
A pattern matcher for miniKanren
or

How to get into trouble with CPS macros

Andrew W. Keep Michael D. Adams Lindsey Kuper William E. Byrd Daniel P. Friedman
Indiana University, Bloomington, IN 47405

{akeep,adamsmd,lkuper,webyrd,dfried}@cs.indiana.edu

Abstract
CPS macros written using Scheme’s syntax-rules macro system
allow for guaranteed composition of macros and control over
the order of macro expansion. We identify a limitation of CPS
macros when used to generate bindings from a non-unique list
of user-specified identifiers. Implementing a pattern matcher for
the miniKanren relational programming language revealed this
limitation. Identifiers come from the pattern, and repetition in-
dicates that the same variable binding should be used. Using a
CPS macro, binding is delayed until after the comparisons are
performed. This may cause free identifiers that are symbolically
equal to be conflated, even when they are introduced by differ-
ent parts of the source program. After expansion, this leaves some
identifiers unbound that should be bound. In our first solution, we
use syntax-case with bound-identifier=? to correctly compare the
delayed bindings. Our second solution uses eager binding with
syntax-rules. This requires abandoning the CPS approach when
discovering new identifiers.

1. Introduction
Macros written in continuation-passing style (CPS) [4, 6] give the
programmer control over the order of macro expansion. We chose
the CPS approach for implementing a pattern matcher for miniKan-
ren, a declarative logic programming language implemented in a
pure functional subset of Scheme [1, 3]. This approach allows us
to generate clean miniKanren code, keeping bindings for logic vari-
ables in as narrow a scope as possible without generating additional
binding forms. During the expansion process, the pattern matcher
maintains a list of user-specified identifiers we have encountered,
along with the locations in which bindings should be created for
them. We accomplish this by using a macro to compare an identi-
fier with the elements of one or more lists of identifiers. Each clause
in the macro contains an associated continuation that is expanded
if a match is found. The macro can then determine when a unifica-
tion is unnecessary, when an identifier is already bound, or when
an identifier requires a new binding.

While CPS and conditional expansion seemed, at first, to be
an effective technique for implementing the pattern matcher, we

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
2009 Workshop on Scheme and Functional Programming

discovered that the combination of delayed binding of identifiers
and conditional expansion based on these identifiers could cause
free variables that are symbolically equal to be conflated, even
when they are generated from different positions in the source code.
The result of conflating two or more identifiers is that only the
first will receive a binding. This leaves the remaining identifiers
unbound in the final expression, resulting in unbound variable
errors.

This issue with delaying identifier binding while the CPS
macros expand suggests that some care must be taken when writing
macros in CPS. In particular, CPS macros written using Scheme’s
syntax-rules macro system are limited in their ability to compare
two identifiers and conditionally expand based on the result of the
comparison. The only comparison available to us under syntax-
rules is an auxiliary keyword check that is the operational equiv-
alent of syntax-case’s free-identifier=? predicate. Unfortunately,
when we use such a comparison, identifiers that are free and sym-
bolically equal may be incorrectly understood as being lexically
the same.

In our implementation, the pattern matcher exposes its function-
ality to the programmer through the λe and matche forms. We be-
gin by describing the semantics of λe and matche and giving ex-
amples of their use in miniKanren programs in section 2. In section
3, we present our original implementation of the pattern matcher,
and in section 4 we demonstrate how the issue regarding variable
binding can be exposed. We follow up in section 5 by presenting
two solutions to the variable-binding issue, the first using syntax-
case and the second using eager binding with syntax-rules.

2. Using λe and matche

Our aim in implementing a pattern matcher was to allow automatic
variable creation similar to that found in the Prolog family of logic
programming languages. In Prolog, the first appearance of a vari-
able in the definition of a logic rule leads to a new logic variable be-
ing created in the global environment. The λe and matche macros
described below allow the miniKanren programmer to take advan-
tage of the power and concision of Prolog-style pattern matching
with automatic variable creation, without changing the semantics
of the language.

2.1 Writing the append relation with λe

Before describing λe and matche in detail, we motivate our discus-
sion of pattern matching by looking at a common operation in log-
ical and functional programming languages—appending two lists.
In Prolog, the definition of append is very concise:

append ([] , Y,Y) .
append ([A |D] , Y2 , [A |R]) :− append (D, Y2 , R) .

We first present a version of append in miniKanren without
using λe or matche. Without pattern matching, the append relation
in miniKanren is surprisingly verbose when compared with the
Prolog equivalent:

(define append
(λ (x y z)

(conde

((≡ ‘() x) (≡ y z))
((exist (a d r)

(≡ ‘(,a . ,d) x)
(≡ ‘(,a . ,r) z)
(append d y r))))))

Using λe, the miniKanren version can be expressed almost as
succinctly as the Prolog equivalent:

(define append
(λe (x y z)

((() ,y))
(((,a . ,d) (,a . ,r)) (append d y r))))

The two match clauses of the λe version of append correspond
to the two rules in the Prolog version. In the first match clause, x is
unified with () and z with y. In the second clause, x is unified with a
pair that has a as its car and d as its cdr, and z is unified with a pair
that has the same a as its car and a fresh r as its cdr. The append
relation is then called recursively to finish the work.

No new variables need be created in the first clause, since the
only variable referenced, y, is already in the λe formals list. In the
second clause, λe is responsible for creating bindings for a, d, and
r. In both clauses, the double underscore indicates a position in
the match that has a value we do not care about. No unification
is needed here, since no matter what value y has, it will always
succeed and need not extend the variable environment. We also
have the option of using ,y instead of because λe recognizes
a variable being matched against itself and avoids generating the
unnecessary unification.

With the append relation defined we can now use miniKanren’s
run interface to test the relation.

(run 1 (t) (append ’(a b c) ’(d e f) t))⇒
((a b c d e f))

where 1 indicates only one answer is desired and t is the logic
variable bound to the result. Because append is a relation we can
also use it to generate the input lists that would give us (a b c d e f).

(run 5 (t)
(exist (x y)

(append x y ‘(a b c d e f))
(≡ ‘(,x ,y) t)))⇒

((() (a b c d e f))
((a) (b c d e f))
((a b) (c d e f))
((a b c) (d e f))
((a b c d) (e f)))

where 5 indicates five answers are desired and x and y are unin-
stantiated variables used to represent the first and second lists. ap-
pend then returns the first five possible input list pairs that when
appended yield (a b c d e f).

2.2 Syntax and semantics of λe

Having seen λe in action, we now formally describe its syntax and
semantics. The syntax of a λe expression is:

(λe formals
(pattern1 goal1 . . .)
(pattern2 goal2 . . .)
. . .)

where formals may be any valid λ formal arguments expression,
including those for variable-length argument lists. formals is the
expression to be matched against in the match clauses that follow.
Each match clause begins with a pattern followed by zero or more
user-supplied goals. The pattern and user-supplied goals represent
a conjunction of goals that must all be met for the clause to succeed.
Taken together, the clauses represent a disjunction and expand into
the clauses of a miniKanren conde (disjunction) expression [3],
hence the name λe. The pattern within each clause is then further
expanded into a set of variable bindings using miniKanren’s exist
and unification operators as necessary.

If no additional goals are supplied by the programmer, then the
unifications generated by the pattern will comprise the body of the
generated conde clause. Otherwise, the user-supplied goals will
be evaluated in the scope of the variables created by the pattern.
The first match clause of append requires no user-supplied goal,
while the second clause uses a user-supplied goal to provide the
recursion. It is important to note that λe does not attempt to identify
unbound identifiers in user-supplied goals, only those in the pattern.
Any variables needed in the user-supplied goals not named in the
formals list or pattern will need to be bound with an exist explicitly
by the user.

The pattern matcher recognizes the following forms:

() The null list.
Similar to Scheme’s , the double underscore represents a
position where an expression is expected, but its value can be
ignored.

,x A logic variable x. If this is the first appearance of x in the pattern
and it does not appear in the formals list of λe, a new logic
variable will be created.

’e Preserves the expression e. This is provided as an escape for
special forms where the exact contents should be preserved. For
example, if we wish to match the symbol rather than having it
be treated as an ignored position, we could use ’ in our pattern.
λe would then know to override the special meaning of .

sym Where sym is any Scheme symbol, other then those assigned
special meaning, such as . These will be preserved in the
unification as Scheme symbols.

(a . d) Arbitrarily nested pairs and lists are also allowed, where a
and d are stand-ins for the car and cdr positions of the pair. This
also allows us to create arbitrary list structures, as is normally
the case with pairs in Scheme.

When processing the pattern for each clause, λe breaks the
pattern down into parts which correspond to the members of the
formals list. The list of parts is then processed from left to right,
with formals as the initial list of known variables. As λe encounters
fresh variable references in each part, it adds them to the known-
variables list. If a part is , or if it is the variable appearing in
the corresponding position in formals, no unification is necessary.
Otherwise, a unification between the processed pattern and the
appropriate formals variable will be generated.

2.3 Syntax and semantics of matche

matche is similar to λe in syntax, and it recognizes the same pat-
terns. Unlike λe, however, there is no formals list, so the list of
known variables starts out effectively empty. Strictly speaking, the
known-variables list contains the temporary variable introduced to
bind the expression in matche, which simplifies the implementa-
tion of matche by making it possible to use the same helper macros

as λe. However, since this temporary variable is introduced by a let
expression generated by matche, hygiene ensures that it will never
inadvertently match a variable named in the pattern.

matche has the following syntax:

(matche expr
(pattern1 goal1 . . .)
(pattern2 goal2 . . .)
. . .)

where expr is any Scheme expression. Similar to other pattern
matchers, matche let-binds expr to a temporary variable to ensure
it is only computed once. Unlike λe, which may generate multiple
unifications for each clause, matche only generates one unification
per clause, since it matches each pattern with the variable bound to
expr as a whole.

Since matche can be used on arbitrary expressions, it provides
more flexibility then λe in defining the matches. For instance,
we may want to define the append relation using only one of the
formal arguments in the match. Consider the following definition
of append.

(define append
(λ (x y z)

(matche x
(() (≡ y z))
((,a . ,d)
(exist (r)

(≡ ‘(,a . ,r) z)
(append d y r))))))

Here we have chosen to match against only the first list in the
relation, supplying the unifications necessary for the other formal
variables. The first clause matches x to () and unifies y and z. The
second clause decomposes the list in x into a and d, then uses exist
to bind r and unifies ‘(,a . ,r) with z. Finally it recurs on the append
relation to finish calculating the appended lists. This clause requires
an explicit exist be used to bind r since it is not a formal or pattern
variable.

Both implementations of λe and matche were designed for use
in R5RS, but can be ported to an R6RS library with relative ease,
as long as care is taken to ensure that the auxiliary keyword is
exported with the library.

3. Implementation
Our primary objective in adding pattern-matching capability to
miniKanren is to provide convenience to the programmer, but we
would prefer that convenience not come at the expense of effi-
ciency. Indeed, we would like to generate the cleanest correct pro-
grams possible, so that we can get good performance from the re-
sults of our macros.

Since relational programming languages like miniKanren return
all possible results from a relation, we would like goals that will
eventually reach failure to do so as quickly as possible. In keeping
with this “fail fast” principle, we follow two guidelines. First, we
limit the scope of logic variables as much as possible. While in-
troducing new logic variables is not an especially time-consuming
process, we would still prefer to avoid creating logic variables we
will not be using. Second, we generate as few exist forms as pos-
sible. Minimizing the number of exist forms in the code gener-
ated by λe and matche aids efficiency. exist wraps its body in two
functions. The first is a monadic transform to thread miniKanren’s
substitution through the goals in its body. The second generates a
thunk to allow miniKanren’s interleaving search to work through
the goals appropriately. This means that each exist may cause mul-
tiple closures to be generated, and we would like to keep these to a
minimum.

To illustrate the benefit of keeping the scope of logic variables
as tight as possible, consider the following example:

(exist (x y z) (≡ ‘(,x . ,y) ‘(a . b)) (≡ x y) (≡ z ‘c))

Here, we create bindings for x, y, and z, even though z will never
be used. (≡ x y) will fail since (≡ ‘(,x . ,y) ‘(a . b)) binds x to a and y
to b, so z is never encountered. However, we can tighten the lexical
scope for z as follows:

(exist (x y) (≡ ‘(,x . ,y) ‘(a . b)) (≡ x y) (exist (z) (≡ z ‘c)))

The narrower scope around z helps the exist clauses to fail more
quickly, cutting off miniKanren’s search for solutions. This exam-
ple illustrates the trade-off inherent in our twin goals of keeping
each variable’s scope as narrow as possible and minimizing the
overall number of exist clauses. Our policy has been to allow more
exist clauses to be generated when it will tighten the scope of vari-
ables. As we continue to explore various performance optimiza-
tions in miniKanren, the pattern matcher could benefit from more
detailed investigation to determine if the narrowest-scope-possible
policy wins more often then it loses.

3.1 λe and matche

All three of our implementations for the pattern matcher expose
their functionality to the programmer via the λe and matche

macros. λe and matche are implemented as follows:

(define-syntax λe

(syntax-rules ()
((args c c∗ . . .)
(λ args (handle-clauses args (c c∗ . . .))))))

(define-syntax matche

(syntax-rules ()
((e c c∗ . . .)
(let ((t e)) (handle-clauses t (c c∗ . . .))))))

The interface to these two macros is shared by all three imple-
mentations. In all three cases, λe and matche use the same set of
macros to implement their functionality.

In general, the CPS macro approach [4, 6] seems well-suited
for our purposes in implementing a pattern matcher in that parts
of the pattern must be reconstructed for use during unification and
bindings for variables must be generated outside these unifications.
Since the CPS macro approach gives us the ability to control the
order of expansion, we decided to take an “inside-out” approach:
clauses are processed first, and the conde form is then generated
around all processed clauses, rather than first expanding the conde

and then expanding clauses within it. This inside-out expansion al-
lows us to process patterns from left to right without needing to
worry about nesting later unifications and user-supplied goals into
the exist clauses as we go. Patterns must be processed from left to
right to ensure we are always generating an exist binding form for
the outermost occurrence of an identifier. The entire pattern of a
clause is processed, with each part of the pattern being transformed
into a unification; any variables that require bindings to be gener-
ated for them are put into a flat list of unifications in the order they
occur.

As an example, consider the λe version of the append relation
from the previous section. At expansion time, the pattern in the
second clause is processed into the following flat list of unifications
(with embedded indicators of where new variables need to be
bound):

((ex a d) (≡ (cons a d) x) (ex r) (≡ (cons a r) z))

Here (ex a d) and (ex r) indicate the places where new variables
need to be bound with an exist clause. The build-clause macro, de-
scribed below, then takes this list, along with user-specified goals
(if any) and a continuation, and calls the continuation on the com-
pleted clause, which looks like this after expansion:

(exist (a d)
(≡ (cons a d) x)
(exist (r)

(≡ (cons a r) z)
(append d y r)))

where The exist forms and unifications were generated as a result
of matching the pattern with the λe formals list, and (append d y
r) was the user-specified goal. When both clauses of the append re-
lation have been processed and wrapped in a single conde, append
expands to

(define append
(λ (x y z)
(conde

((≡ ’() x) (≡ y z))
((exist (a d)

(≡ (cons a d) x)
(exist (r)
(≡ (cons a r) z)
(append d y r)))))))

In this example, the first clause does not require any exist clauses,
since it does not introduce any new bindings.

3.2 CPS macro implementation
Aside from the user-facing λe and matche, the CPS macro im-
plementation of the pattern matcher comprises ten macros: two
macros for decomposing clauses and patterns; two helper macros
for constructing continuation expressions; five macros for building
up clauses, unifications, and expressions; and one macro for match-
ing identifiers to determine when bindings have been seen before.
As a guide to the reader, the macros used to decompose clauses
and patterns have names starting with handle; the helper macros
for constructing continuations have names starting with make; and
the macros used to build up discovered parts of clauses, unifica-
tions, and expressions have names starting with build. Finally, the
case-id macro is used to match identifiers in much the same way
Scheme’s case is used to match symbols. We have also endeav-
oured to use consistent naming conventions for the variables used
in the handle, make, and build macros, as follows:

a, a∗ indicate an argument (a) or list of arguments (a∗).
p, p∗, pr∗ indicate a part (p), parts (p∗), or the patterns remaining

to be processed (pr∗) from the initial pattern.
g∗, g∗∗ indicate goals from a clause (g∗) or the remaining clauses

(g∗∗).
pc∗, pp∗, pg∗ indicate a list of processed clauses (pc∗), processed

pattern parts (pp∗), and processed goals (pg∗).
k∗ indicates the continuation for the macro.
svar∗ indicates a list of variables we have already seen in process-

ing the pattern.
evar∗ indicates a list of variables that need to be bound with exist

for the unification currently being worked on.
pa, pd indicate the car (pa) and cdr (pd) positions of a pattern pair.

3.2.1 The handle macros
The handle-clauses and handle-pattern macros implement the
forward phase of pattern processing and are responsible for break-
ing the λe and matche clauses and patterns down into parts for the

build macros to reconstruct. The handle-clauses macro is imple-
mented as follows:

(define-syntax handle-clauses
(syntax-rules ()

((a∗ () . pc∗) (conde . pc∗))
(((a . a∗) (((p . p∗) . g∗) (pr∗ . g∗∗) . . .) . pc∗)
(make-clauses-cont

(a . a∗) a a∗ p p∗ g∗ ((pr∗ . g∗∗) . . .) . pc∗))
((a ((p . g∗) (pr∗ . g∗∗) . . .) . pc∗)
(make-clauses-cont a a () p () g∗ ((pr∗ . g∗∗) . . .) . pc∗))))

handle-clauses transforms the list of λe and matche clauses
into a list of conde clauses. The first rule recognizes when the list
of λe clauses to be processed is empty and generates a conde to
wrap the processed clauses pc∗. The second and third rules both
serve to decompose the clauses, processing each one in order using
the make-clauses-cont macro described below. The second rule
processes clauses of λe expressions where the formals start with
a pair. The third rule handles matche clauses where the expression
to be matched is let-bound to a temporary and λe clauses where
the formal is a single identifier rather than a list.

handle-pattern is where the main work of the pattern matcher
takes place. It is responsible for deciding when new logic variables
need to be introduced and generating the expressions to be unified
against in the final output.

(define-syntax handle-pattern
(syntax-rules (quote unquote top)

((top a (k∗ . . .) svar∗ evar∗ pp∗ . . .)
(k∗ . . . svar∗ evar∗ pp∗ . . .))

((tag a (k∗ . . .) svar∗ evar∗ pp∗ . . .)
(k∗ . . . (t . svar∗) (t . evar∗) pp∗ . . . t))

((tag a () (k∗ . . .) svar∗ evar∗ pp∗ . . .)
(k∗ . . . svar∗ evar∗ pp∗ . . . ()))

((tag a (quote p) (k∗ . . .) svar∗ evar∗ pp∗ . . .)
(k∗ . . . svar∗ evar∗ pp∗ . . . (quote p)))

((tag a (unquote p) (k∗ . . .) svar∗ evar∗ pp∗ . . .)
(case-id p

((a) (k∗ . . . svar∗ evar∗ pp∗ . . .))
(svar∗ (k∗ . . . svar∗ evar∗ pp∗ . . . p))
(else (k∗ . . . (p . svar∗) (p . evar∗) pp∗ . . . p))))

((tag a (pa . pd) k∗ svar∗ evar∗ pp∗ . . .)
(handle-pattern inner t1 pa

(handle-pattern inner t2 pd
(build-cons k∗)) svar∗ evar∗ pp∗ . . .))

((tag a p (k∗ . . .) svar∗ evar∗ pp∗ . . .)
(k∗ . . . svar∗ evar∗ pp∗ . . . ’p))))

The first two rules both match the “ignore” pattern. However,
the first rule is distinguished by its use of the top auxiliary keyword
indicating that it is at the top level of the pattern, i.e., it will be
matched directly with an input variable, either a λe formal or let-
bound temporary variable for the matche expression. In either
case, no unification is needed, so we do not extend the list of
processed pattern parts pp∗. In the second rule, we know that
must be nested within a pair, so a new logic variable is generated to
indicate that an expression is expected here, even though we do not
care what the value of the expression is. Since the logic variable is
generated as a temporary, it will not clash with any other variable
already bound, thanks to hygienic macro expansion.

The remaining rules do not require this special handling around
the top element, and so they ignore the “tag” supplied as the first
part of the pattern. The third, fourth, and seventh rules handle
the null, quoted expression, and bare symbol cases, respectively.
In all of these cases, the continuation is invoked with either a
null list or a quoted expression. If we are at the top level of the

pattern, the continuation builds a unification directly using build-
goal; otherwise, it builds a more complex expression using build-
cons. The CPS nature of the macro, however, frees us from having
to concern ourselves with the kind of expression generated.

The sixth rule handles pairs. Here, handle-pattern is called on
the car of the pair, pa, with a continuation that processes the cdr
of the pair, pd, which in turn calls the build-cons continuation to
build the cons pair. The continuations are each created with the part
of the current state required for them to finish their jobs, relying
on the application sites for the continuation to fill in any extra
arguments. This is why expressions of the form (k∗ . . . args . . .)
are so prevalent in our macros. Note that in both calls to handle-
pattern, inner is specified to ensure that if is encountered, it will
recognize that it is no longer at the top level of the pattern.

Finally, the fifth rule in handle-pattern determines if a unifi-
cation can be skipped, because it is unifying a variable with itself;
if the identifier is already a bound variable; or if a new binding
is needed for this variable. case-id provides the functionality for
this conditional expansion. The first case of the case-id expression
checks to see if the formal argument a matches the pattern variable
just discovered, and skips the unification if they do. Note that if this
is not a top-level match, then a will be a temporary variable gen-
erated by the calls to handle-pattern in rule six. The second case
checks if p occurs in the list of encountered variables svar∗; if so,
it simply extends the list of pattern parts with p. If the else case is
triggered, it means that we need both a new binding for the logic
variable and a pattern for the unification. In this case p is added to
the overall list of encountered variables svar∗ as well as the list of
variables to be bound for this unification evar∗. The list of pattern
parts is also extended with p. Here svar∗ and evar∗ are kept distinct,
because svar∗ records all of the variables we have encountered in
processing this clause, while evar∗ records only those needed for
the current unification, so that the exist clause can bind the logic
variables close to their first use.

3.2.2 The make helper macros

One of our design principles in implementing the pattern matcher
was to write several smaller macros, each with one relatively simple
task to accomplish, rather than writing a few monolithic ones. This
“small pieces” approach relies on the ability to compose macros
as continuations to accomplish more complex actions. Therefore,
we often find ourselves needing to construct continuations within
continuations. The make-clauses-cont and make-pattern-cont
macros help streamline the code by factoring this continuation-
building behavior out into its own macros.

(define-syntax make-clauses-cont
(syntax-rules ()

((args a a∗ p p∗ g∗ ((pr∗ . g∗∗) . . .) . pc∗)
(handle-pattern top a p

(make-pattern-cont a a∗ p∗ ()
(build-clause g∗

(handle-clauses args ((pr∗ . g∗∗) . . .) . pc∗)))
(a . a∗) ()))))

The make-clauses-cont macro is used by handle-clauses when
we begin processing a pattern. The continuation uses handle-
pattern to match the first part of a pattern to the first part of the
formals list. In addition to handing handle-pattern the list of items
to work on, a fairly deeply nested chain of continuations is passed
along. The outermost continuation, make-pattern-cont, is used to
construct the continuations that build up a unification goal from the
results of handle-pattern. Once the unification goal is built, the
build-clause continuation is used to build the completed clause,

and finally the handle-clauses continuation is used to begin work-
ing on the remaining clauses. This computation is responsible for
driving the recursion for handle-clauses, the macro that both initi-
ates the computation and finally generates the conde expression.

(define-syntax make-pattern-cont
(syntax-rules ()

((a a∗ p∗ u∗ k∗ svar∗ evar∗ . pp∗)
(build-goal a

(build-var evar∗
(build-clause-part a∗ p∗ u∗ svar∗ k∗)) . pp∗))))

Similar to make-clauses-cont, make-pattern-cont builds a
list of nested continuations. Both make-clauses-cont and build-
clause-part use make-pattern-cont to provide a continuation for
turning the pattern built during handle-pattern into a proper uni-
fication goal. The outermost continuation, build-goal, wraps the
result in a unification with its matching formal argument, a. It is
passed a continuation of build-var that is responsible for turning
the evar∗ list into an (ex evar∗ . . .) part in the flattened list of uni-
fications. Finally, the innermost continuation, build-clause-part,
drives the recursion through handle-pattern so that the entire pat-
tern will be processed into unifications and ex indicators before the
completed list is passed off to build-clause to build the final clause.

3.2.3 The build macros

At various stages in the expansion, the build macros serve both to
build some part of the final expression from parts processed through
the handle macros, and to drive the recursion through the handle
macros to bring the expansion to completion. The build-goal macro
is responsible for generating unifications, when necessary. build-
var generates ex indicators from the evar∗ list of variables if the
list is not null. The build-clause-part macro drives the recursion
around handle-pattern to finish processing the pattern into a set of
unification goals and ex indicators. handle-pattern uses the build-
cons macro to rebuild pairs discovered in the pattern. Finally, the
build-clause macro combines the flattened list of unifications and
ex indicators with the user-supplied goals and creates a clause for
use in the final conde expression.

(define-syntax build-goal
(syntax-rules ()

((a (k∗ . . .)) (k∗ . . .))
((a (k∗ . . .) p) (k∗ . . . (≡ p a)))))

The two rules in build-goal correspond to whether handle-
pattern has supplied a pattern to it. If occurs at the top level, or
a formal matches a variable referenced in the same position in the
match pattern, handle-pattern does not create a pattern; therefore,
build-goal simply calls its continuation. Otherwise, build-goal
calls its continuation with the unification of the provided pattern
and the argument.

(define-syntax build-var
(syntax-rules ()

((() (k∗ . . .) . g∗) (k∗ g∗))
((evar∗ (k∗ . . .) . g∗) (k∗ . . . (ex . evar∗) . g∗))))

Likewise, handle-pattern may provide an empty list of discov-
ered variables to build-var. Therefore, build-var need only create
a new ex indicator if it receives a non-null list. Otherwise, build-
var simply calls its continuation on the list of goals g∗.

(define-syntax build-clause-part
(syntax-rules ()

((() () (u∗ . . .) svar∗ (k∗ . . .) . g∗) (k∗ . . . (u∗ g∗)))
(((a . a∗) (p . p∗) (u∗ . . .) svar∗ k∗ . g∗)
(handle-pattern top a p

(make-pattern-cont a a∗ p∗ (u∗ g∗) k∗) svar∗ ()))
((a p (u∗ . . .) svar∗ k∗ . g∗)
(handle-pattern top a p

(make-pattern-cont a () () (u∗ g∗) k∗) svar∗ ()))))

build-clause-part receives the results of build-goal and build-
var. If there are no more pattern parts to process, build-clause-part
calls its continuation. Otherwise, build-clause-part calls handle-
pattern on the next matching pattern part and argument from the
formals list.

(define-syntax build-cons
(syntax-rules ()

(((k∗ . . .) t∗ p∗ . . . pa pd)
(k∗ . . . t∗ p∗ . . . (cons pa pd)))))

handle-pattern uses build-cons to rebuild pairs that it previ-
ously decomposed. build-cons simply calls its continuation, adding
a cons expression in the final pattern to be sent to the miniKanren
unifier.

(define-syntax build-clause
(syntax-rules (ex)

((() (k∗ . . .) ()) (k∗ . . . (succeed)))
(((pg∗ . . .) (k∗ . . .) ()) (k∗ . . . (pg∗ . . .)))
(((pg∗ . . .) k∗ (g∗ . . . (ex . v∗)))
(build-clause ((exist v∗ pg∗ . . .)) k∗ (g∗ . . .)))

(((pg∗ . . .) k∗ (g∗ . . . g))
(build-clause (g pg∗ . . .) k∗ (g∗ . . .)))))

Finally, the build-clause macro constructs a clause of one or
more goals for use in the final conde expression. It processes the
flattened list of unifications and ex indicators, along with the user-
supplied goals, into a finished clause. The first rule in build-clause
handles the case where no goals are supplied and the pattern pro-
duced no unifications. In that case, build-clause simply generates a
miniKanren succeed expression, a goal that always succeeds. The
second rule terminates by calling its continuation once all of the
goals have been processed. The third rule recognizes an ex indica-
tor and generates a new exist expression wrapping all of the already
processed goals into a new goal. The exist expressions must be cre-
ated in a list, since build-clause expects a list of clauses rather than
just a single clause. Finally, in the fourth rule, any remaining goals
should be unifications or user-supplied goals requiring no further
processing and so are simply added to the list of processed goals
for the clause.

3.2.4 The case-id macro

While the macros described thus far are written for the specific
purpose of implementing the pattern matcher, the case-id macro is a
more general-purpose helper macro. case-id determines which list
of identifiers contains a match for a supplied identifier. Its syntax is
like that of Scheme’s standard case form, except that an else clause
is required. The idea is similar to syn-eq [4] in that the identifier
to be matched is treated as an auxiliary keyword in a generated
let-syntax-bound macro. However, rather than taking a single list
of identifiers to search for a match along with success and failure
continuation macros, case-id takes a list of clauses, where each
clause has a list of identifiers, and a result continuation macro, and
requires an else clause for when none of the other cases succeed.

(define-syntax case-id
(syntax-rules (else)

((x ((x∗∗ . . .) act∗) . . . (else e-act))
(letrec-syntax

((helper (syntax-rules (x else)
(((else a)) a)
(((() a) c . c∗) (helper c . c∗))
((((x . z∗) a) c . c∗) a)
((((y z∗ (.)) a) c . c∗)
(helper ((z∗ (.)) a) c . c∗)))))

(helper ((x∗∗ . . .) act∗) . . . (else e-act))))))

The macro generated by case-id determines when identifiers
match, which allows us to avoid generating a unification, or when
an identifier appears in a list of known identifiers, which indicates
that no binding needs to be created for it. The real trick here is
that the generated macro exploits the auxiliary keyword support of
syntax-rules to match an element from the list of identifiers with
the identifier to be matched. The auxiliary keyword is the identifier
in question.

The letrec-syntax-bound macro helper searches for a case
matching the original identifier x, expanding the else clause if no
match is found. The first rule matches else and expands the associ-
ated continuation macro. The second rule identifies when the end
of a list of identifiers has been encountered, and begins process-
ing the next clause. The third rule matches the originally passed
identifier and terminates by expanding the associated continuation
macro. Finally, the fourth rule strips off the first identifier from the
list, which failed to match in the previous clause, and recurs on the
remainder of the list.

4. The variable-binding problem
We have presented a CPS macro implementation of our pattern
matcher that delays creation of binding forms, allowing us to gener-
ate concise code. Unfortunately, implementing the pattern matcher
with CPS macros led us to discover a subtle issue with how case-id
determines when a variable needs to be created.

4.1 Identifier equality and binding
We can demonstrate the problem by writing a macro that expands
into a λe or matche expression. Consider the following macro,
which expands into a λe:

(define-syntax break-λe

(syntax-rules ()
((v) (λe (x y) (((,w . ,v) ,v))))))

Here break-λe expects a user-supplied identifier for use in the
generated λe expression. This simple, though admittedly contrived,
example demonstrates how a CPS macro implementation of λe and
matche that uses case-id will not create bindings for identifiers that
are free when they are symbolically equal.

To further illustrate the problem, consider some example uses
of break-λe. First, if we supply z as an argument to break-λe, it
expands as follows:

(break-λe z)⇒
(λe (x y) (((,w . ,z) ,z))) ⇒
(λ (x y)
(conde

((exist (z w)
(≡ (cons w z) x)
(≡ z y)))))

Here, λe behaves as expected; it sees both z and w as new
variables that must be bound by the generated exist expression.

Instead, a user of break-λe may decide to use x, which co-
incidentally happens to be one of the variables bound by the λe

generated by break-λe. In the expansion below, x1 and x2 are both
symbolically x, but represent the x supplied to break-λe and the
generated formal parameter x in the λe expression, respectively.

(break-λe x1)⇒
(λe (x2 y) (((,w . ,x1) ,x1))) ⇒
(λ (x2 y)
(conde

((exist (w x1)
(≡ (cons w x1) x2)
(≡ x1 y)))))

Here, too, identifiers are understood as unique, as we expected,
and λe creates a binding for x1.

Finally, the programmer may choose w as the variable to supply
to break-λe. In the example below, w1 represents the w introduced
by the programmer, and w2 the one introduced by the break-λe

macro. This time, the expansion does not seem to work out so well:

(break-λe w1)⇒
(λe (x y) (((,w2 . ,w1) ,w1))) ⇒
(λ (x y)
(conde

((exist (w2)
(≡ (cons w2 w1) x)
(≡ w1 y)))))

We would have liked bindings to be created for both w1 and
w2, but since both are free and symbolically equal when case-id
compares them, they are incorrectly understood as being equal.
Although no variable capture occurred and hence hygiene is pre-
served, the λe macro does not work properly in this case, because
it leaves unbound a pattern variable that should have been bound.

The issue arises as the confluence of two events. First, as we
process the pattern, we delay the creation of bindings until the
whole pattern has been processed, leaving free variables free. Sec-
ond, case-id lifts the variable we are testing into an auxiliary key-
word in the helper macro to compare it with the list of identifiers.
The comparison between x and the identifiers from each list will
succeed when both have the same binding or when both are free
and they are symbolically equal [5, 7].

In the first example, both w and z are free, but are not sym-
bolically equal. In the second example, x1 and x2 are symbolically
equal, but one is bound while the other is free, so the comparison
fails, as we would expect. It is only in the final case, where both
w identifiers are free and symbolically equal, that the problem ex-
hibits itself.

4.2 With great power comes great responsibility
As we have seen, CPS macros provide a powerful mechanism for
controlling the order of macro expansion. However, the variable-
binding problem limits our ability to use CPS macros to generate
bindings selectively based on a running list of identifiers. In order to
avoid unintentionally conflating variables, we must bind identifiers
as soon as we encounter them, rather than delaying binding until
the invocation of a final continuation.

This limitation suggests that CPS macro writers must take par-
ticular care to avoid the accidental conflation of free, symbolically-
equal identifiers that are introduced from different places in the
source. Hygienic macro expansion does not help us here, since the
problem is not inappropriate variable capture; rather, it is that vari-
ables that should be bound are left unbound. Avoiding accidental
conflation of pattern variables therefore becomes the programmer’s
responsibility.

5. Workarounds
In this section, we present two solutions to the variable-binding is-
sue demonstrated in the previous section. Our first solution uses the
syntax-case macro system and the bound-identifier=? predicate to
perform the comparison we actually intend. Second, we present a
syntax-rules-based solution using eager binding by foregoing cer-
tain uses of CPS in favor of a more traditional approach.

5.1 case-id with syntax-case and bound-identifier=?
If we restrict ourselves to CPS macros written using the syntax-
rules macro system, there is, unfortunately, no easy change we can
make that will resolve the variable-binding issue. Fundamentally,
syntax-rules only provides us with a way to perform what is
essentially a free-identifier=? check, by generating a macro that
has the identifier we wish to match as an auxiliary keyword.

However, the syntax-case macro system gives us the ability
to compare identifiers according to their intended use by employ-
ing the bound-identifier=? predicate. bound-identifier=? takes two
identifier arguments and returns #t only if a binding for one iden-
tifier would capture the other. Effectively, two identifiers will be
bound-identifier=? only if they were introduced by the same trans-
former or within the same macro [7, 2]. In fact, this is the very
comparison we would prefer for case-id.

We can implement case-id straightforwardly with syntax-case
by using bound-identifier=? in a fender, as follows:

(define-syntax case-id
(λ (exp)

(syntax-case exp (else)
((x (else e-act)) #’e-act)
((x ((y x∗ . . .) act) ((x∗∗ . . .) act∗) . . . (else e-act))
(bound-identifier=? #’x #’y)
#’act)

((x ((y x∗ . . .) act) ((x∗∗ . . .) act∗) . . . (else e-act))
#’(case-id x

((x∗ . . .) act) ((x∗∗ . . .) act∗) . . . (else e-act)))
((x (() act) ((x∗∗ . . .) act∗) . . . (else e-act))
#’(case-id x ((x∗∗ . . .) act∗) . . . (else e-act))))))

The interface to case-id remains the same, and the rest of the
pattern matcher implementation need not be changed. In this ver-
sion of case-id, the first clause matches when only the else case
is left. The second clause extracts an identifier from the list and
uses the bound-identifier=? check to compare the identifiers. If the
comparison succeeds, that case’s action is used. The third clause
extracts the identifier and throws it away to continue processing the
current list, since we have already verified in the previous clause
that x and y are not bound-identifier=?. The final clause matches
when we have exhausted the list of identifiers to be matched for the
current case, and so we proceed to the next case from the call to
case-id.

Using this implementation of case-id, when we expand the third
break-λe expression from the previous section, we get

(break-λe w)⇒
(λe (x y) (((,w2 . ,w1) ,w1))) ⇒
(λ (x y)
(conde

((exist (w2 w1)
(≡ (cons w2 w1) x)
(≡ w1 y)))))

with both w1 and w2 being bound by the surrounding exist expres-
sion. This workaround has the advantages of producing very clean
miniKanren source and allowing us to keep most of our implemen-
tation unchanged, but it does force us to use syntax-case.

5.2 Using eager binding with syntax-rules
While we can fix the variable-binding issue in our pattern matcher
by implementing case-id with syntax-case, we may prefer to stick
with a syntax-rules-based implementation. syntax-rules offers us
the simplicity of pattern matching and rewriting without having
to worry about the potentially more complex syntax-case macro
system or the details of how bound-identifier=? works. Here we
present a syntax-rules solution to the variable-binding issue that
works by eagerly binding new identifiers as they are encountered.

Unlike the syntax-case solution, which resolved the issue by
performing a different kind of comparison in case-id, the eager
binding approach ensures that our list of seen variables never con-
tains free identifiers. Since we never compare two free identifiers,
we no longer need to worry that two symbolically equal identifiers
will be conflated, and the syntax-rules version of case-id can re-
main unchanged.

This approach is not without complications of its own, since λe

and matche must expand into conde and exist, which impose their
own limitations on the expressions in their clauses. The challenge
arises because conde expects a set of clauses in which each clause
is a list of one or more goals and exist expects a list of bindings
followed by one or more goals. Since the helpers for λe and
matche will expand within the context of conde and exist, they
must expand into valid goals. Part of the difficulty arises from the
fact that conde and exist perform a monadic transform, which λe

and matche must be careful not to interfere with.
Unfortunately, these restrictions mean that the eager-binding

versions of λe and matche cannot generate quite as clean miniKan-
ren code as the original CPS macro implementation. Returning to
our append example, the fixed version of λe expands to the slightly
more verbose:

(λ (x y z)
(conde

((exist () (≡ () x) (≡ y z)))
((exist (a)

(exist (d)
(exist ()

(≡ (cons a d) x)
(exist (r)

(exist ()
(≡ (cons a r) z)
(append d y r)))))))))

Here, the exist expressions that bind no variables each enclose
more than one goal. Grouping multiple goals inside an exist allows
them to appear in a position where only one goal is allowed, in
much the same way Scheme’s begin can group multiple expres-
sions into a single expression.

The break-λe macro now works correctly in all of the previ-
ously shown examples. In particular, (break-λe w) now expands
as follows:

(break-λe w)⇒
(λe (x y) (((,w2 . ,w1) ,w1))) ⇒
(λ (x y)

(conde

((exist (w2)
(exist (w1)

(exist ()
(≡ (cons w2 w1) x)
(≡ w1 y)))))))

We have taken some liberties in this example, since the exist macro
would need to be in scope in order for it to work properly, but the
full expansion of exist would needlessly complicate the example.

Even though this version of the pattern matcher uses the original
version of case-id, it now correctly identifies the two w variables as
distinct, since the binding for w2 is created by exist before the next
section of the pattern is expanded.

In order to implement the eager binding approach, we must al-
ter the part of our pattern matcher that identifies variables to be
bound. We accomplish this by refactoring handle-pattern into two
macros: do-pattern, which binds any necessary variables, and a
simplified handle-pattern, which builds the processed version of
the pattern for use in a unification. handle-pattern remains a CPS
macro and has been simplified in accordance with its reduced mis-
sion. As before, the do-pattern-opt macro prevents recognizably
unnecessary unifications from being generated.

The interface to λe and matche does not change, and handle-
clauses has been rewritten to support expanding into the conde in
place.

(define-syntax handle-clauses
(syntax-rules ()

(((a∗ . . .) (c c∗ . . .))
(conde ((do-clause (a∗ . . .) (a∗ . . .) c))

((do-clause (a∗ . . .) (a∗ . . .) c∗)) . . .))
(((a∗ r) (c c∗ . . .))
(conde ((do-clause (a∗ . . . r) (a∗ r) c))

((do-clause (a∗ . . . r) (a∗ r) c∗)) . . .))
((a (c c∗ . . .))
(conde ((do-clause (a) a c))

((do-clause (a) a c∗)) . . .))))

handle-clauses is responsible for generating the conde expres-
sion, passing first a list of named variables, then the original argu-
ment list, and finally the clause to be processed to do-clause.

(define-syntax do-clause
(syntax-rules ()

((svar∗ () (() . g∗)) (exist-helper () . g∗))
((svar∗ (a . a∗) ((p . p∗) . g∗))
(do-pattern-opt svar∗ a p a∗ p∗ . g∗))

((svar∗ a (p . g∗))
(do-pattern-opt svar∗ a p () () . g∗))))

The do-clause macro processes each formal from the argument
list with the corresponding part of the pattern, relying on do-
pattern-opt to generate the variable bindings and unifications for
each clause. Finally, it expands into the list of user-supplied goals.

(define-syntax do-pattern-opt
(syntax-rules (unquote)

((svar∗ a (unquote p) a∗ p∗ . g∗)
(case-id p

((a) (do-clause svar∗ a∗ (p∗ . g∗)))
(else (do-pattern svar∗ a ,p () ,p a∗ p∗ . g∗))))

((svar∗ a a∗ p∗ . g∗) (do-clause svar∗ a∗ (p∗ . g∗)))
((svar∗ a p a∗ p∗ . g∗)
(do-pattern svar∗ a p () p a∗ p∗ . g∗))))

While we could generate unifications for each part of the pat-
tern, we would prefer to recognize unnecessary unifications and not
generate them, as in the original implementation. do-pattern-opt
ensures that unifications are not generated when a is encountered
at the top level or when a logic variable is being matched with itself.
In all other cases, do-pattern-opt calls do-pattern, which gener-
ates the necessary exist bindings or unifications.

(define-syntax do-pattern
(syntax-rules (quote unquote)

((svar∗ a () () op () ())
(do-clause svar∗ ()

(() (handle-pattern op (handle-pattern-cont a) ()))))
((svar∗ a () () op a∗ p∗ . g∗)
(exist ()

(handle-pattern op (handle-pattern-cont a) ())
(do-clause svar∗ a∗ (p∗ . g∗))))

((svar∗ a (unquote p) r op a∗ p∗ . g∗)
(case-id p

(svar∗ (do-pattern svar∗ a r () op a∗ p∗ . g∗))
(else (exist (p)

(do-pattern (p . svar∗) a r () op a∗ p∗ . g∗)))))
((svar∗ a (quote p) r op a∗ p∗ . g∗)
(do-pattern svar∗ a r () op a∗ p∗ . g∗))

((svar∗ a (pa . pd) () op a∗ p∗ . g∗)
(do-pattern svar∗ a pa pd op a∗ p∗ . g∗))

((svar∗ a (pa . pd) r op a∗ p∗ . g∗)
(do-pattern svar∗ a pa (pd . r) op a∗ p∗ . g∗))

((svar∗ a p r op a∗ p∗ . g∗)
(do-pattern svar∗ a r () op a∗ p∗ . g∗))))

In do-pattern, the unquote rule uses case-id to determine if the
logic variable p has been encountered. If not, a binding is generated
and p is added to the list of known variables. The other rules are
responsible for traversing the full pattern. Some optimization is
also performed by do-pattern: it avoids generating unnecessary
succeed goals by recognizing when it has reached the end of the
pattern and there are no user-supplied goals, in which case it treats
the final pattern unification as if it were a user-supplied goal.

Once bindings for all new variables have been created, the
original pattern is passed off to handle-pattern, and the rest of
the pattern and formal parameters are passed back to the do-clause
macro to continue processing.

(define-syntax handle-pattern
(syntax-rules (quote unquote)

((() (k∗ . . .) t∗ p∗ . . .) (k∗ . . . t∗ p∗ . . . ’()))
(((k∗ . . .) t∗ p∗ . . .) (k∗ . . . (t . t∗) p∗ . . . t))
(((unquote p) (k∗ . . .) t∗ p∗ . . .) (k∗ . . . t∗ p∗ . . . p))
(((quote p) (k∗ . . .) t∗ p∗ . . .) (k∗ . . . t∗ p∗ . . . ’p))
(((pa . pd) k t∗ p∗ . . .)
(handle-pattern pa

(handle-pattern pd (build-cons k)) t∗ p∗ . . .))
((p (k∗ . . .) t∗ p∗ . . .) (k∗ . . . t∗ p∗ . . . ’p))))

The revised handle-pattern macro no longer needs to know
about the argument being processed, nor does it need to know
whether it is called at the top level of a pattern or within a pattern, so
the first two arguments have been removed, simplifying the macro
quite a bit. However, handle-pattern still needs a continuation,
since it proceeds recursively through the pattern.

handle-pattern also adds new bindings for the temporary vari-
ables needed by the matches. This is safe because we will always
need these temporary variables and because we no longer use case-
id to guide our decisions about which variables need to be bound.
The sixth rule of handle-pattern, previously the seventh rule, still
uses build-cons in order to reconstruct a matched pair.

In addition to the updated handle-pattern, we need a new
continuation for it to call, handle-pattern-cont.

(define-syntax handle-pattern-cont
(syntax-rules ()

((v t∗ p) (exist-helper t∗ (≡ p v)))))

handle-pattern-cont simply generates a unification, wrapping
it with an exist for any temporaries that need to be bound. Rather
than a standard exist expression, we use the following exist-helper
in order to avoid generating unnecessary exist expressions when
possible:

(define-syntax exist-helper
(syntax-rules ()

((()) succeed)
((() g) g)
((t∗ g∗ . . .) (exist t∗ g∗ . . .))))

exist-helper generates the succeed goal when supplied an
empty bindings list and no goals, or the provided goal when sup-
plied an empty bindings list and a single goal. Otherwise, it gener-
ates a normal exist expression.

6. Conclusion
CPS macros provide a powerful mechanism for controlling the or-
der of macro expansion, but care must be taken when using this
technique with conditional expansion. In particular, we must use
caution when using syntax-rules with the auxiliary keyword trick
to perform variable comparisons, or we may end up treating two
free identifiers that are symbolically equal as the same, even if they
will not be equal when they are bound. However, we can work
around this limitation either by using syntax-case for performing
the comparisons with bound-identifier=?, or by using eager bind-
ing to ensure that no two free variables will ever be compared. We
hope that these techniques will prove useful for macro implemen-
tors who find themselves faced with a similar issue in using CPS
macros. An interesting area of further investigation in this regard
would be to look at ways to bring the ability to perform bound-
identifier=? comparisons to syntax-rules. Already some imple-
mentations of syntax-rules, such as the one provided with Chez
Scheme [2], provide a fender syntax similar to that of syntax-case
which allows the use of such techniques, although this has not yet
found its way into the standard.

Acknowledgments
The authors wish to express their thanks to the anonymous review-
ers, whose thoughtful comments and suggestions have improved
this paper.

References
[1] W. E. Byrd and D. P. Friedman. From variadic functions to variadic

relations. In Proceedings of the 2006 Scheme and Functional
Programming Workshop, University of Chicago Technical Report
TR-2006-06, 2006, pages 105–117, 2006.

[2] R. K. Dybvig. Chez Scheme Version 7 User’s Guide. Cadence Research
Systems, 2005.

[3] D. P. Friedman, W. E. Byrd, and O. Kiselyov. The Reasoned Schemer.
The MIT Press, 2005.

[4] E. Hilsdale and D. P. Friedman. Writing macros in continuation-
passing style. In Scheme and Functional Programming 2000, page 53,
2000.

[5] R. Kelsey, W. Clinger, and J. Rees (eds.). Revised5 report on the
algorithmic language Scheme. ACM SIGPLAN Notices, 33(9):26–76,
Sept. 1998.

[6] O. Kiselyov. Macros that compose: Systematic macro programming.
In GPCE ’02: Proceedings of the 1st ACM SIGPLAN/SIGSOFT
conference on Generative Programming and Component Engineering,
pages 202–217, London, UK, 2002. Springer-Verlag.

[7] M. Sperber, R. K. Dybvig, M. Flatt, and A. van Straaten (eds.).
Revised6 report on the algorithmic language Scheme, September 2007.

	Introduction
	Using e and matche
	Writing the append relation with e
	Syntax and semantics of e
	Syntax and semantics of matche

	Implementation
	e and matche
	CPS macro implementation
	The handle macros
	The make helper macros
	The build macros
	The case-id macro

	The variable-binding problem
	Identifier equality and binding
	With great power comes great responsibility

	Workarounds
	case-id with syntax-case and bound-identifier=?
	Using eager binding with syntax-rules

	Conclusion

