints. We do not need to explicitly write down the threshold set in the code. Rather, it is the obligation

of the Data.LVar.IVar module to provide operations (put and get) that have the semantic effect of

lub writes and threshold reads (as I touched on earlier in Section 2.2.3).

84

4. THE LVISH LIBRARY

There are two other important differences between the monad-par program and the LVish program:

the Par type constructor has gained two new type parameters, e and s, and p’s type annotation now has

a type class constraint of (HasPut e, HasGet e). Furthermore, we have added a LANGUAGE pragma,

instructing the compiler that we are now using the TypeFamilies language extension. In the following

section, I explain these changes.

4.2.2. The e and s type parameters: effect tracking and session tracking. In order to support both

deterministic and quasi-deterministic programming in LVish, we need a way to specify which LVar ef-

fects can occur within a given Par computation. In a deterministic computation, only update operations

(such as put) and threshold reads should be allowed; in a quasi-deterministic computation, freeze op-

erations should be allowed as well. Other combinations may be desirable as well: for instance, we may

want a computation to perform only writes, and not reads.

In order to capture these constraints and make them explicit in the types of LVar computations, LVish

indexes Par computations with a phantom type e that indicates their effect level. The Par type becomes,

instead, Par e, where e is a type-level encoding of Booleans indicatingwhich operations, such aswrites,

reads, or freeze operations, are allowed to occur inside it. LVish follows the precedent of Kiselyov et al. on

extensible effects in Haskell [30]: it abstracts away the specific structure of e into type class constraints,

which allow a Par computation to be annotated with the interface that its e type parameter is expected

to satisfy. This approach allows us to define “effect shorthands” and use them as Haskell type class con-

straints. For example, a Par computation where e is annotated with the effect level constraint HasPut

can perform puts. In our example above, e is annotated with both HasPut and HasGet and therefore

the Par computation in question can perform both puts and gets. We will see several more examples

of effect level constraints in LVish Par computations shortly.

The effect tracking infrastructure is also the reason why we need to use the TypeFamilies language ex-

tension in our LVish programs. For brevity, I will elide the LANGUAGE pragmas in the rest of the example

LVish programs in this section.

85

4. THE LVISH LIBRARY

The LVish Par type constructor also has a second type parameter, s, making Par e s a the complete

type of a Par computation that returns a result of type a. The s parameter ensures that, when a com-

putation in the Par monad is run using the provided runPar operation (or using a variant of runPar,

which I will discuss below), it is not possible to return an LVar from runPar and reuse it in another call

to runPar. The s type parameter also appears in the types of LVars themselves, and the universal quan-

tification of s in runPar and its variants forces each LVar to be tied to a single “session”, i.e., a single

use of a run function, in the same way that the ST monad in Haskell prevents an STRef from escaping

runST. Doing so allows the LVish implementation to assume that LVars are created and used within the

same session.3

4.2.3. An observably deterministic shopping cart. For our next few examples, let

us consider concurrently adding items to a shopping cart. Suppose we have an Item

data type for items that can be added to the cart. For the sake of this example, suppose

that only two items are on offer:

data Item = Book | Shoes
deriving (Show, Ord, Eq)

The cart itself can be represented using the IMap LVar type (provided by the

Data.LVar.PureMap4 module), which is a key-value map where the keys are Items and the values are

the quantities of each item. The name IMap is by analogy with IVar, but here, it is individual entries in

the map that are immutable, not the map itself. If a key is inserted multiple times, the values must be

equal (according to ==), or a “multiple put” error will be raised.

3The addition of the s type parameter to Par in the LVish library has nothing to do with LVars in particular; it would also
be a useful addition to the original Par library to prevent programmers from reusing an IVar from one Par computation to
another, which is, as Simon Marlow has noted, “a Very Bad Idea; don’t do it” [34].
4The “Pure” in Data.LVar.PureMap distinguishes it from LVish’s other map data structure, which is also called IMap,
but is provided by the Data.LVar.SLMap module and is a lock-free data structure based on concurrent skip lists. The
IMap provided by Data.LVar.PureMap, on the other hand, is a reference implementation of a map, which uses a pure
Data.Mapwrapped in a mutable container. Both IMaps present the same API, and either implementation of IMapwould
have worked for this example, but the lock-free version is designed to scale as parallel resources are added. I discuss the role
of lock-free data structures in LVish in more detail in Section 4.4.5.

86

4. THE LVISH LIBRARY

import Control.LVish
import Data.LVar.PureMap

p :: (HasPut e, HasGet e) => Par e s Int
p = do cart <- newEmptyMap

fork (insert Book 2 cart)
fork (insert Shoes 1 cart)
getKey Book cart

main = print (runPar p)

Listing 4.4. A deterministic shopping-cart program.

Listing 4.4 shows an LVish program that inserts items into our shopping cart. The newEmptyMap oper-

ation creates a new IMap, and the insert operation allows us to add new key-value pairs to the cart.

In this case, we are concurrently adding the Book item with a quantity of 2, and the Shoes item with

a quantity of 1. The call to getKey will be able to unblock as soon as the first insert operation has

completed, and the program will deterministically print 2 regardless of whether the second insert has

completed at the time that getKey unblocks.

The getKey operation allows us to threshold on a key—in this case Book—and get back the value as-

sociated with that key, once it has been written. The (implicit) threshold set of a call to getKey is the

set of all values that might be associated with a key; in this case, the set of all Ints. This is a legal

threshold set because IMap entries are immutable: we cannot, for instance, insert a key of Book with a

quantity of 2 and then later change the 2 to 3. In a more realistic shopping cart, the values in the cart

could themselves be LVars representing incrementable counters, as in the previous section. However,

a shopping cart from which we can delete items is not possible with LVars, because it would go against

the principle of monotonic growth.5

5On the other hand, one way to implement a container that allows both insertion and removal of elements is to represent it
internally with two containers, one for the inserted elements and one for the removed elements, where both containers grow
monotonically. Conflict-free replicated data types (CRDTs) [49] use variations on this approach to implement various data
structures that support seemingly non-monotonic operations. I discuss the relationship of LVars to CRDTs in more detail in
Chapter 5.

87

4. THE LVISH LIBRARY

import Control.LVish
import Data.LVar.PureMap
import qualified Data.Map as M

p :: (HasPut e, HasFreeze e) => Par e s (M.Map Item Int)
p = do cart <- newEmptyMap

fork (insert Book 2 cart)
fork (insert Shoes 1 cart)
freezeMap cart

main = do v <- runParQuasiDet p
print (M.toList v)

Listing 4.5. A quasi-deterministic shopping-cart program.

4.2.4. A quasi-deterministic shopping cart. The LVish examples we have seen so far have been fully

deterministic; they do not use freeze. Next, let us consider a program that freezes and reads the exact

contents of a shopping cart, concurrently with adding items to it.

In Listing 4.5, we are inserting items into our cart, as in Listing 4.4. But, instead of returning the result

of a call to getKey, this time p returns the result of a call to freezeMap, and the return type of p is a Par

computation containing not an Int, but rather an entiremap from Items to Ints. In fact, thismap is not

the IMap that Data.LVar.PureMap provides, but rather the standard Map from the Data.Map module

(imported as M). This is possible because Data.LVar.PureMap is implemented using Data.Map, and so

freezing its IMap simply returns the underlying Data.Map.

Because p performs a freezing operation, the effect level of its return type must reflect the fact that

it is allowed to perform freezes. Therefore, instead of HasGet, we have the type class constraint of

HasFreeze on e. Furthermore, because p is allowed to perform a freeze, we cannot run it with runPar,

as in our previous examples, but must instead use a special variant of runPar, called runParQuasiDet,

whose type signature allows Par computations that allow freezing to be passed to it.

The quasi-determinism in Listing 4.5 arises from the fact that the call to freezeMap may run before

both forked computations have completed. In this example, one or both calls to insert may run after

88

4. THE LVISH LIBRARY

import Control.LVish
import Control.LVish.DeepFrz -- provides runParThenFreeze
import Data.LVar.PureMap

p :: (HasPut e) => Par e s (IMap Item s Int)
p = do

cart <- newEmptyMap
fork (insert Book 2 cart)
fork (insert Shoes 1 cart)
return cart

main = print (runParThenFreeze p)

Listing 4.6. A deterministic shopping-cart program that uses runParThenFreeze.

the call to freezeMap. If this happens, the program will raise a write-after-freeze exception. The other

possibility is that both items are already in the cart at the time it is frozen, in which case the program

will run without error and print both items. There are therefore two possible outcomes: a cart with both

items, or a write-after-freeze error. The advantage of quasi-determinism is that it is not possible to get

multiple non-error outcomes, such as, for instance, an empty cart or a cart to which only the Book has

been added.

4.2.5. Regaining full determinism with runParThenFreeze. The advantage of freezing is that it al-

lows us to observe the exact, complete contents of an LVar; the disadvantage is that it introduces quasi-

determinism due to the possibility of a write racing with a freeze, as in the example above. But, if we

could ensure that the freeze operation happened last, we would be able to freeze LVars with no risk

to determinism. In fact, the LVish library offers a straightforward solution to this problem: instead of

manually calling freeze (and perhaps accidentally freezing an LVar too early), we can tell LVish to han-

dle the freezing for us while “on the way out” of a Par computation. The mechanism that allows this is

another variant of runPar, which we call runParThenFreeze.

89

4. THE LVISH LIBRARY

Listing 4.6 shows a version of Listing 4.5 written using runParThenFreeze. Unlike the Par computa-

tions in the shopping-cart examples we have seen so far, the Par computation in Listing 4.6 only per-

forms writes (as we can see from its effect level, which is only constrained by HasPut). Also, unlike in

Listing 4.5, where a freeze took place inside the Par computation, in Listing 4.6 the Par computation

returns an IMap rather than a Map. Since IMap is an LVar, it has an s parameter, which we can see in the

type of p.

Because there is no synchronization operation after the two fork calls, p may return cart before both

(or either) of the calls to insert have completed. However, since runParThenFreeze is an implicit

global barrier (just as runPar and runParQuasiDet are), both calls to insert must complete before

runParThenFreeze can return—which means that the result of the program is deterministic.

4.2.6. Event-driven programming with LVars: a deterministic parallel graph traversal. Finally,

let us look at an example that uses event handlers as well as freezing. In Listing 4.7, the function

traverse takes a graph g and a vertex startNode and finds the set of all vertices reachable from

startNode, in parallel. The traverse function first creates a new LVar, called seen, to represent a

monotonically growing set of Ints that will identify nodes in the graph. For this purpose, we use the

ISet type, provided by the Data.LVar.PureSet module. (As with IMap, the individual elements of the

ISet are immutable, but the set itself can grow.)

Next, traverse attaches an event handler to seen. It does so by calling the newHandler function, which

takes two arguments: an LVar and the callback that is to be to run every time an event occurs on that

LVar (in this case, every time a newnode is added to the set).6 The callback responds to events by looking

up the neighbors of the newly arrived node (assuming a neighbors operation, which takes a graph and

a vertex and returns a list of the vertex’s neighbor vertices), then mapping the insert function over

that list of neighbors.

6LVish does not provide newHandler, but we can easily implement it using LVish’s built-in newPool and addHandler
operations.

90

4. THE LVISH LIBRARY

import Control.LVish
import Control.LVish.DeepFrz -- provides Frzn
import Data.LVar.Generic (addHandler, freeze)
import Data.LVar.PureSet
import qualified Data.Graph as G

traverse :: (HasPut e, HasFreeze e) =>
G.Graph -> Int -> Par e s (ISet Frzn Int)

traverse g startNode = do
seen <- newEmptySet
h <- newHandler seen

(\node -> do
mapM (\v -> insert v seen)

(neighbors g node)
return ())

insert startNode seen -- Kick things off
quiesce h
freeze seen

main = do
v <- runParQuasiDet (traverse myGraph (0 :: G.Vertex))
print (fromISet v)

Listing 4.7. A deterministic parallel graph traversal with an explicit call to freeze.

Finally, traverse adds the starting node to the seen set by calling insert startNode seen—and the

event handler does the rest of the work. We know that we are done handling events when the call to

quiesce h returns; it will block until all events have been handled. Finally, we freeze and return the

ISet of all reachable nodes. Since ISet is an LVar, it has an s parameter, and in the return type of

traverse, the s parameter of ISet has been replaced by the Frzn type, indicating that the LVar has

been frozen.

The good news is that this particular graph traversal program is deterministic. The bad news is that, in

general, freezing introduces quasi-determinism, since we could have forgotten to call quiesce before

the freeze—which is why traverse must be run with runParQuasiDet, rather than runPar. Although

the program is deterministic, the language-level guarantee is merely of quasi-determinism, not deter-

minism.

91

4. THE LVISH LIBRARY

import Control.LVish
import Control.LVish.DeepFrz -- provides runParThenFreeze
import Data.LVar.Generic (addHandler, freeze)
import Data.LVar.PureSet
import qualified Data.Graph as G

traverse :: HasPut e => G.Graph -> Int -> Par e s (ISet s Int)
traverse g startNode = do

seen <- newEmptySet
h <- newHandler seen

(\node -> do
mapM (\v -> insert v seen)

(neighbors g node)
return ())

insert startNode seen -- Kick things off
return seen

main = print (runParThenFreeze (traverse myGraph (0 :: G.Vertex)))

Listing 4.8. A deterministic parallel graph traversal that uses runParThenFreeze.

However, just as with our final shopping-cart example in Listing 4.6, we can use runParThenFreeze to

ensure that freezing happens last. Listing 4.8 gives a version of traverse that uses runParThenFreeze,

and eliminates the possibility of forgetting to call quiesce and thereby introducing quasi-determinism.

In Listing 4.8, since freezing is performed by runParThenFreeze rather by an explicit call to freeze, it

is no longer necessary to constrain e with HasFreeze in the type of traverse. Furthermore, the s pa-

rameter in the ISet that traverse returns can remain s instead of being instantiated with Frzn. Most

importantly, since freezing is performed by runParThenFreeze rather by an explicit call to freeze, it

is no longer necessary for traverse to explicitly call quiesce, either! Because of the implicit barrier

created by runParThenFreeze, all outstanding events that can be handled will be handled before it can

return.

92

4. THE LVISH LIBRARY

4.3. Par-monad transformers and disjoint parallel update

The effect-tracking system of the previous section provides a way to toggle on and off a fixed set of

basic capabilities, such as HasPut, using the type system—that is, with the effect level e that parame-

terizes the Par type. However, it does not give us a way to add new, unanticipated capabilities to a Par

computation. For that, we turn to monad transformers.

In Haskell, a monad transformer is a type constructor that adds “plug-in” capabilities to an underlying

monad. For example, the StateTmonad transformer adds an extra piece of implicit, modifiable state to

an underlyingmonad. Adding amonad transformer to a type always returns anothermonad (preserving

the Monad instance). We can therefore define a Par-monad transformer as a type constructor T where,

for all Par monads m, T m is another Par monad with additional capabilities, and where a value of type

T m a, for instance, T (Par e s) a, is a computation in that monad.

4.3.1. Example: threading state in parallel. We can use the standard StateT monad transformer

(provided by Haskell’s Control.Monad.State package) as a Par-monad transformer. However, even if

m is a Par monad, for StateT s m to also be a Par monad, the state s must be splittable; that is, it must

be specified what is to be done with the state at fork points in the control flow. For example, the state

may be duplicated, split, or otherwise updated to note the fork.

The below code promotes StateT to be a Par-monad transformer:

class SplittableState a where
splitState :: a -> (a, a)

instance (SplittableState s, ParMonad m) =>
ParMonad (StateT s m) where

fork task =
do s <- oState.get

let (s1, s2) = splitState s
State.put s2
lift (fork (do runStateT task s1; return ()))

93

4. THE LVISH LIBRARY

Note that here, put and get are not LVar operations, but the standard operations for setting and re-

trieving the state in a StateT.

4.3.2. Determinism guarantee. The StateT transformer preserves determinism because it is effec-

tively syntactic sugar. That is, StateT does not allow one to write any program that could not already be

written using the underlying Par monad, simply by passing around an extra argument. This is because

StateT only provides a functional state (an implicit argument and return value), not actual mutable

heap locations. Genuine mutable locations in pure computations, on the other hand, require Haskell’s

ST monad, the safer sister monad to IO.

4.3.3. Disjoint parallel update with ParST. The LVars model is based on the notion that it is fine for

multiple threads to access and update shared memory, so long as updates commute and “build on” one

another, only adding information rather than destroying it. But it should also be possible for threads

to update memory destructively, so long as the memory updated by different threads is disjoint. This is

the approach to deterministic parallelism taken by, for example, Deterministic Parallel Java (DPJ) [8],

which uses a region-based type and effect system to ensure that each mutable region of the heap is

passed linearly to a thread that then gains exclusive permission to update that region.

In order to add this capability to the LVish library, we need destructive updates to interoperate with

LVar effects. Moreover, we wish to do so at the library level, without requiring language extensions.

Our solution is to provide a monad called ParST that uses the StateT transformer described above

to layer additional mutable state on top of the existing capabilities of the LVish Par monad. ParST

allows arbitrarily complex mutable state, such as tuples of vectors (arrays). However, ParST enforces

the restriction that every memory location in the state is reachable by only one pointer: alias freedom.

Previous approaches to integratingmutablememorywith pure functional code (i.e., the STmonad) work

with LVish, but only allow thread-privatememory. There is no way to operate on the same structure (for

instance, on two halves of an array) from different threads. ParST exploits the fact that simultaneous

94

4. THE LVISH LIBRARY

{-# LANGUAGE TypeFamilies #-}

import Prelude hiding (read)
import Control.LVish
import Control.Par.ST (liftST)
import Control.Par.ST.Vec (ParVecT, set, reify, forkSTSplit, write, read, runParVecT)
import Data.Vector (freeze, toList)

p :: (HasGet e, HasPut e) => ParVecT s1 String Par e s [String]
p = do

-- Fill all six slots in the vector with "foo".
set "foo"
-- Get a pointer to the state.
ptr <- reify

-- Fork two computations, each of which has access to half the
-- vector. Within the two forked child computations, `ptr` is
-- inaccessible.
forkSTSplit 3 -- Split at index 3 in the vector.

(write 0 "bar")
(write 0 "baz")

frozen <- liftST (freeze ptr)
return (toList frozen)

main = print (runPar (runParVecT 6 p))

Listing 4.9. A program illustrating disjoint parallel update inside an LVar computation.

access from different threads can be deterministic, as long as the threads are accessing disjoint parts

of the data structure. Listing 4.9 illustrates the idea using ParVecT, which is a specialized variant of

ParST that supports a particular kind of shared state: a single mutable vector.

The code in Listing 4.9 writes to each element in a six-element vector, then splits the vector into two

parts and updates each part in parallel. (The first argument to runParVecT, in this case 6, speci-

fies the length of the vector.) The call to forkSTSplit forks the control flow of the program, and

(write 0 "bar") and (write 0 "baz") are the two forked child computations. forkSTSplit takes

as its first argument a “split point”, which is the index at which the vector is to be split. Here, that index

is 3, which means that the first child computation passed to forkSTSplit may access only the first half

95

4. THE LVISH LIBRARY

of the vector, while the other may access only the second half. Each child computation sees only a local

view of the vector, so writing "bar" to index 0 in the second child computation is really writing to index

3 of the full vector.

The call to freeze in Listing 4.9 is not to be confused with an LVar freeze operation; it is instead the

freeze operation from the Data.Vector librarywhich produces an immutable copy of amutable vector.

In the last line of Listing 4.9, callingrunParVecTdischarges the extra state effect thatParVecTprovides,

leaving the underlying Par computation, which is then run with runPar. In this example, printing the

result of the runPar gives us ["bar","foo","foo","baz","foo","foo"].

Ensuring the determinism of ParST hinges on two requirements:

• Disjointness: Any thread can get a direct pointer to its state. In Listing 4.9, ptr is an STVector that

can be passed to any standard library procedures in the STmonad. However, it must not be possible

to access ptr from forkSTSplit’s child computations. We accomplish this usingHaskell’s support

for higher-rank types,7 ensuring that accessing ptr from a child computation causes a type error.

Finally, forkSTSplit is a fork-join construct; after it completes, the parent thread again has full

access to ptr.

• Alias freedom: Imagine that we expanded the example in Listing 4.9 to have as its state a tuple of

two vectors (v1, v2). If we allowed the programmer to supply an arbitrary initial state to the ParST

computation, then they might provide the state (v1, v1), i.e., two copies of the same pointer. This

breaks the abstraction, enabling them to reach the same mutable location from multiple threads

(by splitting the supposedly-disjoint vectors at a different index). Thus, in LVish, users do not

populate the state directly, but only describe a recipe for its creation. Each type used as a ParST

state has an associated type for descriptions of (1) how to create an initial structure, and (2) how

to split it into disjoint pieces. LVish provides a library of instances for commonly used types.
7That is, the type of a child computation begins with (forall s . ParST ...).

96

4. THE LVISH LIBRARY

4.3.4. Inter-thread communication. Disjoint state update does not solve the problem of communi-

cation between threads. Hence systems built around this idea often include other means for performing

reductions, or require ”commutativity annotations” for operations such as adding to a set. For instance,

DPJ provides a commuteswith form for asserting that operations commute with one another to enable

concurrent mutation. In LVish, however, such annotations are unnecessary, because LVish already pro-

vides a language-level guarantee that all effects commute! Thus, a programmer using LVish with ParST

can use any LVar to communicate results between threads performing disjoint updates, without requir-

ing trusted code or annotations. Moreover, LVish with ParST is unique among deterministic parallel

programming models in that it allows both DPJ-style, disjoint destructive parallel updates, and block-

ing, dataflow-style communication between threads (through LVars).

4.4. Case study: parallelizing k-CFA with LVish

LVish is designed to be particularly applicable to (1) parallelizing complicated algorithms on structured

data that pose challenges for other deterministic programming models, and (2) composing pipeline-

parallel stages of computation (each of which may be internally parallelized). In this section, I describe

a case study that fits this mold: parallelized control-flow analysis. I discuss the process of porting a

sequential implementation of a k-CFA static program analysis to a parallel implementation using LVish.

The k-CFA analyses provide a hierarchy of increasingly precise

methods to compute the flow of values to expressions in a higher-

order language. For this case study, we began with a sequential im-

plementation of k-CFA translated to Haskell from a version byMight [38].8 The algorithm processes ex-

pressions written in a continuation-passing-style λ-calculus. It resembles a nondeterministic abstract

interpreter in which stores map addresses to sets of abstract values, and function application entails a

cartesian product between the operator and operand sets. Furthermore, an address models not just a

8Haskell port by Max Bolingbroke: https://github.com/batterseapower/haskell-kata/blob/master/0CFA.
hs.

97

https://github.com/batterseapower/haskell-kata/blob/master/0CFA.hs
https://github.com/batterseapower/haskell-kata/blob/master/0CFA.hs

4. THE LVISH LIBRARY

explore :: S.Set State -> [State] -> S.Set State
explore seen [] = seen
explore seen (todo:todos)
| todo `S.member` seen = explore seen todos
| otherwise = explore (S.insert todo seen) (S.toList (next todo) ++ todos)

Listing 4.10. The explore function from a purely functional k-CFA implementation.

static variable, but includes a fixed k-size window of the calling history to get to that point (the k in

k-CFA).

Taken together, the current redex, environment, store, and call history make up the abstract state of

the program, and the goal is to explore a graph of these abstract states in order to discover the flow of

control of a program without needing to actually run it. This graph-exploration phase is followed by a

second, summarization phase that combines all the information discovered into one store.

4.4.1. k-CFA phase one: breadth-first exploration. The explore function from the original, se-

quential k-CFA analysis, shown in Listing 4.10, expresses the heart of the search process. explore uses

idiomatic Haskell data types like Data.Set and lists. However, it presents a dilemma with respect to

exposing parallelism. Consider attempting to parallelize explore using purely functional parallelism

with futures—for instance, using the Haskell Strategies library [35]. An attempt to compute the next

states in parallel would seem to be thwarted by the main thread rapidly forcing each new state to per-

form the seen-before check, todo `S.member` seen. There is noway for independent threads to “keep

going” further into the graph; rather, they check in with seen after one step.

We confirmed this prediction by adding a parallelism annotation from the aforementioned Strategies

library:

withStrategy (parBuffer 8 rseq) (next todo)

98

4. THE LVISH LIBRARY

The GHC runtime reported that 100% of created futures were “duds”—that is, the main thread forced

them before any helper thread could assist. Changing rseq to rdeepseq exposed a small amount of

parallelism—238 of 5000 futures were successfully executed in parallel—yielding no actual speedup.

4.4.2. k-CFA phase two: summarization. The first phase of the algorithm produces a large set of

states, with stores that need to be joined together in the summarization phase. When one phase of

a computation produces a large data structure that is immediately processed by the next phase, lazy

languages can often achieve a form of pipelining “for free”. This outcome is most obvious with lists,

where the head element can be consumed before the tail is computed, offering cache-locality benefits.

Unfortunately, when processing a pure Data.Set or Data.Map in Haskell, such pipelining is not possi-

ble, since the data structure is internally represented by a balanced tree whose structure is not known

until all elements are present. Thus phase one and phase two cannot overlap in the purely functional

version—but they will in the LVish version, as we will see. In fact, in LVish we will be able to achieve par-

tial deforestation in addition to pipelining. Full deforestation in this application is impossible, because

the Data.Sets in the implementation serve a memoization purpose: they prevent repeated computa-

tions as we traverse the graph of states.

4.4.3. Porting to LVish. Our first step in parallelizing the original k-CFA implementation was a verba-

tim port to LVish: that is, we changed the original, purely functional program to allocate a new LVar for

each new set or map value in the original code. This was done simply by changing two types, Set and

Map, to their LVar counterparts, ISet and IMap. In particular, a store maps a program location (with

context) onto a set of abstract values (here the libraries providing ISet and IMap are imported as IS

and IM, respectively):

type Store s = IM.IMap Addr s (IS.ISet s Value)

Next, we replaced allocations of containers, and map/fold operations over them, with the analogous

operations on their LVar counterparts. The explore function above was replaced by a function that

99

4. THE LVISH LIBRARY

amounts to the simple graph traversal function from Section 3.1.4. These changes to the program were

mechanical, including converting pure to monadic code. Indeed, the key insight in doing the verbatim

port to LVish was to consume LVars as if they were pure values, ignoring the fact that an LVar’s contents

are spread out over space and time and are modified through effects.

In some places the style of the ported code is functional, while in others it is imperative. For example,

the summarize function uses nested forEach invocations to accumulate data into a store map:

summarize :: IS.ISet s (State s) -> Par d s (Store s)
summarize states = do

storeFin <- newEmptyMap
void $ IS.forEach states $ \ (State _ _ store_n _) -> do

void $ IM.forEach store_n $ \ key val -> do
void $ IS.forEach val $ \ elem -> do

IM.modify storeFin key newEmptySet $ \ st -> do
IS.insert elem st

return storeFin

While this code can be read in terms of traditional parallel nested loops, it in fact creates a network of

handlers that convey incremental updates from one LVar to another, in the style of data-flow networks.

That means, in particular, that computations in a pipeline can immediately begin reading results from

containers (e.g., storeFin), long before their contents are final.

The LVish version of k-CFA contains eleven occurrences of forEach, as well as a few cartesian-product

operations. The cartesian products serve to apply functions to combinations of all possible values that

arguments may take on, greatly increasing the number of handler events in circulation. Moreover,

chains of handlers registered with forEach result in cascades of events through six or more handlers.

The runtime behavior of these operations would be difficult to reason about. Fortunately, the program-

mer can largely ignore the temporal behavior of their program, since all LVish effects commute—rather

like the way in which a lazy functional programmer typically need not think about the order in which

thunks are forced at runtime.

100

4. THE LVISH LIBRARY

Finally, there is an optimization benefit to using handlers. Normally, to flatten a nested data structure

such as [[[Int]]] in a functional language, one would need to flatten one layer at a time and allocate

a series of temporary structures. The LVish version avoids this; for example, in the code for summarize

above, three forEach invocations are used to traverse a triply-nested structure, and yet the side effect

in the innermost handler directly updates the final accumulator, storeFin.

4.4.4. Flipping the switch: the advantage of sharing. The verbatim port to LVish uses LVars poorly:

copying them repeatedly anddiscarding themwithoutmodification. This effect overwhelms the benefits

of partial deforestation and pipelining, and the verbatim LVish port has a small performance overhead

relative to the original. But not for long!

The most clearly unnecessary operation in the verbatim port is in the next function (called in the last

line of Listing 4.10). In keeping with the purely functional program from which it was ported, next

creates a fresh store to extend with new bindings as we take each step through the state space graph:

store' <- IM.copy store

Of course, a “copy” for an LVar is persistent: it is just a handler that forces the copy to receive everything

the original does. But in LVish, it is also trivial to entangle the parallel branches of the search, allowing

them to share information about bindings, simply by not creating a copy:

let store' = store

This one-line change speeds up execution by up to 25× on one core. The lesson here is that, although

pure functional parallel programs are guaranteed to be deterministic, the overhead of allocation and

copying in an idiomatic pure functional program can overwhelm the advantages of parallelism. In the

LVish version, the ability to use shared mutable data structures—even though they are only mutable

in the extremely restricted and determinism-preserving way that LVish allows—affords a significant

101

4. THE LVISH LIBRARY

speedup even when the code runs sequentially. The effect is then multiplied as we add parallel re-

sources: the asynchronous, ISet-driven parallelism enables parallel speedup for a total of up to 202×

total improvement over the purely functional version.

4.4.5. Parallel speedup results. We implemented two versions of the k-CFA algorithm using set data

structures that the LVish library provides. The first, PureSet (exported by the Data.LVar.PureSet

module), is the LVish library’s reference implementation of a set, which uses a pure Data.Set wrapped

in a mutable container. The other, SLSet, exported by Data.LVar.SLSet, is a lock-free set based on

concurrent skip lists [26].9

We evaluated both the PureSet-based and SLSet-based k-CFA implementations on two benchmarks.

For the first, we used a version of the “blur” benchmark from a recent paper on k-CFA by Earl et al. [18].

In general, it proved difficult to generate example inputs to k-CFA that took long enough to be candi-

dates for parallel speedup; we were, however, able to “scale up” the blur benchmark by replicating the

codeN times, feeding one into the continuation argument for the next. For our second benchmark, we

ran the k-CFA analysis on a program that was simply a long chain of 300 “not” functions (using a CPS

conversion of the Church encoding for Booleans). This latter benchmark, which we call “notChain”,

has a small state space of large states with many variables (600 states and 1211 variables), and was

specifically designed to negate the benefits of our sharing approach.

Figure 4.1 shows the parallel speedup results of our experiments on a twelve-core machine.10 (We used

k = 2 for the benchmarks in this section.) The lines labeled “blur” and “blur/lockfree” show the parallel

speedup of the “blur” benchmark for the PureSet-based implementation and SLSet-based implemen-

tation of k-CFA, respectively, and the lines labeled “notChain” and “notChain/lockfree” show parallel

speedup of the “notChain” benchmark for the PureSet-based and SLSet-based implementations, re-

spectively.

9LVish also provides analogous reference and lock-free implementations of maps (PureMap and SLMap). In fact, LVish
is the first project to incorporate any lock-free data structures in Haskell, which required solving some unique problems
pertaining to Haskell’s laziness and the GHC compiler’s assumptions regarding referential transparency [39].
10Intel Xeon 5660; full machine details available at https://portal.futuregrid.org/hardware/delta.

102

https://portal.futuregrid.org/hardware/delta

4. THE LVISH LIBRARY

0

2

4

6

8

10

12

0 2 4 6 8 10 12

Parallel Speedup
S

p
e
e
d

u
p

Threads

linear speedup blur/lockfree blur
notChain/lockfree notChain

Figure 4.1. Parallel speedup for the “blur” and “notChain” benchmarks. Speedup is nor-
malized to the sequential times for the lock-free versions (5.21s and 9.83s, respectively).
The normalized speedups are remarkably consistent for the lock-free version between
the two benchmarks. But the relationship to the original, purely functional version (not
shown) is quite different: at 12 cores, the lock-free LVish version of “blur” is 202× faster
than the original, while “notChain” is only 1.6× faster, not gaining anything from shar-
ing rather than copying stores due to a lack of fan-out in the state graph.

The results for the PureSet-based implementations are normalized to the same baseline as the results

for the SLSet-based implementations at one core. At one and two cores, the SLSet-based k-CFA imple-

mentation (shown in green) is 38% to 43% slower than the PureSet-based implementation (in yellow)

on the “blur” benchmark. The PureSet-based implementation, however, stops scaling after four cores.

Even at four cores, variance is high in the PureSet-based implementation (min/max 0.96s / 1.71s over 7

runs). Meanwhile, the SLSet-based implementation continues scaling and achieves an 8.14× speedup

on twelve cores (0.64s at 67% GC productivity).

Of course, it is unsurprising that using an efficient lock-free shared data structure results in a better par-

allel speedup; rather, the interesting thing about these results is that despite its determinism guarantee,

there is nothing about the LVars model that precludes using such data structures. Any data structure

103

4. THE LVISH LIBRARY

that has the semantics of an LVar is fine. Indeed, part of the benefit of LVish is that it can allow parallel

programs to make use of lock-free data structures while retaining the determinism guarantee of LVars,

in much the same way that the ST monad allows Haskell programs access to efficient in-place array

updates.

4.5. Case study: parallelizing PhyBin with LVish

One reasonwhywemightwant guaranteed-deterministic software is for the sake of scientific repeatabil-

ity: in bioinformatics, for example, we would expect an experiment on the same data set to produce the

same result on every run. In this section, I describe our experience using the LVish library to parallelize

PhyBin, a bioinformatics application for comparing phylogenetic trees. A phylogenetic tree represents

a possible ancestry for a set of N species. Leaf nodes in the tree are labeled with species’ names, and

the structure of the tree represents a hypothesis about common ancestors. For a variety of reasons,

biologists often end up with many alternative trees, whose relationships they need to then analyze.

PhyBin [40] is a medium-sized (3500-line) bioinformatics program imple-

mented in Haskell11 for this purpose, initially released in 2010. The pri-

mary output of the software is a hierarchical clustering of the input tree

set (that is, a tree of trees), but most of its computational effort is spent

computing anN ×N distance matrix that records the edit distance between each pair of input trees. It

is this distance computation that we parallelize in our case study.

4.5.1. Computing all-to-all tree edit distance. The distance metric itself is called Robinson-Foulds

(RF) distance, and the fastest algorithm for all-to-all RF distance computation is Sul and Williams’

HashRF algorithm [52], which is used by a software package of the same name.12 The HashRF soft-

ware package is written in C++ and is about 2-3× as fast as PhyBin, which also implements the HashRF

algorithm. Both packages are dozens or hundreds of times faster than the more widely-used software

11Available at http://hackage.haskell.org/package/phybin.
12Available at https://code.google.com/p/hashrf/.

104

http://hackage.haskell.org/package/phybin
https://code.google.com/p/hashrf/

4. THE LVISH LIBRARY

that computes RF distancematrices, such as PHYLIP13 [20] and DendroPy14 [51]. These slower packages

use N2−N
2

full applications of the distance metric, which has poor locality in that it reads all trees in

from memory N2−N
2

times.

To see how theHashRF algorithm improves on this, consider that each edge in an unrooted phylogenetic

tree can be seen as partitioning the tree’s nodes into two disjoint sets, according to the two subtrees that

those nodes would belong to if the edge were deleted. For example, if a tree has nodes {a, b, c, d, e},

one bipartition or “split” might be {{a, b} , {c, d, e}}, while another might be {{a, b, c} , {d, e}}. A

tree can therefore be encoded as a set of bipartitions of its nodes. Furthermore, once trees are encoded as

sets of bipartitions, we can compute the edit distance between trees (that is, the number of operations

required to transform one tree into the other) by computing the symmetric set difference between sets of

bipartitions, and we can do so using standard set data structures.

TheHashRF algorithmmakes use of this fact and adds a clever trick that greatly improves locality. Before

computing the actual distances between trees, it populates a dictionary, the “splits map”, which maps

each observed bipartition to a set of IDs of trees that contain that bipartition. The second phase of the

algorithm, which actually computes theN×N distancematrix, does so by iterating through each entry

in the splits map. For each such entry, for each pair of tree IDs, it checks whether exactly one of those

tree IDs is in the splits map entry, and if so, increments the appropriate distance matrix entry by one.

Algorithm 1 is a psuedocode version of the HashRF algorithm. The second phase of the algorithm is

still O(N2), but it only needs to read from the much smaller treeset during this phase. All loops in

Algorithm 1 are potentially parallel.

4.5.2. Parallelizing the HashRF algorithm with LVish. In the original PhyBin source code, the type

of the splits map is:

13Available at http://evolution.genetics.washington.edu/phylip.html.
14Available at http://pythonhosted.org/DendroPy/.

105

http://evolution.genetics.washington.edu/phylip.html
http://pythonhosted.org/DendroPy/

4. THE LVISH LIBRARY

Algorithm 1 Pseudocode of the HashRF algorithm for computing a tree edit distance matrix. alltrees,
splitsmap and distancematrix are global variables, defined elsewhere. alltrees is the set of trees, repre-
sented as sets of bipartitions; splitsmap maps bipartitions to sets of trees in which they occur. In the
second phase, the comparison of t1 and t2 uses XOR because the RF distance between two trees is de-
fined as the number of bipartitions implied by exactly one of the two trees being compared.
▷ First phase: populate splits map.
for each t ∈ alltrees do

for each bip ∈ t do
▷ Add t to set of trees pointed at by splitsmap[bip],
▷ adding a key for bip to splitsmap if necessary.
insert(t, splitsmap[bip])

end for
end for
▷ Second phase: populate distance matrix.
▷ values() returns a list of all the values in a dictionary.
for each treeset ∈ values(splitsmap) do

for each t1 ∈ alltrees do
for each t2 ∈ alltrees do

if t1 ∈ treeset XOR t2 ∈ treeset then
increment(distancematrix[t1, t2])

end if
end for

end for
end for

type BipTable = Map DenseLabelSet (Set TreeID)

Here, a DenseLabelSet encodes an individual bipartition as a bit vector. PhyBin uses purely functional

data structures for the Map and Set types, whereas the C++HashRF implementation uses amutable hash

table. Yet in both cases, these structures grow monotonically during execution, making the algorithm

a good candidate for parallelization with LVish. The splits map created during the first phase of the

algorithm is a map of sets, which can be directly replaced by their LVar counterparts, and the distance

matrix created in the second phase can be represented as a vector of monotonically increasing counters.

In fact, the parallel port of PhyBin using LVish was so straightforward that, after reading the code, par-

allelizing the first phase of the algorithm took only 29 minutes.15 Tables 4.1 and 4.2 show the results

15Git commit range: https://github.com/rrnewton/PhyBin/compare/5cbf7d26c07a...6a05cfab490a7a.

106

https://github.com/rrnewton/PhyBin/compare/5cbf7d26c07a...6a05cfab490a7a

4. THE LVISH LIBRARY

Trees Species DendroPy PHYLIP PhyBin

100 150 22.1s 12.8s 0.269s

Table 4.1. PhyBin performance comparison with DendroPy and PHYLIP.

Trees Species HashRF
PhyBin

1 core 2 cores 4 cores 8 cores

1000 150 1.7s 4.7s 3.0s 1.9s 1.4s

Table 4.2. PhyBin performance comparison with HashRF.

of a running time comparison of the parallelized PhyBin with DendroPy, PHYLIP, and HashRF. We first

benchmarked PhyBin against DendroPy and PHYLIP using a set of 100 trees with 150 leaves each. Ta-

ble 4.1 shows the time it took in each case to fill in the all-to-all tree edit distance matrix and get an

answer back. PhyBin was much faster than the two alternatives.

Then, to compare PhyBin with HashRF, we used a set of 1000 trees with 150 leaves each. Table 4.2

shows the results. HashRF took about 1.7 seconds to process the 1000 trees, but since it is a single-

threaded program, adding cores does not offer any speedup. PhyBin, while slower than HashRF on one

core, taking about 4.7 seconds, speeds up as we add cores and eventually overtakes HashRF, running in

about 1.4 seconds on 8 cores. Therefore LVish gives us a parallel speedup of about 3.35× on 8 cores.

This is exactly the sort of situation in which we would like to use LVish—to achieve modest speedups

for modest effort, in programs with complex data structures (and high allocation rates), and without

changing the determinism guarantee of the original functional code.

107

CHAPTER 5

Deterministic threshold queries of distributed data structures

So far, we have considered the problem of how to program shared-memory parallel systems in a way that

guarantees determinism. In this chapter, we turn our attention to a different but related problem: that

of effectively and correctly programming distributed systems, in which programs run on a network of

interconnectednodes, eachwith its ownmemory, andwhere thenetwork is subject to network partitions

and other kinds of failures.

Because network partitions can occur and because nodes in a network can fail, distributed systems typ-

ically involve replication of data objects across a number of physical locations. Replication is of funda-

mental importance in such systems: it makes them more robust to data loss and allows for good data

locality. But the well-knownCAP theorem [23, 10] of distributed computing imposes a trade-off between

consistency, in which every replica sees the same data, and availability, in which all

data is available for both reading and writing by all replicas.

Highly available distributed systems, such as Amazon’s Dynamo key-value

store [16], relax strong consistency in favor of eventual consistency [56], in

which replicas need not agree at all times. Instead, updates execute at a par-

ticular replica and are sent to other replicas later. All updates eventually reach all replicas, albeit possi-

bly in different orders. Informally speaking, eventual consistency says that if updates stop arriving, all

replicas will eventually come to agree.

Although giving up on strong consistency makes it possible for a distributed system to offer high avail-

ability, even an eventually consistent systemmust have someway of resolving conflicts between replicas

that differ. One approach is to try to determine which replica was written most recently, then declare

108

5. DETERMINISTIC THRESHOLD QUERIES OF DISTRIBUTED DATA STRUCTURES

that replica the winner. But, even in the presence of a way to reliably synchronize clocks between repli-

cas and hence reliably determine which replica was written most recently, having the last write win

might not make sense from a semantic point of view. For instance, if a replicated object represents a

set, then, depending on the application, the appropriate way to resolve a conflict between two repli-

cas could be to take the set union of the replicas’ contents. Such a conflict resolution policy might be

more appropriate than a “last write wins” policy for, say, a object representing the contents of customer

shopping carts for an online store [16].

Implementing application-specific conflict resolution policies in an ad-hoc way for every application

is tedious and error-prone.1 Fortunately, we need not implement them in an ad-hoc way. Shapiro et

al.’s convergent replicated data types (CvRDTs) [49, 48] provide a simple mathematical framework for

reasoning about and enforcing the eventual consistency of replicated objects, based on viewing replica

states as elements of a lattice and replica conflict resolution as the lattice’s join operation.

Like LVars, CvRDTs are data structures whose states are elements of an application-specific lattice, and

whose contents can only grow with respect to the given lattice. Although LVars and CvRDTs were devel-

oped independently, both models leverage the mathematical properties of join-semilattices to ensure

that a property of the model holds—determinism in the case of LVars; eventual consistency in the case

of CvRDTs.

CvRDTsoffer a simple and theoretically-sound approach to eventual consistency. However, withCvRDTs

(and unlike with LVars), it is still possible to observe inconsistent intermediate states of replicated shared

objects, and high availability requires that reads return a value immediately, even if that value is stale.

In practice, applications call for both strong consistency and high availability at different times [54],

and increasingly, they support consistency choices at the granularity of individual queries, not that of

the entire system. For example, the Amazon SimpleDB database service gives customers the choice

between eventually consistent and strongly consistent read operations on a per-read basis [57].
1Indeed, as the developers of Dynamo have noted [16], Amazon’s shopping cart presents an anomaly whereby removed items
may re-appear in the cart!

109

5. DETERMINISTIC THRESHOLD QUERIES OF DISTRIBUTED DATA STRUCTURES

Ordinarily, strong consistency is a global property: all replicas agree on the data. When a system allows

consistency choices to be made at a per-query granularity, though, a global strong consistency property

need not hold. We can define a strongly consistent query to be one that, if it returns a result x when

executed at a replica i,

• will always return x on subsequent executions at i, and

• will eventually return x when executed at any replica, and will block until it does so.

That is, a strongly consistent query of a distributed data structure, if it returns, will return a result that is

a deterministic function of all updates to the data structure in the entire distributed execution, regardless

of when the query executes or which replica it occurs on.

Traditional CvRDTs only support eventually consistent queries. We could get strong consistency from

CvRDTs by waiting until all replicas agree before allowing a query to return—but in practice, such agree-

ment may never happen. In this chapter, I present an alternative approach that takes advantage of the

existing lattice structure of CvRDTs and does not require waiting for all replicas to agree. To do so, I take

inspiration from LVar-style threshold reads. I show how to extend the CvRDT model to support deter-

ministic, strongly consistent queries, which I call threshold queries. After reviewing the fundamentals

of CvRDTs in Section 5.1, I introduce CvRDTs extended with threshold queries (Section 5.2), and I prove

that threshold queries in our extended model are strongly consistent queries (Section 5.3). That is, I

show that a threshold query that returns an answer when executed at a replica will return the same an-

swer every subsequent time that it is executed at that replica, and that executing that threshold query

on a different replica will eventually return the same answer, and will block until it does so. It is there-

fore impossible to observe different results from the same threshold query, whether at different times

on the same replica or whether on different replicas.

110

5. DETERMINISTIC THRESHOLD QUERIES OF DISTRIBUTED DATA STRUCTURES

5.1. Background: CvRDTs and eventual consistency

Shapiro et al. [49, 48] define an eventually consistent object as one that meets three conditions. One

of these conditions is the property of convergence: all correct replicas of an object at which the same

updates have been delivered eventually have equivalent state. The other two conditions are eventual

delivery, meaning that all replicas receive all updatemessages, and termination, meaning that all method

executions terminate (we discuss methods in more detail below).

Shapiro et al. further define a strongly eventually consistent (SEC) object as one that is eventually consis-

tent and, in addition to being merely convergent, is strongly convergent, meaning that correct replicas

at which the same updates have been delivered have equivalent state.2 A conflict-free replicated data

type (CRDT), then, is a data type (i.e., a specification for an object) satisfying certain conditions that

are sufficient to guarantee that the object is SEC. (The term “CRDT” is used interchangeably to mean a

specification for an object, or an object meeting that specification.)

There are two “styles” of specifying a CRDT: state-based, also known as conver-

gent3; or operation-based (or “op-based”), also known as commutative. CRDTs

specified in the state-based style are called convergent replicated data types, ab-

breviatedCvRDTs, while those specified in the op-based style are called commutative replicated data types,

abbreviated CmRDTs. Of the two styles, we focus on the CvRDT style in this paper because CvRDTs

are lattice-based data structures and therefore amenable to threshold queries—although, as Shapiro et

al. show, CmRDTs can emulate CvRDTs and vice versa.
2Strong eventual consistency is not to be confused with strong consistency: it is the combination of eventual consistency
and strong convergence. Contrast with ordinary convergence, in which replicas only eventually have equivalent state. In a
strongly convergent object, knowing that the same updates have been delivered to all correct replicas is sufficient to ensure
that those replicas have equivalent state, whereas in an object that is merely convergent, there might be some further delay
before all replicas agree.
3There is a potentially misleading terminology overlap here: the definitions of convergence and strong convergence above
pertain not only to CvRDTs (where the C stands for “Convergent”), but to all CRDTs.

111

5. DETERMINISTIC THRESHOLD QUERIES OF DISTRIBUTED DATA STRUCTURES

5.1.1. State-based objects. In the Shapiro et al. model, a state-based object is a tuple (S, s0, q, u,m),

where S is a set of states, s0 is the initial state, q is the query method, u is the update method, and m

is the merge method. Objects are replicated across some finite number of processes, with one replica at

each process, and each replica begins in the initial state s0. The state of a local replica may be queried

via the method q and updated via the method u. Methods execute locally, at a single replica, but the

merge methodm can merge the state from a remote replica with the local replica. The model assumes

that each replica sends its state to the other replicas infinitely often, and that eventually every update

reaches every replica, whether directly or indirectly.

The assumption that replicas send their state to one another “infinitely often” refers not to the fre-

quency of these state transmissions; rather; it says that, regardless of what event (such as an update,

via the u method) occurs at a replica, a state transmission is guaranteed to occur after that event. We

can therefore conclude that all updates eventually reach all replicas in a state-based object, meeting

the “eventual delivery” condition discussed above. However, we still have no guarantee of strong con-

vergence or even convergence. This is where Shapiro et al.’s notion of a CvRDT comes in: a state-based

object that meets the criteria for a CvRDT is guaranteed to have the strong-convergence property.

A state-based or convergent replicated data type (CvRDT) is a state-based object equipped with a partial

order≤, written as a tuple (S,≤, s0, q, u,m), that has the following properties:

• S forms a join-semilattice ordered by≤.

• The merge methodm computes the join of two states with respect to≤.

• State is inflationary across updates: if u updates a state s to s′, then s ≤ s′.

Shapiro et al. show that a state-based object that meets the criteria for a CvRDT is strongly convergent.

Therefore, given the eventual delivery guarantee that all state-based objects have, and given an addi-

tional assumption that all method executions terminate, a state-based object that meets the criteria for

a CvRDT is SEC [49].

112

5. DETERMINISTIC THRESHOLD QUERIES OF DISTRIBUTED DATA STRUCTURES

5.1.2. Discussion: the need for inflationary updates. Although CvRDT updates are required to be

inflationary, it is not the case that every updatemust be inflationary for convergence, given our assump-

tion of eventual delivery. Consider, for example, a scenario in which replicas 1 and 2 both have the state

{a, b}. Replica 1 updates its state to {a}, a non-inflationary update, and then sends its updated state to

replica 2. Replica 2merges the received state {a}with {a, b}, and its state remains {a, b}. Then replica

2 sends its state back to replica 1; replica 1 merges {a, b} with {a}, and its state becomes {a, b}. The

non-inflationary update has been lost, and was, perhaps, nonsensical—but the replicas are nevertheless

convergent.

However, once we introduce threshold queries of CvRDTs, as we will do in the following section, in-

flationary updates become necessary for the determinism of threshold queries. This is because a non-

inflationary update could cause a threshold query that had been unblocked to block again, and so ar-

bitrary interleaving of non-inflationary writes and threshold queries would lead to nondeterministic

behavior. Therefore the requirement that updates be inflationary will not only be sensible, but actually

crucial.

5.2. Adding threshold queries to CvRDTs

In Shapiro et al.’s CvRDT model, the query operation q reads the exact contents of its local replica, and

therefore different replicas may see different states at the same time, if not all updates have been prop-

agated yet. That is, it is possible to observe intermediate states of a CvRDT replica. Such intermediate

observations are not possible with threshold queries. In this section, we show how to extend the CvRDT

model to accommodate threshold queries.

5.2.1. Objects with threshold queries. Definition 5.1 extends Shapiro et al.’s definition of a state-

based object with a threshold query method t:

113

5. DETERMINISTIC THRESHOLD QUERIES OF DISTRIBUTED DATA STRUCTURES

Definition 5.1 (state-based object with threshold queries). A state-based object with threshold queries

(henceforth object) is a tuple (S, s0, q, t, u,m), where S is a set of states, s0 ∈ S is the initial state, q

is a query method, t is a threshold query method, u is an update method, andm is a merge method.

In order to give a semantics to the threshold query method t, we need to formally define the notion of a

threshold set. The notion of “threshold set” that I use here is the generalized formulation of threshold

sets, based on activation sets, that I described previously in Section 2.6.2.

Definition 5.2 (threshold set). A threshold set with respect to a lattice (S,≤) is a set S = {Sa, Sb, . . . }

of one or more sets of activation states, where each set of activation states is a subset of S, the set of

lattice elements, and where the following pairwise incompatibility property holds:

For all Sa, Sb ∈ S , if Sa ̸= Sb, then for all activation states sa ∈ Sa and for all activation states

sb ∈ Sb, sa ⊔ sb = ⊤, where ⊔ is the join operation induced by ≤ and ⊤ is the greatest element of

(S,≤).

In our model, we assume a finite set of n processes p1, . . . , pn, and consider a single replicated object

with one replica at each process, with replica i at process pi. Processes may crash silently; we say that

a non-crashed process is correct.

Every replica has initial state s0. Methods execute at individual replicas, possibly updating that replica’s

state. The kth method execution at replica i is written fk
i (a), where k is ≥ 1 and f is either q, t, u,

or m, and a is the arguments to f , if any. Methods execute sequentially at each replica. The state of

replica i after the kth method execution at i is ski . We say that states s and s′ are equivalent, written

s ≡ s′, if q(s) = q(s′).

5.2.2. Causal histories. An object’s causal history is a record of all the updates that have happened at

all replicas. The causal history does not track the order in which updates happened, merely that they

did happen. The causal history at replica i after execution k is the set of all updates that have happened

114

5. DETERMINISTIC THRESHOLD QUERIES OF DISTRIBUTED DATA STRUCTURES

at replica i after execution k. Definition 5.3 updates Shapiro et al.’s definition of causal history for a

state-based object to account for t (a trivial change, since execution of t does not change a replica’s

causal history):

Definition 5.3 (causal history). A causal history is a sequence [c1, . . . , cn], where ci is a set of the updates

that have occurred at replica i. Each ci is initially ∅. If the kth method execution at replica i is:

• a query q or a threshold query t, then the causal history at replica i after execution k does not

change: cki = ck−1
i .

• an update uk
i (a), then the causal history at replica i after execution k is cki = ck−1

i ∪ uk
i (a).

• a mergemk
i (s

k′

i′), then the causal history at replica i after execution k is the union of the local and

remote histories: cki = ck−1
i ∪ ck

′

i′ .

We say that an update is delivered at replica i if it is in the causal history at replica i.

5.2.3. Threshold CvRDTs and the semantics of blocking. With the previous definitions in place, we

can give the definition of a CvRDT that supports threshold queries:

Definition 5.4 (CvRDT with threshold queries). A convergent replicated data type with threshold queries

(henceforth threshold CvRDT) is an object equipped with a partial order≤, written (S,≤, s0, q, t, u,m),

that has the following properties:

• S forms a join-semilattice ordered by≤.

• S has a greatest element⊤ according to≤.

• The query method q takes no arguments and returns the local state.

• The threshold query method t takes a threshold set S as its argument, and has the following se-

mantics: let tk+1
i (S) be the k + 1th method execution at replica i, where k ≥ 0. If, for some

activation state sa in some (unique) set of activation states Sa ∈ S , the condition sa ≤ ski is

met, tk+1
i (S) returns the set of activation states Sa. Otherwise, t

k+1
i (S) returns the distinguished

value block.

115

5. DETERMINISTIC THRESHOLD QUERIES OF DISTRIBUTED DATA STRUCTURES

• The update method u takes a state as argument and updates the local state to it.

• State is inflationary across updates: if u updates a state s to s′, then s ≤ s′.

• The merge methodm takes a remote state as its argument, computes the join of the remote state

and the local state with respect to≤, and updates the local state to the result.

and the q, t, u, andmmethods have no side effects other than those listed above.

We use the block return value to model t’s “blocking” behavior as a mathematical function with no

intrinsic notion of running duration. When we say that a call to t “blocks”, wemean that it immediately

returns block, and when we say that a call to t “unblocks”, we mean that it returns a set of activation

states Sa.

Modeling blocking as a distinguished value introduces a new complication: we lose determinism, be-

cause a call to t at a particular replica may return either block or a set of activation statesSa, depending

on the replica’s state at the time it is called. However, we can conceal this nondeterminism with an

additional layer over the nondeterministic API exposed by t. This additional layer simply polls t, call-

ing it repeatedly until it returns a value other than block. Calls to t at a replica that are made by this

“polling layer” count as method executions at that replica, and are arbitrarily interleaved with other

method executions at the replica, including updates and merges. The polling layer itself need not do

any computation other than checking to see whether t returns block or something else; in particular,

the polling layer does not need to compare activation states to replica states, since that comparison is

done by t itself.

The set of activation states Sa that a call to t returns when it unblocks is unique because of the pairwise

incompatibility property required of threshold sets: without it, different orderings of updates could

allow the same threshold query to unblock in different ways, introducing nondeterminism that would

be observable beyond the polling layer.

116

5. DETERMINISTIC THRESHOLD QUERIES OF DISTRIBUTED DATA STRUCTURES

5.2.4. Threshold CvRDTs are strongly eventually consistent. We can define eventual consistency

and strong eventual consistency exactly as Shapiro et al. do in their model. In the following definitions,

a correct replica is a replica at a correct process, and the symbol ♢means “eventually”:

Definition 5.5 (eventual consistency (EC)). An object is eventually consistent (EC) if the following three

conditions hold:

• Eventual delivery: An update delivered at some correct replica is eventually delivered at all correct

replicas: ∀i, j : f ∈ ci =⇒ ♢f ∈ cj .

• Convergence: Correct replicas at which the same updates have been delivered eventually have

equivalent state: ∀i, j : ci = cj =⇒ ♢si ≡ sj .

• Termination: All method executions halt.

Definition 5.6 (strong eventual consistency (SEC)). An object is strongly eventually consistent (SEC) if it

is eventually consistent and the following condition holds:

• Strong convergence: Correct replicas atwhich the sameupdates have been delivered have equivalent

state: ∀i, j : ci = cj =⇒ si ≡ sj .

Since wemodel blocking threshold queries with block, we need not be concerned with threshold queries

not necessarily terminating. Determinism does not rule out queries that return block every time they

are called (and would therefore cause the polling layer to block forever). However, we guarantee that if

a threshold query returns block every time it is called during a complete run of the system, it will do so

on every run of the system, regardless of scheduling. That is, it is not possible for a query to cause the

polling layer to block forever on some runs, but not on others.

Finally, we can directly leverage Shapiro et al.’s SEC result for CvRDTs to show that a threshold CvRDT

is SEC:

Theorem 5.1 (Strong Eventual Consistency of Threshold CvRDTs). Assuming eventual delivery and termi-

nation, an object that meets the criteria for a threshold CvRDT is SEC.

117

5. DETERMINISTIC THRESHOLD QUERIES OF DISTRIBUTED DATA STRUCTURES

Proof. FromShapiro et al., we have that an object thatmeets the criteria for a CvRDT is SEC [49]. Shapiro

et al.’s proof also assumes that eventual delivery and termination hold for the object, and proves that

strong convergence holds — that is, that given causal histories ci and cj for respective replicas i and j,

that their states si and sj are equivalent. The proof relies on the commutativity of the lub operation.

Since, according to our Definition 5.3, threshold queries do not affect causal history, we can leverage

Shapiro et al.’s result to say that a threshold CvRDT is also SEC. □

5.3. Determinism of threshold queries

Neither eventual consistency nor strong eventual consistency imply that intermediate results of the same

query q on different replicas of a threshold CvRDT will be deterministic. For deterministic intermediate

results, wemust use the threshold querymethod t. We can show that t is deterministicwithout requiring

that the same updates have been delivered at the replicas in question at the time that t runs.

Theorem 5.2 establishes a determinism property for threshold queries of CvRDTs, porting the deter-

minism result previously established for threshold reads for LVars to a distributed setting.

Theorem 5.2 (Determinism of Threshold Queries). Suppose a given threshold query t on a given threshold

CvRDT returns a set of activation states Sa when executed at a replica i. Then, assuming eventual delivery

and that no replica’s state is ever⊤ at any point in the execution:

(1) t will always return Sa on subsequent executions at i, and

(2) t will eventually return Sa when executed at any replica, and will block until it does so.

Proof. The proof relies on transitivity of ≤ and eventual delivery of updates; see Section A.20 for the

complete proof. □

Although Theorem 5.2 must assume eventual delivery, it does not need to assume strong convergence

or even ordinary convergence. It so happens that we have strong convergence as part of strong eventual

consistency of threshold CvRDTs (by Theorem 5.1), but we do not need it to prove Theorem 5.2. In

118

5. DETERMINISTIC THRESHOLD QUERIES OF DISTRIBUTED DATA STRUCTURES

particular, there is no need for replicas to have the same state in order to return the same result from a

particular threshold query. The replicas merely both need to be above an activation state from a unique

set of activation states in the query’s threshold set. Indeed, the replicas’ states may in fact trigger

different activation states from the same set of activation states.

Theorem 5.2’s requirement that no replica’s state is ever ⊤ rules out situations in which replicas dis-

agree in a way that cannot be resolved normally. Recall from Section 2.4.2 that in the LVars model,

when a program contains conflicting writes that would cause an LVar to reach its ⊤ state, a threshold

read in that program can behave nondeterministically. However, since in our definition of observable

determinism, only the final outcome of a program counts, this nondeterministic behavior of get in the

presence of conflicting writes is not observable: such a programwould always have error as its final out-

come. In our setting of CvRDTs, though, we do not have a notion of “program”, nor of the final outcome

thereof. Rather than having to define those things and then define a notion of observable determinism

based on them, I rule out this situation by assuming that no replica’s state goes to⊤.

5.4. Discussion: reasoning about per-query consistency choices

In this chapter, we have seen away to extend CvRDTs to support LVar-style threshold queries. Seen from

another angle, this chapter shows how to “port” the notion of threshold reads from a shared-memory

setting (that of LVars) to a distributed-memory one (that of CvRDTs). However, I do not want to sug-

gest that deterministic threshold queries should replace traditional CvRDT queries. Instead, traditional

queries and threshold queries can coexist. Moreover, extending CvRDTs with threshold queries allows

them tomore accurately model systems in which consistency properties are defined and enforced at the

granularity of individual queries.

As mentioned at the beginning of this chapter, database services such as Amazon’s SimpleDB [57] al-

low for both eventually consistent and strongly consistent reads, chosen at a per-query granularity.4

4Terry et al.’s Pileus key-value store [54] takes the idea of combining different levels of consistency in a single application even
further: instead of requiring the application developer to choose the consistency level of a particular query at development

119

5. DETERMINISTIC THRESHOLD QUERIES OF DISTRIBUTED DATA STRUCTURES

Choosing consistency at the query level, and giving different consistency properties to different queries

within a single application, is not a new idea. Rather, the new contributionwemake by adding threshold

queries to CvRDTs is to establish lattice-based data structures as a unifying formal foundation for both

eventually consistent and strongly consistent queries. Adding support for threshold reads to CvRDTs

allows us to take advantage of the machinery that CvRDTs already give us for reasoning about eventu-

ally consistent objects, and use it to reason about systems that allow consistency choices to be made at

per-query granularity, as real systems do.

time, the system allows the developer to specify a service-level agreement that may be satisfied in different ways at runtime.
This allows the application to, for instance, dynamically adapt to changing network conditions.

120

CHAPTER 6

Related work

Work on deterministic parallel programmingmodels is long-standing. As we have seen, what determin-

istic parallel programming models have in common is that they all must do something to restrict access

to mutable state shared among concurrent computations so that schedule nondeterminism cannot be

observed. Depending on themodel, restricting access to sharedmutable statemight involve disallowing

sharing entirely [44], only allowing single assignments to shared references [55, 3, 11], allowing sharing

only by a limited form of message passing [29], ensuring that concurrent accesses to shared state are

disjoint [8], resolving conflicting updates after the fact [33], or some combination of these approaches.

These constraints can be imposed at the language or API level, within a type system or at runtime.

In particular, the LVars model was inspired by two traditional deterministic parallel programming mod-

els based on monotonically-growing shared data structures: first, Kahn process networks [29], in which

a network of processes communicatewith each other through blocking FIFO channels with ever-growing

channel histories; and, second, IVars [3], single-assignment locations with blocking read semantics.

LVars are general enough to subsume both IVars and KPNs: a lattice of channel histories with a prefix

ordering allows LVars to represent FIFO channels that implement a Kahn process network, whereas

instantiating λLVar with a lattice with one “empty” state and multiple “full” states (where ∀i. empty <

fulli) results in a parallel single-assignment languagewith a store of IVars, as we saw in Chapter 2. Hence

LVars provide a framework for generalizing and unifying these two existing approaches to deterministic

parallelism. In this chapter, I describe some more recent contributions to the literature, and how the

LVars model relates to them.

121

6. RELATED WORK

6.1. Deterministic Parallel Java (DPJ)

DPJ [8, 7] is a deterministic language consisting of a systemof annotations for Java code. A sophisticated

region-based type system ensures that a mutable region of the heap is, essentially, passed linearly to

an exclusive writer, thereby ensuring that the state accessed by concurrent threads is disjoint. DPJ

does, however, provide a way to unsafely assert that operations commute with one another (using the

commuteswith form) to enable concurrent mutation.

The LVars model differs from DPJ in that it allows overlapping shared state between threads as the

default. Moreover, since LVar effects are already commutative, we avoid the need for commuteswith

annotations. Finally, it is worth noting that while in DPJ, commutativity annotations have to appear in

application-level code, in LVish only the data-structure author needs to write trusted code. The applica-

tion programmer can run untrusted code that still enjoys a (quasi-)determinismguarantee, because only

(quasi-)deterministic programs can be expressed as LVish Par computations. More recently, Bocchino

et al. [9] proposed a type and effect system that allows for the incorporation of nondeterministic sections

of code in DPJ. The goal here is different from ours: while they aim to support intentionally nondeter-

ministic computations such as those arising fromoptimization problems like branch-and-bound search,

the quasi-determinism in LVish arises as a result of schedule nondeterminism.

6.2. FlowPools

Prokopec et al. [45] propose a data structure with an API closely related to LVars extended with freezing

and handlers: a FlowPool is a bag (that is, a multiset) that allows concurrent insertions but forbids

removals, a seal operation that forbids further updates, and combinators like foreach that invoke

callbacks as data arrives in the pool. To retain determinism, the seal operation requires explicitly

passing the expected bag size as an argument, and the program will raise an exception if the bag goes

over the expected size.

122

6. RELATED WORK

While this interface has a flavor similar to that of LVars, it lacks the ability to detect quiescence, which

is crucial for expressing algorithms like graph traversal, and the seal operation is awkward to use when

the structure of data is not known in advance. By contrast, the freeze operation on LVars does not

require such advance knowledge, but moves the model into the realm of quasi-determinism. Another

important difference is the fact that LVars are data structure-generic: both our formalism and our library

support an unlimited collection of data structures, whereas FlowPools are specialized to bags.

6.3. Bloom and BloomL

In Chapter 5, I presented a way to equip lattice-based distributed data structures with LVar-style thresh-

old reads, resulting in a way to make deterministic threshold queries of those data structures. My ap-

proach is based on Shapiro et al.’s work on conflict-free replicated data types (CRDTs) [49, 48] and in

particular their work on the lattice-based formulation of CRDTs, called convergent replicated data types

or CvRDTs, which Chapter 5 discusses in detail.

Other authors have also used lattices as a framework for establishing formal guarantees about eventually

consistent systems and distributed programs. The Bloom language for distributed database program-

ming guarantees eventual consistency for distributed data collections that are updated monotonically.

The initial formulation of Bloom [2] had a notion ofmonotonicity based on set inclusion, which is analo-

gous to the store ordering relation in the (IVar-based) Featherweight CnC system that I described in Sec-

tion 2.3.4. Later, Conway et al. [15] generalized Bloom to a more flexible lattice-parameterized system,

BloomL, in a manner analogous to the generalization from IVars to LVars. BloomL combines ideas from

the aforementioned work on CRDTs [49, 48] with monotonic logic, resulting in a lattice-parameterized,

confluent language that is a close (but independently invented) relative to the LVars model. Bloom(L) is

implemented as a domain-specific language embedded in Ruby, and a monotonicity analysis pass rules

out programs that would perform non-monotonic operations on distributed data collections (such as

the removal of elements from a set). By contrast, in the LVars model (and in the LVish library), mono-

tonicity is enforced by the API presented by LVars, and since the LVish library is implemented in Haskell,

123

6. RELATED WORK

we can rely on Haskell’s type system for fine-grained effect tracking and monadic encapsulation of LVar

effects.

6.4. Concurrent Revisions

Burckhardt et al. [12] propose a formalism for eventual consistency based on graphs called revision di-

agrams, and Leijen, Burckhardt, and Fahndrich apply the revision diagrams approach to guaranteed-

deterministic concurrent functional programming [33]. Their Concurrent Revisions (CR) programming

model uses isolation types to distinguish regions of the heap shared by multiple mutators. Rather than

enforcing exclusive access in the style of DPJ, CR clones a copy of the state for each mutator, using a

deterministic “merge function” for resolving conflicts in local copies at join points.

In CR, variables can be annotated as being shared between a “joiner” thread and a “joinee” thread.

Unlike the lub writes of LVars, CR merge functions are not necessarily commutative; indeed, the default

CR merge function is “joiner wins”. Determinism is enforced by the programming model allowing the

programmer to specify which of two writing threads should prevail, regardless of the order in which

those writes arrive, and the states that a shared variable can take on need not form a lattice. Still,

semilattices turn up in themetatheory of CR: in particular, Burckhardt and Leijen [13] show that revision

diagrams are semilattices, and that therefore, for any two vertices in a CR revision diagram, there exists

a greatest common ancestor state that can be used to determine what changes each side has made—an

interesting duality with the LVars model (in which any two LVar states have a lub).

6.5. Frame properties and separation logics

In Section 2.5.5, we saw that the Independence lemma, Lemma 2.5, expresses a frame property reminis-

cent of the following frame rule from separation logic and concurrent separation logic [43, 47, 42]:

{p}C {q}

{p ∗ r}C {q ∗ r}

124

6. RELATED WORK

Recall that the separating conjunction connective ∗ says

that the assertions it combines can be satisfied in a non-

overlapping manner; for instance, p ∗ r is satisfied by a

heap if the heap can be split into two non-overlapping

parts satisfying p and r, respectively. However, some-

times we do in fact want to allow some amount of “phys-

ical” overlap between resources, while retaining “logical” or “fictional” separation. In fact, the Inde-

pendence lemma, since it replaces the separating conjunction with the lub operation, allows overlap

between the original store and the “frame” store S ′′; indeed, the point of LVars is that total disjoint-

ness is unnecessary, since updates commute. Jensen and Birkedal’s recent work on fictional separation

logic [28] explores the notion of fictional separation in detail, generalizing traditional separation logic

to allow much more sophisticated kinds of sharing.

Evenmore recently, Dinsdale-Young et al. [17] introduced the “Views” framework, which brings the no-

tion of fictional separation to a concurrent setting. The Views framework is a metatheory of concurrent

reasoning principles that generalizes a variety of concurrent program logics and type systems, including

concurrent separation logic. It provides a generalized frame rule, which is parameterized by a function

f that is applied to the pre- and post-conditions in the conclusion of the rule:

{p}C {q}

{f(p)}C {f(q)}

In this formulation of the rule, the “frame” is an abstract piece of knowledge that is not violated by the

execution of C. The Generalized Independence lemma (Lemma 3.7) that I describe in Section 3.3.5,

which extends the Independence lemma to handle arbitrary update operations, is reminiscent of this

generalized frame rule.

125

CHAPTER 7

Summary and future work

As single-assignment languages and Kahn process networks demonstrate, monotonicity can serve as

the foundation of diverse deterministic-by-construction parallel programming models. The LVars pro-

grammingmodel takesmonotonicity as a starting point and generalizes single assignment tomonotonic

multiple assignment, parameterized by a lattice. The LVars model, and the accompanying LVish library,

support my claim that lattice-based data structures are a general and practical unifying abstraction for

deterministic and quasi-deterministic parallel and distributed programming.

7.1. Another look at the deterministic parallel landscape

Let us reconsider how LVars fit into the deterministic parallel programming landscape that we mapped

out in Chapter 1:

• No-shared-state parallelism: The purely functional core of the λLVar and λLVish calculi (and of the

LVish Haskell library) allow no-shared-state, pure task parallelism. Of course, shared-state pro-

gramming is the point of the LVarsmodel. However, it is significant that we take pure programming

as a starting point, because it distinguishes the LVars model from approaches such as DPJ that be-

gin with a parallel (but nondeterministic) language and then restrict the sharing of state to regain

determinism. The LVars model works in the other direction: it begins with a deterministic parallel

language without shared state, and then adds limited effects that retain determinism.

• Data-flow parallelism: As we have seen, because LVars are lattice-generic, the LVars model can

subsume Kahn process networks and other parallel programming models based on data flow, since

we can use LVars to represent a lattice of channel histories, ordered by a prefix ordering.

126

7. SUMMARY AND FUTURE WORK

• Single-assignment parallelism: Single-assignment variables, or IVars, are also subsumed by LVars:

an IVar is an LVarwhose lattice has one “empty” state andmultiple “full” states (where∀i. empty <

fulli). In fact, given how useful IVars are, the subsumption of IVars by LVars demonstrates that

immutability is an important special case of monotonicity.1

• Imperative disjoint parallelism: Although the LVars model generally does not require that the state

accessed by concurrent threads is disjoint, this style of ensuring determinism is still compatible

with the LVars model, and it is practically achievable using the ParST monad transformer in LVish,

as we saw in Section 4.3.

In addition to subsuming or accommodating all these existing points on the landscape, we have iden-

tified a new class of quasi-deterministic programs and developed a programming model that supports

quasi-determinism by construction. A quasi-deterministic model allows programs that perform freez-

ing and are deterministic modulo write-after-freeze exceptions. The ability to freeze and read the exact

contents of an LVar greatly increases the expressiveness of the LVars model, especially when used in

conjunction with event handlers. Furthermore, we can regain full determinism by ensuring that freez-

ing happens last, and, as we saw in Section 4.2.5, it is possible to enforce this “freeze after writing”

requirement at the implementation level.

Of course, there is still more work to do. For example, although imperative disjoint parallelism and

the LVars model seem to be compatible, as evidenced by the use of ParST in LVish, we have not yet

formalized their relationship. In fact, this is an example of a general pattern in which the LVish library

is usually one step ahead of the LVars formalism: to take another example, the LVish library supported

the update operations of Section 2.6.1 (which are commutative and inflationary but not necessarily

idempotent) well before the notion had been formalized in λLVish. Moreover, even for the parts of the

LVish library that are fully accounted for in the model, we do not have proof that the library is a faithful

implementation of the formal LVars model.
1As Neil Conway puts it, “Immutability is a special case of monotone growth, albeit a particularly useful one” (https:
//twitter.com/neil_conway/status/392337034896871424).

127

https://twitter.com/neil_conway/status/392337034896871424
https://twitter.com/neil_conway/status/392337034896871424

7. SUMMARY AND FUTURE WORK

Although it is unlikely that this game of catch-up can ever be won, an interesting direction to pursue

for future work would be a verified implementation of LVish, for instance, in a dependently typed pro-

gramming language. Even though a fully verified implementation of LVish (including the scheduler

implementation) is an ambitious goal, a more manageable first step might be to implement individual

LVar data structures in a dependently typed language such as Coq or Agda. The type system of such a

language is rich enough to express properties that must be true of an LVar data structure, such as that

the states that it can take on form a lattice and that writes are commutative and inflationary.

7.2. Distributed programming and the future of LVars and LVish

Most of this dissertation concerns the problem of how to program parallel systems, in which programs

run on multiple processors that share memory. However, I am also concerned with the problem of how

to program distributed systems, in which programs run on networked computers with distributed mem-

ory. Enormous bodies of work have been developed to deal with programming parallel and distributed

systems, and one of the roles that programming languages research can play is to seek unifying abstrac-

tions between the two. It is in that spirit that I have explored the relationship of LVars to existing work

on distributed systems.

LVars are a close cousin to convergent replicated data types (CvRDTs) [49, 48], which leverage lattice

properties to guarantee that all replicas of an object (for instance, in a distributed database) are even-

tually consistent. Chapter 5 begins to explore the relationship between LVars and CvRDTs by porting

LVar-style threshold reads to the CvRDT setting, but there is muchmore work to do here. Most immedi-

ately, although the idea of a single lattice-based framework for reasoning about both strongly consistent

128

7. SUMMARY AND FUTURE WORK

and eventually consistent queries of distributed data is appealing and elegant, it is not yet clear what

the compelling applications for threshold-readable CvRDTs are.

As a further step, it should also be possible to “back-port” ideas from the realm of CvRDTs to LVars. In

fact, support for not-necessarily-idempotent updates to LVars was inspired in part by CvRDTs, which

have always permitted arbitrary inflationary and commutative writes to individual replicas (the lub op-

eration is only used when replicas’ states aremerged with one another). The LVars model might further

benefit from techniques pioneered in the work on CvRDTs to support data structures that allow seem-

ingly non-monotonic updates, such as counters that support decrements as well as increments and sets

that support removals as well as additions [49].

Finally, existing work on CvRDTs, as well as the work on distributed lattice-based programming lan-

guages like Bloom [2, 15], may serve as a source of inspiration for a future version of LVish that supports

distributed execution.

129

Bibliography

[1] Breadth-First Search, Parallel Boost Graph Library. http://www.boost.org/doc/libs/1_56_0/libs/graph_

parallel/doc/html/breadth_first_search.html, 2009. 14, 16

[2] P. Alvaro, N. Conway, J. Hellerstein, andW. R. Marczak. Consistency analysis in Bloom: a CALM and collected approach.

In CIDR, 2011. 123, 129

[3] Arvind, R. S. Nikhil, and K. K. Pingali. I-structures: data structures for parallel computing. ACM Trans. Program. Lang.

Syst., 11(4), Oct. 1989. 3, 12, 17, 121

[4] H. Attiya, R. Guerraoui, D. Hendler, P. Kuznetsov, M. M. Michael, and M. Vechev. Laws of order: expensive synchro-

nization in concurrent algorithms cannot be eliminated. In POPL, 2011. 82

[5] D. A. Bader and K. Madduri. Designing multithreaded algorithms for breadth-first search and st-connectivity on the

Cray MTA-2. In ICPP, 2006. 3

[6] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and J. Shun. Internally deterministic parallel algorithms can be fast. In

PPoPP, 2012. 34

[7] R. L. Bocchino, Jr., V. S. Adve, S. V. Adve, andM. Snir. Parallel programmingmust be deterministic by default. InHotPar,

2009. 3, 11, 122

[8] R. L. Bocchino, Jr., V. S. Adve, D. Dig, S. V. Adve, S. Heumann, R. Komuravelli, J. Overbey, P. Simmons, H. Sung, and

M. Vakilian. A type and effect system for deterministic parallel Java. In OOPSLA, 2009. 3, 11, 94, 121, 122

[9] R. L. Bocchino, Jr. et al. Safe nondeterminism in a deterministic-by-default parallel language. In POPL, 2011. 122

[10] E. Brewer. CAP twelve years later: How the “rules” have changed. http://www.infoq.com/articles/

cap-twelve-years-later-how-the-rules-have-changed, 2012. 108

[11] Z. Budimlić, M. Burke, V. Cavé, K. Knobe, G. Lowney, R. Newton, J. Palsberg, D. Peixotto, V. Sarkar, F. Schlimbach, and

S. Taşirlar. Concurrent Collections. Sci. Program., 18(3-4), Aug. 2010. 3, 12, 26, 31, 42, 121

[12] S. Burckhardt, M. Fahndrich, D. Leijen, and M. Sagiv. Eventually consistent transactions. In ESOP, 2012. 124

[13] S. Burckhardt and D. Leijen. Semantics of concurrent revisions. In ESOP, 2011. 124

[14] M. M. T. Chakravarty, R. Leshchinskiy, S. Peyton Jones, G. Keller, and S. Marlow. Data Parallel Haskell: A status report.

In DAMP, 2007. 2

130

http://www.boost.org/doc/libs/1_56_0/libs/graph_parallel/doc/html/breadth_first_search.html
http://www.boost.org/doc/libs/1_56_0/libs/graph_parallel/doc/html/breadth_first_search.html
http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed
http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed

BIBLIOGRAPHY

[15] N. Conway, W. Marczak, P. Alvaro, J. M. Hellerstein, and D. Maier. Logic and lattices for distributed programming. In

SOCC, 2012. 123, 129

[16] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and

W. Vogels. Dynamo: Amazon’s highly available key-value store. In SOSP, 2007. 108, 109

[17] T. Dinsdale-Young, L. Birkedal, P. Gardner, M. Parkinson, and H. Yang. Views: Compositional reasoning for concurrent

programs. In POPL, 2013. 75, 125

[18] C. Earl, I. Sergey, M. Might, and D. Van Horn. Introspective pushdown analysis of higher-order programs. In ICFP, 2012.

102

[19] M. Felleisen, R. B. Findler, and M. Flatt. Semantics Engineering with PLT Redex. The MIT Press, first edition, 2009. 9, 234

[20] J. Felsenstein. PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author, 2005. 105

[21] M. Fluet, M. Rainey, J. Reppy, and A. Shaw. Implicitly-threaded parallelism in Manticore. In ICFP, 2008. 30

[22] M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation of the Cilk-5 multithreaded language. In PLDI, 1998.

11

[23] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web services.

SIGACT News, 33(2), June 2002. 108

[24] M. I. Gordon, W. Thies, M. Karczmarek, J. Lin, A. S. Meli, C. Leger, A. A. Lamb, J. Wong, H. Hoffman, D. Z. Maze, and

S. Amarasinghe. A stream compiler for communication-exposed architectures. In ASPLOS, 2002. 2, 12

[25] S. Herhut, R. L. Hudson, T. Shpeisman, and J. Sreeram. River Trail: A path to parallelism in JavaScript. InOOPSLA, 2013.

2

[26] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann, 2008. 82, 102

[27] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10), Oct. 1969. 36

[28] J. B. Jensen and L. Birkedal. Fictional separation logic. In ESOP, 2012. 125

[29] G. Kahn. The semantics of a simple language for parallel programming. In J. L. Rosenfeld, editor, Information Processing

’74: Proceedings of the IFIP Congress. North-Holland, 1974. 2, 12, 121

[30] O. Kiselyov, A. Sabry, and C. Swords. Extensible effects: an alternative to monad transformers. In Haskell, 2013. 85

[31] N. R. Krishnaswami. Higher-order reactive programming without spacetime leaks. In ICFP, 2013. 34

[32] E. Lee and D. Messerschmitt. Synchronous data flow. Proceedings of the IEEE, 75(9), 1987. 2

[33] D. Leijen, M. Fahndrich, and S. Burckhardt. Prettier concurrency: purely functional concurrent revisions. In Haskell,

2011. 121, 124

[34] S. Marlow. Parallel and Concurrent Programming in Haskell. O’Reilly Media, 2013. 86

131

BIBLIOGRAPHY

[35] S. Marlow, P. Maier, H.-W. Loidl, M. K. Aswad, and P. Trinder. Seq no more: better strategies for parallel Haskell. In

Haskell, 2010. 2, 11, 98

[36] S. Marlow, R. Newton, and S. Peyton Jones. A monad for deterministic parallelism. In Haskell, 2011. 3, 7, 11, 12, 16, 17,

80, 81

[37] J. McCarthy and P. Hayes. Some philosophical problems from the standpoint of artificial intelligence. Machine Intelli-

gence, 4, 1969. 37

[38] M. Might. k-CFA: Determining types and/or control-flow in languages like Python, Java and Scheme. http://matt.

might.net/articles/implementation-of-kcfa-and-0cfa/. 97

[39] R. Newton. Bringing atomic memory operations to a lazy language, 2012. Haskell Implementors Workshop. 102

[40] R. R. Newton and I. L. G. Newton. PhyBin: binning trees by topology. PeerJ, 1, Oct. 2013. 8, 104

[41] R. S. Nikhil. Id language reference manual, 1991. 17

[42] P. W. O’Hearn. Resources, concurrency, and local reasoning. Theor. Comput. Sci., 375(1-3), Apr. 2007. 124

[43] P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local reasoning about programs that alter data structures. In CSL, 2001. 36,

37, 124

[44] S. L. Peyton Jones, R. Leshchinskiy, G. Keller, and M. M. T. Chakravarty. Harnessing the multicores: Nested data paral-

lelism in Haskell. In FSTTCS, 2008. 2, 121

[45] A. Prokopec, H. Miller, T. Schlatter, P. Haller, and M. Odersky. FlowPools: a lock-free deterministic concurrent dataflow

abstraction. In LCPC, 2012. 122

[46] J. H. Reppy. Concurrent Programming in ML. Cambridge University Press, 1999. 3

[47] J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In LICS, 2002. 124

[48] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. A comprehensive study of Convergent and Commutative Repli-

cated Data Types. Technical Report RR-7506, INRIA, Jan. 2011. 8, 109, 111, 123, 128

[49] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. Conflict-free replicated data types. In SSS, 2011. 8, 87, 109, 111,

112, 118, 123, 128, 129

[50] D. Spoonhower, G. E. Blelloch, P. B. Gibbons, and R. Harper. Beyond nested parallelism: tight bounds on work-stealing

overheads for parallel futures. In SPAA, 2009. 30

[51] J. Sukumaran and M. T. Holder. DendroPy: a Python library for phylogenetic computing. Bioinformatics, 26, 2010. 105

[52] S.-J. Sul and T. L. Williams. A randomized algorithm for comparing sets of phylogenetic trees. In APBC, 2007. 8, 104

[53] D. Terei, D. Mazières, S. Marlow, and S. Peyton Jones. Safe Haskell. In Haskell, 2012. 11

132

http://matt.might.net/articles/implementation-of-kcfa-and-0cfa/
http://matt.might.net/articles/implementation-of-kcfa-and-0cfa/

BIBLIOGRAPHY

[54] D. B. Terry, V. Prabhakaran, R. Kotla, M. Balakrishnan, M. K. Aguilera, and H. Abu-Libdeh. Consistency-based service

level agreements for cloud storage. In SOSP, 2013. 109, 119

[55] L. G. Tesler and H. J. Enea. A language design for concurrent processes. In AFIPS, 1968 (Spring). 12, 17, 121

[56] W. Vogels. Eventually consistent. Commun. ACM, 52(1), Jan. 2009. 8, 108

[57] W. Vogels. Choosing consistency. http://www.allthingsdistributed.com/2010/02/strong_

consistency_simpledb.html, 2010. 109, 119

133

http://www.allthingsdistributed.com/2010/02/strong_consistency_simpledb.html
http://www.allthingsdistributed.com/2010/02/strong_consistency_simpledb.html

APPENDIX A

Proofs

A.1. Proof of Lemma 2.1

Proof. Consider an arbitrary permutation π.

For part 1, we have to show that if σ ↪−→ σ′ then π(σ) ↪−→ π(σ′), and that if π(σ) ↪−→ π(σ′) then

σ ↪−→ σ′.

For the forward direction of part 1, suppose σ ↪−→ σ′.

We have to show that π(σ) ↪−→ π(σ′).

We proceed by cases on the rule by which σ steps to σ′.

• Case E-Beta: σ = ⟨S; (λx. e) v⟩, and σ′ = ⟨S; e[x := v]⟩.

To show: π(⟨S; (λx. e) v⟩) ↪−→ π(⟨S; e[x := v]⟩).

By Definitions 2.9 and 2.7, π(σ) = ⟨π(S); (λx. π(e)) π(v)⟩.

By E-Beta, ⟨π(S); (λx. π(e)) π(v)⟩ steps to ⟨π(S); π(e)[x := π(v)]⟩.

By Definition 2.7, ⟨π(S); π(e)[x := π(v)]⟩ is equal to ⟨π(S); π(e[x := v])⟩.

Hence ⟨π(S); (λx. π(e)) π(v)⟩ steps to ⟨π(S); π(e[x := v])⟩,

which is equal to π(⟨S; e[x := v]⟩) by Definition 2.9.

Hence the case is satisfied.

• Case E-New: σ = ⟨S; new⟩, and σ′ = ⟨S[l 7→ ⊥]; l⟩.

To show: π(⟨S; new⟩) ↪−→ π(⟨S[l 7→ ⊥]; l⟩).

By Definitions 2.9 and 2.7, π(σ) = ⟨π(S); new⟩.

By E-New, ⟨π(S); new⟩ steps to ⟨(π(S))[l′ 7→ ⊥]; l′⟩, where l′ /∈ dom(π(S)).

134

A. PROOFS

It remains to show that ⟨(π(S))[l′ 7→ ⊥]; l′⟩ is equal to π(⟨S[l 7→ ⊥]; l⟩).

By Definition 2.9, π(⟨S[l 7→ ⊥]; l⟩) is equal to ⟨π(S[l 7→ ⊥]); π(l)⟩,

which is equal to ⟨(π(S))[π(l) 7→ ⊥]; π(l)⟩.

So, we have to show that ⟨(π(S))[l′ 7→ ⊥]; l′⟩ is equal to ⟨(π(S))[π(l) 7→ ⊥]; π(l)⟩.

Since we know (from the side condition of E-New) that l /∈ dom(S),

it follows that π(l) /∈ π(dom(S)).

Therefore, in ⟨(π(S))[l′ 7→ ⊥]; l′⟩, we can α-rename l′ to π(l), and so the two configurations are

equal and the case is satisfied.

• Case E-Put: σ = ⟨S; put l d2⟩, and σ′ = ⟨S[l 7→ d1 ⊔ d2]; ()⟩.

To show: π(⟨S; put l d2⟩) ↪−→ π(⟨S[l 7→ d1 ⊔ d2]; ()⟩).

By Definitions 2.9 and 2.7, π(σ) = ⟨π(S); put π(l) d2⟩.

By E-Put, ⟨π(S); put π(l) d2⟩ steps to ⟨(π(S))[π(l) 7→ d1 ⊔ d2]; ()⟩,

since S(l) = (π(S))(π(l)) = d1.

It remains to show that ⟨(π(S))[π(l) 7→ d1 ⊔ d2]; ()⟩ is equal to π(⟨S[l 7→ d1 ⊔ d2]; ()⟩).

By Definitions 2.9 and 2.7, π(⟨S[l 7→ d1 ⊔ d2]; ()⟩) is equal to ⟨(π(S))[π(l) 7→ d1 ⊔ d2]; ()⟩,

and so the two configurations are equal and the case is satisfied.

• Case E-Put-Err: σ = ⟨S; put l d2⟩, and σ′ = error.

To show: π(⟨S; put l d2⟩) ↪−→ π(error).

By Definitions 2.9 and 2.7, π(σ) = ⟨π(S); put π(l) d2⟩.

By E-Put-Err, ⟨π(S); put π(l) d2⟩ steps to error,

since S(l) = (π(S))(π(l)) = d1.

Since π(error) = error by Definition 2.9, the case is complete.

• Case E-Get: σ = ⟨S; get l T ⟩, and σ′ = ⟨S; d2⟩.

To show: π(⟨S; get l T ⟩) ↪−→ π(⟨S; d2⟩).

By Definitions 2.9 and 2.7, π(σ) = ⟨π(S); get π(l) T ⟩.

By E-Get, ⟨π(S); get π(l) T ⟩ steps to ⟨π(S); d2⟩,

135

A. PROOFS

since S(l) = (π(S))(π(l)) = d1.

By Definitions 2.9 and 2.7, π(⟨S; d2⟩)⟨π(S); d2⟩.

Therefore the case is complete.

For the reverse direction of part 1, suppose π(σ) ↪−→ π(σ′).

We have to show that σ ↪−→ σ′.

We know from the forward direction of the proof that for all configurations σ and σ′ and permutations

π, if σ ↪−→ σ′ then π(σ) ↪−→ π(σ′).

Hence since π(σ) ↪−→ π(σ′), and since π−1 is also a permutation, we have that π−1(π(σ)) ↪−→

π−1(π(σ′)).

Since π−1(π(l)) = l for every l ∈ Loc, and that property lifts to configurations as well, we have that

σ ↪−→ σ′.

For the forward direction of part 2, suppose σ 7−→ σ′.

We have to show that π(σ) 7−→ π(σ′).

By inspection of the operational semantics, σmust be of the form ⟨S; E [e]⟩, and σ′ must be of the form

⟨S ′; E [e′]⟩.

Hence we have to show that π(⟨S; E [e]⟩) 7−→ π(⟨S ′; E [e′]⟩).

By Definition 2.9, π(⟨S; E [e]⟩) is equal to ⟨π(S); π(E [e])⟩.

Also by Definition 2.9, π(⟨S ′; E [e′]⟩) is equal to ⟨π(S ′); π(E [e′])⟩.

Furthermore, ⟨π(S); π(E [e])⟩ is equal to ⟨π(S); (π(E))[π(e)]⟩ and ⟨π(S ′); π(E [e′])⟩ is equal to

⟨π(S ′); (π(E))[π(e′)]⟩.

So we have to show that ⟨π(S); (π(E))[π(e)]⟩ 7−→ ⟨π(S ′); (π(E))[π(e′)]⟩.

From the premise of E-Eval-Ctxt, ⟨S; e⟩ ↪−→ ⟨S ′; e′⟩.

136

A. PROOFS

Hence, by part 1, π(⟨S; e⟩) ↪−→ π(⟨S ′; e′⟩).

By Definition 2.9, π(⟨S; e⟩) is equal to ⟨π(S); π(e)⟩ and π(⟨S ′; e′⟩) is equal to ⟨π(S ′); π(e′)⟩.

Hence ⟨π(S); π(e)⟩ ↪−→ ⟨π(S ′); π(e′)⟩.

Therefore, by E-Eval-Ctxt, ⟨π(S); E [π(e)]⟩ 7−→ ⟨π(S ′); E [π(e′)]⟩ for all evaluation contextsE.

In particular, it is true that ⟨π(S); (π(E))[π(e)]⟩ 7−→ ⟨π(S ′); (π(E))[π(e′)]⟩, as we were required to

show.

For the reverse direction of part 2, suppose π(σ) 7−→ π(σ′).

We have to show that σ 7−→ σ′.

We know from the forward direction of the proof that for all configurations σ and σ′ and permutations

π, if σ 7−→ σ′ then π(σ) 7−→ π(σ′).

Hence since π(σ) 7−→ π(σ′), and since π−1 is also a permutation, we have that π−1(π(σ)) 7−→

π−1(π(σ′)).

Since π−1(π(l)) = l for every l ∈ Loc, and that property lifts to configurations as well, we have that

σ 7−→ σ′. □

A.2. Proof of Lemma 2.2

Proof. Suppose σ ↪−→ σ′ and σ ↪−→ σ′′.

We have to show that there is a permutation π such that σ′ = π(σ′′).

The proof is by cases on the rule by which σ steps to σ′.

• Case E-Beta:

Given: ⟨S; (λx. e) v⟩ ↪−→ ⟨S; e[x := v]⟩, and ⟨S; (λx. e) v⟩ ↪−→ σ′′.

To show: There exists a π such that ⟨S; e[x := v]⟩ = π(σ′′).

137

A. PROOFS

By inspection of the operational semantics, the only reduction rule by which ⟨S; (λx. e) v⟩ can

step is E-Beta.

Hence σ′′ = ⟨S; e[x := v]⟩, and the case is satisfied by choosing π to be the identity function.

• Case E-New:

Given: ⟨S; new⟩ ↪−→ ⟨S[l 7→ ⊥]; l⟩, and ⟨S; new⟩ ↪−→ σ′′.

To show: There exists a π such that ⟨S[l 7→ ⊥]; l⟩ = π(σ′′).

By inspection of the operational semantics, the only reduction rule by which ⟨S; new⟩ can step is

E-New.

Hence σ′′ = ⟨S[l′ 7→ ⊥]; l′⟩.

Since, by the side condition of E-New, neither l nor l′ occur in dom(S), the case is satisfied by

choosing π to be the permutation that maps l′ to l and is the identity on every other element of

Loc.

• Case E-Put:

Given: ⟨S; put l d2⟩ ↪−→ ⟨S[l 7→ d1 ⊔ d2]; ()⟩, and ⟨S; put l d2⟩ ↪−→ σ′′.

To show: There exists a π such that ⟨S[l 7→ d1 ⊔ d2]; ()⟩ = π(σ′′).

By inspection of the operational semantics, and since d1 ⊔ d2 ̸= ⊤ (from the premise of E-Put),

the only reduction rule by which ⟨S; put l d2⟩ can step is E-Put.

Hence σ′′ = ⟨S[l 7→ d1 ⊔ d2]; ()⟩, and the case is satisfied by choosing π to be the identity

function.

• Case E-Put-Err:

Given: ⟨S; put l d2⟩ ↪−→ error, and ⟨S; put l d2⟩ ↪−→ σ′′.

To show: There exists a π such that error = π(σ′′).

By inspection of the operational semantics, and since d1⊔d2 = ⊤ (from the premise of E-Put-Err),

the only reduction rule by which ⟨S; put l d2⟩ can step is E-Put-Err.

Hence σ′′ = error, and the case is satisfied by choosing π to be the identity function.

• Case E-Get:

138

A. PROOFS

Given: ⟨S; get l T ⟩ ↪−→ ⟨S; d2⟩, and ⟨S; get l T ⟩ ↪−→ σ′′.

To show: There exists a π such that ⟨S; d2⟩ = π(σ′′).

By inspection of the operational semantics, the only reduction rule by which ⟨S; get l T ⟩ can step

is E-Get.

Hence σ′′ = ⟨S; d2⟩, and the case is satisfied by choosing π to be the identity function.

□

A.3. Proof of Lemma 2.3

Proof. Suppose ⟨S; E1 [e1]⟩ 7−→ ⟨S1; E1 [e
′
1]⟩ and ⟨S; E2 [e2]⟩ 7−→ ⟨S2; E2 [e

′
2]⟩ and E1 [e1] =

E2 [e2].

We are required to show that ifE1 ̸= E2, then there exist evaluation contextsE ′
1 andE

′
2 such that:

• E ′
1 [e1] = E2 [e

′
2], and

• E ′
2 [e2] = E1 [e

′
1], and

• E ′
1 [e

′
1] = E ′

2 [e
′
2].

Let e = E1 [e1] = E2 [e2].

The proof is by induction on the structure of the expression e.

Proceeding by cases on e:

• Case e = x: In this case, the only possible context thatE1 andE2 can be is the empty context [].

ThereforeE1 = E2, and so the case holds vacuously.

• Case e = v: Similar to the case for x.

• Case e = ea eb:

IfE1 = E2, the case holds vacuously.

Otherwise, we proceed as follows.

We know that ea eb = E1 [e1].

139

A. PROOFS

From the grammar of evaluation contexts, then, we know that either:

– ea eb = E1 [e1] = E11 [e1] eb, whereE11 [e1] = ea, or

– ea eb = E1 [e1] = ea E12 [e1], whereE12 [e1] = eb.

Similarly, we know that ea eb = E2 [e2].

From the grammar of evaluation contexts, we know that either:

– ea eb = E2 [e2] = E21 [e2] eb, whereE21 [e2] = ea, or

– ea eb = E2 [e2] = ea E22 [e2], whereE22 [e2] = eb.

(If E1 = [] or E2 = [], then ea eb must be (λx. e′) v for some e′ and v, and neither (λx. e′) nor

v can step individually, so the other of E1 orE2 must be [] as well, and soE1 = E2 and the case

holds vacuously.)

This gives us four cases to consider:

– E11 [e1] = ea andE21 [e2] = ea:

In this case, we know that E11 ̸= E21, because if E11 = E21, we would have e1 = e2, which

would mean thatE1 = E2, a contradiction.

So, since E11 ̸= E21, by IH we have that there exist evaluation contexts E ′
11 and E ′

21 such

that:

∗ E ′
11 [e1] = E21 [e

′
2], and

∗ E ′
21 [e2] = E11 [e

′
1], and

∗ E ′
11 [e

′
1] = E ′

21 [e
′
2].

Hence we can chooseE ′
1 = E ′

11 eb andE
′
2 = E ′

21 eb, which satisfy the criteria forE ′
1 andE

′
2.

– E12 [e1] = eb andE22 [e2] = eb: Similar to the previous case.

– E11 [e1] = ea andE22 [e2] = eb:

In this case, we can choose E ′
1 = E11 E22 [e

′
2], and E ′

2 = E11 [e
′
1] E22, which satisfy the

criteria forE ′
1 andE

′
2.

– E12 [e1] = eb andE21 [e2] = ea: Similar to the previous case.

• Case e = get ea eb: Similar to the case for ea eb.

140

A. PROOFS

• Case e = put ea eb: Similar to the case for ea eb.

• Case e = new: Similar to the case for x.

□

A.4. Proof of Lemma 2.4

Proof. Suppose ⟨S; e⟩ ↪−→ ⟨S ′; e′⟩.

We are required to show that S ⊑S S ′.

The proof is by cases on the rule by which ⟨S; e⟩ steps to ⟨S ′; e′⟩.

• Case E-Beta:

Immediate by the definition of⊑S , since S does not change.

• Case E-New:

Given: ⟨S; new⟩ ↪−→ ⟨S[l 7→ ⊥]; l⟩.

To show: S ⊑S S[l 7→ ⊥].

By Definition 2.2, we have to show that dom(S) ⊆ dom(S[l 7→ ⊥]) and that for all l′ ∈ dom(S),

S(l′) ⊑ (S[l 7→ ⊥])(l′).

By definition, a store update operation on S can only either update an existing binding in S or

extend S with a new binding.

Hence dom(S) ⊆ dom(S[l 7→ ⊥]).

From the side condition of E-New, l /∈ dom(S).

Hence S[l 7→ ⊥] adds a new binding for l in S.

Hence S[l 7→ ⊥] does not update any existing bindings in S.

Hence, for all l′ ∈ dom(S), S(l′) ⊑ (S[l 7→ ⊥])(l′).

Therefore S ⊑S S[l 7→ ⊥], as required.

• Case E-Put:

Given: ⟨S; put l d2⟩ ↪−→ ⟨S[l 7→ d1 ⊔ d2]; ()⟩.
141

A. PROOFS

To show: S ⊑S S[l 7→ d1 ⊔ d2].

By Definition 2.2, we have to show that dom(S) ⊆ dom(S[l 7→ d1 ⊔ d2]) and that for all l′ ∈

dom(S), S(l′) ⊑ (S[l 7→ d1 ⊔ d2])(l
′).

By definition, a store update operation on S can only either update an existing binding in S or

extend S with a new binding.

Hence dom(S) ⊆ dom(S[l 7→ d1 ⊔ d2]).

From the premises of E-Put, S(l) = d1.

Therefore l ∈ dom(S).

Hence S[l 7→ d1 ⊔ d2] updates the existing binding for l in S from d1 to d1 ⊔ d2.

By the definition of ⊔, d1 ⊑ (d1 ⊔ d2).

S[l 7→ d1 ⊔ d2] does not update any other bindings in S, hence, for all l′ ∈ dom(S), S(l′) ⊑

(S[l 7→ d1 ⊔ d2])(l
′).

Hence S ⊑S S[l 7→ d1 ⊔ d2], as required.

• Case E-Put-Err:

Given: ⟨S; put l d2⟩ ↪−→ error.

By the definition of error, error is equal to ⟨⊤S; e⟩ for all e.

To show: S ⊑S ⊤S .

Immediate by the definition of⊑S .

• Case E-Get:

Immediate by the definition of⊑S , since S does not change.

□

A.5. Proof of Lemma 2.5

Proof. Suppose ⟨S; e⟩ ↪−→ ⟨S ′; e′⟩, where ⟨S ′; e′⟩ ̸= error.

Consider arbitrary S ′′ such that S ′′ is non-conflicting with ⟨S; e⟩ ↪−→ ⟨S ′; e′⟩ and S ′ ⊔S S ′′ ̸= ⊤S .

142

A. PROOFS

We are required to show that ⟨S ⊔S S ′′; e⟩ ↪−→ ⟨S ′ ⊔S S ′′; e′⟩.

The proof is by cases on the rule of the reduction semantics by which ⟨S; e⟩ steps to ⟨S ′; e′⟩.

Since ⟨S ′; e′⟩ ̸= error, we do not need to consider the E-Put-Err rule.

• Case E-Beta:

Given: ⟨S; (λx. e) v⟩ ↪−→ ⟨S; e[x := v]⟩.

To show: ⟨S ⊔S S ′′; (λx. e) v⟩ ↪−→ ⟨S ⊔S S ′′; e[x := v]⟩.

Immediate by E-Beta.

• Case E-New:

Given: ⟨S; new⟩ ↪−→ ⟨S[l 7→ ⊥]; l⟩.

To show: ⟨S ⊔S S ′′; new⟩ ↪−→ ⟨(S[l 7→ ⊥]) ⊔S S ′′; l⟩.

By E-New, we have that ⟨S ⊔S S
′′; new⟩ ↪−→ ⟨(S ⊔S S

′′)[l′ 7→ ⊥]; l′⟩, where l′ /∈ dom(S ⊔S S
′′).

By assumption, S ′′ is non-conflicting with ⟨S; new⟩ ↪−→ ⟨S[l 7→ ⊥]; l⟩.

Therefore l /∈ dom(S ′′).

From the side condition of E-New, l /∈ dom(S).

Therefore l /∈ dom(S ⊔S S ′′).

Therefore, in ⟨(S⊔SS
′′)[l′ 7→ ⊥]; l′⟩, we canα-rename l′ to l, resulting in ⟨(S⊔SS

′′)[l 7→ ⊥]; l⟩.

Therefore ⟨S ⊔S S ′′; new⟩ ↪−→ ⟨(S ⊔S S ′′)[l 7→ ⊥]; l⟩.

Note that:

(S ⊔S S ′′)[l 7→ ⊥] = S[l 7→ ⊥] ⊔S S ′′[l 7→ ⊥]

= S ⊔S [l 7→ ⊥] ⊔S S ′′ ⊔S [l 7→ ⊥]

= S ⊔S [l 7→ ⊥] ⊔S S ′′

= S[l 7→ ⊥] ⊔S S ′′.

Therefore ⟨S ⊔S S ′′; new⟩ ↪−→ ⟨S[l 7→ ⊥] ⊔S S ′′; l⟩, as we were required to show.

143

A. PROOFS

• Case E-Put:

Given: ⟨S; put l d2⟩ ↪−→ ⟨S[l 7→ d2]; ()⟩.

To show: ⟨S ⊔S S ′′; put l d2⟩ ↪−→ ⟨S[l 7→ d2] ⊔S S ′′; ()⟩.

We will first show that

⟨S ⊔S S ′′; put l d2⟩ ↪−→ ⟨(S ⊔S S ′′)[l 7→ d2]; ()⟩

and then show why this is sufficient.

We proceed by cases on l:

– l /∈ dom(S ′′):

By assumption, S[l 7→ d2] ⊔S S ′′ ̸= ⊤S .

By Lemma 2.4, S ⊑S S[l 7→ d2].

Hence S ⊔S S ′′ ̸= ⊤S .

Therefore, by Definition 2.3, (S ⊔S S ′′)(l) = S(l).

From the premises of E-Put, S(l) = d1.

Hence (S ⊔S S ′′)(l) = d1.

From the premises of E-Put, d2 = d1 ⊔ d2 and d2 ̸= ⊤.

Therefore, by E-Put, we have: ⟨S ⊔S S ′′; put l d2⟩ ↪−→ ⟨(S ⊔S S ′′)[l 7→ d2]; ()⟩.

– l ∈ dom(S ′′):

By assumption, S[l 7→ d2] ⊔S S ′′ ̸= ⊤S .

By Lemma 2.4, S ⊑S S[l 7→ d2].

Hence S ⊔S S ′′ ̸= ⊤S .

Therefore (S ⊔S S ′′)(l) = S(l) ⊔ S ′′(l).

From the premises of E-Put, S(l) = d1.

Hence (S ⊔S S ′′)(l) = d′1, where d1 ⊑ d′1.

From the premises of E-Put, d2 = d1 ⊔ d2.

Let d′2 = d′1 ⊔ d2.

Hence d2 ⊑ d′2.

144

A. PROOFS

By assumption, S[l 7→ d2] ⊔S S ′′ ̸= ⊤S .

Therefore, by Definition 2.3, d2 ⊔ S ′′(l) ̸= ⊤.

Note that:

⊤ ̸= d2 ⊔ S ′′(l)

= d1 ⊔ d2 ⊔ S ′′(l)

= S(l) ⊔ d2 ⊔ S ′′(l)

= S(l) ⊔ S ′′(l) ⊔ d2

= (S ⊔S S ′′)(l) ⊔ d2

= d′1 ⊔ d2

= d′2.

Hence d′2 ̸= ⊤.

Hence (S ⊔S S ′′)(l) = d′1 and d
′
2 = d′1 ⊔ d2 and d′2 ̸= ⊤.

Therefore, by E-Put we have: ⟨S ⊔S S ′′; put l d2⟩ ↪−→ ⟨(S ⊔S S ′′)[l 7→ d′2]; ()⟩.

Note that:

((S ⊔S S ′′)[l 7→ d′2])(l) = (S ⊔S S ′′)(l) ⊔ ([l 7→ d′2])(l)

= d′1 ⊔ d′2

= d′1 ⊔ d′1 ⊔ d2

= d′1 ⊔ d2

145

A. PROOFS

and

((S ⊔S S ′′)[l 7→ d2])(l) = (S ⊔S S ′′)(l) ⊔ ([l 7→ d2])(l)

= d′1 ⊔ d2

= d′1 ⊔ d1 ⊔ d2

= d′1 ⊔ d2 (since d1 ⊑ d′1).

Therefore (S ⊔S S ′′)[l 7→ d′2] = (S ⊔S S ′′)[l 7→ d2].

Therefore, ⟨S ⊔S S ′′; put l d2⟩ ↪−→ ⟨(S ⊔S S ′′)[l 7→ d2]; ()⟩.

Note that:

(S ⊔S S ′′)[l 7→ d2] = S[l 7→ d2] ⊔S S ′′[l 7→ d2]

= S ⊔S [l 7→ d2] ⊔S S ′′ ⊔S [l 7→ d2]

= S ⊔S [l 7→ d2] ⊔S S ′′

= S[l 7→ d2] ⊔S S ′′.

Therefore ⟨S ⊔S S ′′; put l d2⟩ ↪−→ ⟨S[l 7→ d2] ⊔S S ′′; ()⟩, as we were required to show.

• Case E-Get:

Given: ⟨S; get l T ⟩ ↪−→ ⟨S; d2⟩.

To show: ⟨S ⊔S S ′′; get l T ⟩ ↪−→ ⟨S ⊔S S ′′; d2⟩.

From the premises of E-Get, S(l) = d1 and incomp(T) and d2 ∈ T and d2 ⊑ d1.

By assumption, S ⊔S S ′′ ̸= ⊤S .

Hence (S ⊔S S ′′)(l) = d′1, where d1 ⊑ d′1.

By the transitivity of⊑, d2 ⊑ d′1.

Hence, (S ⊔S S ′′)(l) = d′1 and incomp(T) and d2 ∈ T and d2 ⊑ d′1.

Therefore, by E-Get, ⟨S ⊔S S ′′; get l T ⟩ ↪−→ ⟨S ⊔S S ′′; d2⟩, as we were required to show.

146

A. PROOFS

□

A.6. Proof of Lemma 2.6

Proof. Suppose ⟨S; e⟩ ↪−→ ⟨S ′; e′⟩, where ⟨S ′; e′⟩ ̸= error.

Consider arbitrary S ′′ such that S ′′ is non-conflicting with ⟨S; e⟩ ↪−→ ⟨S ′; e′⟩ and S ′ ⊔S S ′′ = ⊤S .

We are required to show that there exists i ≤ 1 such that ⟨S ⊔S S ′′; e⟩ ↪−→i error.

The proof is by cases on the rule of the reduction semantics by which ⟨S; e⟩ steps to ⟨S ′; e′⟩.

Since ⟨S ′; e′⟩ ̸= error, we do not need to consider the E-Put-Err rule.

• Case E-Beta:

Given: ⟨S; (λx. e) v⟩ ↪−→ ⟨S; e[x := v]⟩.

To show: ⟨S ⊔S S ′′; (λx. e) v⟩ ↪−→i error, where i ≤ 1.

By assumption, S ⊔S S ′′ = ⊤S .

Hence, by the definition of error, ⟨S ⊔S S ′′; (λx. e) v⟩ = error.

Hence ⟨S ⊔S S ′′; (λx. e) v⟩ ↪−→i error, with i = 0.

• Case E-New:

Given: ⟨S; new⟩ ↪−→ ⟨S[l 7→ ⊥]; l⟩.

To show: ⟨S ⊔S S ′′; new⟩ ↪−→i error, where i ≤ 1.

By E-New, ⟨S ⊔S S ′′; new⟩ ↪−→ ⟨(S ⊔S S ′′)[l′ 7→ ⊥]; l′⟩, where l′ /∈ dom(S ⊔S S ′′).

By assumption, S ′′ is non-conflicting with ⟨S; new⟩ ↪−→ ⟨S[l 7→ ⊥]; l⟩.

Therefore l /∈ dom(S ′′).

From the side condition of E-New, l /∈ dom(S).

Therefore l /∈ dom(S ⊔S S ′′).

Therefore, in ⟨(S ⊔S S ′′)[l′ 7→ ⊥]; l′⟩, we can α-rename l′ to l,

resulting in ⟨(S ⊔S S ′′)[l 7→ ⊥]; l⟩.

147

A. PROOFS

Therefore ⟨S ⊔S S ′′; new⟩ ↪−→ ⟨(S ⊔S S ′′)[l 7→ ⊥]; l⟩.

By assumption, S[l 7→ ⊥] ⊔S S ′′ = ⊤S .

Note that:

⊤S = S[l 7→ ⊥] ⊔S S ′′

= S ⊔S [l 7→ ⊥] ⊔S S ′′

= S ⊔S S ′′ ⊔S [l 7→ ⊥]

= (S ⊔S S ′′) ⊔S [l 7→ ⊥]

= (S ⊔S S ′′)[l 7→ ⊥].

Hence ⟨S ⊔S S ′′; new⟩ ↪−→ ⟨⊤S; l⟩.

Hence, by the definition of error, ⟨S ⊔S S ′′; new⟩ ↪−→ error.

Hence ⟨S ⊔S S ′′; new⟩ ↪−→i error, with i = 1.

• Case E-Put:

Given: ⟨S; put l d2⟩ ↪−→ ⟨S[l 7→ d2]; ()⟩.

To show: ⟨S ⊔S S ′′; put l d2⟩ ↪−→i error, where i ≤ 1.

We proceed by cases on S ⊔S S ′′:

– S ⊔S S ′′ = ⊤S:

In this case, by the definition of error, ⟨S ⊔S S ′′; put l d2⟩ = error.

Hence ⟨S ⊔S S ′′; put l d2⟩ ↪−→i error, with i = 0.

– S ⊔S S ′′ ̸= ⊤S:

From the premises of E-Put, we have that S(l) = d1.

Hence (S ⊔S S ′′)(l) = d′1, where d1 ⊑ d′1.

We show that d′1 ⊔ d2 = ⊤, as follows:

By assumption, S[l 7→ d2] ⊔S S ′′ = ⊤S .

148

A. PROOFS

Hence, by Definition 2.3, there exists some l′ ∈ dom(S[l 7→ d2])∩dom(S ′′) such that (S[l 7→

d2])(l
′) ⊔ S ′′(l′) = ⊤.

Now case on l′:

∗ l′ ̸= l:

In this case, (S[l 7→ d2])(l
′) = S(l′).

Since (S[l 7→ d2])(l
′) ⊔ S ′′(l′) = ⊤, we then have that S(l′) ⊔ S ′′(l′) = ⊤.

However, this is a contradiction since S ⊔S S ′′ ̸= ⊤S .

Hence this case cannot occur.

∗ l′ = l:

Then (S[l 7→ d2])(l) ⊔ S ′′(l) = ⊤.

Note that:

⊤ = (S[l 7→ d2])(l) ⊔ S ′′(l)

= d2 ⊔ S ′′(l)

= d1 ⊔ d2 ⊔ S ′′(l)

= S(l) ⊔ d2 ⊔ S ′′(l)

= S(l) ⊔ S ′′(l) ⊔ d2

= (S ⊔S S ′′)(l) ⊔ d2

= d′1 ⊔ d2.

Hence d′1 ⊔ d2 = ⊤.

Hence, by E-Put-Err, ⟨S ⊔S S ′′; put l d2⟩ ↪−→ error.

Hence ⟨S ⊔S S ′′; put l d2⟩ ↪−→i error, with i = 1.

• Case E-Get:

Given: ⟨S; get l T ⟩ ↪−→ ⟨S; d2⟩.

149

A. PROOFS

To show: ⟨S ⊔S S ′′; get l T ⟩ ↪−→i error, where i ≤ 1.

By assumption, S ⊔S S ′′ = ⊤S .

Hence, by the definition of error, ⟨S ⊔S S ′′; get l T ⟩ = error.

Hence ⟨S ⊔S S ′′; get l T ⟩ ↪−→i error, with i = 0.

□

A.7. Proof of Lemma 2.8

Proof. Suppose σ 7−→ σa and σ 7−→ σb.

We have to show that there exist σc, i, j, π such that σa 7−→i σc and π(σb) 7−→j σc and i ≤ 1 and

j ≤ 1.

By inspection of the operational semantics, it must be the case that σ steps to σa by the E-Eval-Ctxt

rule.

Let σ = ⟨S; Ea [ea1]⟩ and let σa = ⟨Sa; Ea [ea2]⟩.

Likewise, it must be the case that σ steps to σb by the E-Eval-Ctxt rule.

Let σ = ⟨S; Eb [eb1]⟩ and let σb = ⟨Sb; Eb [eb2]⟩.

Note that σ = ⟨S; Ea [ea1]⟩ = ⟨S; Eb [eb1]⟩, and so Ea [ea1] = Eb [eb1], but Ea and Eb may differ and

ea1 and eb1 may differ.

First, consider the possibility thatEa = Eb (and ea1 = eb1).

Since ⟨S; Ea [ea1]⟩ 7−→ ⟨Sa; Ea [ea2]⟩ by E-Eval-Ctxt and ⟨S; Eb [eb1]⟩ 7−→ ⟨Sb; Eb [eb2]⟩ by E-Eval-

Ctxt, we have from the premise of E-Eval-Ctxt that ⟨S; ea1⟩ ↪−→ ⟨Sa; ea2⟩ and ⟨S; eb1⟩ ↪−→ ⟨Sb; eb2⟩.

But then, since ea1 = eb1 , by Internal Determinism (Lemma 2.2) there is a permutation π′ such that

⟨Sa; ea2⟩ = π′(⟨Sb; eb2⟩).

Then we can satisfy the proof by choosing σc = ⟨Sa; ea2⟩ and i = 0 and j = 0 and π = π′.

150

A. PROOFS

The rest of this proof deals with the more interesting case in whichEa ̸= Eb (and ea1 ̸= eb1).

Since ⟨S; Ea [ea1]⟩ 7−→ ⟨Sa; Ea [ea2]⟩ and ⟨S; Eb [eb1]⟩ 7−→ ⟨Sb; Eb [eb2]⟩ and Ea [ea1] = Eb [eb1],

and sinceEa ̸= Eb, we have from Lemma 2.3 (Locality) that there exist evaluation contextsE ′
a andE

′
b

such that:

• E ′
a [ea1] = Eb [eb2], and

• E ′
b [eb1] = Ea [ea2], and

• E ′
a [ea2] = E ′

b [eb2].

In some of the cases that follow, we will choose σc = error.

In most cases, however, our approach will be to show that there exist S ′, i, j, π such that:

• ⟨Sa; Ea [ea2]⟩ 7−→i ⟨S ′; E ′
a [ea2]⟩, and

• π(⟨Sb; Eb [eb2]⟩) 7−→j ⟨S ′; E ′
a [ea2]⟩.

SinceE ′
a [ea1] = Eb [eb2],E

′
b [eb1] = Ea [ea2], andE

′
a [ea2] = E ′

b [eb2], it suffices to show that:

• ⟨Sa; E
′
b [eb1]⟩ 7−→i ⟨S ′; E ′

b [eb2]⟩, and

• π(⟨Sb; E
′
a [ea1]⟩) 7−→j ⟨S ′; E ′

a [ea2]⟩.

From the premise of E-Eval-Ctxt, we have that ⟨S; ea1⟩ ↪−→ ⟨Sa; ea2⟩ and ⟨S; eb1⟩ ↪−→ ⟨Sb; eb2⟩.

We proceed by case analysis on the rule by which ⟨S; ea1⟩ steps to ⟨Sa; ea2⟩.

(1) Case E-Beta: We have Sa = S.

We proceed by case analysis on the rule by which ⟨S; eb1⟩ steps to ⟨Sb; eb2⟩:

(a) Case E-Beta: We have Sb = S.

Choose S ′ = S = Sa = Sb, i = 1, j = 1, and π = id.

We have to show that:

• ⟨S; E ′
b [eb1]⟩ 7−→ ⟨Sa; E

′
b [eb2]⟩, and

• ⟨S; E ′
a [ea1]⟩ 7−→ ⟨Sb; E

′
a [ea2]⟩,

151

A. PROOFS

both of which follow immediately from ⟨S; ea1⟩ ↪−→ ⟨Sa; ea2⟩ and ⟨S; eb1⟩ ↪−→ ⟨Sb; eb2⟩

and E-Eval-Ctxt.

(b) Case E-New: We have Sb = S[l 7→ ⊥].

Choose S ′ = Sb, i = 1, j = 1, and π = id.

We have to show that:

• ⟨S; E ′
b [eb1]⟩ 7−→ ⟨Sb; E

′
b [eb2]⟩, and

• ⟨Sb; E
′
a [ea1]⟩ 7−→ ⟨Sb; E

′
a [ea2]⟩.

The first of these follows immediately from ⟨S; eb1⟩ ↪−→ ⟨Sb; eb2⟩ and E-Eval-Ctxt.

For the second, consider that Sb = S[l 7→ ⊥] = S ⊔S [l 7→ ⊥].

Furthermore, since no locations are allocated in the transition ⟨S; ea1⟩ ↪−→ ⟨Sa; ea2⟩, we

know that [l 7→ ⊥] is non-conflicting with it, and we know that Sa ⊔S [l 7→ ⊥] ̸= ⊤S since

Sa is just S and S ⊔S [l 7→ ⊥] cannot be⊤S .

Therefore, by Lemma 2.5 (Independence), we have that ⟨S ⊔S [l 7→ ⊥] ; ea1⟩ ↪−→ ⟨Sa ⊔S

[l 7→ ⊥] ; ea2⟩.

Hence ⟨Sb; ea1⟩ ↪−→ ⟨Sb; ea2⟩.

By E-Eval-Ctxt, it follows that ⟨Sb; E
′
a [ea1]⟩ 7−→ ⟨Sb; E

′
a [ea2]⟩, as we were required to show.

(c) Case E-Put: We have Sb = S[l 7→ d1 ⊔ d2].

Choose S ′ = Sb, i = 1, j = 1, and π = id.

We have to show that:

• ⟨S; E ′
b [eb1]⟩ 7−→ ⟨Sb; E

′
b [eb2]⟩, and

• ⟨Sb; E
′
a [ea1]⟩ 7−→ ⟨Sb; E

′
a [ea2]⟩.

The first of these follows immediately from ⟨S; eb1⟩ ↪−→ ⟨Sb; eb2⟩ and E-Eval-Ctxt.

For the second, consider that Sb = S[l 7→ d1 ⊔ d2] = S ⊔S [l 7→ d1 ⊔ d2].

Furthermore, since no locations are allocated in the transition ⟨S; ea1⟩ ↪−→ ⟨Sa; ea2⟩, we

know that [l 7→ d1 ⊔ d2] is non-conflicting with it, and we know that Sa ⊔S [l 7→ d1 ⊔ d2] ̸=

152

A. PROOFS

⊤S since Sa is just S and S ⊔S [l 7→ d1 ⊔ d2] cannot be⊤S , since we know from the premise

of E-Put that d1 ⊔ d2 ̸= ⊤.

Therefore, by Lemma2.5 (Independence), wehave that ⟨S⊔S[l 7→ d1 ⊔ d2] ; ea1⟩ ↪−→ ⟨Sa⊔S

[l 7→ d1 ⊔ d2] ; ea2⟩.

Hence ⟨Sb; ea1⟩ ↪−→ ⟨Sb; ea2⟩.

By E-Eval-Ctxt, it follows that ⟨Sb; E
′
a [ea1]⟩ 7−→ ⟨Sb; E

′
a [ea2]⟩, as we were required to show.

(d) Case E-Put-Err:

Here ⟨Sb; eb2⟩ = error, and so we choose σc = error, i = 1, j = 0, and π = id.

We have to show that:

• ⟨S; E ′
b [eb1]⟩ 7−→ error, and

• ⟨Sb; E
′
a [ea1]⟩ = error.

The second of these is immediately true because since ⟨Sb; eb2⟩ = error, Sb = ⊤S , and so

⟨Sb; E
′
a [ea1]⟩ is equal to error as well.

For the first, observe that ⟨S; eb1⟩ ↪−→ ⟨Sb; eb2⟩, hence by E-Eval-Ctxt, ⟨S; E ′
b [eb1]⟩ 7−→

⟨Sb; E
′
b [eb2]⟩.

But Sb = ⊤S , so ⟨Sb; E
′
b [eb2]⟩ is equal to error, and so ⟨S; E ′

b [eb1]⟩ 7−→ error, as required.

(e) Case E-Get: Similar to case 1a, since Sb = S.

(2) Case E-New: We have Sa = S[l 7→ ⊥].

We proceed by case analysis on the rule by which ⟨S; eb1⟩ steps to ⟨Sb; eb2⟩:

(a) Case E-Beta: By symmetry with case 1b.

(b) Case E-New: We have Sb = S[l′ 7→ ⊥].

Now consider whether l = l′:

• If l ̸= l′:

Choose S ′ = S[l′ 7→ ⊥][l 7→ ⊥], i = 1, j = 1, and π = id.

We have to show that:

– ⟨Sa; E
′
b [eb1]⟩ 7−→ ⟨S[l′ 7→ ⊥][l 7→ ⊥]; E ′

b [eb2]⟩, and

153

A. PROOFS

– ⟨Sb; E
′
a [ea1]⟩ 7−→ ⟨S[l′ 7→ ⊥][l 7→ ⊥]; E ′

a [ea2]⟩.

For the first of these, consider that Sa = S[l 7→ ⊥] = S ⊔S [l 7→ ⊥], and that S[l′ 7→

⊥][l 7→ ⊥] = S[l′ 7→ ⊥] ⊔S [l 7→ ⊥].

Furthermore, since the only location allocated in the transition ⟨S; eb1⟩ ↪−→ ⟨Sb; eb2⟩

is l′, we know that [l 7→ ⊥] is non-conflicting with it (since l ̸= l′ in this case).

We also know that S[l′ 7→ ⊥] ⊔S [l 7→ ⊥] ̸= ⊤S , since S ̸= ⊤S and new bindings of

l 7→ ⊥ and l′ 7→ ⊥ cannot cause it to become⊤S .

Therefore, by Lemma2.5 (Independence), wehave that ⟨S⊔S [l 7→ ⊥] ; eb1⟩ ↪−→ ⟨Sb⊔S

[l 7→ ⊥] ; eb2⟩.

Hence ⟨S[l 7→ ⊥]; eb1⟩ ↪−→ ⟨Sb[l 7→ ⊥]; eb2⟩.

By E-Eval-Ctxt it follows that ⟨S[l 7→ ⊥]; E ′
b [eb1]⟩ ↪−→ ⟨Sb[l 7→ ⊥]; E ′

b [eb2]⟩, which,

since Sb = S[l′ 7→ ⊥], is what we were required to show.

The argument for the second is symmetrical.

• If l = l′:

In this case, observe that we do not want the expression in the final configuration to be

E ′
a [ea2] (nor its equivalent,E

′
b [eb2]).

The reason for this is thatE ′
a [ea2] contains both occurrences of l.

Rather, we want both configurations to step to a configuration in which exactly one oc-

currence of l has been renamed to a fresh location l′′.

Let l′′ be a location such that l′′ /∈ dom(S) and l′′ ̸= l (and hence l′′ ̸= l′, as well).

Then choose S ′ = S[l′′ 7→ ⊥][l 7→ ⊥], i = 1, j = 1, and π = {(l, l′′)}.

Either ⟨S[l′′ 7→ ⊥][l 7→ ⊥]; E ′
a [π(ea2)]⟩ or ⟨S[l′′ 7→ ⊥][l 7→ ⊥]; E ′

b [π(eb2)]⟩ would

work as a final configuration; we choose ⟨S[l′′ 7→ ⊥][l 7→ ⊥]; E ′
b [π(eb2)]⟩.

We have to show that:

– ⟨Sa; E
′
b [eb1]⟩ 7−→ ⟨S[l′′ 7→ ⊥][l 7→ ⊥]; E ′

b [π(eb2)]⟩, and

– π(⟨Sb; E
′
a [ea1]⟩) 7−→ ⟨S[l′′ 7→ ⊥][l 7→ ⊥]; E ′

b [π(eb2)]⟩.

154

A. PROOFS

For the first of these, since ⟨S; eb1⟩ ↪−→ ⟨Sb; eb2⟩, we have by Lemma 2.1 (Permutabil-

ity) that π(⟨S; eb1⟩) ↪−→ π(⟨Sb; eb2⟩).

Since π = {(l, l′′)}, but l /∈ S (from the side condition on E-New), we have that

π(⟨S; eb1⟩) = ⟨S; eb1⟩.

Since ⟨Sb; eb2⟩ = ⟨S[l′ 7→ ⊥]; l′⟩, and l = l′, we have that π(⟨Sb; eb2⟩) = ⟨S[l′′ 7→

⊥]; π(eb2)⟩.

Hence ⟨S; eb1⟩ ↪−→ ⟨S[l′′ 7→ ⊥]; π(eb2)⟩.

Since the only location allocated in the transition ⟨S; eb1⟩ ↪−→ ⟨S[l′′ 7→ ⊥]; π(eb2)⟩

is l′′, we know that [l 7→ ⊥] is non-conflicting with it.

We also know that S[l′′ 7→ ⊥] ⊔S [l 7→ ⊥] ̸= ⊤S , since S ̸= ⊤S and new bindings of

l′′ 7→ ⊥ and l 7→ ⊥ cannot cause it to become⊤S .

Therefore, by Lemma 2.5 (Independence), we have that

⟨S ⊔S [l 7→ ⊥] ; eb1⟩ ↪−→ ⟨S[l′′ 7→ ⊥] ⊔S [l 7→ ⊥] ; π(eb2)⟩.

Hence ⟨S[l 7→ ⊥]; eb1⟩ ↪−→ ⟨S[l′′ 7→ ⊥][l 7→ ⊥]; π(eb2)⟩.

By E-Eval-Ctxt it follows that

⟨S[l 7→ ⊥]; E ′
b [eb1]⟩ ↪−→ ⟨S[l′′ 7→ ⊥][l 7→ ⊥]; E ′

b [π(eb2)]⟩, which, since S[l 7→

⊥] = Sa, is what we were required to show.

For the second, observe that since Sb = S[l 7→ ⊥], we have that π(Sb) = S[l′′ 7→ ⊥].

Also, since l does not occur in ea1 , we have that π(E
′
a [ea1]) = (π(E ′

a))[ea1].

Hence we have to show that ⟨S[l′′ 7→ ⊥]; (π(E ′
a))[ea1]⟩ 7−→ ⟨S[l′′ 7→ ⊥][l 7→

⊥]; E ′
b [π(eb2)]⟩.

Since the only location allocated in the transition ⟨S; ea1⟩ ↪−→ ⟨Sa; ea2⟩ is l, we know

that [l′′ 7→ ⊥] is non-conflicting with it.

We also know that Sa ⊔S [l′′ 7→ ⊥] ̸= ⊤S , since Sa = S[l 7→ ⊥] and S ̸= ⊤S and new

bindings of l′′ 7→ ⊥ and l 7→ ⊥ cannot cause it to become⊤S .

155

A. PROOFS

Therefore, by Lemma 2.5 (Independence), we have that ⟨S ⊔S [l′′ 7→ ⊥] ; ea1⟩ ↪−→

⟨Sa ⊔S [l′′ 7→ ⊥] ; ea2⟩.

Hence ⟨S[l′′ 7→ ⊥]; ea1⟩ ↪−→ ⟨S[l′′ 7→ ⊥][l 7→ ⊥]; ea2⟩.

By E-Eval-Ctxt it follows that ⟨S[l′′ 7→ ⊥]; (π(E ′
a))[ea1]⟩ 7−→ ⟨S[l′′ 7→ ⊥][l 7→

⊥]; (π(E ′
a))[ea2]⟩, which completes the case sinceE ′

b [π(eb2)] = (π(E ′
a))[ea2].

(c) Case E-Put: We have Sb = S[l′ 7→ d1 ⊔ d2].

We have to show that:

• ⟨Sa; E
′
b [eb1]⟩ 7−→ ⟨Sb[l 7→ ⊥]; E ′

b [eb2]⟩, and

• ⟨Sb; E
′
a [ea1]⟩ 7−→ ⟨Sb[l 7→ ⊥]; E ′

a [ea2]⟩.

For the first of these, consider that Sa = S[l 7→ ⊥] = S ⊔S [l 7→ ⊥], and that Sb[l 7→ ⊥] =

Sb ⊔S [l 7→ ⊥].

Furthermore, since no locations are allocated in the transition ⟨S; eb1⟩ ↪−→ ⟨Sb; eb2⟩, we

know that [l 7→ ⊥] is non-conflicting with it.

We also know that Sb ⊔S [l 7→ ⊥] ̸= ⊤S , since Sb = S[l′ 7→ d1 ⊔ d2] and we know from the

premise of E-Put that d1 ⊔ d2 ̸= ⊤.

Therefore, by Lemma 2.5 (Independence), we have that ⟨S ⊔S [l 7→ ⊥] ; eb1⟩ ↪−→ ⟨Sb ⊔S

[l 7→ ⊥] ; eb2⟩.

Hence ⟨S[l 7→ ⊥]; eb1⟩ ↪−→ ⟨Sb[l 7→ ⊥]; eb2⟩.

By E-Eval-Ctxt, it follows that ⟨S[l 7→ ⊥]; E ′
b [eb1]⟩ 7−→ ⟨Sb[l 7→ ⊥]; E ′

b [eb2]⟩, which, since

Sa = S[l 7→ ⊥], is what we were required to show.

For the second, consider that Sb = S ⊔S [l′ 7→ d1 ⊔ d2] and Sb[l 7→ ⊥] = S[l 7→ ⊥] ⊔S

[l′ 7→ d1 ⊔ d2] = Sa ⊔S [l′ 7→ d1 ⊔ d2].

Furthermore, since the only location allocated in the transition ⟨S; ea1⟩ ↪−→ ⟨Sa; ea2⟩ is l,

we know that [l′ 7→ d1 ⊔ d2] is non-conflicting with it.

(We know that l ̸= l′ because we have from the premise of E-Put that l′ ∈ dom(S), but we

have from the side condition of E-New that l /∈ dom(S).)

156

A. PROOFS

We also know that S[l 7→ ⊥] ⊔S [l′ 7→ d1 ⊔ d2] ̸= ⊤S , since we know from the premise of

E-Put that d1 ⊔ d2 ̸= ⊤.

Therefore, by Lemma 2.5 (Independence), we have that ⟨S ⊔S [l′ 7→ d1 ⊔ d2] ; ea1⟩ ↪−→

⟨Sa ⊔S [l′ 7→ d1 ⊔ d2] ; ea2⟩.

Hence ⟨Sb; ea1⟩ ↪−→ ⟨Sb[l 7→ ⊥]; ea2⟩.

By E-Eval-Ctxt, it follows that ⟨Sb; E
′
a [ea1]⟩ 7−→ ⟨Sb[l 7→ ⊥]; E ′

a [ea2]⟩, as we were required

to show.

(d) Case E-Put-Err:

Here ⟨Sb; eb2⟩ = error, and so we choose σc = error, i = 1, j = 0, and π = id.

We have to show that:

• ⟨Sa; E
′
b [eb1]⟩ 7−→ error, and

• ⟨Sb; E
′
a [ea1]⟩ = error.

The second of these is immediately true because since ⟨Sb; eb2⟩ = error, Sb = ⊤S , and so

⟨Sb; E
′
a [ea1]⟩ is equal to error as well.

For the first, observe that since ⟨S; ea1⟩ ↪−→ ⟨Sa; ea2⟩, we have by Lemma2.4 (Monotonicity)

that S ⊑S Sa.

Therefore, since ⟨S; eb1⟩ ↪−→ error,

we have by Lemma 2.7 (Error Preservation) that ⟨Sa; eb1⟩ ↪−→ error.

Since error is equal to ⟨⊤S; e⟩ for all expressions e, ⟨Sa; eb1⟩ ↪−→ ⟨⊤S; e⟩ for all e.

Therefore, by E-Eval-Ctxt, ⟨Sa; E
′
b [eb1]⟩ 7−→ ⟨⊤S; E

′
b [e]⟩ for all e.

Since ⟨⊤S; E
′
b [e]⟩ is equal to error, we have that ⟨Sa; E

′
b [eb1]⟩ 7−→ error, aswewere required

to show.

(e) Case E-Get: Similar to case 2a, since Sb = S.

(3) Case E-Put: We have Sa = S[l 7→ d1 ⊔ d2].

We proceed by case analysis on the rule by which ⟨S; eb1⟩ steps to ⟨Sb; eb2⟩:

(a) Case E-Beta: By symmetry with case 1c.

157

A. PROOFS

(b) Case E-New: By symmetry with case 2c.

(c) Case E-Put: We have Sb = S[l′ 7→ d′1 ⊔ d′2], where d
′
1 = S(l′).

Consider whether Sb ⊔S [l 7→ d1 ⊔ d2] = ⊤S:

• Sb ⊔S [l 7→ d1 ⊔ d2] ̸= ⊤S:

Choose S ′ = Sa ⊔S Sb, i = 1, j = 1, and π = id.

We have to show that:

– ⟨Sa; E
′
b [eb1]⟩ 7−→ ⟨Sa ⊔S Sb; E

′
b [eb2]⟩, and

– ⟨Sb; E
′
a [ea1]⟩ 7−→ ⟨Sa ⊔S Sb; E

′
a [ea2]⟩.

For the first of these, since no locations are allocated during the transition ⟨S; eb1⟩ ↪−→

⟨Sb; eb2⟩, we know that [l 7→ d1 ⊔ d2] is non-conflicting with it, and in this subcase, we

know that Sb ⊔S [l 7→ d1 ⊔ d2] ̸= ⊤S .

Therefore, by Lemma 2.5 (Independence), we have that ⟨S ⊔S [l 7→ d1 ⊔ d2] ; eb1⟩ ↪−→

⟨Sb ⊔S [l 7→ d1 ⊔ d2] ; eb2⟩.

By E-Eval-Ctxt, it follows that

⟨S ⊔S [l 7→ d1 ⊔ d2] ; E
′
b [eb1]⟩ 7−→ ⟨Sb ⊔S [l 7→ d1 ⊔ d2] ; E

′
b [eb2]⟩.

Since S ⊔S [l 7→ d1 ⊔ d2] = S[l 7→ d1 ⊔ d2] = Sa, we have that ⟨Sa; E
′
b [eb1]⟩ 7−→

⟨Sb ⊔S [l 7→ d1 ⊔ d2] ; E
′
b [eb2]⟩.

Furthermore, since ⟨S; eb1⟩ ↪−→ ⟨Sb; eb2⟩, by Lemma 2.4 (Monotonicity), we have that

S ⊑S Sb.

Therefore Sb ⊔S [l 7→ d1 ⊔ d2] = Sb ⊔S S ⊔S [l 7→ d1 ⊔ d2] = Sb ⊔S Sa = Sa ⊔S Sb.

So we have that ⟨Sa; E
′
b [eb1]⟩ 7−→ ⟨Sa ⊔S Sb; E

′
b [eb2]⟩, as we were required to show.

The argument for the second is symmetrical, with [l′ 7→ d′1 ⊔ d′2] being the store that is

non-conflicting with ⟨S; ea1⟩ ↪−→ ⟨Sa; ea2⟩.

• Sb ⊔S [l 7→ d1 ⊔ d2] = ⊤S:

Here we choose σc = error and π = id.

We have to show that there exist i ≤ 1 and j ≤ 1 such that:

158

A. PROOFS

– ⟨Sa; E
′
b [eb1]⟩ 7−→i error, and

– ⟨Sb; E
′
a [ea1]⟩ 7−→j error.

For the first of these, since no locations are allocated during the transition ⟨S; eb1⟩ ↪−→

⟨Sb; eb2⟩, we know that [l 7→ d1 ⊔ d2] is non-conflicting with it, and in this subcase, we

know that Sb ⊔S [l 7→ d1 ⊔ d2] = ⊤S .

Therefore, by Lemma 2.6 (Clash), we have that ⟨S ⊔S [l 7→ d1 ⊔ d2] ; eb1⟩ ↪−→i′ error,

where i′ ≤ 1.

Since error is equal to ⟨⊤S; e⟩ for all expressions e, ⟨S ⊔S [l 7→ d1 ⊔ d2] ; eb1⟩ ↪−→i′

⟨⊤S; e⟩ for all e.

Now consider whether i′ = 1 or i′ = 0:

– If i′ = 1, then by E-Eval-Ctxt, ⟨S ⊔S [l 7→ d1 ⊔ d2] ; E
′
b [eb1]⟩ 7−→ ⟨⊤S; E

′
b [e]⟩ for

all e.

Since ⟨⊤S; E
′
b [e]⟩ is equal to error, and since S ⊔S [l 7→ d1 ⊔ d2] = S[l 7→ d1 ⊔

d2] = Sa, we choose i = 1 and we have that ⟨Sa; E
′
b [eb1]⟩ 7−→ error, as required.

– If i′ = 0, then ⟨S ⊔S [l 7→ d1 ⊔ d2] ; eb1⟩ = error.

Hence S ⊔S [l 7→ d1 ⊔ d2] = ⊤S .

So, we choose i = 0, and since Sa = S[l 7→ d1 ⊔ d2] = S ⊔S [l 7→ d1 ⊔ d2] = ⊤S ,

we have that ⟨Sa; E
′
b [eb1]⟩ = error, as required.

The argument for the second is symmetrical, with [l′ 7→ d′1 ⊔ d′2] being the store that is

non-conflicting with ⟨S; ea1⟩ ↪−→ ⟨Sa; ea2⟩.

(d) Case E-Put-Err:

Here ⟨Sb; eb2⟩ = error, and so we choose σc = error, i = 1, j = 0, and π = id.

We have to show that:

• ⟨Sa; E
′
b [eb1]⟩ 7−→ error, and

• ⟨Sb; E
′
a [ea1]⟩ = error.

159

A. PROOFS

The second of these is immediately true because since ⟨Sb; eb2⟩ = error, Sb = ⊤S , and so

⟨Sb; E
′
a [ea1]⟩ is equal to error as well.

For the first, observe that since ⟨S; ea1⟩ ↪−→ ⟨Sa; ea2⟩, we have by Lemma2.4 (Monotonicity)

that S ⊑S Sa.

Therefore, since ⟨S; eb1⟩ ↪−→ error,

we have by Lemma 2.7 (Error Preservation) that ⟨Sa; eb1⟩ ↪−→ error.

Since error is equal to ⟨⊤S; e⟩ for all expressions e, ⟨Sa; eb1⟩ ↪−→ ⟨⊤S; e⟩ for all e.

Therefore, by E-Eval-Ctxt, ⟨Sa; E
′
b [eb1]⟩ 7−→ ⟨⊤S; E

′
b [e]⟩ for all e.

Since ⟨⊤S; E
′
b [e]⟩ is equal to error, we have that ⟨Sa; E

′
b [eb1]⟩ 7−→ error, aswewere required

to show.

(e) Case E-Get: Similar to case 3a, since Sb = S.

(4) Case E-Put-Err: We have ⟨Sa; ea2⟩ = error.

We proceed by case analysis on the rule by which ⟨S; eb1⟩ steps to ⟨Sb; eb2⟩:

(a) Case E-Beta: By symmetry with case 1d.

(b) Case E-New: By symmetry with case 2d.

(c) Case E-Put: By symmetry with case 3d.

(d) Case E-Put-Err:

Here ⟨Sb; eb2⟩ = error, and so we choose σc = error, i = 0, j = 0, and π = id.

We have to show that:

• ⟨Sa; E
′
b [eb1]⟩ = error, and

• ⟨Sb; E
′
a [ea1]⟩ = error.

Since ⟨Sa; ea2⟩ = error, Sa = ⊤S , and since ⟨Sb; eb2⟩ = error, Sb = ⊤S , so both of the

above follow immediately.

(e) Case E-Get: Similar to case 4a, since Sb = S.

(5) Case E-Get:

We proceed by case analysis on the rule by which ⟨S; eb1⟩ steps to ⟨Sb; eb2⟩:

160

A. PROOFS

(a) Case E-Beta: By symmetry with case 1e.

(b) Case E-New: By symmetry with case 2e.

(c) Case E-Put: By symmetry with case 3e.

(d) Case E-Put-Err: By symmetry with case 4e.

(e) Case E-Get: Similar to case 5a, since Sb = S.

□

A.8. Proof of Lemma 2.9

Proof. Suppose σ 7−→ σ′ and σ 7−→m σ′′, where 1 ≤ m.

We have to show that there exist σc, i, j, π such that σ′ 7−→i σc and π(σ′′) 7−→j σc and i ≤ m and

j ≤ 1.

We proceed by induction onm.

In the base case ofm = 1, the result is immediate from Lemma 2.8.

For the induction step, suppose σ 7−→m σ′′ 7−→ σ′′′ and suppose the lemma holds form.

We show that it holds form+ 1, as follows.

We are required to show that there exist σc, i, j, π such that σ′ 7−→i σc and π(σ′′′) 7−→j σc and

i ≤ m+ 1 and j ≤ 1.

From the induction hypothesis, there exist σ′
c, i

′, j′, π′ such that σ′ 7−→i′ σ′
c and π

′(σ′′) 7−→j′ σ′
c and

i′ ≤ m and j′ ≤ 1.

We proceed by cases on j′:

• If j′ = 0, then π′(σ′′) = σ′
c.

Since σ′′ 7−→ σ′′′, we have that π′(σ′′) 7−→ π′(σ′′′) by Lemma 2.1 (Permutability).

We can then choose σc = π′(σ′′′) and i = i′ + 1 and j = 0 and π = π′.

161

A. PROOFS

The key is that σ′ 7−→i′ σ′
c = π′(σ′′) 7−→ π′(σ′′′) for a total of i′ + 1 steps.

• If j′ = 1:

First, since π′(σ′′) 7−→j′ σ′
c, then by Lemma 2.1 (Permutability) we have that σ′′ 7−→j′ π′−1(σ′

c).

Then, by σ′′ 7−→j′ π′−1(σ′
c) and σ

′′ 7−→ σ′′′ and Lemma 2.8 (Strong Local Confluence), we have

that there exist σ′′
c and i′′ and j′′ and π′′ such that π′−1(σ′

c) 7−→i′′ σ′′
c and π′′(σ′′′) 7−→j′′ σ′′

c and

i′′ ≤ 1 and j′′ ≤ 1.

Since π′−1(σ′
c) 7−→i′′ σ′′

c , by Lemma 2.1 (Permutability) we have that σ′
c 7−→i′′ π′(σ′′

c).

So we also have σ′ 7−→i′ σ′
c 7−→i′′ π′(σ′′

c).

Since π′′(σ′′′) 7−→j′′ σ′′
c , by Lemma 2.1 (Permutability) we have that π′(π′′(σ′′′)) 7−→j′′ π′(σ′′

c).

In summary, we pick σc = π′(σ′′
c) and i = i′ + i′′ and j = j′′ and π = π′′ ◦ π′, which is sufficient

because i = i′ + i′′ ≤ m+ 1 and j = j′′ ≤ 1.

□

A.9. Proof of Lemma 2.10

Proof. Suppose that σ 7−→n σ′ and σ 7−→m σ′′, where 1 ≤ n and 1 ≤ m.

We have to show that there exist σc, i, j, π such that σ′ 7−→i σc and π(σ′′) 7−→j σc and i ≤ m and

j ≤ n.

We proceed by induction on n.

In the base case of n = 1, the result is immediate from Lemma 2.9.

For the induction step, suppose σ 7−→n σ′ 7−→ σ′′′ and suppose the lemma holds for n.

We show that it holds for n+ 1, as follows.

We are required to show that there exist σc, i, j, π such that σ′′′ 7−→i σc and π(σ′′) 7−→j σc and i ≤ m

and j ≤ n+ 1.

162

A. PROOFS

From the induction hypothesis, there exist σ′
c, i

′, j′, π′ such that σ′ 7−→i′ σ′
c and π

′(σ′′) 7−→j′ σ′
c and

i′ ≤ m and j′ ≤ n.

We proceed by cases on i′:

• If i′ = 0, then σ′ = σ′
c.

We can then choose σc = σ′′′ and i = 0 and j = j′ + 1 and π = π′.

Since π′(σ′′) 7−→j′ σ′
c 7−→ σ′′′, and j′ + 1 ≤ n+ 1 since j′ ≤ n, the case is satisfied.

• If i′ ≥ 1:

From σ′ 7−→ σ′′′ and σ′ 7−→i′ σ′
c and Lemma 2.9, we have that there exist σ′′

c and i′′ and j′′ and

π′′ such that σ′′′ 7−→i′′ σ′′
c and π′′(σ′

c) 7−→j′′ σ′′
c and i′′ ≤ i′ and j′′ ≤ 1.

Since π′(σ′′) 7−→j′ σ′
c, by Lemma 2.1 (Permutability) we have that π′′(π′(σ′′)) 7−→j′ π′′(σ′

c).

So we also have π′′(π′(σ′′)) 7−→j′ π′′(σ′
c) 7−→j′′ σ′′

c .

In summary, we pick σc = σ′′
c and i = i′′ and j = j′ + j′′ and π = π′ ◦ π′′, which is sufficient

because i = i′′ ≤ i′ ≤ m and j = j′ + j′′ ≤ n+ 1.

□

A.10. Proof of Lemma 3.2

Proof. Suppose that (D,⊑,⊥,⊤) is a lattice and (Dp,⊑p,⊥p,⊤p) = Freeze(D,⊑,⊥,⊤).

In order to show that (Dp,⊑p,⊥p,⊤p) is a lattice, we have to show that:

(1) ⊑p is a partial order overDp.

(2) Every nonempty finite subset ofDp has a lub.

(3) ⊥p is the least element ofDp.

(4) ⊤p is the greatest element ofDp.

We prove each of these properties in turn:

163

A. PROOFS

(1) ⊑p is a partial order overDp.

To show this, we need to show that⊑p is reflexive, transitive, and antisymmetric.

(a) ⊑p is reflexive.

Suppose v ∈ Dp.

Then, by Lemma 3.1, either v = (d, false) with d ∈ D, or v = (x, true) with x ∈ X , where

X = D − {⊤}.

• Suppose v = (d, false):

By the reflexivity of⊑, we know d ⊑ d.

By the definition of⊑p, we know (d, false) ⊑p (d, false).

• Suppose v = (x, true):

By the reflexivity of equality, x = x.

By the definition of⊑p, we know (x, true) ⊑p (x, true).

(b) ⊑p is transitive.

Suppose v1 ⊑p v2 and v2 ⊑p v3.

We want to show that v1 ⊑p v3.

We proceed by case analysis on v1, v2, and v3.

• Case v1 = (d1, false) and v2 = (d2, false) and v3 = (d3, false):

By inversion on⊑p, it follows that d1 ⊑ d2.

By inversion on⊑p, it follows that d2 ⊑ d3.

By the transitivity of⊑, we know d1 ⊑ d3.

By the definition of⊑p, it follows that (d1, false) ⊑p (d3, false).

Hence v1 ⊑p v3.

• Case v1 = (d1, false) and v2 = (d2, false) and v3 = (x3, true):

By inversion on⊑p, it follows that d1 ⊑ d2.

By inversion on⊑p, it follows that d2 ⊑ x3.

By the transitivity of⊑, we know d1 ⊑ x3.

164

A. PROOFS

By the definition of⊑p, it follows that (d1, false) ⊑p (x3, true).

Hence v1 ⊑p v3.

• Case v1 = (d1, false) and v2 = (x2, true) and v3 = (d3, false):

By inversion on⊑p, it follows that d1 ⊑ x2.

By inversion on⊑p, it follows that d3 = ⊤.

Since⊤ is the maximal element ofD, we know d1 ⊑ ⊤ ≡ d3.

By the definition of⊑p, it follows that (d1, false) ⊑p (d3, false).

Hence v1 ⊑p v3.

• Case v1 = (d1, false) and v2 = (x2, true) and v3 = (x3, true):

By inversion on⊑p, it follows that d1 ⊑ x2.

By inversion on⊑p, it follows that x2 = x3.

Hence d1 ⊑ x3.

By the definition of⊑p, it follows that (d1, false) ⊑p (x3, true).

Hence v1 ⊑p v3.

• Case v1 = (x1, true) and v2 = (d2, false) and v3 = (d3, false):

By inversion on⊑p, it follows that d2 = ⊤.

By inversion on⊑p, it follows that d2 ⊑ d3.

Since⊤ is maximal, it follows that d3 = ⊤.

By the definition of⊑p, it follows that (x1, true) ⊑p (d3, false).

Hence v1 ⊑p v3.

• Case v1 = (x1, true) and v2 = (d2, false) and v3 = (x3, true):

By inversion on⊑p, it follows that d2 = ⊤.

By inversion on⊑p, it follows that d2 ⊑ x3.

Since⊤ is maximal, it follows that x3 = ⊤.

But since x3 ∈ X ⊆ D/ {⊤}, we know x3 ̸= ⊤.

165

A. PROOFS

This is a contradiction.

Hence v1 ⊑p v3.

• Case v1 = (x1, true) and v2 = (x2, true) and v3 = (d3, false):

By inversion on⊑p, it follows that x1 = x2.

By inversion on⊑p, it follows that d3 = ⊤.

By the definition of⊑p, it follows that (x1, true) ⊑p (d3, false).

Hence v1 ⊑p v3.

• Case v1 = (x1, true) and v2 = (x2, true) and v3 = (x3, true):

By inversion on⊑p, it follows that x1 = x2.

By inversion on⊑p, it follows that x2 = x3.

By transitivity of=, x1 = x3.

By the definition of⊑p, it follows that (x1, true) ⊑p (x3, true).

Hence v1 ⊑p v3.

(c) ⊑p is antisymmetric.

Suppose v1 ⊑p v2 and v2 ⊑p v1. Now, we proceed by cases on v1 and v2.

• Case v1 = (d1, false) and v2 = (d2, false):

By inversion on v1 ⊑p v2, we know that d1 ⊑ d2.

By inversion on v2 ⊑p v1, we know that d2 ⊑ d1.

By the antisymmetry of≤, we know d1 = d2.

Hence v1 = v2.

• Case v1 = (d1, false) and v2 = (x2, true):

By inversion on v1 ⊑p v2, we know that d1 ⊑ x2.

By inversion on v2 ⊑p v1, we know that d1 = ⊤.

Since⊤ is maximal inD, we know x2 = ⊤.

But since x2 ∈ X ⊆ D/ {⊤}, we know x2 ̸= ⊤.

166

A. PROOFS

This is a contradiction.

Hence v1 = v2.

• Case v1 = (x1, true) and v2 = (d2, false):

Similar to the previous case.

• Case v1 = (x1, true) and v2 = (x2, true):

By inversion on v1 ⊑p v2, we know that x1 = x2.

Hence v1 = v2.

(2) Every nonempty finite subset ofDp has a lub.

To show this, it is sufficient to show that every two elements ofDp have a lub, since a binary lub

operation can be repeatedly applied to compute the lub of any finite set.

We will show that every two elements ofDp have a lub by showing that the ⊔p operation defined

by Definition 3.2 computes their lub.

It suffices to show the following two properties:

(a) For all v1, v2, v ∈ Dp, if v1 ⊑p v and v2 ⊑p v, then (v1 ⊔p v2) ⊑p v.

(b) For all v1, v2 ∈ Dp, v1 ⊑p (v1 ⊔p v2) and v2 ⊑p (v1 ⊔p v2).

(a) For all v1, v2, v ∈ Dp, if v1 ⊑p v and v2 ⊑p v, then v1 ⊔p v2 ⊑p v.

Assume v1, v2, v ∈ Dp, and v1 ⊑p v and v2 ⊑p v.

Now we do a case analysis on v1 and v2.

• Case v1 = (d1, false) and v2 = (d2, false).

Now case on v:

– Case v = (d, false):

By the definition of ⊔p, (d1, false) ⊔p (d2, false) = (d1 ⊔ d2, false).

By inversion on (d1, false) ⊑p (d, false), d1 ⊑ l.

By inversion on (d2, false) ⊑p (d, false), d2 ⊑ l.

Hence l is an upper bound for d1 and d2.

Hence d1 ⊔ d2 ⊑ l.

167

A. PROOFS

Hence (d1 ⊔ d2, false) ⊑p (d, false).

Hence v1 ⊔p v2 ⊑p v.

– Case v = (x, true):

By the definition of ⊔p, (d1, false) ⊔p (d2, false) = (d1 ⊔ d2, false).

By inversion on (d1, false) ⊑p (x, true), d1 ⊑ x.

By inversion on (d2, false) ⊑p (x, true), d2 ⊑ x.

Hence x is an upper bound for d1 and d2.

Hence d1 ⊔ d2 ⊑ x.

Hence (d1 ⊔ d2, false) ⊑p (x, true).

Hence v1 ⊔p v2 ⊑p v.

• Case v1 = (x1, true) and v2 = (x2, true):

Now case on v:

– Case v = (d, false):

By inversion on (x1, true) ⊑p (d, false), we know l = ⊤.

By inversion on (x2, true) ⊑p (d, false), we know l = ⊤.

Now consider whether x1 = x2 or not.

If it does, then by the definition of ⊔p, (x1, true) ⊔p (x2, true) = (x1, true).

By definition of⊑p, we have (x1, true) ⊑p (⊤, false).

So v1 ⊔p v2 ⊑p v.

If it does not, then v1 ⊔p v2 = (⊤, false).

By the definition of⊑p, we have (⊤, false) ⊑p (⊤, false).

So v1 ⊔p v2 ⊑p v.

– Case v = (x, true):

By inversion on (x1, true) ⊑p (x, true), we know x = x1.

By inversion on (x2, true) ⊑p (x, true), we know x = x2.

Hence x1 = x2.

168

A. PROOFS

By the definition of ⊔p, (x1, true) ⊔p (x2, true) = (x1, true).

Hence v1 ⊔p v2 ⊑p v.

• Case v1 = (x1, true) and v2 = (d2, false):

Now case on v:

– Case v = (d, false):

Now consider whether d2 ⊑ x1.

If it is, then (x1, true) ⊔p (d2, false) = (x1, true) = v1.

Hence v1 ⊔p v2 ⊑p v.

Otherwise, (x1, true) ⊔p (d2, false) = (⊤, false).

By inversion on (x1, true) ⊑p (d, false), we know l = ⊤.

By reflexivity, (⊤, false) ⊑p (⊤, false).

Hence v1 ⊔p v2 ⊑p v.

– Case v = (x, true):

By inversion on (x1, true) ⊑p (x, true), we know that x1 = x.

By inversion on (d2, false) ⊑p (x, true), we know that d2 ⊑ x.

By transitivity, d2 ⊑ x1.

By the definition of ⊔p, it follows that (x1, true) ⊔p (d2, false) = (x1, true).

By definition of⊑p, (x1, true) ⊑p (x1, true).

Hence v1 ⊔p v2 ⊑p v.

• Case v1 = (d1, false) and v2 = (x2, true):

Symmetric with the previous case.

(b) For all v1, v2 ∈ Dp, v1 ⊑p v1 ⊔p v2 and v2 ⊑p v1 ⊔p v2.

Assume v1, v2 ∈ Dp, and proceed by case analysis.

• Case v1 = (d1, false) and v2 = (d2, false):

Since ⊔ is a join operator, we know d1 ⊑ d1 ⊔ d2.

By the definition of⊑p, (d1, false) ⊑ (d1 ⊔ d2, false).

169

A. PROOFS

By the definition of ⊔p, v1 ⊔p v2 = (d1 ⊔ d2, false).

Hence v1 ⊑p v1 ⊔p v2.

Since ⊔ is a join operator, we know d1 ⊑ d1 ⊔ d2.

By the definition of⊑p, (d2, false) ⊑ (d1 ⊔ d2, false).

By the definition of ⊔p, v1 ⊔p v2 = (d1 ⊔ d2, false).

Hence v2 ⊑p v1 ⊔p v2.

Therefore v1 ⊑p v1 ⊔ v2 and v2 ⊑p v1 ⊔ v2.

• Case v1 = (d1, false) and v2 = (x2, true):

Consider whether d1 ⊑ x2.

– Case d1 ⊑ x2:

By the definition of ⊔p, we know (d1, false) ⊔p (x2, true) = (x2, true).

By the definition of ⊔p, we know (d1, false) ⊑p (x2, true).

Hence v1 ⊑p v1 ⊔p v2.

By reflexivity, (x2, true) ⊑p (x2, true).

Hence v2 ⊑p v1 ⊔p v2.

Therefore v1 ⊑p v1 ⊔ v2 and v2 ⊑p v1 ⊔ v2.

– Case d1 ̸⊑ x2:

By the definition of ⊔p, we know (d1, false) ⊔p (x2, true) = (⊤, false).

Since d1 ⊑ ⊤, by the definition of⊑p we know (d1, false) ⊑ (⊤, false).

Hence v1 ⊑p v1 ⊔p v2.

By the definition of⊑p, we know (x2, true) ⊑ (⊤, false).

Hence v2 ⊑p v1 ⊔p v2.

Therefore v1 ⊑p v1 ⊔ v2 and v2 ⊑p v1 ⊔ v2.

• Case v1 = (x1, true) and v2 = (d2, false):

Symmetric with the previous case.

• Case v1 = (x1, true) and v2 = (x2, true):

170

A. PROOFS

Consider whether x1 equals x2.

– Case x1 = x2:

By the definition ⊔p, (x1, true) ⊔p (x2, true) = (x1, true).

By reflexivity, (x1, true) ⊑p (x1, true).

Hence v1 ⊑p v1 ⊔p v2.

By reflexivity, (x2, true) ⊑p (x1, true).

Hence v2 ⊑p v1 ⊔p v2.

Therefore v1 ⊑p v1 ⊔ v2 and v2 ⊑p v1 ⊔ v2.

– Case x1 ̸= x2:

By the definition ⊔p, (x1, true) ⊔p (x2, true) = (⊤, false).

By the definition of⊑p, (x1, true) ⊑p (⊤, false).

Hence v1 ⊑p v1 ⊔p v2.

By the definition of⊑p, (x2, true) ⊑p (⊤, false).

Hence v2 ⊑p v1 ⊔p v2.

Therefore v1 ⊑p v1 ⊔ v2 and v2 ⊑p v1 ⊔ v2.

(3) ⊥p is the least element ofDp.

⊥p is defined to be (⊥, false).

In order to be the least element ofDp, it must be less than or equal to every element ofDp.

By Lemma 3.1, the elements of Dp partition into (d, false) for all d ∈ D, and (x, true) for all

x ∈ X , whereX = D − {⊤}.

We consider both cases:

• (d, false) for all d ∈ D:

By the definition of⊑p, (⊥, false) ⊑p (d, false) iff⊥ ⊑ d.

Since⊥ is the least element ofD,⊥ ⊑ d.

Therefore⊥p = (⊥, false) ⊑p (d, false).

• (x, true) for all x ∈ X:

171

A. PROOFS

By the definition of⊑p, (⊥, false) ⊑p (x, true) iff⊥ ⊑ x.

Since⊥ is the least element ofD,⊥ ⊑ x.

Therefore⊥p = (⊥, false) ⊑p (x, true).

Therefore⊥p is less than or equal to all elements ofDp.

(4) ⊤p is the greatest element ofDp.

⊤p is defined to be (⊤, false).

In order to be the greatest element ofDp, every element ofDp must be less than or equal to it.

By Lemma 3.1, the elements of Dp partition into (d, false) for all d ∈ D, and (x, true) for all

x ∈ X , whereX = D − {⊤}.

We consider both cases:

• (d, false) for all d ∈ D:

By the definition of⊑p, (d, false) ⊑p (⊤, false) iff d ⊑ ⊤.

Since⊤ is the greatest element ofD, d ⊑ ⊤.

Therefore (d, false) ⊑p (⊤, false) = ⊤p.

• (x, true) for all x ∈ X:

By the definition of⊑p, (x, true) ⊑p (⊤, false) iff⊤ ⊑ ⊤.

Therefore (x, true) ⊑p (⊤, false) = ⊤p.

Therefore all elements ofDp are less than or equal to⊤p.

□

A.11. Proof of Lemma 3.3

Proof. Consider an arbitrary permutation π.

For part 1, we have to show that if σ ↪−→ σ′ then π(σ) ↪−→ π(σ′), and that if π(σ) ↪−→ π(σ′) then

σ ↪−→ σ′.

For the forward direction of part 1, suppose σ ↪−→ σ′.

172

A. PROOFS

We have to show that π(σ) ↪−→ π(σ′).

We proceed by cases on the rule by which σ steps to σ′.

• Case E-Beta: σ = ⟨S; (λx. e) v⟩, and σ′ = ⟨S; e[x := v]⟩.

To show: π(⟨S; (λx. e) v⟩) ↪−→ π(⟨S; e[x := v]⟩).

By Definitions 3.11 and 3.9, π(σ) = ⟨π(S); (λx. π(e)) π(v)⟩.

By E-Beta, ⟨π(S); (λx. π(e)) π(v)⟩ steps to ⟨π(S); π(e)[x := π(v)]⟩.

By Definition 3.9, ⟨π(S); π(e)[x := π(v)]⟩ is equal to ⟨π(S); π(e[x := v])⟩.

Hence ⟨π(S); (λx. π(e)) π(v)⟩ steps to ⟨π(S); π(e[x := v])⟩, which is equal to π(⟨S; e[x :=

v]⟩) by Definition 3.11.

Hence the case is satisfied.

• Case E-New: σ = ⟨S; new⟩, and σ′ = ⟨S[l 7→ (⊥, false)]; l⟩.

To show: π(⟨S; new⟩) ↪−→ π(⟨S[l 7→ (⊥, false)]; l⟩).

By Definitions 3.11 and 3.9, π(σ) = ⟨π(S); new⟩.

By E-New, ⟨π(S); new⟩ steps to ⟨(π(S))[l′ 7→ (⊥, false)]; l′⟩, where l′ /∈ dom(π(S)).

It remains to show that ⟨(π(S))[l′ 7→ (⊥, false)]; l′⟩ is equal to π(⟨S[l 7→ (⊥, false)]; l⟩).

By Definition 3.11, π(⟨S[l 7→ (⊥, false)]; l⟩) is equal to ⟨π(S[l 7→ (⊥, false)]); π(l)⟩, which is

equal to ⟨(π(S))[π(l) 7→ (⊥, false)]; π(l)⟩.

We have to show that ⟨(π(S))[l′ 7→ (⊥, false)]; l′⟩ is equal to ⟨(π(S))[π(l) 7→ (⊥, false)]; π(l)⟩.

We know (from the side condition of E-New) that l /∈ dom(S), and so π(l) /∈ π(dom(S)).

Therefore, in ⟨(π(S))[l′ 7→ (⊥, false)]; l′⟩, we can α-rename l′ to π(l), and so the two configura-

tions are equal and the case is satisfied.

• Case E-Put: σ = ⟨S; puti l⟩, and σ′ = ⟨S[l 7→ upi(p1)]; ()⟩.

To show: π(⟨S; puti l⟩) ↪−→ π(⟨S[l 7→ upi(p1)]; ()⟩).

By Definition 3.11, π(σ) = ⟨π(S); puti π(l)⟩.

By E-Put, ⟨π(S); puti π(l)⟩ steps to ⟨(π(S))[π(l) 7→ upi(p1)]; ()⟩,

173

A. PROOFS

since S(l) = (π(S))(π(l)) = p1.

It remains to show that ⟨(π(S))[π(l) 7→ upi(p1)]; ()⟩ is equal to π(⟨S[l 7→ upi(p1)]; ()⟩).

By Definitions 3.11 and 3.9, π(⟨S[l 7→ upi(p1)]; ()⟩) is equal to ⟨(π(S))[π(l) 7→ upi(p1)]; ()⟩,

and so the two configurations are equal and the case is satisfied.

• Case E-Put-Err: σ = ⟨S; puti l⟩, and σ′ = error.

To show: π(⟨S; puti l⟩) ↪−→ π(error).

By Definition 3.11, π(σ) = ⟨π(S); puti π(l)⟩.

By E-Put-Err, ⟨π(S); puti π(l)⟩ steps to error, since S(l) = (π(S))(π(l)) = p1.

Since π(error) = error by Definition 3.11, the case is complete.

• Case E-Get: σ = ⟨S; get l P ⟩, and σ′ = ⟨S; p2⟩.

To show: π(⟨S; get l P ⟩) ↪−→ π(⟨S; p2⟩).

By Definitions 3.11 and 3.9, π(σ) = ⟨π(S); get π(l) P ⟩.

By E-Get, ⟨π(S); get π(l) P ⟩ steps to ⟨π(S); p2⟩, since S(l) = (π(S))(π(l)) = p1.

By Definitions 3.11 and 3.9, π(⟨S; p2⟩) = ⟨π(S); p2⟩.

Therefore the case is complete.

• Case E-Freeze-Init: σ = ⟨S; freeze l after Q with λx. e⟩,

and σ′ = ⟨S; freeze l after Q with λx. e, {} , {}⟩.

To show: π(⟨S; freeze l after Q with λx. e⟩) ↪−→

π(⟨S; freeze l after Q with λx. e, {} , {}⟩).

By Definitions 3.11 and 3.9, π(σ) = ⟨π(S); freeze π(l) after Q with λx. π(e)⟩.

By E-Freeze-Init, ⟨π(S); freeze π(l) after Q with λx. π(e)⟩ ↪−→

⟨π(S); freeze π(l) after Q with λx. π(e), {} , {}⟩.

By Definitions 3.11 and 3.9, π(⟨S; freeze l after Q with λx. e, {} , {}⟩) =

⟨π(S); freeze π(l) after Q with λx. π(e), {} , {}⟩.

Therefore the case is complete.

• Case E-Spawn-Handler: σ = ⟨S; freeze l after Q with λx. e0, {e, . . . } , H⟩,

174

A. PROOFS

and σ′ = ⟨S; freeze l after Q with λx. e0, {e0[x := d2], e, . . . } , {d2} ∪H⟩.

To show: π(⟨S; freeze l after Q with λx. e0, {e, . . . } , H⟩) ↪−→

π(⟨S; freeze l after Q with λx. e0, {e0[x := d2], e, . . . } , {d2} ∪H⟩).

By Definitions 3.11 and 3.9, π(σ) =

⟨π(S); freeze π(l) after Q with λx. π(e0), {π(e), . . . } , H⟩.

Since (π(S))(π(l)) = (d1, frz1), by E-Spawn-Handler we have that

⟨π(S); freeze π(l) after Q with λx. π(e0), {π(e), . . . } , H⟩ ↪−→

⟨π(S); freeze π(l) after Q with λx. π(e0), {π(e0)[x := d2], π(e), . . . } , {d2} ∪H⟩.

By Definitions 3.11 and 3.9, π(⟨S; freeze l after Q with λx. e0, {e0[x := d2], e, . . . } , {d2} ∪

H⟩) = ⟨π(S); freeze π(l) after Q with λx. π(e0), {π(e0)[x := d2], π(e), . . . } , {d2} ∪H⟩.

Therefore the case is complete.

• Case E-Freeze-Final: σ = ⟨S; freeze l after Q with λx. e0, {v, . . . } , H⟩,

and σ′ = ⟨S[l 7→ (d1, true)]; d1⟩.

To show: π(⟨S; freeze l after Q with λx. e0, {v, . . . } , H⟩) ↪−→

π(⟨S[l 7→ (d1, true)]; d1⟩).

By Definitions 3.11 and 3.9, π(σ) =

⟨π(S); freeze π(l) after Q with λx. π(e0), {π(v), . . . } , H⟩.

Since (π(S))(π(l)) = (d1, frz1), by E-Freeze-Final we have that

⟨π(S); freeze π(l) after Q with λx. π(e0), {π(v), . . . } , H⟩ ↪−→

⟨π(S)[π(l) 7→ (d1, true)]; d1⟩.

(From Definition 3.9, we can see that if v is a value, π(v) is also a value.)

It remains to show that ⟨π(S)[π(l) 7→ (d1, true)]; d1⟩ is equal to π(⟨S[l 7→ (d1, true)]; d1⟩).

By Definitions 3.11 and 3.9, π(⟨S[l 7→ (d1, true)]; d1⟩) is equal to ⟨π(S[l 7→ (d1, true)]); d1⟩),

which is equal to ⟨π(S)[π(l) 7→ (d1, true)]; d1⟩, and so the two configurations are equal and the

case is satisfied.

• Case E-Freeze-Simple: σ = ⟨S; freeze l⟩, and σ′ = ⟨S[l 7→ (d1, true)]; d1⟩.

175

A. PROOFS

To show: π(⟨S; freeze l⟩) ↪−→ π(⟨S[l 7→ (d1, true)]; d1⟩).

By Definitions 3.11 and 3.9, π(σ) = ⟨π(S); freeze π(l)⟩.

Since (π(S))(π(l)) = (d1, frz1), by E-Freeze-Simple we have that ⟨π(S); freeze π(l)⟩ ↪−→

⟨π(S)[π(l) 7→ (d1, true)]; d1⟩.

It remains to show that ⟨π(S)[π(l) 7→ (d1, true)]; d1⟩ is equal to π(⟨S[l 7→ (d1, true)]; d1⟩).

By Definitions 3.11 and 3.9, π(⟨S[l 7→ (d1, true)]; d1⟩) is equal to ⟨π(S[l 7→ (d1, true)]); d1⟩),

which is equal to ⟨π(S)[π(l) 7→ (d1, true)]; d1⟩, and so the two configurations are equal and the

case is satisfied.

For the reverse direction of part 1, suppose π(σ) ↪−→ π(σ′).

We have to show that σ ↪−→ σ′.

We know from the forward direction of the proof that for all configurations σ and σ′ and permutations

π, if σ ↪−→ σ′ then π(σ) ↪−→ π(σ′).

Hence since π(σ) ↪−→ π(σ′), and since π−1 is also a permutation, we have that π−1(π(σ)) ↪−→

π−1(π(σ′)).

Since π−1(π(l)) = l for every l ∈ Loc, and that property lifts to configurations as well, we have that

σ ↪−→ σ′.

For the forward direction of part 2, suppose σ 7−→ σ′.

We have to show that π(σ) 7−→ π(σ′).

By inspection of the operational semantics, σmust be of the form ⟨S; E [e]⟩, and σ′ must be of the form

⟨S ′; E [e′]⟩.

Hence we have to show that π(⟨S; E [e]⟩) 7−→ π(⟨S ′; E [e′]⟩).

By Definition 3.11, π(⟨S; E [e]⟩) is equal to ⟨π(S); π(E [e])⟩.

Also by Definition 3.11, π(⟨S ′; E [e′]⟩) is equal to ⟨π(S ′); π(E [e′])⟩.

176

A. PROOFS

Furthermore, ⟨π(S); π(E [e])⟩ is equal to ⟨π(S); (π(E))[π(e)]⟩ and ⟨π(S ′); π(E [e′])⟩ is equal to

⟨π(S ′); (π(E))[π(e′)]⟩.

So we have to show that ⟨π(S); (π(E))[π(e)]⟩ 7−→ ⟨π(S ′); (π(E))[π(e′)]⟩.

From the premise of E-Eval-Ctxt, ⟨S; e⟩ ↪−→ ⟨S ′; e′⟩.

Hence, by part 1, π(⟨S; e⟩) ↪−→ π(⟨S ′; e′⟩).

By Definition 3.11, π(⟨S; e⟩) is equal to ⟨π(S); π(e)⟩ and π(⟨S ′; e′⟩) is equal to ⟨π(S ′); π(e′)⟩.

Hence ⟨π(S); π(e)⟩ ↪−→ ⟨π(S ′); π(e′)⟩.

Therefore, by E-Eval-Ctxt, ⟨π(S); E [π(e)]⟩ 7−→ ⟨π(S ′); E [π(e′)]⟩ for all evaluation contextsE.

In particular, it is true that ⟨π(S); (π(E))[π(e)]⟩ 7−→ ⟨π(S ′); (π(E))[π(e′)]⟩, as we were required to

show.

For the reverse direction of part 2, suppose π(σ) 7−→ π(σ′).

We have to show that σ 7−→ σ′.

We know from the forward direction of the proof that for all configurations σ and σ′ and permutations

π, if σ 7−→ σ′ then π(σ) 7−→ π(σ′).

Hence since π(σ) 7−→ π(σ′), and since π−1 is also a permutation, we have that π−1(π(σ)) 7−→

π−1(π(σ′)).

Since π−1(π(l)) = l for every l ∈ Loc, and that property lifts to configurations as well, we have that

σ 7−→ σ′.

□

A.12. Proof of Lemma 3.4

Proof. Suppose σ ↪−→ σ′ and σ ↪−→ σ′′.

177

A. PROOFS

We have to show that there is a permutation π such that σ′ = π(σ′′), modulo choice of events.

The proof is by cases on the rule by which σ steps to σ′.

• Case E-Beta:

Given: ⟨S; (λx. e) v⟩ ↪−→ ⟨S; e[x := v]⟩, and ⟨S; (λx. e) v⟩ ↪−→ σ′′.

To show: There exists a π such that ⟨S; e[x := v]⟩ = π(σ′′).

By inspection of the operational semantics, the only reduction rule by which ⟨S; (λx. e) v⟩ can

step is E-Beta.

Hence σ′′ = ⟨S; e[x := v]⟩, and the case is satisfied by choosing π to be the identity function.

• Case E-New:

Given: ⟨S; new⟩ ↪−→ ⟨S[l 7→ (⊥, false)]; l⟩, and ⟨S; new⟩ ↪−→ σ′′.

To show: There exists a π such that ⟨S[l 7→ (⊥, false)]; l⟩ = π(σ′′).

By inspection of the operational semantics, the only reduction rule by which ⟨S; new⟩ can step is

E-New.

Hence σ′′ = ⟨S[l′ 7→ (⊥, false)]; l′⟩.

Since, by the side condition of E-New, neither l nor l′ occur in dom(S), the case is satisfied by

choosing π to be the permutation that maps l′ to l and is the identity on every other element of

Loc.

• Case E-Put:

Given: ⟨S; puti l⟩ ↪−→ ⟨S[l 7→ upi(p1)]; ()⟩, and ⟨S; puti l⟩ ↪−→ σ′′.

To show: There exists a π such that ⟨S[l 7→ upi(p1)]; ()⟩ = π(σ′′).

By inspection of the operational semantics, and since upi(p1) ̸= ⊤p (from the premise of E-Put),

the only reduction rule by which ⟨S; puti l⟩ can step is E-Put.

Hence σ′′ = ⟨S[l 7→ upi(p1)]; ()⟩, and the case is satisfied by choosing π to be the identity

function.

• Case E-Put-Err:

178

A. PROOFS

Given: ⟨S; puti l⟩ ↪−→ error, and ⟨S; puti l⟩ ↪−→ σ′′.

To show: There exists a π such that error = π(σ′′).

By inspection of the operational semantics, and since upi(p1) = ⊤p (from the premise of E-Put-

Err), the only reduction rule by which ⟨S; puti l⟩ can step is E-Put-Err.

Hence σ′′ = error, and the case is satisfied by choosing π to be the identity function.

• Case E-Get:

Given: ⟨S; get l P ⟩ ↪−→ ⟨S; p2⟩, and ⟨S; get l P ⟩ ↪−→ σ′′.

To show: There exists a π such that ⟨S; p2⟩ = π(σ′′).

By inspection of the operational semantics, the only reduction rule by which ⟨S; get l P ⟩ can step

is E-Get.

Hence σ′′ = ⟨S; p2⟩, and the case is satisfied by choosing π to be the identity function.

• Case E-Freeze-Init:

Given: ⟨S; freeze l after Q with λx. e⟩ ↪−→ ⟨S; freeze l after Q with λx. e, {} , {}⟩, and

⟨S; freeze l after Q with λx. e⟩ ↪−→ σ′′.

To show: There exists a π such that ⟨S; freeze l after Q with λx. e, {} , {}⟩ = π(σ′′).

By inspection of the operational semantics, the only reduction rule by which

⟨S; freeze l after Q with λx. e⟩ can step is E-Freeze-Init.

Hence σ′′ = ⟨S; freeze l after Q with λx. e, {} , {}⟩, and the case is satisfied by choosing π to

be the identity function.

• Case E-Spawn-Handler:

Given: ⟨S; freeze l after Q with λx. e0, {e, . . . } , H⟩ ↪−→

⟨S; freeze l after Q with λx. e0, {e0[x := d2], e, . . . } , {d2} ∪H⟩, and

⟨S; freeze l after Q with λx. e0, {e, . . . } , H⟩ ↪−→ σ′′.

To show: There exists a π such that

⟨S; freeze l after Q with λx. e0, {e0[x := d2], e, . . . } , {d2} ∪H⟩ = π(σ′′).

By inspection of the operational semantics, the only reduction rule by which

179

A. PROOFS

⟨S; freeze l after Q with λx. e0, {e, . . . } , H⟩ can step is E-Spawn-Handler.

(It cannot step by E-Freeze-Final, because we have from the premises of E-Spawn-Handler that

d2 ⊑ d1 and d2 ∈ Q and d2 /∈ H , and for the premises of E-Freeze-Final to hold, we would need

that for all d2, if d2 ⊑ d1 and d2 ∈ Q, then d2 ∈ H .)

Henceσ′′ = ⟨S; freeze l afterQ withλx. e0, {e0[x := d′2], e, . . . } , {d′2}∪H⟩, where d′2 ⊑ d1

and d′2 ∈ Q and d′2 /∈ H , and the case is satisfied by choosing π to be the identity function.

(It may be the case that d′2 ̸= d2; if so, then we have internal nondeterminism modulo choice

of events, as we were required to show. If d′2 = d2 then we have internal nondeterminism even

without that additional qualification, which also satisfies the case.)

• Case E-Freeze-Final:

Given: ⟨S; freeze l after Q with λx. e0, {v, . . . } , H⟩ ↪−→ ⟨S[l 7→ (d1, true)]; d1⟩, and

⟨S; freeze l after Q with λx. e0, {v, . . . } , H⟩ ↪−→ σ′′.

To show: There exists a π such that ⟨S[l 7→ (d1, true)]; d1⟩ = π(σ′′).

By inspection of the operational semantics, the only reduction rule by which

⟨S; freeze l after Q with λx. e0, {v, . . . } , H⟩ can step is E-Freeze-Final.

(It cannot step by E-Spawn-Handler, because we have from the premises of E-Freeze-Final that,

for all d2, if d2 ⊑ d1 and d2 ∈ Q, then d2 ∈ H , and for the premises of E-Spawn-Handler to hold,

we would need that d2 ⊑ d1 and d2 ∈ Q and d2 /∈ H .)

Hence σ′′ = ⟨S[l 7→ (d1, true)]; d1⟩, and the case is satisfied by choosing π to be the identity

function.

• Case E-Freeze-Simple:

Given: ⟨S; freeze l⟩ ↪−→ ⟨S[l 7→ (d1, true)]; d1⟩, and ⟨S; freeze l⟩ ↪−→ σ′′.

To show: There exists a π such that ⟨S[l 7→ (d1, true)]; d1⟩ = π(σ′′).

By inspection of the operational semantics, the only reduction rule by which ⟨S; freeze l⟩ can

step is E-Freeze-Simple.

180

A. PROOFS

Hence σ′′ = ⟨S[l 7→ (d1, true)]; d1⟩, and the case is satisfied by choosing π to be the identity

function.

□

A.13. Proof of Lemma 3.5

Proof. Suppose ⟨S; E1 [e1]⟩ 7−→ ⟨S1; E1 [e
′
1]⟩ and ⟨S; E2 [e2]⟩ 7−→ ⟨S2; E2 [e

′
2]⟩ and E1 [e1] =

E2 [e2].

We are required to show that ifE1 ̸= E2, then there exist evaluation contextsE ′
1 andE

′
2 such that:

• E ′
1 [e1] = E2 [e

′
2], and

• E ′
2 [e2] = E1 [e

′
1], and

• E ′
1 [e

′
1] = E ′

2 [e
′
2].

Let e = E1 [e1] = E2 [e2].

The proof is by induction on the structure of the expression e.

Proceeding by cases on e:

• Cases e = x, e = v, e = ea eb, e = get ea eb, and e = new are identical to their corresponding

cases in the proof of Lemma 2.3.

• Case e = puti ea:

We know that puti ea = E1 [e1].

From the grammar of evaluation contexts, then, we know that either:

– puti ea = E1 [e1] = E1 [puti ea], whereE1 = [], or

– puti ea = E1 [e1] = puti E11 [e1], whereE11 [e1] = ea.

Similarly, we know that puti ea = E2 [e2].

From the grammar of evaluation contexts, we know that either:

– puti ea = E2 [e2] = E2 [puti ea], whereE2 = [], or

181

A. PROOFS

– puti ea = E2 [e2] = puti E21 [e2], whereE21 [e2] = ea.

However, if E1 = [] or E2 = [], then puti ea must be puti v for some v, and v cannot step

individually, so the other ofE1 orE2 must be [] as well, and soE1 = E2.

Therefore the only case that we have to consider (where E1 ̸= E2) is the case in which E1 [e1] =

puti E11 [e1], whereE11 [e1] = ea, and puti ea = E2 [e2] = puti E21 [e2], whereE21 [e2] = ea.

So, we haveE11 [e1] = ea andE21 [e2] = ea.

In this case, we know thatE11 ̸= E21, because ifE11 = E21, we would have e1 = e2, which would

mean thatE1 = E2, a contradiction.

So, sinceE11 ̸= E21, by IH we have that there exist evaluation contextsE ′
11 andE

′
21 such that:

– E ′
11 [e1] = E21 [e

′
2], and

– E ′
21 [e2] = E11 [e

′
1], and

– E ′
11 [e

′
1] = E ′

21 [e
′
2].

Hence we can chooseE ′
1 = puti E ′

11 andE
′
2 = puti E ′

21, which satisfy the criteria forE ′
1 andE

′
2.

• Case e = freeze ea: Similar to the case for puti ea.

• Case e = freeze ea after eb with ec: Similar to the case where e = ea eb.

• Case e = freeze l after Q with λx. ea, {eb, . . . } , H:

We know that freeze l after Q with λx. ea, {eb, . . . } , H = E1 [e1].

From the grammar of evaluation contexts, we know that either:

– freeze l after Q with λx. ea, {eb, . . . } , H = E1 [e1] =

E1 [freeze l after Q with λx. ea, {eb, . . . } , H], whereE1 = [], or

– freeze l after Q with λx. ea, {eb, . . . } , H = E1 [e1] =

freeze l after Q with λx. ea, {eb1 , . . . , E11 [e1] , . . . , ebn} , H , whereE11 [e1] = ebi .

Similarly, we know that freeze l after Q with λx. ea, {eb, . . . } , H = E2 [e2].

From the grammar of evaluation contexts, we know that either:

– freeze l after Q with λx. ea, {eb, . . . } , H = E2 [e2] =

E2 [freeze l after Q with λx. ea, {eb, . . . } , H], whereE2 = [], or

182

A. PROOFS

– freeze l after Q with λx. ea, {eb, . . . } , H = E2 [e2] =

freeze l after Q with λx. ea, {eb1 , . . . , E21 [e2] , . . . , ebn} , H , whereE21 [e2] = ebj .

However, if E1 = [] or E2 = [], then freeze l after Q with λx. ea, {eb, . . . } , H must be

freeze l afterQ withλx. ea, {v, . . . } , H for some{v1, . . . , vn}, andno vi can step individually,

so the other ofE1 orE2 must be [] as well, and soE1 = E2.

Therefore the only case that we have to consider (whereE1 ̸= E2) is the case in which:

– freeze l after Q with λx. ea, {eb, . . . } , H = E1 [e1] =

freeze l after Q with λx. ea, {eb1 , . . . , E11 [e1] , . . . , ebn} , H , whereE11 [e1] = ebi , and

– freeze l after Q with λx. ea, {eb, . . . } , H = E2 [e2] =

freeze l after Q with λx. ea, {eb1 , . . . , E21 [e2] , . . . , ebn} , H , whereE21 [e2] = ebj .

Finally, we have two cases to consider:

– ebi = ebj : In this case we have ebi = E11 [e1] = E21 [e2].

We know thatE11 ̸= E21, because ifE11 = E21, we would have e1 = e2, which would mean

thatE1 = E2, a contradiction.

So, since E11 ̸= E21, by IH we have that there exist evaluation contexts E ′
11 and E ′

21 such

that:

∗ E ′
11 [e1] = E21 [e

′
2], and

∗ E ′
21 [e2] = E11 [e

′
1], and

∗ E ′
11 [e

′
1] = E ′

21 [e
′
2].

Hence we can choose

E ′
1 = freeze l after Q with λx. ea, {eb1 , . . . , E ′

11, . . . , ebn} , H,

and

E ′
2 = freeze l after Q with λx. ea, {eb1 , . . . , E ′

21, . . . , ebn} , H,

which satisfy the criteria forE ′
1 andE

′
2.

183

A. PROOFS

– ebi ̸= ebj : In this case, we can choose

E ′
1 = freeze l after Q with λx. ea, {eb1 , . . . , E11, . . . , E21 [e

′
2] , . . . , ebn} , H,

and

E ′
2 = freeze l after Q with λx. ea, {eb1 , . . . , E11 [e

′
1] , . . . , E21, . . . , ebn} , H,

which satisfy the criteria forE ′
1 andE

′
2.

□

A.14. Proof of Lemma 3.6

Proof. Suppose ⟨S; e⟩ ↪−→ ⟨S ′; e′⟩.

We are required to show that S ⊑S S ′.

The proof is by cases on the rule by which ⟨S; e⟩ steps to ⟨S ′; e′⟩.

• Case E-Beta:

Immediate by the definition of⊑S , since S does not change.

• Case E-New:

Given: ⟨S; new⟩ ↪−→ ⟨S[l 7→ (⊥, false)]; l⟩.

To show: S ⊑S S[l 7→ (⊥, false)].

By Definition 3.6, we have to show that dom(S) ⊆ dom(S[l 7→ (⊥, false)]) and that for all l′ ∈

dom(S), S(l′) ⊑p (S[l 7→ (⊥, false)])(l′).

By definition, a store update operation on S can only either update an existing binding in S or

extend S with a new binding.

Hence dom(S) ⊆ dom(S[l 7→ (⊥, false)]).

From the side condition of E-New, l /∈ dom(S).

184

A. PROOFS

Hence S[l 7→ (⊥, false)] adds a new binding for l in S.

Hence S[l 7→ (⊥, false)] does not update any existing bindings in S.

Hence, for all l′ ∈ dom(S), S(l′) ⊑p (S[l 7→ (⊥, false)])(l′).

Therefore S ⊑S S[l 7→ (⊥, false)], as required.

• Case E-Put:

Given: ⟨S; puti l⟩ ↪−→ ⟨S[l 7→ upi(p1)]; ()⟩.

To show: S ⊑S S[l 7→ upi(p1)].

By Definition 3.6, we have to show that dom(S) ⊆ dom(S[l 7→ upi(p1)]) and that for all l′ ∈

dom(S), S(l′) ⊑p (S[l 7→ upi(p1)])(l
′).

By definition, a store update operation on S can only either update an existing binding in S or

extend S with a new binding.

Hence dom(S) ⊆ dom(S[l 7→ upi(p1)]).

From the premises of E-Put, S(l) = p1.

Therefore l ∈ dom(S).

Hence S[l 7→ upi(p1)] updates the existing binding for l in S from p1 to upi(p1).

By definition, upi is inflationary.

Hence p1 ⊑p upi(p1).

S[l 7→ upi(p1)] does not update any other bindings in S, hence, for all l′ ∈ dom(S), S(l′) ⊑p

(S[l 7→ upi(p1)])(l
′).

Hence S ⊑S S[l 7→ upi(p1)], as required.

• Case E-Put-Err:

Given: ⟨S; puti l⟩ ↪−→ error.

By the definition of error, error = ⟨⊤S; e⟩ for any e.

To show: S ⊑S ⊤S .

Immediate by the definition of⊑S .

• Case E-Get:

185

A. PROOFS

Immediate by the definition of⊑S , since S does not change.

• Case E-Freeze-Init:

Immediate by the definition of⊑S , since S does not change.

• Case E-Spawn-Handler:

Immediate by the definition of⊑S , since S does not change.

• Case E-Freeze-Final:

Given: ⟨S; freeze l after Q with λx. e0, {v, . . . } , H⟩ ↪−→ ⟨S[l 7→ (d1, true)]; d1⟩.

To show: S ⊑S S[l 7→ (d1, true)].

By Definition 3.6, we have to show that dom(S) ⊆ dom(S[l 7→ (d1, true)]) and that for all l′ ∈

dom(S), S(l′) ⊑p (S[l 7→ (d1, true)])(l′).

By definition, a store update operation on S can only either update an existing binding in S or

extend S with a new binding.

Hence dom(S) ⊆ dom(S[l 7→ (d1, true)]).

From the premises of E-Freeze-Final, S(l) = (d1, frz1). Therefore l ∈ dom(S).

Hence S[l 7→ (d1, true)] updates the existing binding for l in S from (d1, frz1) to (d1, true).

By the definition of⊑p, (d1, frz1) ⊑p (d1, true).

S[l 7→ (d1, true)] does not update any other bindings in S, hence, for all l′ ∈ dom(S), S(l′) ⊑p

(S[l 7→ (d1, true)])(l′).

Hence S ⊑S S[l 7→ (d1, true)], as required.

• Case E-Freeze-Simple:

Given: ⟨S; freeze l⟩ ↪−→ ⟨S[l 7→ (d1, true)]; d1⟩.

To show: S ⊑S S[l 7→ (d1, true)].

Similar to the previous case.

□

186

A. PROOFS

A.15. Proof of Lemma 3.7

Proof. Suppose ⟨S; e⟩ ↪−→ ⟨S ′; e′⟩, where ⟨S ′; e′⟩ ̸= error.

Consider arbitrary US such that US is non-conflicting with ⟨S; e⟩ ↪−→ ⟨S ′; e′⟩ and US(S
′) ̸= ⊤S and

US is freeze-safe with ⟨S; e⟩ ↪−→ ⟨S ′; e′⟩.

We are required to show that ⟨US(S); e⟩ ↪−→ ⟨US(S
′); e′⟩.

The proof is by cases on the rule of the reduction semantics by which ⟨S; e⟩ steps to ⟨S ′; e′⟩.

Since ⟨S ′; e′⟩ ̸= error, we do not need to consider the E-Put-Err rule.

The assumption that US is freeze-safe with ⟨S; e⟩ ↪−→ ⟨S ′; e′⟩ is only needed in the E-Freeze-Final

and E-Freeze-Simple cases.

• Case E-Beta:

Given: ⟨S; (λx. e) v⟩ ↪−→ ⟨S; e[x := v]⟩.

To show: ⟨US(S); (λx. e) v⟩ ↪−→ ⟨US(S); e[x := v]⟩.

Immediate by E-Beta.

• Case E-New:

Given: ⟨S; new⟩ ↪−→ ⟨S[l 7→ (⊥, false)]; l⟩.

To show: ⟨US(S); new⟩ ↪−→ ⟨US(S[l 7→ (⊥, false)]); l⟩.

By E-New, we have that ⟨US(S); new⟩ ↪−→ ⟨(US(S))[l
′ 7→ (⊥, false)]; l′⟩,

where l′ /∈ dom(US(S)).

By assumption, US is non-conflicting with ⟨S; new⟩ ↪−→ ⟨S[l 7→ (⊥, false)]; l⟩.

Therefore l /∈ dom(US(S)).

Therefore, in ⟨(US(S))[l
′ 7→ (⊥, false)]; l′⟩, we can α-rename l′ to l.

Therefore ⟨US(S); new⟩ ↪−→ ⟨(US(S))[l 7→ (⊥, false)]; l⟩.

Also, since US is non-conflicting with ⟨S; new⟩ ↪−→ ⟨S[l 7→ (⊥, false)]; l⟩,

we have that (US(S[l 7→ (⊥, false)]))(l) = (S[l 7→ (⊥, false)])(l) = (⊥, false).

187

A. PROOFS

Hence (US(S))[l 7→ (⊥, false)] = US(S[l 7→ (⊥, false)]).

Therefore ⟨US(S); new⟩ ↪−→ ⟨US(S[l 7→ (⊥, false)]); l⟩, as we were required to show.

• Case E-Put:

Given: ⟨S; puti l⟩ ↪−→ ⟨S[l 7→ upi(p1)]; ()⟩.

To show: ⟨US(S); puti l⟩ ↪−→ ⟨US(S[l 7→ upi(p1)]); ()⟩.

From the premises of E-Put, S(l) = p1.

Hence (US(S))(l) = p′1, where p1 ⊑p p
′
1.

Next, we want to show that upi(p
′
1) ̸= ⊤p.

Assume for the sake of a contradiction that upi(p
′
1) = ⊤p.

Then upi((US(S))(l)) = ⊤p.

Let upj be the state update operation in US that affects the contents of l.

Hence (US(S))(l) = upj(p1). Then upi(upj(p1)) = ⊤p.

Since state update operations commute, upj(upi(p1)) = ⊤p.

But then US(S[l 7→ upi(p1)]) = ⊤S ,

which contradicts the assumption that US(S[l 7→ upi(p1)]) ̸= ⊤S .

Hence, upi(p
′
1) ̸= ⊤p.

Therefore, by E-Put, ⟨US(S); puti l⟩ ↪−→ ⟨(US(S))[l 7→ upi(p
′
1)]; ()⟩.

Since p′1 = upj(p1), we have that (US(S))[l 7→ upi(p
′
1)] = (US(S))[l 7→ upi(upj(p1))],

which, since upi and upj commute, is equal to (US(S))[l 7→ upj(upi(p1))].

Finally, since upj is the update operation in US that affects the contents of l,

we have that (US(S))[l 7→ upj(upi(p1))] = US(S[l 7→ upi(p1)]), and so the case is satisfied.

• Case E-Get:

Given: ⟨S; get l P ⟩ ↪−→ ⟨S; p2⟩.

To show: ⟨US(S); get l P ⟩ ↪−→ ⟨US(S); p2⟩.

From the premises of E-Get, S(l) = p1 and incomp(P) and p2 ∈ P and p2 ⊑p p1.

By assumption, US(S) ̸= ⊤S .

188

A. PROOFS

Hence (US(S))(l) = p′1, where p1 ⊑p p
′
1.

By the transitivity of⊑p, p2 ⊑p p
′
1.

Hence, (US(S))(l) = p′1 and incomp(P) and p2 ∈ P and p2 ⊑p p
′
1.

Therefore, by E-Get,

⟨US(S); get l P ⟩ ↪−→ ⟨US(S); p2⟩,

as we were required to show.

• Case E-Freeze-Init:

Given: ⟨S; freeze l after Q with λx. e⟩ ↪−→

⟨S; freeze l after Q with λx. e, {} , {}⟩.

To show: ⟨US(S); freeze l after Q with λx. e⟩ ↪−→

⟨US(S); freeze l after Q with λx. e, {} , {}⟩.

Immediate by E-Freeze-Init.

• Case E-Spawn-Handler:

Given:

⟨S; freeze l after Q with λx. e0, {e, . . . } , H⟩ ↪−→

⟨S; freeze l after Q with λx. e0, {e0[x := d2], e, . . . } , {d2} ∪H⟩.

To show:

⟨US(S); freeze l after Q with λx. e0, {e, . . . } , H⟩ ↪−→

⟨US(S); freeze l after Q with λx. e0, {e0[x := d2], e, . . . } , {d2} ∪H⟩.

From the premises of E-Spawn-Handler, S(l) = (d1, frz1) and d2 ⊑ d1 and d2 /∈ H and d2 ∈ Q.

By assumption, US(S) ̸= ⊤S .

Hence (US(S))(l) = (d′1, frz
′
1) where (d1, frz1) ⊑p (d

′
1, frz

′
1).

By Definition 3.1, d1 ⊑ d′1.

By the transitivity of⊑, d2 ⊑ d′1.

Hence (US(S))(l) = (d′1, frz
′
1) and d2 ⊑ d′1 and d2 /∈ H and d2 ∈ Q.

Therefore, by E-Spawn-Handler,

189

A. PROOFS

⟨US(S); freeze l after Q with λx. e0, {e, . . . } , H⟩ ↪−→

⟨US(S); freeze l after Q with λx. e0, {e0[x := d2], e, . . . } , {d2} ∪H⟩,

as we were required to show.

• Case E-Freeze-Final:

Given: ⟨S; freeze l after Q with λx. e0, {v, . . . } , H⟩ ↪−→

⟨S[l 7→ (d1, true)]; d1⟩.

To show: ⟨US(S); freeze l after Q with λx. e0, {v, . . . } , H⟩ ↪−→

⟨US(S[l 7→ (d1, true)]); d1⟩.

From the premises of E-Freeze-Final, S(l) = (d1, frz1).

We have two cases to consider:

– frz1 = true:

In this case, S(l) = (d1, true).

Let upi be the state update operation in US that affects the contents of l.

Hence (US(S))(l) = upi((d1, true)).

We know from Definition 3.4 that upi((d1, true)) is either (d1, true) or (⊤, false).

But if upi((d1, true)) = (⊤, false), then US(S[l 7→ (d1, true)]) = ⊤S , which contradicts our

assumption that US(S[l 7→ (d1, true)]) ̸= ⊤S .

Hence upi((d1, true)) = (d1, true).

Hence (US(S))(l) = (d1, true), andwe already have from the premises of E-Freeze-Final that

∀d2 . (d2 ⊑ d1 ∧ d2 ∈ Q ⇒ d2 ∈ H).

Hence, by E-Freeze-Final, we have that

⟨US(S); freeze l after Q with λx. e0, {v, . . . } , H⟩ ↪−→ ⟨(US(S))[l 7→ (d1, true)]; d1⟩.

Finally, since upi is the state update operation in US that affects the contents of l,

and upi((d1, true)) = (d1, true), we have that (US(S))[l 7→ (d1, true)] is equal toUS(S[l 7→

(d1, true)]), and so the case is satisfied.

– frz1 = false:

190

A. PROOFS

By assumption,US is freeze-safe with ⟨S; freeze l after Q with λx. e0, {v, . . . } , H⟩ ↪−→

⟨S[l 7→ (d1, true)]; d1⟩.

Therefore US acts as the identity on the contents of any locations that change status during

the transition.

Since frz1 = false, the contents of l change status during the transition.

Therefore US acts as the identity on the contents of l.

Hence (US(S))(l) = S(l) = (d1, frz1), and we already have from the premises of E-Freeze-

Final that ∀d2 . (d2 ⊑ d1 ∧ d2 ∈ Q ⇒ d2 ∈ H).

Hence, by E-Freeze-Final, we have that

⟨US(S); freeze l after Q with λx. e0, {v, . . . } , H⟩ ↪−→ ⟨(US(S))[l 7→ (d1, true)]; d1⟩.

Finally, sinceUS acts as the identity on the contents of l, wehave that (US(S))[l 7→ (d1, true)]

is equal to US(S[l 7→ (d1, true)]), and so the case is satisfied.

• Case E-Freeze-Simple:

Given: ⟨S; freeze l⟩ ↪−→ ⟨S[l 7→ (d1, true)]; d1⟩.

To show: ⟨US(S); freeze l⟩ ↪−→ ⟨US(S[l 7→ (d1, true)]); d1⟩.

From the premises of E-Freeze-Simple, S(l) = (d1, frz1).

We have two cases to consider:

– frz1 = true:

In this case, S(l) = (d1, true).

Let upi be the state update operation in US that affects the contents of l.

Hence (US(S))(l) = upi((d1, true)).

We know from Definition 3.4 that upi((d1, true)) is either (d1, true) or (⊤, false).

But if upi((d1, true)) = (⊤, false), then US(S[l 7→ (d1, true)]) = ⊤S , which contradicts our

assumption that US(S[l 7→ (d1, true)]) ̸= ⊤S .

Hence upi((d1, true)) = (d1, true).

Hence (US(S))(l) = (d1, true).

191

A. PROOFS

Hence, by E-Freeze-Simple, we have that ⟨US(S); freeze l⟩ ↪−→

⟨(US(S))[l 7→ (d1, true)]; d1⟩.

Finally, since upi is the state update operation in US that affects the contents of l,

and upi((d1, true)) = (d1, true), we have that (US(S))[l 7→ (d1, true)] is equal toUS(S[l 7→

(d1, true)]), and so the case is satisfied.

– frz1 = false:

By assumption, US is freeze-safe with ⟨S; freeze l⟩ ↪−→ ⟨S[l 7→ (d1, true)]; d1⟩.

Therefore US acts as the identity on the contents of any locations that change status during

the transition.

Since frz1 = false, the contents of l change status during the transition.

Therefore US acts as the identity on the contents of l.

Hence (US(S))(l) = S(l) = (d1, frz1).

Hence, by E-Freeze-Simple, we have that ⟨US(S); freeze l⟩ ↪−→

⟨(US(S))[l 7→ (d1, true)]; d1⟩.

Finally, sinceUS acts as the identity on the contents of l, wehave that (US(S))[l 7→ (d1, true)]

is equal to US(S[l 7→ (d1, true)]), and so the case is satisfied.

□

A.16. Proof of Lemma 3.8

Proof. Suppose ⟨S; e⟩ ↪−→ ⟨S ′; e′⟩, where ⟨S ′; e′⟩ ̸= error.

Consider arbitrary US such that US is non-conflicting with ⟨S; e⟩ ↪−→ ⟨S ′; e′⟩ and US(S
′) = ⊤S and

US is freeze-safe with ⟨S; e⟩ ↪−→ ⟨S ′; e′⟩.

We are required to show that there exists i ≤ 1 such that ⟨US(S); e⟩ ↪−→i error.

The proof is by cases on the rule of the reduction semantics by which ⟨S; e⟩ steps to ⟨S ′; e′⟩.

192

A. PROOFS

Since ⟨S ′; e′⟩ ̸= error, we do not need to consider the E-Put-Err rule.

The assumption that US is freeze-safe with ⟨S; e⟩ ↪−→ ⟨S ′; e′⟩ is only needed in the E-Freeze-Final

and E-Freeze-Simple cases.

• Case E-Beta:

Given: ⟨S; (λx. e) v⟩ ↪−→ ⟨S; e[x := v]⟩.

To show: ⟨US(S); (λx. e) v⟩ ↪−→ error, where i ≤ 1.

By assumption, US(S
′) = ⊤S .

Since S ′ = S, it must be the case that US(S
′) = US(S) = ⊤S .

Hence, by the definition of error, ⟨US(S); (λx. e) v⟩ = error.

Hence ⟨US(S); (λx. e) v⟩ ↪−→i error, with i = 0.

• Case E-New:

Given: ⟨S; new⟩ ↪−→ ⟨S[l 7→ (⊥, false)]; l⟩.

To show: ⟨US(S); new⟩ ↪−→i error, where i ≤ 1.

By E-New, ⟨US(S); new⟩ ↪−→ ⟨(US(S))[l
′ 7→ (⊥, false)]; l′⟩, where l′ /∈ dom(US(S)).

By assumption, US is non-conflicting with ⟨S; new⟩ ↪−→ ⟨S[l 7→ (⊥, false)]; l⟩.

Therefore l /∈ dom(US(S)).

Therefore, in ⟨(US(S))[l
′ 7→ (⊥, false)]; l′⟩, we can α-rename l′ to l.

Therefore ⟨US(S); new⟩ ↪−→ ⟨(US(S))[l 7→ (⊥, false)]; l⟩.

Also, since US is non-conflicting with ⟨S; new⟩ ↪−→ ⟨S[l 7→ (⊥, false)]; l⟩,

we have that (US(S[l 7→ (⊥, false)]))(l) = (S[l 7→ (⊥, false)])(l) = (⊥, false).

Hence (US(S))[l 7→ (⊥, false)] = US(S[l 7→ (⊥, false)]).

Therefore ⟨US(S); new⟩ ↪−→ ⟨US(S[l 7→ (⊥, false)]); l⟩.

By assumption, US(S[l 7→ (⊥, false)]) = ⊤S .

Therefore ⟨US(S); new⟩ ↪−→ ⟨⊤S; l⟩.

Hence, by the definition of error, ⟨US(S); new⟩ ↪−→ error.

193

A. PROOFS

Hence ⟨US(S); new⟩ ↪−→i error, with i = 1.

• Case E-Put:

Given: ⟨S; puti l⟩ ↪−→ ⟨S[l 7→ upi(p1)]; ()⟩.

To show: ⟨US(S); puti l⟩ ↪−→i′ error, where i′ ≤ 1.

Consider whether US(S) = ⊤S:

– If US(S) = ⊤S:

In this case, by the definition of error, ⟨US(S); puti l⟩ = error.

Hence ⟨US(S); puti l⟩ ↪−→i′ error, with i′ = 0.

– If US(S) ̸= ⊤S:

Since US(S) ̸= ⊤S , we know that S ̸= ⊤S .

Also, from the premises of E-Put, we have that upi(p1) ̸= ⊤p.

Hence S[l 7→ upi(p1)] ̸= ⊤S .

Since US(S) ̸= ⊤S and S[l 7→ upi(p1)] ̸= ⊤S , but US(S[l 7→ upi(p1)]) = ⊤S , it must be

US ’s action on the contents of l that updates S[l 7→ upi(p1)] to⊤S .

Let upj be the state update operation in US that affects the contents of l.

Then upj(upi(p1)) = ⊤p.

Since state update operations commute, upi(upj(p1)) = ⊤p.

Since upj is the state update operation in US that affects the contents of l, we have that

(US(S))(l) = upj(p1).

Since US(S) ̸= ⊤S , upJ (p1) ̸= ⊤p.

Therefore, by E-Put, ⟨US(S); puti l⟩ ↪−→ ⟨(US(S))[l 7→ upi(upj(p1))]; ()⟩.

Since upj(upi(p1)) = ⊤p, ⟨US(S); puti l⟩ ↪−→ error.

Hence ⟨US(S); puti l⟩ ↪−→i′ error, with i′ = 1.

• Case E-Get:

Given: ⟨S; get l P ⟩ ↪−→ ⟨S; p2⟩.

To show: ⟨US(S); get l P ⟩ ↪−→i error, where i ≤ 1.

194

A. PROOFS

By assumption, US(S) = ⊤S .

Hence, by the definition of error, ⟨US(S); get l P ⟩ = error.

Hence ⟨US(S); get l P ⟩ ↪−→i error, with i = 0.

• Case E-Freeze-Init:

Given: ⟨S; freeze l after Q with λx. e⟩ ↪−→ ⟨S; freeze l after Q with λx. e, {} , {}⟩.

To show: ⟨US(S); freeze l after Q with λx. e⟩ ↪−→i error, where i ≤ 1.

By assumption, US(S) = ⊤S .

Hence, by the definition of error, ⟨US(S); freeze l after Q with λx. e⟩ = error.

Hence ⟨US(S); freeze l after Q with λx. e⟩ ↪−→i error, with i = 0.

• Case E-Spawn-Handler:

Given:

⟨S; freeze l after Q with λx. e0, {e, . . . } , H⟩ ↪−→

⟨S; freeze l after Q with λx. e0, {e0[x := d2], e, . . . } , {d2} ∪H⟩.

To show:

⟨US(S); freeze l after Q with λx. e0, {e, . . . } , H⟩ ↪−→i error, where i ≤ 1.

By assumption, US(S) = ⊤S .

Hence, by the definition of error, ⟨US(S); freeze l after Q with λx. e0, {e, . . . } , H⟩ = error.

Hence ⟨US(S); freeze l after Q with λx. e0, {e, . . . } , H⟩ ↪−→i error, with i = 0.

• Case E-Freeze-Final:

Given: ⟨S; freeze l after Q with λx. e0, {v, . . . } , H⟩ ↪−→ ⟨S[l 7→ (d1, true)]; d1⟩.

To show: ⟨US(S); freeze l after Q with λx. e0, {v, . . . } , H⟩ ↪−→i′ error, where i′ ≤ 1.

Consider whether US(S) = ⊤S:

– If US(S) = ⊤S:

In this case, by the definition of error, ⟨US(S); freeze l⟩ = error.

Hence ⟨US(S); freeze l⟩ ↪−→i′ error, with i′ = 0.

– If US(S) ̸= ⊤S:

195

A. PROOFS

SinceUS(S) ̸= ⊤S and S[l 7→ (d1, true)] ̸= ⊤S , butUS(S[l 7→ (d1, true)]) = ⊤S , it must be

US ’s action on the contents of l in S[l 7→ (d1, true)] that updates S[l 7→ (d1, true)] to⊤S .

Since the contents of l in S[l 7→ (d1, true)] are (d1, true), it must not be the case that S(l) =

(d1, true), because otherwise, US(S) would be⊤S .

Therefore S(l) = (d1, false).

Let upi be the state update operation in US that updates the contents of l.

Hence upi((d1, true)) = ⊤p.

Recall that US is freeze-safe with ⟨S; freeze l after Q with λx. e0, {v, . . . } , H⟩ ↪−→

⟨S[l 7→ (d1, true)]; d1⟩.

By Definition 3.14, then, since the contents of l change in status during the transition from

⟨S; freeze l after Q with λx. e0, {v, . . . } , H⟩ to ⟨S[l 7→ (d1, true)]; d1⟩, we know that

US either freezes the contents of l (having no other effect on them), or it acts as the identity

on the contents of l.

Hence (US(S[l 7→ (d1, true)]))(l) = (d1, true).

But this is a contradiction since (US(S[l 7→ (d1, true)]))(l) = upi((d1, true)) = ⊤p.

Hence this case cannot occur.

• Case E-Freeze-Simple:

Given: ⟨S; freeze l⟩ ↪−→ ⟨S[l 7→ (d1, true)]; d1⟩.

To show: ⟨US(S); freeze l⟩ ↪−→i′ error, where i′ ≤ 1.

Consider whether US(S) = ⊤S:

– If US(S) = ⊤S:

In this case, by the definition of error, ⟨US(S); freeze l⟩ = error.

Hence ⟨US(S); freeze l⟩ ↪−→i′ error, with i′ = 0.

– If US(S) ̸= ⊤S:

SinceUS(S) ̸= ⊤S and S[l 7→ (d1, true)] ̸= ⊤S , butUS(S[l 7→ (d1, true)]) = ⊤S , it must be

US ’s action on the contents of l in S[l 7→ (d1, true)] that updates S[l 7→ (d1, true)] to⊤S .

196

A. PROOFS

Since the contents of l in S[l 7→ (d1, true)] are (d1, true), it must not be the case that S(l) =

(d1, true), because otherwise, US(S) would be⊤S .

Therefore S(l) = (d1, false).

Let upi be the state update operation in US that updates the contents of l.

Hence upi((d1, true)) = ⊤p.

Recall that US is freeze-safe with ⟨S; freeze l⟩ ↪−→ ⟨S[l 7→ (d1, true)]; d1⟩.

By Definition 3.14, then, since the contents of l change in status during the transition from

⟨S; freeze l⟩ to ⟨S[l 7→ (d1, true)]; d1⟩, we know that US either freezes the contents of l

(having no other effect on them), or it acts as the identity on the contents of l.

Hence (US(S[l 7→ (d1, true)]))(l) = (d1, true).

But this is a contradiction since (US(S[l 7→ (d1, true)]))(l) = upi((d1, true)) = ⊤p.

Hence this case cannot occur.

□

A.17. Proof of Lemma 3.10

Proof. Suppose σ 7−→ σa and σ 7−→ σb.

We have to show that either there exist σc, i, j, π such that σa 7−→i σc and π(σb) 7−→j σc and i ≤ 1

and j ≤ 1, or that σa 7−→ error or σb 7−→ error.

By inspection of the operational semantics, it must be the case that σ steps to σa by the E-Eval-Ctxt

rule.

Let σ = ⟨S; Ea [ea1]⟩ and let σa = ⟨Sa; Ea [ea2]⟩.

Likewise, it must be the case that σ steps to σb by the E-Eval-Ctxt rule.

Let σ = ⟨S; Eb [eb1]⟩ and let σb = ⟨Sb; Eb [eb2]⟩.

197

A. PROOFS

Note that σ = ⟨S; Ea [ea1]⟩ = ⟨S; Eb [eb1]⟩, and so Ea [ea1] = Eb [eb1], but Ea and Eb may differ and

ea1 and eb1 may differ.

First, consider the possibility thatEa = Eb (and ea1 = eb1).

Since ⟨S; Ea [ea1]⟩ 7−→ ⟨Sa; Ea [ea2]⟩ by E-Eval-Ctxt and ⟨S; Eb [eb1]⟩ 7−→ ⟨Sb; Eb [eb2]⟩ by E-Eval-

Ctxt, we have from the premise of E-Eval-Ctxt that ⟨S; ea1⟩ ↪−→ ⟨Sa; ea2⟩ and ⟨S; eb1⟩ ↪−→ ⟨Sb; eb2⟩.

But then, since ea1 = eb1 , by Internal Determinism (Lemma 3.4) there is a permutation π′ such that

⟨Sa; ea2⟩ = π′(⟨Sb; eb2⟩), modulo choice of events.

We have two cases:

• In the case where the steps σ 7−→ σa and σ 7−→ σb are both by E-Spawn-Handler and they handle

different events d2 and d′2, then we can satisfy the proof by choosing the final configuration σc as

the configuration where both d2 and d′2 have been handled.

Bothσa andσb can step to this configuration by E-Spawn-Handler: if the step fromσ toσa handles

d2 then the step from σa to σc handles d′2, while if the step from σ to σb handles d′2 then the step

from σb to σc handles d2.

The store in the final configuration is Sa or Sb, which are equal because E-Spawn-Handler does

not affect the store, and we can satisfy the proof by choosing i = 1 and j = 0 and π = id.

• Otherwise, we can satisfy the proof by choosing σc = ⟨Sa; ea2⟩ and i = 0 and j = 0 and π = id.

The rest of this proof deals with the more interesting case in whichEa ̸= Eb (and ea1 ̸= eb1).

Since ⟨S; Ea [ea1]⟩ 7−→ ⟨Sa; Ea [ea2]⟩ and ⟨S; Eb [eb1]⟩ 7−→ ⟨Sb; Eb [eb2]⟩ and Ea [ea1] = Eb [eb1],

and sinceEa ̸= Eb, we have from Lemma 3.5 (Locality) that there exist evaluation contextsE ′
a andE

′
b

such that:

• E ′
a [ea1] = Eb [eb2], and

• E ′
b [eb1] = Ea [ea2], and

• E ′
a [ea2] = E ′

b [eb2].

198

A. PROOFS

In some of the cases that follow, we will choose σc = error, and in some we will prove that one of σa or

σb steps to error.

In most cases, however, our approach will be to show that there exist S ′, i, j, π such that:

• ⟨Sa; Ea [ea2]⟩ 7−→i ⟨S ′; E ′
a [ea2]⟩, and

• π(⟨Sb; Eb [eb2]⟩) 7−→j ⟨S ′; E ′
a [ea2]⟩.

SinceE ′
a [ea1] = Eb [eb2],E

′
b [eb1] = Ea [ea2], andE

′
a [ea2] = E ′

b [eb2], it suffices to show that:

• ⟨Sa; E
′
b [eb1]⟩ 7−→i ⟨S ′; E ′

b [eb2]⟩, and

• π(⟨Sb; E
′
a [ea1]⟩) 7−→j ⟨S ′; E ′

a [ea2]⟩.

From the premise of E-Eval-Ctxt, we have that ⟨S; ea1⟩ ↪−→ ⟨Sa; ea2⟩ and ⟨S; eb1⟩ ↪−→ ⟨Sb; eb2⟩.

We proceed by case analysis on the rule by which ⟨S; ea1⟩ steps to ⟨Sa; ea2⟩.

Since the only way an error configuration can arise is by the E-Put-Err rule, we can assume in all other

cases that σa ̸= error.

(1) Case E-Beta: We have Sa = S.

We proceed by case analysis on the rule by which ⟨S; eb1⟩ steps to ⟨Sb; eb2⟩.

Since the only way an error configuration can arise is by the E-Put-Err rule, we can assume in all

other cases that σb ̸= error.

(a) Case E-Beta: We have Sa = S and Sb = S.

Choose S ′ = S = Sa = Sb, i = 1, j = 1, and π = id.

We have to show that:

• ⟨S; E ′
b [eb1]⟩ 7−→ ⟨Sa; E

′
b [eb2]⟩, and

• ⟨S; E ′
a [ea1]⟩ 7−→ ⟨Sb; E

′
a [ea2]⟩,

both of which follow immediately from ⟨S; ea1⟩ ↪−→ ⟨Sa; ea2⟩ and ⟨S; eb1⟩ ↪−→ ⟨Sb; eb2⟩

and E-Eval-Ctxt.

199

A. PROOFS

(b) Case E-New: We have Sa = S and Sb = S[l 7→ (⊥, false)].

Choose S ′ = Sb, i = 1, j = 1, and π = id.

We have to show that:

• ⟨S; E ′
b [eb1]⟩ 7−→ ⟨Sb; E

′
b [eb2]⟩, and

• ⟨Sb; E
′
a [ea1]⟩ 7−→ ⟨Sb; E

′
a [ea2]⟩.

The first of these follows immediately from ⟨S; eb1⟩ ↪−→ ⟨Sb; eb2⟩ and E-Eval-Ctxt.

For the second, consider that Sb = S[l 7→ (⊥, false)] = US(S), where US is the store

update operation that acts as the identity on the contents of all existing locations, and adds

the binding l 7→ (⊥, false) if no binding for l exists.

Note that:

• US is non-conflicting with ⟨S; ea1⟩ ↪−→ ⟨Sa; ea2⟩, since no locations are allocated in

the transition;

• US(Sa) ̸= ⊤S , since US(Sa) = US(S) = Sb and we know that σb ̸= error; and

• US is freeze-safe with ⟨S; ea1⟩ ↪−→ ⟨Sa; ea2⟩, since Sa = S, so there are no locations

whose contents differ in status between them.

Therefore, by Lemma 3.7 (Generalized Independence), we have that

⟨US(S); ea1⟩ ↪−→ ⟨US(Sa); ea2⟩.

Hence ⟨Sb; ea1⟩ ↪−→ ⟨Sb; ea2⟩.

By E-Eval-Ctxt, it follows that ⟨Sb; E
′
a [ea1]⟩ 7−→ ⟨Sb; E

′
a [ea2]⟩, as we were required to show.

(c) Case E-Put: We have Sa = S and Sb = S[l 7→ upi(p1)].

Choose S ′ = Sb, i = 1, j = 1, and π = id.

We have to show that:

• ⟨S; E ′
b [eb1]⟩ 7−→ ⟨Sb; E

′
b [eb2]⟩, and

• ⟨Sb; E
′
a [ea1]⟩ 7−→ ⟨Sb; E

′
a [ea2]⟩.

The first of these follows immediately from ⟨S; eb1⟩ ↪−→ ⟨Sb; eb2⟩ and E-Eval-Ctxt.

200

A. PROOFS

For the second, consider thatSb = US(S), whereUS is the store update operation that applies

upi to the contents of l and acts as the identity on all other locations.

Note that:

• US is non-conflicting with ⟨S; ea1⟩ ↪−→ ⟨Sa; ea2⟩, since no locations are allocated in

the transition;

• US(Sa) ̸= ⊤S , since US(Sa) = US(S) = Sb and we know that σb ̸= error; and

• US is freeze-safe with ⟨S; ea1⟩ ↪−→ ⟨Sa; ea2⟩, since Sa = S, so there are no locations

whose contents differ in status between them.

Therefore, by Lemma 3.7 (Generalized Independence), we have that

⟨US(S); ea1⟩ ↪−→ ⟨US(Sa); ea2⟩.

Hence ⟨Sb; ea1⟩ ↪−→ ⟨Sb; ea2⟩.

By E-Eval-Ctxt, it follows that ⟨Sb; E
′
a [ea1]⟩ 7−→ ⟨Sb; E

′
a [ea2]⟩, as we were required to show.

(d) Case E-Put-Err: We haveSa = S and ⟨Sb; eb2⟩ = error, and so we choose σc = error, i = 1,

j = 0, and π = id.

We have to show that:

• ⟨S; E ′
b [eb1]⟩ 7−→ error, and

• ⟨Sb; E
′
a [ea1]⟩ = error.

The second of these is immediately true because since ⟨Sb; eb2⟩ = error, Sb = ⊤S , and so

⟨Sb; E
′
a [ea1]⟩ is equal to error as well.

For the first, observe that ⟨S; eb1⟩ ↪−→ ⟨Sb; eb2⟩, hence by E-Eval-Ctxt, ⟨S; E ′
b [eb1]⟩ 7−→

⟨Sb; E
′
b [eb2]⟩.

But Sb = ⊤S , so ⟨Sb; E
′
b [eb2]⟩ is equal to error, and so ⟨S; E ′

b [eb1]⟩ 7−→ error, as required.

(e) Case E-Get: Similar to case 1a, since Sa = S and Sb = S.

(f) Case E-Freeze-Init: Similar to case 1a, since Sa = S and Sb = S.

(g) Case E-Spawn-Handler: Similar to case 1a, since Sa = S and Sb = S.

(h) Case E-Freeze-Final: We have Sa = S and Sb = S[l 7→ (d1, true)].

201

A. PROOFS

Choose S ′ = Sb, i = 1, j = 1, and π = id.

We have to show that:

• ⟨S; E ′
b [eb1]⟩ 7−→ ⟨Sb; E

′
b [eb2]⟩, and

• ⟨Sb; E
′
a [ea1]⟩ 7−→ ⟨Sb; E

′
a [ea2]⟩.

The first of these follows immediately from ⟨S; eb1⟩ ↪−→ ⟨Sb; eb2⟩ and E-Eval-Ctxt.

For the second, note that Sb = US(S), where US is the store update operation that freezes

the contents of l and acts as the identity on the contents of all other locations.

Note that:

• US is non-conflicting with ⟨S; ea1⟩ ↪−→ ⟨Sa; ea2⟩, since no locations are allocated in

the transition;

• US(Sa) ̸= ⊤S , since US(Sa) = US(S) = Sb and we know that σb ̸= error; and

• US is freeze-safe with ⟨S; ea1⟩ ↪−→ ⟨Sa; ea2⟩, since Sa = S, so there are no locations

whose contents differ in status between them.

Therefore, by Lemma 3.7 (Generalized Independence), we have that

⟨US(S); ea1⟩ ↪−→ ⟨US(Sa); ea2⟩.

Hence ⟨Sb; ea1⟩ ↪−→ ⟨Sb; ea2⟩.

By E-Eval-Ctxt, it follows that ⟨Sb; E
′
a [ea1]⟩ 7−→ ⟨Sb; E

′
a [ea2]⟩, as we were required to show.

(i) Case E-Freeze-Simple: Similar to case 1h, since Sb = S[l 7→ (d1, true)].

(2) Case E-New: We have Sa = S[l 7→ (⊥, false)].

We proceed by case analysis on the rule by which ⟨S; eb1⟩ steps to ⟨Sb; eb2⟩.

Since the only way an error configuration can arise is by the E-Put-Err rule, we can assume in all

other cases that σb ̸= error.

(a) Case E-Beta: By symmetry with case 1b.

(b) Case E-New: We have Sa = S[l 7→ (⊥, false)] and Sb = S[l′ 7→ (⊥, false)].

Now consider whether l = l′:

• If l ̸= l′:

202

A. PROOFS

Choose S ′ = S[l′ 7→ (⊥, false)][l 7→ (⊥, false)], i = 1, j = 1, and π = id.

We have to show that:

– ⟨Sa; E
′
b [eb1]⟩ 7−→ ⟨S[l′ 7→ (⊥, false)][l 7→ (⊥, false)]; E ′

b [eb2]⟩, and

– ⟨Sb; E
′
a [ea1]⟩ 7−→ ⟨S[l′ 7→ (⊥, false)][l 7→ (⊥, false)]; E ′

a [ea2]⟩.

For the first of these, consider that Sa = S[l 7→ (⊥, false)] = US(S), where US is the

store update operation that acts as the identity on the contents of all existing locations,

and adds the binding l 7→ (⊥, false) if no binding for l exists.

Note that:

– US is non-conflicting with ⟨S; eb1⟩ ↪−→ ⟨Sb; eb2⟩, since the only location allo-

cated in the transition is l′, and l ̸= l′ in this case;

– US(Sb) ̸= ⊤S , since US(Sb) = S[l′ 7→ (⊥, false)][l 7→ (⊥, false)] and we know

S ̸= ⊤S and the addition of new bindings l 7→ (⊥, false) and l′ 7→ (⊥, false)

cannot cause it to become⊤S; and

– US is freeze-safe with ⟨S; eb1⟩ ↪−→ ⟨Sb; eb2⟩, since Sb = S[l′ 7→ (⊥, false)] and

l′ /∈ dom(S), so there are no locations whose contents differ in status between S

and Sb.

Therefore, by Lemma 3.7 (Generalized Independence), we have that

⟨US(S); eb1⟩ ↪−→ ⟨US(Sb); eb2⟩.

Hence ⟨S[l 7→ (⊥, false)]; eb1⟩ ↪−→ ⟨Sb[l 7→ (⊥, false)]; eb2⟩.

By E-Eval-Ctxt it follows that

⟨S[l 7→ (⊥, false)]; E ′
b [eb1]⟩ ↪−→ ⟨Sb[l 7→ (⊥, false)]; E ′

b [eb2]⟩, which, since Sb =

S[l′ 7→ (⊥, false)], is what we were required to show.

The argument for the second is symmetrical.

• If l = l′:

In this case, observe that we do not want the expression in the final configuration to be

E ′
a [ea2] (nor its equivalent,E

′
b [eb2]).

203

A. PROOFS

The reason for this is thatE ′
a [ea2] contains both occurrences of l.

Rather, we want both configurations to step to a configuration in which exactly one oc-

currence of l has been renamed to a fresh location l′′.

Let l′′ be a location such that l′′ /∈ dom(S) and l′′ ̸= l (and hence l′′ ̸= l′, as well).

Then chooseS ′ = S[l′′ 7→ (⊥, false)][l 7→ (⊥, false)], i = 1, j = 1, andπ = {(l, l′′)}.

Either ⟨S[l′′ 7→ (⊥, false)][l 7→ (⊥, false)]; E ′
a [π(ea2)]⟩ or ⟨S[l′′ 7→ (⊥, false)][l 7→

(⊥, false)]; E ′
b [π(eb2)]⟩ would work as a final configuration; we choose

⟨S[l′′ 7→ (⊥, false)][l 7→ (⊥, false)]; E ′
b [π(eb2)]⟩.

We have to show that:

– ⟨Sa; E
′
b [eb1]⟩ 7−→ ⟨S[l′′ 7→ (⊥, false)][l 7→ (⊥, false)]; E ′

b [π(eb2)]⟩, and

– π(⟨Sb; E
′
a [ea1]⟩) 7−→ ⟨S[l′′ 7→ (⊥, false)][l 7→ (⊥, false)]; E ′

b [π(eb2)]⟩.

For the first of these, since ⟨S; eb1⟩ ↪−→ ⟨Sb; eb2⟩, we have by Lemma 3.3 (Permutabil-

ity) that π(⟨S; eb1⟩) ↪−→ π(⟨Sb; eb2⟩).

Since π = {(l, l′′)}, but l /∈ S (from the side condition on E-New), we have that

π(⟨S; eb1⟩) = ⟨S; eb1⟩.

Since ⟨Sb; eb2⟩ = ⟨S[l′ 7→ (⊥, false)]; l′⟩, and l = l′, we have that π(⟨Sb; eb2⟩) =

⟨S[l′′ 7→ (⊥, false)]; π(eb2)⟩.

Hence ⟨S; eb1⟩ ↪−→ ⟨S[l′′ 7→ (⊥, false)]; π(eb2)⟩.

Let US be the store update operation that acts as the identity on the contents of all

existing locations, and adds the binding l 7→ (⊥, false) if no binding for l exists.

Note that:

– US is non-conflicting with ⟨S; eb1⟩ ↪−→ ⟨S[l′′ 7→ (⊥, false)]; π(eb2)⟩, since the

only location allocated in the transition is l′′;

– US(S[l
′′ 7→ (⊥, false)]) ̸= ⊤S , since US(S[l

′′ 7→ (⊥, false)]) =

S[l′′ 7→ (⊥, false)][l 7→ (⊥, false)] and we know S ̸= ⊤S and the addition of new

bindings l 7→ (⊥, false) and l′′ 7→ (⊥, false) cannot cause it to become⊤S; and

204

A. PROOFS

– US is freeze-safe with ⟨S; eb1⟩ ↪−→ ⟨S[l′′ 7→ (⊥, false)]; π(eb2)⟩, since l′′ /∈

dom(S), so there are no locations whose contents differ in status between S and

S[l′′ 7→ (⊥, false)].

Therefore, by Lemma 3.7 (Generalized Independence), we have that

⟨US(S); eb1⟩ ↪−→ ⟨US(S[l
′′ 7→ (⊥, false)]); π(eb2)⟩.

Hence ⟨S[l 7→ (⊥, false)]; eb1⟩ ↪−→ ⟨S[l′′ 7→ (⊥, false)][l 7→ (⊥, false)]; π(eb2)⟩.

By E-Eval-Ctxt it follows that

⟨S[l 7→ (⊥, false)]; E ′
b [eb1]⟩ ↪−→ ⟨S[l′′ 7→ (⊥, false)][l 7→ (⊥, false)]; E ′

b [π(eb2)]⟩,

which, since S[l 7→ (⊥, false)] = Sa, is what we were required to show.

For the second, observe that since Sb = S[l 7→ (⊥, false)], we have that π(Sb) =

S[l′′ 7→ (⊥, false)].

Also, since l does not occur in ea1 , we have that π(E
′
a [ea1]) = (π(E ′

a))[ea1].

Hence we have to show that

⟨S[l′′ 7→ (⊥, false)]; (π(E ′
a))[ea1]⟩ 7−→

⟨S[l′′ 7→ (⊥, false)][l 7→ (⊥, false)]; E ′
b [π(eb2)]⟩.

Let US be the store update operation that acts as the identity on the contents of all

existing locations, and adds the binding l′′ 7→ (⊥, false) if no binding for l′′ exists.

Note that:

– US is non-conflicting with ⟨S; ea1⟩ ↪−→ ⟨Sa; ea2⟩, since the only location allo-

cated in the transition is l;

– US(Sa) ̸= ⊤S , since US(Sa) = S[l′′ 7→ (⊥, false)][l 7→ (⊥, false)] and we know

S ̸= ⊤S and the addition of new bindings l 7→ (⊥, false) and l′′ 7→ (⊥, false)

cannot cause it to become⊤S; and

– US is freeze-safe with ⟨S; ea1⟩ ↪−→ ⟨Sa; ea2⟩, since Sa = S[l 7→ (⊥, false)] and

l /∈ dom(S), so there are no locations whose contents differ in status between S

and Sa.

205

A. PROOFS

Therefore, by Lemma 3.7 (Generalized Independence), we have that

⟨US(S); ea1⟩ ↪−→ ⟨US(Sa); ea2⟩.

Hence ⟨S[l′′ 7→ (⊥, false)]; ea1⟩ ↪−→ ⟨S[l′′ 7→ (⊥, false)][l 7→ (⊥, false)]; ea2⟩.

By E-Eval-Ctxt it follows that

⟨S[l′′ 7→ (⊥, false)]; (π(E ′
a))[ea1]⟩ 7−→

⟨S[l′′ 7→ (⊥, false)][l 7→ (⊥, false)]; (π(E ′
a))[ea2]⟩,

which completes the case sinceE ′
b [π(eb2)] = (π(E ′

a))[ea2].

(c) Case E-Put: We have Sa = S[l 7→ (⊥, false)] and Sb = S[l′ 7→ upi(p1)], where l ̸= l′ (since

l /∈ dom(S), but l′ ∈ dom(S)).

We have to show that:

• ⟨Sa; E
′
b [eb1]⟩ 7−→ ⟨Sb[l 7→ (⊥, false)]; E ′

b [eb2]⟩, and

• ⟨Sb; E
′
a [ea1]⟩ 7−→ ⟨Sb[l 7→ (⊥, false)]; E ′

a [ea2]⟩.

For the first of these, consider that Sa = S[l 7→ (⊥, false)] = US(S), where US is the store

update operation that acts as the identity on the contents of all existing locations, and adds

the binding l 7→ (⊥, false) if no binding for l exists.

Note that:

• US is non-conflicting with ⟨S; eb1⟩ ↪−→ ⟨Sb; eb2⟩, since no locations are allocated in

the transition;

• US(Sb) ̸= ⊤S , since US(Sb) = Sb[l 7→ (⊥, false)], and we know Sb ̸= ⊤S and the

addition of a new binding l 7→ (⊥, false) cannot cause it to become⊤S; and

• US is freeze-safe with ⟨S; eb1⟩ ↪−→ ⟨Sb; eb2⟩, sinceSb = S[l′ 7→ upi(p1)] andupi does

not alter the status of p1.

(By Definition 3.4, upi can only change the status bit of a location if its contents are

(d, true) and ui(d) ̸= d, in which case upi changes the contents of the location to

(⊤, false); however, that cannot be the case here since then upi(p1) would be⊤p, con-

tradicting the premise of E-Put.)

206

A. PROOFS

Therefore, by Lemma 3.7 (Generalized Independence), we have that

⟨US(S); eb1⟩ ↪−→ ⟨US(Sb); eb2⟩.

Hence ⟨S[l 7→ (⊥, false)]; eb1⟩ ↪−→ ⟨Sb[l 7→ (⊥, false)]; eb2⟩.

By E-Eval-Ctxt, it follows that

⟨S[l 7→ (⊥, false)]; E ′
b [eb1]⟩ 7−→ ⟨Sb[l 7→ (⊥, false)]; E ′

b [eb2]⟩,

which, since Sa = S[l 7→ (⊥, false)], is what we were required to show.

For the second, let US be the store update operation that applies upi to the contents of l
′ if it

exists, and adds a binding l′ 7→ upi(p1) if no binding for l
′ exists.

Consider that Sb = US(S), and Sb[l 7→ (⊥, false)] = Sa[l
′ 7→ upi(p1)] = US(Sa).

Note that:

• US is non-conflicting with ⟨S; ea1⟩ ↪−→ ⟨Sa; ea2⟩, since the only location allocated in

the transition is l;

• US(Sa) ̸= ⊤S , since US(Sa) = S[l 7→ (⊥, false)][l′ 7→ upi(p1)] and we know S ̸= ⊤S

and the addition of a new binding l 7→ (⊥, false) and updating the contents of location

l′ to upi(p1) in S cannot cause it to become ⊤S (since if upi(p1) = ⊤p, ⟨S; eb1⟩ would

not have been able to step by E-Put); and

• US is freeze-safe with ⟨S; ea1⟩ ↪−→ ⟨Sa; ea2⟩, since Sa = S[l 7→ (⊥, false)] and

l /∈ dom(S), so there are no locations whose contents differ in status between S and

Sa.

Therefore, by Lemma 3.7 (Generalized Independence), we have that

⟨US(S); ea1⟩ ↪−→ ⟨US(Sa); ea2⟩.

Hence ⟨Sb; ea1⟩ ↪−→ ⟨Sb[l 7→ (⊥, false)]; ea2⟩.

By E-Eval-Ctxt, it follows that

⟨Sb; E
′
a [ea1]⟩ 7−→ ⟨Sb[l 7→ (⊥, false)]; E ′

a [ea2]⟩,

as we were required to show.

207

A. PROOFS

(d) Case E-Put-Err: We have Sa = S[l 7→ (⊥, false)] and ⟨Sb; eb2⟩ = error, and so we choose

σc = error, i = 1, j = 0, and π = id.

We have to show that:

• ⟨Sa; E
′
b [eb1]⟩ 7−→ error, and

• ⟨Sb; E
′
a [ea1]⟩ = error.

The second of these is immediately true because since ⟨Sb; eb2⟩ = error, Sb = ⊤S , and so

⟨Sb; E
′
a [ea1]⟩ is equal to error as well.

For the first, observe that since ⟨S; ea1⟩ ↪−→ ⟨Sa; ea2⟩, we have by Lemma3.6 (Monotonicity)

that S ⊑S Sa.

Therefore, since ⟨S; eb1⟩ ↪−→ error,

we have by Lemma 3.9 (Error Preservation) that ⟨Sa; eb1⟩ ↪−→ error.

Since error is equal to ⟨⊤S; e⟩ for all expressions e, ⟨Sa; eb1⟩ ↪−→ ⟨⊤S; e⟩ for all e.

Therefore, by E-Eval-Ctxt, ⟨Sa; E
′
b [eb1]⟩ 7−→ ⟨⊤S; E

′
b [e]⟩ for all e.

Since ⟨⊤S; E
′
b [e]⟩ is equal to error, we have that ⟨Sa; E

′
b [eb1]⟩ 7−→ error, aswewere required

to show.

(e) Case E-Get: Similar to case 2a, since Sa = S[l 7→ (⊥, false)] and Sb = S.

(f) Case E-Freeze-Init: Similar to case 2a, since Sa = S[l 7→ (⊥, false)] and Sb = S.

(g) Case E-Spawn-Handler: Similar to case 2a, since Sa = S[l 7→ (⊥, false)] and Sb = S.

(h) Case E-Freeze-Final: We have Sa = S[l 7→ (⊥, false)] and Sb = S[l′ 7→ (d1, true)], where

l ̸= l′ (since l /∈ dom(S), but l′ ∈ dom(S)).

Choose S ′ = S[l 7→ (⊥, false)][l′ 7→ (d1, true)], i = i, j = 1, and π = id.

We have to show that:

• ⟨S[l 7→ (⊥, false)]; E ′
b [eb1]⟩ 7−→ ⟨S[l 7→ (⊥, false)][l′ 7→ (d1, true)]; E ′

b [eb2]⟩, and

• ⟨S[l′ 7→ (d1, true)]; E ′
a [ea1]⟩ 7−→ ⟨S[l 7→ (⊥, false)][l′ 7→ (d1, true)]; E ′

a [ea2]⟩.

208

A. PROOFS

For the first of these, consider that S[l 7→ (⊥, false)] = US(S), where US is the store up-

date operation that acts as the identity on the contents of all existing locations, and adds the

binding l 7→ (⊥, false) if no binding for l exists.

Note that:

• US is non-conflicting with ⟨S; eb1⟩ ↪−→ ⟨Sb; eb2⟩, since no locations are allocated in

the transition;

• US(Sb) ̸= ⊤S , since US(Sb) = Sb[l 7→ (⊥, false)], and we know Sb ̸= ⊤S and the

addition of a new binding l 7→ (⊥, false) cannot cause it to become⊤S; and

• US is freeze-safe with ⟨S; eb1⟩ ↪−→ ⟨Sb; eb2⟩, since Sb = S[l′ 7→ (d1, true)] and so

the only location that can change in status between S and Sb is l′, and US acts as the

identity on l′.

Therefore, by Lemma 3.7 (Generalized Independence), we have that

⟨US(S); eb1⟩ ↪−→ ⟨US(Sb); eb2⟩.

Hence ⟨S[l 7→ (⊥, false)]; eb1⟩ ↪−→ ⟨S[l 7→ (⊥, false)][l′ 7→ (d1, true)]; eb2⟩.

By E-Eval-Ctxt, it follows that

⟨S[l 7→ (⊥, false)]; E ′
b [eb1]⟩ 7−→ ⟨S[l 7→ (⊥, false)][l′ 7→ (d1, true)]; E ′

b [eb2]⟩,

as we were required to show.

For the second, consider that S[l′ 7→ (d1, true)] = US(S), where US is the store update

operation that freezes the contents of l′ and acts as the identity on the contents of all other

locations.

Note that:

• US is non-conflicting with ⟨S; ea1⟩ ↪−→ ⟨Sa; ea2⟩, since the only location allocated in

the transition is l, and l ̸= l′;

• US(Sa) ̸= ⊤S , sinceUS(Sa) = Sa[l
′ 7→ (d1, true)] = Sb[l 7→ (⊥, false)], andwe know

Sb ̸= ⊤S and the addition of a new binding l 7→ (⊥, false) cannot cause it to become

⊤S; and

209

A. PROOFS

• US is freeze-safe with ⟨S; ea1⟩ ↪−→ ⟨Sa; ea2⟩, since Sa = S[l 7→ (⊥, false)] and

l /∈ dom(S), so there are no locations whose contents differ in status between S and

Sa.

Therefore, by Lemma 3.7 (Generalized Independence), we have that

⟨US(S); ea1⟩ ↪−→ ⟨US(Sa); ea2⟩.

Hence ⟨S[l′ 7→ (d1, true)]; ea1⟩ ↪−→ ⟨S[l 7→ (⊥, false)][l′ 7→ (d1, true)]; ea2⟩.

By E-Eval-Ctxt it follows that

⟨S[l′ 7→ (d1, true)]; E ′
a [ea1]⟩ 7−→ ⟨S[l 7→ (⊥, false)][l′ 7→ (d1, true)]; E ′

a [ea2]⟩,

as we were required to show.

(i) Case E-Freeze-Simple: Similar to case 2h, since Sa = S[l 7→ (⊥, false)] and Sb = S[l′ 7→

(d1, true)], where l ̸= l′ (since l /∈ dom(S), but l′ ∈ dom(S)).

(3) Case E-Put: We have Sa = S[l 7→ upi(p1)].

We proceed by case analysis on the rule by which ⟨S; eb1⟩ steps to ⟨Sb; eb2⟩.

Since the only way an error configuration can arise is by the E-Put-Err rule, we can assume in all

other cases that σb ̸= error.

(a) Case E-Beta: By symmetry with case 1c.

(b) Case E-New: By symmetry with case 2c.

(c) Case E-Put: We have Sa = S[l 7→ upi(p1)] and Sb = S[l′ 7→ upj(p
′
1)], where p

′
1 = S(l′).

Now consider whether l = l′:

• If l ̸= l′:

Choose S ′ = S[l′ 7→ upj(p
′
1)][l 7→ upi(p1)], i = 1, j = 1, and π = id.

We have to show that:

– ⟨S[l 7→ upi(p1)]; E
′
b [eb1]⟩ 7−→ ⟨S[l′ 7→ upj(p

′
1)][l 7→ upi(p1)]; E

′
b [eb2]⟩, and

– ⟨S[l′ 7→ upj(p
′
1)]; E

′
a [ea1]⟩ 7−→ ⟨S[l′ 7→ upj(p

′
1)][l 7→ upi(p1)]; E

′
a [ea2]⟩.

210

A. PROOFS

For the first of these, consider that S[l 7→ upi(p1)] = US(S), where US is the store

update operation that applies upi to the contents of l if it exists, and adds a binding

l 7→ upi(p1) if no binding for l exists.

Note that:

– US is non-conflictingwith ⟨S; eb1⟩ ↪−→ ⟨S[l′ 7→ upj(p
′
1)]; eb2⟩, since no locations

are allocated in the transition;

– US(S[l
′ 7→ upj(p

′
1)]) ̸= ⊤S , since US(S[l

′ 7→ upj(p
′
1)]) = S[l′ 7→ upj(p

′
1)][l 7→

upi(p1)] and we know S ̸= ⊤S and updating the contents of location l to upi(p1)

and the contents of location l′ toupj(p
′
1) inS cannot cause it to become⊤S (because

if so, then we would have Sa = ⊤S or Sb = ⊤S , which we know are not the case);

and

– US is freeze-safe with ⟨S; eb1⟩ ↪−→ ⟨S[l′ 7→ upj(p
′
1)]; eb2⟩, since upj does not

alter the status of p′1.

(By Definition 3.4, upj can only change the status bit of a location if its contents are

(d, true) and uj(d) ̸= d, in which case upj changes the contents of the location to

(⊤, false); however, that cannot be the case here since then upj(p
′
1) would be ⊤p,

contradicting the premise of E-Put.)

Therefore, by Lemma 3.7 (Generalized Independence), we have that

⟨US(S); eb1⟩ ↪−→ ⟨US(S[l
′ 7→ upj(p

′
1)]); eb2⟩.

Hence ⟨S[l 7→ upi(p1)]; eb1⟩ ↪−→ ⟨S[l′ 7→ upj(p
′
1)][l 7→ upi(p1)]; eb2⟩.

By E-Eval-Ctxt, it follows that

⟨S[l 7→ upi(p1)]; E
′
b [eb1]⟩ 7−→ ⟨S[l′ 7→ upj(p

′
1)][l 7→ upi(p1)]; E

′
b [eb2]⟩,

as we were required to show.

The argument for the second is symmetrical.

• If l = l′: Note that since l = l′, p1 = p′1 as well.

Consider whether upi(upj(p1)) = ⊤p:

211

A. PROOFS

– If upi(upj(p1)) = ⊤p:

Choose σc = error, i = 1, j = 1, and π = id.

We have to show that:

∗ ⟨S[l 7→ upi(p1)]; E
′
b [eb1]⟩ 7−→ error, and

∗ ⟨S[l 7→ upj(p1)]; E
′
a [ea1]⟩ 7−→ error.

For the first of these, consider thatS[l 7→ upi(p1)] = US(S), whereUS is the store

update operation that applies upi to the contents of l if it exists.

Note that:

∗ US is non-conflicting with ⟨S; eb1⟩ ↪−→ ⟨S[l 7→ upj(p1)]; eb2⟩, since no loca-

tions are allocated in the transition;

∗ US(S[l 7→ upj(p1)]) = ⊤S , since US(S[l 7→ upj(p1)]) = S[l 7→ upi(upj(p1))]

and we know upi(upj(p1)) = ⊤p in this case;

∗ US is freeze-safe with ⟨S; eb1⟩ ↪−→ ⟨S[l 7→ upj(p1)]; eb2⟩, since upj does not

alter the status of p1.

(By Definition 3.4, upj can only change the status bit of a location if its contents

are (d, true) and uj(d) ̸= d, in which case upj changes the contents of the lo-

cation to (⊤, false); however, that cannot be the case here since then upj(p1)

would be⊤p, contradicting the premise of E-Put.)

Therefore, by Lemma 3.8 (Generalized Clash), we have that there exists i′ ≤ 1 such

that ⟨US(S); eb1⟩ ↪−→i′ error.

Hence ⟨S[l 7→ upi(p1)]; eb1⟩ ↪−→i′ error.

If i′ = 0, we would have ⟨S[l 7→ upi(p1)]; eb1⟩ = ⟨Sa; eb1⟩ = error.

So we would have Sa = ⊤S by the definition of error, but then we would have

σa = error, a contradiction.

Therefore i′ = 1, and so we have ⟨S[l 7→ upi(p1)]; eb1⟩ ↪−→ error.

212

A. PROOFS

Since error = ⟨⊤S; e⟩ for all e, we have ⟨S[l 7→ upi(p1)]; eb1⟩ ↪−→ ⟨⊤S; e⟩ for all

e.

So, by E-Eval-Ctxt, we have that ⟨S[l 7→ upi(p1)]; E
′
b [eb1]⟩ ↪−→ ⟨⊤S; E

′
b [e]⟩ for

all e.

Hence ⟨S[l 7→ upi(p1)]; E
′
b [eb1]⟩ ↪−→ error.

The argument for the second is symmetrical.

– If upi(upj(p1)) ̸= ⊤p:

Choose S ′ = S[l 7→ upi(upj(p1))], i = 1, j = 1, and π = id.

We have to show that:

∗ ⟨S[l 7→ upi(p1)]; E
′
b [eb1]⟩ 7−→ ⟨S[l 7→ upi(upj(p1))]; E

′
b [eb2]⟩, and

∗ ⟨S[l 7→ upj(p1)]; E
′
a [ea1]⟩ 7−→ ⟨S[l 7→ upi(upj(p1))]; E

′
a [ea2]⟩.

For the first of these, consider thatS[l 7→ upi(p1)] = US(S), whereUS is the store

update operation that applies upi to the contents of l if it exists.

Note that:

∗ US is non-conflicting with ⟨S; eb1⟩ ↪−→ ⟨S[l 7→ upj(p1)]; eb2⟩, since no loca-

tions are allocated in the transition;

∗ US(S[l 7→ upj(p1)]) ̸= ⊤S , since US(S[l 7→ upj(p1)]) = S[l 7→ upi(upj(p1))]

and we know S ̸= ⊤S and upi(upj(p1)) ̸= ⊤p in this case;

∗ US is freeze-safe with ⟨S; eb1⟩ ↪−→ ⟨S[l 7→ upj(p1)]; eb2⟩, since upj does not

alter the status of p1.

(By Definition 3.4, upj can only change the status bit of a location if its contents

are (d, true) and uj(d) ̸= d, in which case upj changes the contents of the lo-

cation to (⊤, false); however, that cannot be the case here since then upj(p1)

would be⊤p, contradicting the premise of E-Put.)

Therefore, by Lemma 3.7 (Generalized Independence), we have that

⟨US(S); eb1⟩ ↪−→ ⟨US(S[l 7→ upj(p1)]); eb2⟩.

213

A. PROOFS

Hence ⟨S[l 7→ upi(p1)]; eb1⟩ ↪−→ ⟨S[l 7→ upi(upj(p1))]; eb2⟩.

By E-Eval-Ctxt, it follows that

⟨S[l 7→ upi(p1)]; E
′
b [eb1]⟩ 7−→ ⟨S[l 7→ upi(upj(p1))]; E

′
b [eb2]⟩,

as we were required to show.

The argument for the second is symmetrical.

(d) Case E-Put-Err: We have Sa = S[l 7→ upi(p1)] and ⟨Sb; eb2⟩ = error, and so we choose

σc = error, i = 1, j = 0, and π = id.

We have to show that:

• ⟨Sa; E
′
b [eb1]⟩ 7−→ error, and

• ⟨Sb; E
′
a [ea1]⟩ = error.

The second of these is immediately true because since ⟨Sb; eb2⟩ = error, Sb = ⊤S , and so

⟨Sb; E
′
a [ea1]⟩ is equal to error as well.

For the first, observe that since ⟨S; ea1⟩ ↪−→ ⟨Sa; ea2⟩, we have by Lemma3.6 (Monotonicity)

that S ⊑S Sa.

Therefore, since ⟨S; eb1⟩ ↪−→ error,

we have by Lemma 3.9 (Error Preservation) that ⟨Sa; eb1⟩ ↪−→ error.

Since error is equal to ⟨⊤S; e⟩ for all expressions e, ⟨Sa; eb1⟩ ↪−→ ⟨⊤S; e⟩ for all e.

Therefore, by E-Eval-Ctxt, ⟨Sa; E
′
b [eb1]⟩ 7−→ ⟨⊤S; E

′
b [e]⟩ for all e.

Since ⟨⊤S; E
′
b [e]⟩ is equal to error, we have that ⟨Sa; E

′
b [eb1]⟩ 7−→ error, aswewere required

to show.

(e) Case E-Get: Similar to case 3a, since Sa = S[l 7→ upi(p1)] and Sb = S.

(f) Case E-Freeze-Init: Similar to case 3a, since Sa = S[l 7→ upi(p1)] and Sb = S.

(g) Case E-Spawn-Handler: Similar to case 3a, since Sa = S[l 7→ upi(p1)] and Sb = S.

(h) Case E-Freeze-Final: We have Sa = S[l 7→ upi(p1)] and Sb = S[l′ 7→ (d1, true)].

Now consider whether l = l′:

• If l ̸= l′:

214

A. PROOFS

Choose S ′ = S[l 7→ upi(p1)][l
′ 7→ (d1, true)], i = 1, j = 1, and π = id.

We have to show that:

– ⟨S[l 7→ upi(p1)]; E
′
b [eb1]⟩ 7−→ ⟨S[l 7→ upi(p1)][l

′ 7→ (d1, true)]; E ′
b [eb2]⟩, and

– ⟨S[l′ 7→ (d1, true)]; E ′
a [ea1]⟩ 7−→ ⟨S[l 7→ upi(p1)][l

′ 7→ (d1, true)]; E ′
a [ea2]⟩.

For the first of these, consider that S[l 7→ upi(p1)] = US(S), where US is the store

update operation that applies upi to the contents of l if it exists, and adds a binding

l 7→ upi(p1) if no binding for l exists, and acts as the identity on all other locations.

Note that:

– US is non-conflicting with ⟨S; eb1⟩ ↪−→ ⟨S[l′ 7→ (d1, true)]; eb2⟩, since no loca-

tions are allocated in the transition;

– US(S[l
′ 7→ (d1, true)]) ̸= ⊤S ,

since US(S[l
′ 7→ (d1, true)]) = S[l′ 7→ (d1, true)][l 7→ upi(p1)] and we know

S ̸= ⊤S and updating the contents of location l toupi(p1) and freezing the contents

of location l′ in S cannot cause it to become⊤S (because if so, then we would have

Sa = ⊤S or Sb = ⊤S , which we know are not the case); and

– US is freeze-safe with ⟨S; eb1⟩ ↪−→ ⟨S[l′ 7→ (d1, true)]; eb2⟩, since the only loca-

tion that can change in status between S and S[l′ 7→ (d1, true)] is l′, and US acts

as the identity on l′.

Therefore, by Lemma 3.7 (Generalized Independence), we have that

⟨US(S); eb1⟩ ↪−→ ⟨US(S[l
′ 7→ (d1, true)]); eb2⟩.

Hence ⟨S[l 7→ upi(p1)]; eb1⟩ ↪−→ ⟨S[l′ 7→ (d1, true)][l 7→ upi(p1)]; eb2⟩.

By E-Eval-Ctxt, it follows that

⟨S[l 7→ upi(p1)]; E
′
b [eb1]⟩ 7−→ ⟨S[l′ 7→ (d1, true)][l 7→ upi(p1)]; E

′
b [eb2]⟩,

as we were required to show.

215

A. PROOFS

For the second, consider thatS[l′ 7→ (d1, true)] = US(S), whereUS is the store update

operation that freezes the contents of l′ and acts as the identity on the contents of all

other locations.

Note that:

– US is non-conflicting with ⟨S; ea1⟩ ↪−→ ⟨S[l 7→ upi(p1)]; ea2⟩, since no locations

are allocated in the transition;

– US(S[l 7→ upi(p1)]) ̸= ⊤S , since US(S[l 7→ upi(p1)]) = S[l 7→ upi(p1)][l
′ 7→

(d1, true)], and we knowS ̸= ⊤S and updating the contents of location l to upi(p1)

and freezing the contents of location l in S cannot cause it to become⊤S (because

if so, then we would have Sa = ⊤S or Sb = ⊤S , which we know are not the case);

and

– US is freeze-safe with ⟨S; ea1⟩ ↪−→ ⟨S[l 7→ upi(p1)]; ea2⟩, since upi does not

alter the status of p1.

(By Definition 3.4, upi can only change the status bit of a location if its contents are

(d, true) and ui(d) ̸= d, in which case upi changes the contents of the location to

(⊤, false); however, that cannot be the case here since then upi(p1) would be ⊤p,

and we would have Sa = ⊤S , a contradiction.)

Therefore, by Lemma 3.7 (Generalized Independence), we have that

⟨US(S); ea1⟩ ↪−→ ⟨US(S[l 7→ upi(p1)]); ea2⟩.

Hence ⟨S[l′ 7→ (d1, true)]; ea1⟩ ↪−→ ⟨S[l 7→ upi(p1)][l
′ 7→ (d1, true)]; ea2⟩.

By E-Eval-Ctxt, it follows that ⟨S[l′ 7→ (d1, true)]; E ′
a [ea1]⟩ 7−→ ⟨S[l 7→ upi(p1)][l

′ 7→

(d1, true)]; E ′
a [ea2]⟩,

as we were required to show.

• If l = l′:

We have two cases to consider:

– upi((d1, true)) = ⊤p:

216

A. PROOFS

Since (S[l 7→ (d1, true)])(l) = (d1, true) and upi((d1, true)) = ⊤p, by E-Put-Err

we have that ⟨S[l 7→ (d1, true)]; puti l⟩ ↪−→ error.

Since Sb = S[l 7→ (d1, true)], we have that ⟨Sb; puti l⟩ ↪−→ error.

Since ⟨S; ea1⟩ ↪−→ ⟨Sa; ea2⟩ by E-Put, it must be the case that ea1 = puti l.

Hence ⟨Sb; ea1⟩ ↪−→ error.

Since error is equal to ⟨⊤S; e⟩ for all expressions e, ⟨Sb; ea1⟩ ↪−→ ⟨⊤S; e⟩ for all

e.

Therefore, by E-Eval-Ctxt, ⟨Sb; E
′
a [ea1]⟩ 7−→ ⟨⊤S; E

′
a [e]⟩ for all e.

Since ⟨⊤S; E
′
a [e]⟩ is equal to error, we have that ⟨Sb; E

′
a [ea1]⟩ 7−→ error.

SinceE ′
a [ea1] = Eb [eb2], we have that ⟨Sb; Eb [eb2]⟩ 7−→ error.

Since σb = ⟨Sb; Eb [eb2]⟩, we therefore have that σb 7−→ error, and the case is

satisfied.

– upi((d1, true)) ̸= ⊤p:

In this case, by the definition of Up (Definition 3.4),

it must be the case that upi((d1, true)) = (d1, true).

Choose S ′ = S[l 7→ (d1, true)], i = 1, j = 1, and π = id.

We have to show that:

∗ ⟨S[l 7→ upi(p1)]; E
′
b [eb1]⟩ 7−→ ⟨S[l 7→ (d1, true)]; E ′

b [eb2]⟩, and

∗ ⟨S[l 7→ (d1, true)]; E ′
a [ea1]⟩ 7−→ ⟨S[l 7→ (d1, true)]; E ′

a [ea2]⟩.

For the first of these, consider thatS[l 7→ upi(p1)] = US(S), whereUS is the store

update operation that applies upi to the contents of l if it exists, and adds a binding

l 7→ upi(p1) if no binding for l exists, and acts as the identity on all other locations.

Note that:

∗ US is non-conflicting with ⟨S; eb1⟩ ↪−→ ⟨S[l 7→ (d1, true)]; eb2⟩, since no lo-

cations are allocated in the transition;

∗ US(S[l 7→ (d1, true)]) ̸= ⊤S ,

217

A. PROOFS

since US(S[l 7→ (d1, true)]) = S[l 7→ upi((d1, true))] and we know S ̸= ⊤S

and upi((d1, true)) ̸= ⊤p; and

∗ US is freeze-safe with ⟨S; eb1⟩ ↪−→ ⟨S[l 7→ (d1, true)]; eb2⟩, since the only

location that can change in status between S and S[l 7→ (d1, true)] is l, and US

acts as the identity on l.

Therefore, by Lemma 3.7 (Generalized Independence), we have that

⟨US(S); eb1⟩ ↪−→ ⟨US(S[l 7→ (d1, true)]); eb2⟩.

Hence ⟨S[l 7→ upi(p1)]; eb1⟩ ↪−→ ⟨S[l 7→ upi((d1, true))]; eb2⟩.

Since upi((d1, true)) = (d1, true),

we have that ⟨S[l 7→ upi(p1)]; eb1⟩ ↪−→ ⟨S[l 7→ (d1, true)]; eb2⟩.

By E-Eval-Ctxt, it follows that

⟨S[l 7→ upi(p1)]; E
′
b [eb1]⟩ 7−→ ⟨S[l 7→ (d1, true)]; E ′

b [eb2]⟩,

as we were required to show.

For the second, consider that S[l 7→ (d1, true)] = US(S), where US is the store

update operation that freezes the contents of l and acts as the identity on the con-

tents of all other locations.

Note that:

∗ US is non-conflicting with ⟨S; ea1⟩ ↪−→ ⟨S[l 7→ upi(p1)]; ea2⟩, since no loca-

tions are allocated in the transition;

∗ US(S[l 7→ upi(p1)]) ̸= ⊤S , since US(S[l 7→ upi(p1)]) = S[l 7→ (d1, true)]

(since, byDefinition 3.4,ui(d1) = d1; otherwisewewouldhaveupi((d1, true)) =

⊤p, a contradiction), and we know S ̸= ⊤S and freezing the contents of location

l in S cannot cause it to become⊤S; and

∗ US is freeze-safe with ⟨S; ea1⟩ ↪−→ ⟨S[l 7→ upi(p1)]; ea2⟩, since upi does not

alter the status of p1.

218

A. PROOFS

(By Definition 3.4, upi can only change the status bit of a location if its contents

are (d, true) and ui(d) ̸= d, in which case upi changes the contents of the loca-

tion to (⊤, false); however, that cannot be the case here since thenupi(p1)would

be⊤p, and we would have Sa = ⊤S , a contradiction.)

Therefore, by Lemma 3.7 (Generalized Independence), we have that

⟨US(S); ea1⟩ ↪−→ ⟨US(S[l 7→ upi(p1)]); ea2⟩.

Hence ⟨S[l 7→ (d1, true)]; ea1⟩ ↪−→ ⟨S[l 7→ (d1, true)]; ea2⟩.

By E-Eval-Ctxt, it follows that

⟨S[l 7→ (d1, true)]; E ′
a [ea1]⟩ 7−→ ⟨S[l 7→ (d1, true)]; E ′

a [ea2]⟩,

as we were required to show.

(i) Case E-Freeze-Simple: Similar to case 3h, since Sa = S[l 7→ upi(p1)] and Sb = S[l′ 7→

(d1, true)].

(4) Case E-Put-Err: We have ⟨Sa; ea2⟩ = error.

We proceed by case analysis on the rule by which ⟨S; eb1⟩ steps to ⟨Sb; eb2⟩.

Since the only way an error configuration can arise is by the E-Put-Err rule, we can assume in all

other cases that σb ̸= error.

(a) Case E-Beta: By symmetry with case 1d.

(b) Case E-New: By symmetry with case 2d.

(c) Case E-Put: By symmetry with case 3d.

(d) Case E-Put-Err: We have ⟨Sa; ea2⟩ = error and ⟨Sb; eb2⟩ = error, and so we choose σc =

error, i = 0, j = 0, and π = id.

We have to show that:

• ⟨Sa; E
′
b [eb1]⟩ = error, and

• ⟨Sb; E
′
a [ea1]⟩ = error.

Since ⟨Sa; ea2⟩ = error, Sa = ⊤S , and since ⟨Sb; eb2⟩ = error, Sb = ⊤S , so both of the

above follow immediately.

219

A. PROOFS

(e) Case E-Get: Similar to case 4a, since ⟨Sa; ea2⟩ = error and Sb = S.

(f) Case E-Freeze-Init: Similar to case 4a, since ⟨Sa; ea2⟩ = error and Sb = S.

(g) Case E-Spawn-Handler: Similar to case 4a, since ⟨Sa; ea2⟩ = error and Sb = S.

(h) Case E-Freeze-Final: We have ⟨Sa; ea2⟩ = error and Sb = S[l 7→ (d1, true)], and so we

choose σc = error, i = 0, j = 1, and π = id.

We have to show that:

• ⟨Sa; E
′
b [eb1]⟩ = error, and

• ⟨Sb; E
′
a [ea1]⟩ 7−→ error.

The first of these is immediately true because since ⟨Sa; ea2⟩ = error, Sa = ⊤S , and so

⟨Sa; E
′
b [eb1]⟩ is equal to error as well.

For the second, observe that since ⟨S; eb1⟩ ↪−→ ⟨Sb; eb2⟩, we have by Lemma 3.6 (Mono-

tonicity) that S ⊑S Sb.

Therefore, since ⟨S; ea1⟩ ↪−→ error, we have by Lemma 3.9 that ⟨Sb; ea1⟩ ↪−→ error.

Since error is equal to ⟨⊤S; e⟩ for all expressions e, ⟨Sb; ea1⟩ ↪−→ ⟨⊤S; e⟩ for all e.

Therefore, by E-Eval-Ctxt, ⟨Sb; E
′
a [ea1]⟩ 7−→ ⟨⊤S; E

′
a [e]⟩ for all e.

Since ⟨⊤S; E
′
a [e]⟩ is equal to error, we have that ⟨Sb; E

′
a [ea1]⟩ 7−→ error, as we were re-

quired to show.

(i) Case E-Freeze-Simple: Similar to case 4h, since Sb = S[l 7→ (d1, true)].

(5) Case E-Get: We have Sa = S.

We proceed by case analysis on the rule by which ⟨S; eb1⟩ steps to ⟨Sb; eb2⟩.

Since the only way an error configuration can arise is by the E-Put-Err rule, we can assume in all

other cases that σb ̸= error.

(a) Case E-Beta: By symmetry with case 1e.

(b) Case E-New: By symmetry with case 2e.

(c) Case E-Put: By symmetry with case 3e.

(d) Case E-Put-Err: By symmetry with case 4e.

220

A. PROOFS

(e) Case E-Get: Similar to case 5a, since Sa = S and Sb = S.

(f) Case E-Freeze-Init: Similar to case 5a, since Sa = S and Sb = S.

(g) Case E-Spawn-Handler: Similar to case 5a, since Sa = S and Sb = S.

(h) Case E-Freeze-Final: Similar to case 1h, since Sa = S and Sb = S[l 7→ (d1, true)].

(i) Case E-Freeze-Simple: Similar to case 1i, since Sa = S and Sb = S[l 7→ (d1, true)].

(6) Case E-Freeze-Init: We have Sa = S.

We proceed by case analysis on the rule by which ⟨S; eb1⟩ steps to ⟨Sb; eb2⟩.

Since the only way an error configuration can arise is by the E-Put-Err rule, we can assume in all

other cases that σb ̸= error.

(a) Case E-Beta: By symmetry with case 1f.

(b) Case E-New: By symmetry with case 2f.

(c) Case E-Put: By symmetry with case 3f.

(d) Case E-Put-Err: By symmetry with case 4f.

(e) Case E-Get: By symmetry with case 5f.

(f) Case E-Freeze-Init: Similar to case 6a, since Sa = S and Sb = S.

(g) Case E-Spawn-Handler: Similar to case 6a, since Sa = S and Sb = S.

(h) Case E-Freeze-Final: Similar to case 1h, since Sa = S and Sb = S[l 7→ (d1, true)].

(i) Case E-Freeze-Simple: Similar to case 1i, since Sa = S and Sb = S[l 7→ (d1, true)].

(7) Case E-Spawn-Handler: We have Sa = S.

We proceed by case analysis on the rule by which ⟨S; eb1⟩ steps to ⟨Sb; eb2⟩.

Since the only way an error configuration can arise is by the E-Put-Err rule, we can assume in all

other cases that σb ̸= error.

(a) Case E-Beta: By symmetry with case 1g.

(b) Case E-New: By symmetry with case 2g.

(c) Case E-Put: By symmetry with case 3g.

(d) Case E-Put-Err: By symmetry with case 4g.

221

A. PROOFS

(e) Case E-Get: By symmetry with case 5g.

(f) Case E-Freeze-Init: By symmetry with case 6g.

(g) Case E-Spawn-Handler: Similar to case 7a, since Sa = S and Sb = S.

(h) Case E-Freeze-Final: Similar to case 1h, since Sa = S and Sb = S[l 7→ (d1, true)].

(i) Case E-Freeze-Simple: Similar to case 1i, since Sa = S and Sb = S[l 7→ (d1, true)].

(8) Case E-Freeze-Final: We have Sa = S[l 7→ (d1, true)].

We proceed by case analysis on the rule by which ⟨S; eb1⟩ steps to ⟨Sb; eb2⟩.

Since the only way an error configuration can arise is by the E-Put-Err rule, we can assume in all

other cases that σb ̸= error.

(a) Case E-Beta: By symmetry with case 1h.

(b) Case E-New: By symmetry with case 2h.

(c) Case E-Put: By symmetry with case 3h.

(d) Case E-Put-Err: By symmetry with case 4h.

(e) Case E-Get: By symmetry with case 5h.

(f) Case E-Freeze-Init: By symmetry with case 6h.

(g) Case E-Spawn-Handler: By symmetry with case 7h.

(h) Case E-Freeze-Final: We have Sa = S[l 7→ (d1, true)] and Sb = S[l′ 7→ (d′1, true)].

Now consider whether l = l′:

• If l ̸= l′:

Choose S ′ = S[l′ 7→ (d′1, true)][l 7→ (d1, true)], i = 1, j = 1, and π = id.

We have to show that:

– ⟨S[l 7→ (d1, true)]; E ′
b [eb1]⟩ 7−→ ⟨S[l′ 7→ (d′1, true)][l 7→ (d1, true)]; E ′

b [eb2]⟩,

and

– ⟨S[l′ 7→ (d′1, true)]; E
′
a [ea1]⟩ 7−→ ⟨S[l′ 7→ (d′1, true)][l 7→ (d1, true)]; E ′

a [ea2]⟩.

222

A. PROOFS

For the first of these, consider that S[l 7→ (d1, true)] = US(S), where US is the store

update operation that freezes the contents of l and acts as the identity on the contents

of all other locations.

Note that:

– US is non-conflicting with ⟨S; eb1⟩ ↪−→ ⟨S[l′ 7→ (d′1, true)]; eb2⟩, since no loca-

tions are allocated in the transition;

– US(S[l
′ 7→ (d′1, true)]) ̸= ⊤S ,

since US(S[l
′ 7→ (d′1, true)]) = S[l′ 7→ (d′1, true)][l 7→ (d1, true)] and we know

S ̸= ⊤S and freezing the contents of locations l and l′ in S cannot cause it to

become ⊤S (because if so, then we would have Sa = ⊤S or Sb = ⊤S , which we

know are not the case); and

– US is freeze-safe with ⟨S; eb1⟩ ↪−→ ⟨S[l′ 7→ (d′1, true)]; eb2⟩, since the only loca-

tion that can change in status between S and S[l′ 7→ (d′1, true)] is l
′, and US acts

as the identity on l′.

Therefore, by Lemma 3.7 (Generalized Independence), we have that

⟨US(S); eb1⟩ ↪−→ ⟨US(S[l
′ 7→ (d′1, true)]); eb2⟩.

Hence ⟨S[l 7→ (d1, true)]; eb1⟩ ↪−→ ⟨S[l′ 7→ (d′1, true)][l 7→ (d1, true)]; eb2⟩.

By E-Eval-Ctxt, it follows that

⟨S[l 7→ (d1, true)]; E ′
b [eb1]⟩ 7−→ ⟨S[l′ 7→ (d′1, true)][l 7→ (d1, true)]; E ′

b [eb2]⟩,

as we were required to show.

The argument for the second is symmetrical.

• If l = l′:

Note that since l = l′, d1 = d′1 as well.

Choose S ′ = S[l 7→ (d1, true)], i = 1, j = 1, and π = id.

We have to show that:

– ⟨S[l 7→ (d1, true)]; E ′
b [eb1]⟩ 7−→ ⟨S[l 7→ (d1, true)]; E ′

b [eb2]⟩, and

223

A. PROOFS

– ⟨S[l′ 7→ (d′1, true)]; E
′
a [ea1]⟩ 7−→ ⟨S[l 7→ (d1, true)]; E ′

a [ea2]⟩.

For the first of these, consider that S[l 7→ (d1, true)] = US(S), where US is the store

update operation that freezes the contents of l and acts as the identity on the contents

of all other locations.

Note that:

– US is non-conflicting with ⟨S; eb1⟩ ↪−→ ⟨S[l 7→ (d1, true)]; eb2⟩, since no loca-

tions are allocated in the transition;

– US(S[l 7→ (d1, true)]) ̸= ⊤S , since US(S[l 7→ (d1, true)]) = S[l 7→ (d1, true)],

and we know S ̸= ⊤S and freezing the contents of location l in S cannot cause it

to become⊤S; and

– US is freeze-safe with ⟨S; eb1⟩ ↪−→ ⟨S[l 7→ (d1, true)]; eb2⟩, since the only loca-

tion that can change in status between S and S[l 7→ (d1, true)] is l, andUS freezes

the contents of l but has no other effect on them.

Therefore, by Lemma 3.7 (Generalized Independence), we have that

⟨US(S); eb1⟩ ↪−→ ⟨US(S[l 7→ (d1, true)]); eb2⟩.

Hence ⟨S[l 7→ (d1, true)]; eb1⟩ ↪−→ ⟨S[l 7→ (d1, true)]; eb2⟩.

By E-Eval-Ctxt, it follows that

⟨S[l 7→ (d1, true)]; E ′
b [eb1]⟩ 7−→ ⟨S[l 7→ (d1, true)]; E ′

b [eb2]⟩,

as we were required to show.

The argument for the second is symmetrical.

(i) Case E-Freeze-Simple: Similar to case 8h, since Sa = S[l 7→ (d1, true)] and Sb = S[l′ 7→

(d′1, true)].

(9) Case E-Freeze-Simple: We have Sa = S[l 7→ (d1, true)].

(a) Case E-Beta: By symmetry with case 1i.

(b) Case E-New: By symmetry with case 2i.

(c) Case E-Put: By symmetry with case 3i.

224

A. PROOFS

(d) Case E-Put-Err: By symmetry with case 4i.

(e) Case E-Get: By symmetry with case 5i.

(f) Case E-Freeze-Init: By symmetry with case 6i.

(g) Case E-Spawn-Handler: By symmetry with case 7i.

(h) Case E-Freeze-Final: By symmetry with case 8i.

(i) Case E-Freeze-Simple: Similar to case 9h, since Sa = S[l 7→ (d1, true)] and Sb = S[l′ 7→

(d′1, true)].

□

A.18. Proof of Lemma 3.11

Proof. Suppose σ 7−→ σ′ and σ 7−→m σ′′, where 1 ≤ m.

We are required to show that either:

(1) there exist σc, i, j, π such that σ′ 7−→i σc and π(σ′′) 7−→j σc and i ≤ m and j ≤ 1, or

(2) there exists k ≤ m such that σ′ 7−→k error, or there exists k ≤ 1 such that σ′′ 7−→k error.

We proceed by induction onm.

In the base case ofm = 1, the result is immediate from Lemma 3.10, with k = 1.

For the induction step, suppose σ 7−→m σ′′ 7−→ σ′′′ and suppose the lemma holds form.

We show that it holds form+ 1, as follows.

From the induction hypothesis, we have that either:

(1) there exist σ′
c, i

′, j′, π′ such that σ′ 7−→i′ σ′
c and π

′(σ′′) 7−→j′ σ′
c and i

′ ≤ m and j′ ≤ 1, or

(2) there exists k′ ≤ m such that σ′ 7−→k′ error, or there exists k′ ≤ 1 such that σ′′ 7−→k′ error.

We consider these two cases in turn:

225

A. PROOFS

(1) There exist σ′
c, i

′, j′, π′ such that σ′ 7−→i′ σ′
c and π

′(σ′′) 7−→j′ σ′
c and i

′ ≤ m and j′ ≤ 1:

We proceed by cases on j′:

• If j′ = 0, then π′(σ′′) = σ′
c.

Since σ′′ 7−→ σ′′′, we have that π′(σ′′) 7−→ π′(σ′′′) by Lemma 3.3 (Permutability).

We can then choose σc = π′(σ′′′) and i = i′ + 1 and j = 0 and π = π′.

The key is that σ′ 7−→i′ σ′
c = π′(σ′′) 7−→ π′(σ′′′) for a total of i′ + 1 steps.

• If j′ = 1:

First, since π′(σ′′) 7−→j′ σ′
c, then by Lemma 3.3 (Permutability) we have that σ′′ 7−→j′

π′−1(σ′
c).

Then, by σ′′ 7−→j′ π′−1(σ′
c) and σ

′′ 7−→ σ′′′ and Lemma 3.10, one of the following two cases

is true:

(a) There exist σ′′
c and i

′′ and j′′ and π′′ such that π′−1(σ′
c) 7−→i′′ σ′′

c and π
′′(σ′′′) 7−→j′′ σ′′

c

and i′′ ≤ 1 and j′′ ≤ 1.

Since π′−1(σ′
c) 7−→i′′ σ′′

c , by Lemma 3.3 (Permutability) we have that σ′
c 7−→i′′ π′(σ′′

c).

So we also have σ′ 7−→i′ σ′
c 7−→i′′ π′(σ′′

c).

Since π′′(σ′′′) 7−→j′′ σ′′
c , by Lemma 3.3 (Permutability) we have that π′(π′′(σ′′′)) 7−→j′′

π′(σ′′
c).

In summary, we pick σc = π′(σ′′
c) and i = i′ + i′′ and j = j′′ and π = π′′ ◦ π′, which

is sufficient because i = i′ + i′′ ≤ m+ 1 and j = j′′ ≤ 1.

(b) π′−1(σ′
c) 7−→ error or σ′′′ 7−→ error.

If σ′′′ 7−→ error, then choosing k = 1 satisfies the proof.

Otherwise, π′−1(σ′
c) 7−→ error.

Then, by Lemma 3.3 we have that σ′
c 7−→ π′(error).

By Definition 3.11, π′(error) = error, and so σ′
c 7−→ error.

Therefore σ′ 7−→i′ σ′
c 7−→ error.

Hence σ′ 7−→i′+1 error.

226

A. PROOFS

Since i′ ≤ m, we have that i′ + 1 ≤ m + 1, and so choosing k = i′ + 1 satisfies the

proof.

(2) There exists k′ ≤ m such that σ′ 7−→k′ error, or there exists k′ ≤ 1 such that σ′′ 7−→k′ error:

If there exists k′ ≤ m such that σ′ 7−→k′ error, then choosing k = k′ satisfies the proof.

Otherwise, there exists k′ ≤ 1 such that σ′′ 7−→k′ error.

We proceed by cases on k′:

• If k′ = 0, then σ′′ = error.

Hence this case is not possible, since σ′′ 7−→ σ′′′ and error cannot step.

• If k′ = 1:

From σ′′ 7−→ σ′′′ and σ′′ 7−→k′ error and Lemma 3.10, one of the following two cases is true:

(a) There exist σ′′
c and i′′ and j′′ and π′′ such that error 7−→i′′ σ′′

c and π′′(σ′′′) 7−→j′′ σ′′
c

and i′′ ≤ 1 and j′′ ≤ 1.

Since error cannot step, i′′ = 0 and σ′′
c = error.

By Definition 3.11, π′′(σ′′′) = σ′′′.

Hence σ′′′ 7−→j′′ error.

Since j′′ ≤ 1, choosing k = j′′ satisfies the proof.

(b) error 7−→ error or σ′′′ 7−→ error.

Since error cannot step, σ′′′ 7−→ error.

Hence choosing k = 1 satisfies the proof.

□

A.19. Proof of Lemma 3.12

Proof. Suppose that σ 7−→n σ′ and σ 7−→m σ′′, where 1 ≤ n and 1 ≤ m.

We are required to show that either:

(1) there exist σc, i, j, π such that σ′ 7−→i σc and π(σ′′) 7−→j σc and i ≤ m and j ≤ n, or

227

A. PROOFS

(2) there exists k ≤ m such that σ′ 7−→k error, or there exists k ≤ n such that σ′′ 7−→k error.

We proceed by induction on n.

In the base case of n = 1, the result is immediate from Lemma 3.11.

For the induction step, suppose σ 7−→n σ′ 7−→ σ′′′ and suppose the lemma holds for n.

We show that it holds for n+ 1, as follows.

From the induction hypothesis, we have that either:

(1) there exist σ′
c, i

′, j′, π′ such that σ′ 7−→i′ σ′
c and π

′(σ′′) 7−→j′ σ′
c and i

′ ≤ m and j′ ≤ n, or

(2) there exists k′ ≤ m such that σ′ 7−→k′ error, or there exists k′ ≤ n such that σ′′ 7−→k′ error.

We consider these two cases in turn:

(1) There exist σ′
c, i

′, j′, π′ such that σ′ 7−→i′ σ′
c and π

′(σ′′) 7−→j′ σ′
c and i

′ ≤ m and j′ ≤ n:

We proceed by cases on i′:

• If i′ = 0, then σ′ = σ′
c.

We can then choose σc = σ′′′ and i = 0 and j = j′ + 1 and π = π′.

Since π′(σ′′) 7−→j′ σ′
c 7−→ σ′′′, and j′ + 1 ≤ n+ 1 since j′ ≤ n, the case is satisfied.

• If i′ ≥ 1:

From σ′ 7−→ σ′′′ and σ′ 7−→i′ σ′
c and Lemma 3.11, one of the following two cases is true:

(a) There exist σ′′
c and i′′ and j′′ and π′′ such that σ′′′ 7−→i′′ σ′′

c and π′′(σ′
c) 7−→j′′ σ′′

c and

i′′ ≤ i′ and j′′ ≤ 1.

Since π′(σ′′) 7−→j′ σ′
c, by Lemma 3.3 (Permutability) we have that π′′(π′(σ′′)) 7−→j′

π′′(σ′
c).

So we also have π′′(π′(σ′′)) 7−→j′ π′′(σ′
c) 7−→j′′ σ′′

c .

In summary, we pick σc = σ′′
c and i = i′′ and j = j′ + j′′ and π = π′ ◦ π′′, which is

sufficient because i = i′′ ≤ i′ ≤ m and j = j′ + j′′ ≤ n+ 1.

228

A. PROOFS

(b) There exists k′′ ≤ i′ such that σ′′′ 7−→k′′ error, or there exists k′′ ≤ 1 such that

σ′
c 7−→k′′ error.

If there exists k′′ ≤ i′ such that σ′′′ 7−→k′′ error, then choosing k = k′′ satisfies the

proof, since k′′ ≤ i′ ≤ m.

Otherwise, there exists k′′ ≤ 1 such that σ′
c 7−→k′′ error.

Hence by Lemma 3.3 (Permutability), we have that π′−1(σ′
c) 7−→k′′ π′−1(error).

By Definition 3.11, π′−1(error) = error.

Hence π′−1(σ′
c) 7−→k′′ error.

Since π′(σ′′) 7−→j′ σ′
c, by Lemma 3.3 (Permutability), we have that σ′′ 7−→j′ π′−1(σ′

c).

Therefore, σ′′ 7−→j′ π′−1(σ′
c) 7−→k′′ error.

Hence σ′′ 7−→j′+k′′ error.

Since j′ ≤ n and k′′ ≤ 1, j′ + k′′ ≤ n+ 1.

Hence choosing k = j′ + k′′ satisfies the proof.

(2) There exists k′ ≤ m such that σ′ 7−→k′ error, or there exists k′ ≤ n such that σ′′ 7−→k′ error:

If there exists k′ ≤ n such that σ′′ 7−→k′ error, then choosing k = k′ satisfies the proof.

Otherwise, there exists k′ ≤ m such that σ′ 7−→k′ error.

We proceed by cases on k′:

• If k′ = 0, then σ′ = error.

Hence this case is not possible, since σ′ 7−→ σ′′′ and error cannot step.

• If k′ ≥ 1:

From σ′ 7−→ σ′′′ and σ′ 7−→k′ error and Lemma 3.11, one of the following two cases is true:

(a) There exist σ′′
c and i′′ and j′′ and π′′ such that σ′′′ 7−→i′′ σ′′

c and π′′(error) 7−→j′′ σ′′
c

and i′′ ≤ k′ and j′′ ≤ 1.

By Definition 3.11, π′′(error) = error.

Hence error 7−→j′′ σ′′
c .

Since error cannot step, j′′ = 0 and σ′′
c = error.

229

A. PROOFS

Hence σ′′′ 7−→i′′ error.

Since i′′ ≤ k′ ≤ m, choosing k = i′′ satisfies the proof.

(b) There exists k′′ ≤ k′ such that σ′′′ 7−→k′′ error, or there exists k′′ ≤ 1 such that

error 7−→k′′ error.

Since error cannot step, there exists k′′ ≤ k′ such that σ′′′ 7−→k′′ error.

Since k′′ ≤ k′ ≤ m, choosing k = k′′ satisfies the proof.

□

A.20. Proof of Theorem 5.2

Proof. Consider replica i of a threshold CvRDT (S,≤, s0, q, t, u,m).

Let S be a threshold set with respect to (S,≤).

Consider a method execution tk+1
i (S) (i.e., a threshold query that is the k + 1th method execution on

replica i, with threshold set S as its argument) that returns some set of activation states Sa ∈ S .

For part 1 of the theorem, we have to show that threshold queries with S as their argument will always

return Sa on subsequent executions at i.

That is, we have to show that, for all k′ > (k + 1), the threshold query tk
′

i (S) on i returns Sa.

Since tk+1
i (S) returns Sa, from Definition 5.4 we have that for some activation state sa ∈ Sa, the

condition sa ≤ ski holds.

Consider arbitrary k′ > (k + 1).

Since state is inflationary across updates, we know that the state sk
′

i aftermethod execution k′ is at least

ski .

That is, ski ≤ sk
′

i .

By transitivity of≤, then, sa ≤ sk
′

i .

230

A. PROOFS

Hence, by Definition 5.4, tk
′

i (S) returns Sa.

For part 2 of the theorem, consider some replica j of (S,≤, s0, q, t, u,m), located at process pj .

We are required to show that, for all x ≥ 0, the threshold query tx+1
j (S) returns Sa eventually, and

blocks until it does.1

That is, we must show that, for all x ≥ 0, there exists some finite n ≥ 0 such that

• for all i in the range 0 ≤ i ≤ n− 1, the threshold query tx+1+i
j (S) returns block, and

• for all i ≥ n, the threshold query tx+1+i
j (S) returns Sa.

Consider arbitrary x ≥ 0.

Recall that sxj is the state of replica j after the xth method execution, and therefore sxj is also the state

of j when tx+1
j (S) runs. We have three cases to consider:

• ski ≤ sxj .

(That is, replica i’s state after the kth method execution on i is at or below replica j’s state after

the xth method execution on j.)

Choose n = 0.

We have to show that, for all i ≥ n, the threshold query tx+1+i
j (S) returns Sa.

Since tk+1
i (S) returns Sa, we know that there exists an sa ∈ Sa such that sa ≤ ski .

Since ski ≤ sxj , we have by transitivity of≤ that sa ≤ sxj .

Therefore, by Definition 5.4, tx+1
j (S) returns Sa.

Then, by part 1 of the theorem, we have that subsequent executions tx+1+i
j (S) at replica j will also

return Sa, and so the case holds.

(Note that this case includes the possibility ski ≡ s0, in which no updates have executed at replica

i.)

1The occurrences of k + 1 and x + 1 in this proof are an artifact of how we index method executions starting from 1, but
states starting from 0. The initial state (of every replica) is s0, and so ski is the state of replica i after method execution k
has completed at i.

231

A. PROOFS

• ski > sxj .

(That is, replica i’s state after the kth method execution on i is above replica j’s state after the xth

method execution on j.)

We have two subcases:

– There exists some activation state s′a ∈ Sa for which s′a ≤ sxj .

In this case, we choose n = 0.

We have to show that, for all i ≥ n, the threshold query tx+1+i
j (S) returns Sa.

Since s′a ≤ sxj , by Definition 5.4, tx+1
j (S) returns Sa.

Then, by part 1 of the theorem, we have that subsequent executions tx+1+i
j (S) at replica j will

also return Sa, and so the case holds.

– There is no activation state s′a ∈ Sa for which s′a ≤ sxj .

Since tk+1
i (S) returns Sa, we know that there is some update uk′

i (a) in i’s causal history, for

some k′ < (k + 1), that updates i from a state at or below sxj to s
k
i .

2

By eventual delivery, uk′
i (a) is eventually delivered at j.

Hence some update or updates that will increase j’s state from sxj to a state at or above some

s′a must reach replica j.3

Let the x + 1 + rth method execution on j be the first update on j that updates its state to

some sx+1+r
j ≥ s′a, for some activation state s′a ∈ Sa.

Choose n = r + 1.

We have to show that, for all i in the range 0 ≤ i ≤ r, the threshold query tx+1+i
j (S) returns

block, and that for all i ≥ r + 1, the threshold query tx+1+i
j (S) returns Sa.

2We know that i’s state was once at or below sxj , because i and j started at the same state s0 and can both only grow. Hence
the least that sxj can be is s0, and we know that i was originally s0 as well.
3We say “some update or updates” because the exact update uk′

i (a)may not be the update that causes the threshold query
at j to unblock; a different update or updates could do it. Nevertheless, the existence of uk′

i (a)means that there is at least
one update that will suffice to unblock the threshold query.

232

A. PROOFS

For the former, since the x + 1 + rth method execution on j is the first one that updates its

state to sx+1+r
j ≥ s′a, we have by Definition 5.4 that for all i in the range 0 ≤ i ≤ r, the

threshold query tx+1+i
j (S) returns block.

For the latter, since sx+1+r
j ≥ s′a, by Definition 5.4 we have that tx+1+r+1

j (S) returns Sa, and

by part 1 of the theorem, we have that for i ≥ r + 1, subsequent executions tx+1+i
j (S) at

replica j will also return Sa, and so the case holds.

• ski ≰ sxj and s
x
j ≰ ski .

(That is, replica i’s state after the kth method execution on i is not comparable to replica j’s state

after the xth method execution on j.)

Similar to the previous case.

□

233

APPENDIX B

A PLT Redex Model of λLVish

I have developed a runnable version1 of the λLVish calculus of Chapter 3 using the PLT Redex semantics

engineering toolkit [19]. In the Redex of today, it is not possible to directly parameterize a language

definition by a lattice.2 Instead, taking advantage of Racket’s syntactic abstraction capabilities, I define

a Racket macro, define-lambdaLVish-language, that serves as a wrapper for a template that imple-

ments the lattice-agnostic semantics of λLVish. The define-lambdaLVish-language macro takes the

following arguments:

• a name, which becomes the lang-name passed to Redex’s define-language form;

• a “downset” operation, a Racket-level procedure that takes a lattice element and returns the (fi-

nite) set of all lattice elements that are less than or equal to that element (this operation is used

to implement the semantics of freeze − after − with, in particular, to determine when the E-

Freeze-Final rule can fire);

• a lub operation, a Racket procedure that takes two lattice elements and returns a lattice element;

• a list of update operations, Racket procedures that each take a lattice element and return a lattice

element; and

• a (possibly infinite) set of lattice elements represented as Redex patterns.

Given these arguments, define-lambdaLVish-language generates a Redex model that is specialized

to the appropriate lattice and set of update operations. For instance, to generate a Redex model called

lambdaLVish-nat where the lattice is the non-negative integers ordered by ≤, and the set of update

operations is {u(+1), u(+2)} where u(+n)(d) increments d’s contents by n, one could write:

1Available at http://github.com/lkuper/lvar-semantics.
2See discussion at http://lists.racket-lang.org/users/archive/2013-April/057075.html.

234

http://github.com/lkuper/lvar-semantics
http://lists.racket-lang.org/users/archive/2013-April/057075.html

B. A PLT REDEX MODEL OF λLVish

(define-lambdaLVish-language lambdaLVish-nat downset-op max update-ops natural)

where max is a built-in Racket procedure, and downset-op and update-ops can be defined in Racket as

follows:

(define downset-op
(lambda (d)

(if (number? d)
(append '(Bot) (iota d) `(,d))
'(Bot))))

(define update-op-1
(lambda (d)

(match d
['Bot 1]
[number (add1 d)])))

(define update-op-2
(lambda (d)

(match d
['Bot 2]
[number (add1 (add1 d))])))

(define update-ops `(,update-op-1 ,update-op-2))

The last argument, natural, is a Redex pattern that matches any exact non-negative integer. natural

has no meaning to Racket outside of Redex, but since define-lambdaLVish-language is a macro

rather than an ordinary procedure, its arguments are not evaluated until they are in the context of

Redex, and so passing natural as an argument to the macro gives us the behavior we want.

The Redex model is not completely faithful to the λLVish calculus of Chapter 3: it requires us to specify

a finite list of update operations rather than a possibly infinite set of them. However, the list of up-

date operations can be arbitrarily long, and the definitions of the update operations could, at least in

principle, be generated programmatically as well.

235

Lindsey Kuper

Programming Systems Lab, Intel Labs
Intel Corporation
3600 Juliette Lane
Santa Clara, CA 95054

lindsey.kuper@intel.com
lindsey@composition.al

http://www.cs.indiana.edu/~lkuper
http://composition.al

Education

Indiana University, School of Informatics and Computing, 2008–2015

Ph.D. Computer Science, September 2015.
Research committee: Ryan R. Newton (chair), Lawrence S. Moss, Amr Sabry, Chung-chieh Shan.
Dissertation: Lattice-based Data Structures for Deterministic Parallel and Distributed Programming.

M.S. Computer Science, May 2010.

Grinnell College, 2000–2004

B.A. Computer Science and Music (with honors), May 2004.

Additional coursework and summer schools:

Oregon Programming Languages Summer School: Types, Logic, and Verification, Summer 2013.

OregonProgrammingLanguages Summer School: Logic, Languages, Compilation, andVerification, Summer 2012.

Operating Systems, Cornell University, Summer 2010.

Employment history

Intel Corporation (Programming Systems Lab, Intel Labs), Santa Clara, CA

Research Scientist, September 2014–present.

Indiana University, Bloomington, IN

Research Assistant (with Ryan Newton), January 2012–August 2014.

Associate Instructor (with William E. Byrd), August 2011–December 2011.

Research Assistant (with Amal Ahmed), August 2010–December 2010.

Associate Instructor (with Daniel P. Friedman), January 2009–May 2010.

Mozilla Corporation, Mountain View, CA

Research Engineering Intern (supervised by Brian Anderson, Niko Matsakis and Patrick Walton), May–August 2012.

Research Engineering Intern (supervised by Dave Herman), March–August 2011.

GrammaTech, Inc., Ithaca, NY

Software Engineering Intern (supervised by David Melski), May–August 2010.

Bedford, Freeman and Worth Publishing Group, New York, NY and Portland, OR

Associate Project Manager, July 2006–June 2008.

IBCTV, LLC, Chicago, IL and Portland, OR

Web Designer/Developer, August 2004–June 2006.

Research funding

Co-wrote (with Ryan Newton) NSF grant CCF-1218375, Generalizing Monotonic Data Structures for Expressive,
Deterministic Parallel Programming ($377,315; 8/1/2012–7/31/2015), which funded my dissertation work.

Conference publications

Lindsey Kuper, Aaron Todd, Sam Tobin-Hochstadt and Ryan R. Newton.
Taming the parallel effect zoo: extensible deterministic parallelism with LVish.
In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’14),
Edinburgh, UK, June 2014.
(52/287≈ 18% accepted)

Lindsey Kuper, Aaron Turon, Neelakantan R. Krishnaswami and Ryan R. Newton.
Freeze after writing: quasi-deterministic parallel programming with LVars.
In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’14),
San Diego, CA, January 2014.
(51/220≈ 23% accepted)

Workshop publications

Lindsey Kuper and Ryan R. Newton.
Joining forces: toward a unified account of LVars and convergent replicated data types.
In the 5th Workshop on Determinism and Correctness in Parallel Programming (WoDet ’14),
Salt Lake City, UT, March 2014.

Lindsey Kuper and Ryan R. Newton.
LVars: lattice-based data structures for deterministic parallelism.
In Proceedings of the 2nd ACM SIGPLAN Workshop on Functional High-Performance Computing (FHPC ’13),
Boston, MA, September 2013.

Andrew W. Keep, Michael D. Adams, Lindsey Kuper, William E. Byrd and Daniel P. Friedman.
A pattern matcher for miniKanren, or, how to get into trouble with CPS macros.
In Proceedings of the 2009 Scheme and Functional Programming Workshop (Scheme ’09),
Boston, MA, August 2009.

Technical reports

Lindsey Kuper, Aaron Turon, Neelakantan R. Krishnaswami and Ryan R. Newton.
Freeze after writing: quasi-deterministic parallel programming with LVars. (56 pages)
Indiana University Technical Report TR710, November 2013.

Lindsey Kuper and Ryan R. Newton.
A lattice-theoretical approach to deterministic parallelism with shared state. (60 pages)
Indiana University Technical Report TR702, October 2012.

David Melski, David Cok, John Phillips, Scott Wisniewski, Suan Hsi Yong, Nathan Lloyd, Lindsey Kuper, Denis Gopan
and Alexey Loginov.
Safety in numbers. (104 pages)
GrammaTech, Inc. project final report, November 2010.

Talks

LVars for distributed programming, or, LVars and CRDTs join forces.

IFIP Working Group 2.8 (Functional Programming), Kefalonia, Greece, May 26, 2015.

LVars: lattice-based data structures for deterministic parallel and distributed programming.

Compose :: Conference, New York, NY, January 31, 2015.

Hacker School, New York, NY, March 24, 2014.

Intel Labs, Santa Clara, CA, March 21, 2014.

University of Utah, Salt Lake City, UT, March 4, 2014.

Microsoft Research, Mountain View, CA, January 27, 2014.

Joining forces: toward a unified account of LVars and convergent replicated data types.

WoDet 2014, Salt Lake City, UT, March 2, 2014.

Freeze after writing: quasi-deterministic parallel programming with LVars.

POPL 2014, San Diego, CA, January 23, 2014.

LVars: lattice-based data structures for deterministic parallelism.

Mozilla Corporation, Mountain View, CA, October 31, 2013.

RICONWest 2013, San Francisco, CA, October 29, 2013.

FHPC 2013, Boston, MA, September 23, 2013.

Hacker School, New York, NY, June 10, 2013.

A lattice-based approach to deterministic parallelism.

MPI-SWS, Saarbrücken, Germany, January 30, 2013.

POPL 2013 student talk session, Rome, Italy, January 25, 2013.

A lattice-based approach to deterministic parallelism with shared state.

Aarhus University, Aarhus, Denmark, September 14, 2012.

University of California–Berkeley, Berkeley, CA, August 16, 2012.

Rust typeclasses turn trait-er.

Mozilla Corporation, Mountain View, CA, August 9, 2012.

Hacking the Rust object system at Mozilla.

Grinnell College, Grinnell, IA, April 5, 2012.
(invited talk, hosted by the Grinnell Alumni Scholars Program)

Some pieces of the Rust object system: extension, overriding, and self.

Mozilla Corporation, Mountain View, CA, August 18, 2011.

Parametric polymorphism through run-time sealing, or, theorems for low, low prices!

Northeastern University, Boston, MA, February 23, 2011.

A system for testing specifications of CPU semantics, or, what I did on my summer vacation.

GrammaTech, Inc., Ithaca, NY, August 20, 2010.

Undergraduate projects advised

Isaiah Weating, Indiana University, Spring 2013. Project title: Parallel Programming with LVars. Awarded third place in
IU Undergraduate Research Opportunities in Computing (UROC) Poster Competition, May 2013.

Teaching

Associate Instructor, Indiana University

Fall 2011: CSCI H211 Introduction to Computer Science, Honors, taught by Will Byrd. Taught labs on Scheme
programming and Arduino development, with a focus on procedural music generation. Graded homework assign-
ments and exams and held office hours.

Spring 2009, Fall 2009, Spring 2010: CSCI B521 Programming Language Principles and CSCI C311 Programming
Languages, taught by Dan Friedman. Taught lab sections, graded homework assignments and exams, and held
office hours. Course topics included environment-passing and continuation-passing interpreters; continuation-
passing style, trampolining, registerization, and other correctness-preserving transformations; hygienic macro
expansion; types and type inference; and functional and logic programming. Nominated by students for 2009–
2010 Associate Instructor of the Year award.

Instructor, internalDrive, Inc.

Taught short project-based courses to middle-school and high-school students in a university setting.

Summer 2004 (Northwestern University): Various week-long courses on digital music editing and web design.

Summer 2003 (UT Austin): Various week-long courses on digital music editing, web design, and stop-motion
animation.

Service

Research community service

Program chair:

Off the Beaten Track (OBT) 2016.

Program committees:

ECOOP 2016, external review committee.

POPL 2016, external review committee.

IFL 2015.

Onward! Papers 2015.

Workshop on Principles and Practice of Consistency for Distributed Data (PaPoC) 2015.

Off the Beaten Track (OBT) 2015.

IFL 2014.

Haskell Symposium 2014.

Journal reviewing: DistributedComputing, 2015; ACMTransactions onProgrammingLanguages andSystems (TOPLAS),
2012.

Conference and workshop reviewing: PLDI 2015; ICFP 2013; PPoPP 2013; PLPV 2012.

Departmental service

Graduate Education Committee, Indiana University Computer Science Program, 2013–2014.

Website and mailing list administrator, Indiana University Programming Languages Group, 2010–2014.

Officer, Indiana University Computer Science Club, 2011–2013.

Organizer, Indiana University PL Colloquium Series, 2010–2012. Coordinated speakers for weekly talk series.

Co-organizer and program committee member, Indiana Celebration of Women in Computing (InWIC) 2012.

President, Indiana University Computer Science Graduate Student Association, 2010–2011.

Steering Committee member, Indiana University Women in Informatics and Computing, 2010–2011.

Outreach activities

Co-founder and co-organizer, !!Con, 2014–present. !!Con is an annual volunteer-run conference consisting of ten-
minute talks on the joy, excitement, and surprise of programming.

Program committee member, Tiny Transactions on Computer Science volume 3, 2015. Tiny ToCS is the premier venue for
peer-reviewed computer science research of≤140 characters.

Resident at the Recurse Center, New York, NY, summer 2013, fall 2013, winter 2014. The Recurse Center is a free,
self-directed, educational retreat for programmers.

Open source software contributions

Contributor toRiver Trail, a library, JIT compiler, andwebbrowser extension to enable parallel programming in JavaScript,
September 2014–February 2015.

Contributor to LVish, the Haskell library for deterministic and quasi-deterministic parallel programming based on my
dissertation work on LVars, February 2013–present.

Contributor to the first ten releases of the Rust programming language, as well as various pre-release versions, 2011–
2014. Contributions include work on extending the Rust typeclass system to support Haskell-style default methods;
integer-literal suffix inference; and the self-dispatch, object extension, and method overriding features of the object
system in a pre-release version of the language.

Awards and fellowships

Indiana University Graduate Women in Science Fellowship, 2008–2009.

National Merit Scholarship, 2000–2004.

Travel funding:

PLMW 2013 and PLMW 2012 travel awards for POPL, January 2013, January 2012.

CRA-W Graduate Cohort Workshop, invitations and travel awards, March 2010, March 2009.

Google Workshop for Women Engineers, invitation and travel award, January 2009.

Other activities

Competed (with Recurse Center staff and students) as Hacker School batch[6] in the ICFP Programming Contest, 2013.

Competed (with Alex Rudnick) as Team K&R in the ICFP Programming Contest, 2011, 2009, 2008.

Member of the Contemporary Vocal Ensemble, Indiana University Jacobs School of Music, 2009.

Member of the University Chorale, Indiana University Jacobs School of Music, 2008–2009.

Member of the Grinnell Singers, Grinnell College Department of Music, 2000–2004.

Completed seven marathons since 2004, most recently in May 2012.

	Chapter 1. Introduction
	1.1. The deterministic-by-construction parallel programming landscape
	1.2. Monotonic data structures as a basis for deterministic parallelism
	1.3. Quasi-deterministic and event-driven programming with LVars
	1.4. The LVish library
	1.5. Deterministic threshold queries of distributed data structures
	1.6. Thesis statement, and organization of the rest of this dissertation
	1.7. Previously published work

	Chapter 2. LVars: lattice-based data structures for deterministic parallelism
	2.1. Motivating example: a parallel, pipelined graph computation
	2.2. LVars by example
	2.3. Lattices, stores, and determinism
	2.4. LVar: syntax and semantics
	2.5. Proof of determinism for LVar
	2.6. Generalizing the put and get operations

	Chapter 3. Quasi-deterministic and event-driven programming with LVars
	3.1. LVish, informally
	3.2. LVish, formally
	3.3. Proof of quasi-determinism for LVish

	Chapter 4. The LVish library
	4.1. The big picture
	4.2. The LVish library interface for application writers
	4.3. Par-monad transformers and disjoint parallel update
	4.4. Case study: parallelizing k-CFA with LVish
	4.5. Case study: parallelizing PhyBin with LVish

	Chapter 5. Deterministic threshold queries of distributed data structures
	5.1. Background: CvRDTs and eventual consistency
	5.2. Adding threshold queries to CvRDTs
	5.3. Determinism of threshold queries
	5.4. Discussion: reasoning about per-query consistency choices

	Chapter 6. Related work
	6.1. Deterministic Parallel Java (DPJ)
	6.2. FlowPools
	6.3. Bloom and BloomL
	6.4. Concurrent Revisions
	6.5. Frame properties and separation logics

	Chapter 7. Summary and future work
	7.1. Another look at the deterministic parallel landscape
	7.2. Distributed programming and the future of LVars and LVish

	Bibliography
	Appendix A. Proofs
	A.1. Proof of Lemma 2.1
	A.2. Proof of Lemma 2.2
	A.3. Proof of Lemma 2.3
	A.4. Proof of Lemma 2.4
	A.5. Proof of Lemma 2.5
	A.6. Proof of Lemma 2.6
	A.7. Proof of Lemma 2.8
	A.8. Proof of Lemma 2.9
	A.9. Proof of Lemma 2.10
	A.10. Proof of Lemma 3.2
	A.11. Proof of Lemma 3.3
	A.12. Proof of Lemma 3.4
	A.13. Proof of Lemma 3.5
	A.14. Proof of Lemma 3.6
	A.15. Proof of Lemma 3.7
	A.16. Proof of Lemma 3.8
	A.17. Proof of Lemma 3.10
	A.18. Proof of Lemma 3.11
	A.19. Proof of Lemma 3.12
	A.20. Proof of Theorem 5.2

	Appendix B. A PLT Redex Model of LVish

