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Abstract

LVars—shared memory locations whose semantics are defined
in terms of an application-specific lattice—offer a principled ap-
proach to deterministic-by-construction, shared-state parallel pro-
gramming: writes to an LVar take the join of the old and new values
with respect to the lattice, while reads from an LVar can observe
only that its contents have crossed a specified “threshold” in the lat-
tice. This interface guarantees that programs have a deterministic
outcome, despite parallel execution and schedule nondeterminism.

LVars have a close cousin in the distributed systems literature:
convergent replicated data types (CvRDTs), which leverage lattice
properties to guarantee that all replicas of a distributed object (for
instance, in a distributed database) are eventually consistent. Unlike
LVars, in which all updates are joins, CvRDTs allow updates that
are inflationary with respect to the lattice but do not compute
a join. Moreover, CvRDTs differ from LVars in that they allow
intermediate states to be observed: if two replicas of an object are
updated independently, reads of those replicas may disagree until a
(least-upper-bound) merge operation takes place.

Although CvRDTs and LVars were developed independently,
LVars ensure determinism under parallel execution by leveraging
the same lattice properties that CvRDTs use to ensure eventual
consistency. Therefore, a sensible next research question is: how
can we take inspiration from CvRDTs to improve the LVars model,
and vice versa? In this paper, we take steps toward answering
that question in both directions: we consider both how to extend
CvRDTs with LVar-style threshold reads and how to extend LVars
with CvRDT-style inflationary updates, and we advocate for the
usefulness of these extensions.

1. Introduction

Deterministic-by-construction parallel programming models en-
sure that all programs written using the model have the same
observable behavior every time they are run, offering freedom
from subtle, hard-to-reproduce nondeterministic bugs in parallel
code. Ideally, a deterministic-by-construction parallel program will
run faster when more parallel resources are dynamically available,
and so we do not necessarily want a deterministic-by-construction
model to require that exact scheduling behavior is deterministic;
only a program’s outcome should be preserved across multiple
runs. Indeed, we are interested in models that specifically allow
tasks to be scheduled dynamically and unpredictably, in order to
handle irregular parallel applications, without allowing such sched-
ule nondeterminism to affect the outcome of a program.

In earlier work [8, [9]], we proposed LVars as a principled ap-
proach to shared-state parallel programming with guaranteed ob-
servably deterministic outcomes. An LVar is a memory location
that can be shared among multiple threads and accessed through
put (write) and get (read) operations. Unlike a typical shared mu-
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table location, though, the values an LVar can take on are elements
of an application-specific lattice. This application-specific lattice
determines the semantics of the put and get operations that com-
prise the interface to LVars:

® put operations can only change an LVar’s state in a way that
is monotonically increasing with respect to the application-
specific lattice, because it updates the LVar to the join, or least
upper bound, of the old state and the new state.

get operations allow only limited observations of the state of
an LVar. Every get operation must be expressible in terms of
a threshold set of minimum values that can be read from the
LVar, where every two elements in the threshold set must have
the lattice’s greatest element T as their join. A call to a get
operation blocks until the LVar in question reaches a (unique)
value in the threshold set, then unblocks and returns that value,
rather than the LVar’s exact contents.

Together, monotonically increasing writes via put and threshold
reads via get yield a deterministic-by-construction programming
model. That is, a program in which puts and gets on LVars are the
only side effects will have the same observable result on every run,
in spite of parallel execution and schedule nondeterminism [8].

Lattices for eventual consistency The problem of ensuring de-
terminism of parallel programs is closely related to the problem of
ensuring the eventual consistency [16] of replicated objects in a dis-
tributed system. Consider, for example, an object representing the
contents of a shopping cart, replicated across a number of physical
locations. If two replicas disagree on the contents of the cart—for
instance, if one replica sees only that item a has been added to
the cart, while another sees only item b—how do we know what
the “real” cart contents are? One option is to give every write a
timestamp and allow the last-written replica to overrule the others,
but such a “last-write-wins” policy does not necessarily make sense
from a semantic point of view [6]. In the particular case of the shop-
ping cart, we might instead want to resolve the conflict by taking
the set union {a, b} of the two replicas’ contents; for some other
application, a different policy might be more appropriate.

This notion of application-specific conflict resolution, long used
by, for instance, the Amazon Dynamo key-value store [6], has
recently been formalized in the setting of convergent replicated
data types (CvRDTSs) [12][13]. A CvRDT is a replicated object in
which the states that replicas can take on can be viewed as elements
of a join-semilattice. While at any given time, replicas may differ,
conflicts between replicas can always be deterministically resolved
by a merge operation that computes the join of the two replicas’
states. As long as all replicas merge with one another periodically,
eventual consistency is guaranteed.

Joining forces Although LVars and CvRDTs were developed in-
dependently, both models leverage the mathematical properties of
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Figure 1: Example LVar lattices: (a) positive integers ordered by <;
(b) IVar containing a positive integer; (c) pair of natural-number-
valued IVars, annotated with example threshold sets that would
correspond to a blocking read of the first or second element of the
pair. Any state transition crossing the “tripwire” for getSnd causes
it to unblock and return a result.

join-semilattices to ensure that a property of the model holds—
determinism in the case of LVars; eventual consistency in the case
of CvRDTs. Therefore, a sensible next research question is: what
is the relationship between the two models, and can we take inspi-
ration from the literature on CvRDTSs to improve the LVars model,
and vice versa? In this paper, after reviewing the basics of LVars
(Section2) and CvRDTs (Section 3), we approach that question in
both directions:

e First (Section [@), we will consider how LVar-style threshold
reads apply to the setting of CvRDTs. Since threshold reads
guarantee that the order in which updates occur cannot be ob-
served, they can, unlike ordinary CvRDT queries, prevent in-
termediate states of replicas from being observed. Therefore,
threshold reads ensure a greater degree of consistency than ordi-
nary, non-blocking queries, but at the price of read availability.
We argue that this is a trade-off worth making.

Second (Section [B), we will consider how CvRDT-style infla-
tionary updates apply to the setting of LVars. In fact, as we will
explain, inflationary non-join LVar updates are crucial for some
LVar applications.

2. LVars Refresher

We start with a brief review of the LVars programming model.
LVars are a mechanism for ensuring that shared-state parallel com-
putations have deterministic outcomes by only allowing least-
upper-bound writes and threshold reads of shared memory loca-
tions. In previous work [8, 9], we gave a formal treatment of LVars
and proved determinism for LVar-based calculi. Here, we give a
more informal introduction to LVars in the setting of LVish, our
Haskell library for programming with LVarsF_] The example pro-
grams in this section are written using LVish and have types of the
form Par Det, indicating that they run in the Par monad that the
LVish library provides, with a deterministic (Det) effect level. In
LVish programs, all operations that read and write LVars must run
inside Par computations.

! LVish is available at http://hackage.haskell.org/package/lvish; the
examples in this paper are written against release 1.1.2.

2 The Par monad in LVish is a generalization of the original Par monad ex-
posed by the monad-par library (http://hackage.haskell.org/package/
monad-par). In real LVish programs, Par computations have a second phan-
tom type parameter to ensure that LVars cannot be re-used in multiple Par
computations, in a manner analogous to how Haskell’s ST monad prevents
an STRef from being returned from runST.
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LVars are a generalization of IVars [2]], a well-known mecha-
nism for deterministic parallel programming. An IVar is a write-
once variable with a blocking read semantics: an attempt to read an
empty IVar will block until the IVar has been filled with a value.
LVars generalize [Vars to allow multiple writes, so long as those
writes are monotonically increasing with respect to an application-
specific lam’c of states. As a simple first example, consider a pro-
gram in which two parallel computations write to an LVar 1v, with
one thread writing the value 2 and the other writing 3. Using LVish,
one way to write such a program is as follows:

import Data.LVar.MaxPosInt (Example 1)

p :: Par Det ()

p = do
1lv + newMaxPosInt
fork (put 1lv 2)
fork (put 1lv 3)
waitThresh 1v 3

Although it is possible to define one’s own LVar data types using
LVish, Example [TJuses LVish’s built-in MaxPosInt LVar data type.
Two calls to fork launch asynchronous threads, each of which
performs a put to an LVar 1v of type MaxPosInt. 1v’s lattice is the <
ordering on positive integers, as shown in Figure[[{a). waitThresh
is an example of a get operation: it waits for the contents of 1v
to reach or surpass the “threshold” value of 3, and returns (with a
return value of ()) once that point has been reached.

The two calls to put in Example[T|can run in arbitrary order, and
they can run either before or after the call to waitThresh. Neverthe-
less, Exampleis deterministic, since put takes the join of the old
and new LVar contents. Since both puts must eventually run, 1v’s
contents will reach max(2, 3) = 3 on every execution, since in 1v’s
lattice the join of two positive integers n1 and ng is max(ni, n2).
Therefore waitThresh will always eventually unblock, regardless
of the order in which the puts occur.

Why is it necessary to take the join of the old and new values?
If put were to update the contents of 1v to the new value, we
would have no guarantee of determinism: for instance, under a
schedule in which put 1v 3 ran first, followed by put 1v 2 and
then waitThresh 1v 3, the call to waitThresh would block forever
because 1v’s contents would be 2 by the time it ran. But, since
put takes the join of its argument and the current LVar contents,
put 1v 2 has no effect when 1v’s contents are already 3, and so
waitThresh 1lv 3 can return immediately.

A lattice-generic model Although the lattice of Figure [Tfa) is
one possible ordering for the states of an LVar, the LVars model
is lattice-generic: any choice of lattice will result in a deterministic
outcome. For instance, consider a version of Example [T]in which
we choose 1v’s lattice to be that of Figure[T|b), in which the join of
any two distinct positive integers is T—that is, we want 1v to have
the behavior of an IVar. To get this behavior, rather than using the
MaxPosInt type, we can use the IVar type also provided by LVish:

import Data.LVar.IVar (Example 2)

p :: Par Det Int
p = do
lv < newlVar
fork (put lv 2)
fork (put 1lv 3)
get 1v

3 Formally, the lattice of states is given as a 4-tuple (D, <, 1, T) where
D is a set, < is a partial order on D, | is D’s least element according
to <, and T is D’s greatest element. We do not require that every pair
of elements in D have a greatest lower bound, only a least upper bound;
hence (D, <, L, T) is really a bounded join-semilattice with a designated
greatest element (T). For brevity, we use the term “lattice” as a shorthand.
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Regardless of scheduling, Example [2| will deterministically raise
an exception, indicating that conflicting writes to 1v have occurred.
Unlike with a traditional, single-write ['Var, though, multiple writes
of the same value (say, put 1v 2 and put 1v 2) would not raise an
exception, because the join of any positive integer and itself is that
integer—corresponding to the fact that multiple writes of the same
value do not allow any nondeterminism to be observed.

Threshold sets and incompatibility The LVars model guarantees
determinism through a combination of least-upper-bound writes
and threshold reads. In Example[l] the call waitThresh 1v 3 cor-
responds to querying the lattice of Figure[T(a) using the singleton
threshold set {3}. Singleton threshold sets are the only valid thresh-
old sets for MaxPosInt LVars, and hence the interface exposed by
waitThresh takes a single integer argument. On the other hand, the
IVar LVar in Example 2] provides a get operation corresponding to
an infinite threshold set {1,2, 3, ...}. This is a valid threshold set,
since its elements are pairwise incompatible with respect to the lat-
tice of Figure[I[b): every two distinct elements in the threshold set
have T as their join.

As a final example of a threshold set, consider an LVar 1v whose
states form a lattice of pairs of natural-number-valued I Vars; that is,
1v contains a pair (m, n), where m and n both start as 1 and may
each be updated once with a non-_L value, which must be some nat-
ural number. This lattice is shown in Figure[I|c). An IVarPair LVar
data type could expose getFst and getSnd operations for reading
from the first and second entries of 1v. For the call getSnd 1v, the
implicit threshold set is {(_L, 0), (L, 1), ... }, an infinite set. There
is no risk of nondeterminism because the elements of the thresh-
old set are pairwise incompatible with respect to 1v’s lattice: infor-
mally, since the second entry of 1v can only be written once, no
more than one state from the set {(.L,0), (L, 1),...} can ever be
reached.

p :: Par Det Int

p = do
1lv < newPair
fork (putFst 1lv 0)
fork (putSnd 1v 1)
getSnd 1lv

(Example 3)

In Example 3] getSnd 1v may unblock and return 1 any time after
the second entry of 1v has been written, regardless of whether
the first entry has been written yet. One way of visualizing the
implicit threshold set of {(.L,0), (L, 1),...} for getsnd 1v is as
a subset of edges in the lattice that, if crossed, allow the operation
to unblock and return. Together these edges form a “tripwire”. This
visualization is pictured in Figure[Tfc).

3. CvRDTs and Eventual Consistency

Distributed systems typically involve replication of data objects
across a number of physical locations. Replication is of fundamen-
tal importance in such systems: it makes the system more robust to
data loss and allows for good data locality. Given the importance
and ubiquity of replication, it would be convenient if systems of
distributed, replicated objects behaved indistinguishably from the
more familiar programming model in which all data is on one ma-
chine and all computation takes place there. Unfortunately, this is
not the case. The well-known CAP theorem |3l [1] of distributed
computing imposes a trade-off between consistency, in which ev-
ery replica sees the same information, and availability, in which all
information is available for both reading and writing by all replicas.

Consistency and availability, though, are not binary properties;
rather than having, for instance, either perfect availability or no
availability at all, we can choose how much availability a system
must have, then compromise on consistency as needed to achieve
that level of availability. Highly available distributed systems, such
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as Amazon’s Dynamo key-value store [6]], give up on strong consis-
tency in favor of eventual consistency [16]], in which replicas may
not always agree, but if updates stop arriving, all replicas will even-
tually come to agree.

Conflict resolution and CvRDTs How can eventually consistent
systems ensure that all replicas of an object eventually come to
agree? As a straw man proposal, we could vacuously satisfy the
definition of eventual consistency by setting all replicas to some
pre-determined value—but then, of course, we would lose all up-
dates we had made to any of the replicas. A more practical pro-
posal would be to try to determine which replica was written most
recently, then declare that replica the winner. But this approach is
also less than ideal: even if we had a way of reliably synchronizing
clocks between replicas and could always determine which replica
was written most recently, having the last write win might not make
sense from a semantic point of view. The Dynamo developers ac-
knowledge this in their discussion of application-specific mecha-
nisms for resolving conflicts between replicas [6]:

The next design choice is who performs the process of con-
flict resolution. This can be done by the data store or the
application. If conflict resolution is done by the data store,
its choices are rather limited. In such cases, the data store
can only use simple policies, such as “last write wins”, to
resolve conflicting updates. On the other hand, since the ap-
plication is aware of the data schema it can decide on the
conflict resolution method that is best suited for its clients
experience. For instance, the application that maintains cus-
tomer shopping carts can choose to “merge” the conflicting
versions and return a single unified shopping cart.

In other words, we can take advantage of the fact that, for a partic-
ular application, we know something about the meaning of the data
we are storing, and then parameterize the data store by a pluggable,
application-specific conflict resolution policy.

Implementing application-specific conflict resolution policies
in an ad-hoc way for every application sounds tedious and error-
proneﬂ Fortunately, we need not implement them in an ad-hoc way.
Shapiro et al.’s convergent replicated data types (CvRDTSs) [12}[13]
provide a simple mathematical framework for reasoning about and
enforcing the eventual consistency of replicated objects, based on
viewing replica states as elements of a lattice and replica conflict
resolution as that lattice’s join operation. Next, we review the basics
of CvRDTs from the work of Shapiro et al., and then we discuss
the relationship between CvRDTs and LVars.

Conditions for eventual consistency Shapiro et al. define an
eventually consistent object as one that has the property of conver-
gence: all correct replicas of the object to which the same updates
have been delivered eventually have equivalent state. Convergence
is one of three conditions that are required for eventual consistency;
the other two are eventual delivery, meaning that all replicas receive
all update messages, and fermination, meaning that all method ex-
ecutions terminate (we discuss methods in more detail below).
Shapiro et al. further define a strongly eventually consistent
(SEC) object as one that is eventually consistent and, in addition
to being merely convergent, is strongly convergent, meaning that
correct replicas to which the same updates have been delivered have
equivalent stateE]A conflict-free replicated data type (CRDT), then,
is a data type (i.e., a specification for an object) satisfying certain

41Indeed, as the developers of Dynamo have noted [[6], Amazon’s shopping
cart presents an anomaly whereby removed items may re-appear in the cart!
5 Strong eventual consistency is not to be confused with strong consis-
tency: it is the combination of eventual consistency and strong convergence.
Contrast with ordinary convergence, in which replicas only eventually have
equivalent state. In a strongly convergent object, knowing that the same up-

2014/2/17



conditions that are sufficient to guarantee that the object is SEC.
(The term “CRDT” is used interchangeably to mean a specification
for an object, or an object meeting that specification.)

There are two “styles” of specifying a CRDT: state-based,
also known as convergent’} or operation-based (or “op-based”),
also known as commutative. CRDTs specified in the state-based
style are also called convergent replicated data types, abbreviated
CvRDTs, while those specified in the op-based style are also called
commutative replicated data types, abbreviated CmRDTs. Because
it is based on the algebraic framework of join-semilattices, the
state-based, CVRDT style is closer to the LVars model, and so it is
CvRDTs that are our focus in this paper—although, as Shapiro et
al. have shown, CmRDTs can emulate CvRDTs, and vice versa.

State-based objects Shapiro et al. specify a state-based object as
a tuple (S, 5%, ¢, u, m), where S is a set of states, s° is the initial
state, q is the query method, u is the update method, and m is the
merge method. Objects are replicated across some finite number of
processes, with one replica at each process. We assume that each
replica begins in the initial state s°. The state of a local replica
may be queried via the method ¢ and updated via the method w.
Methods execute locally, at a single replica, but the merge method
m can merge the state from a remote replica with the local replica;
we assume that each replica sends its state to the other replicas
infinitely often, and that eventually every update reaches every
replica, whether directly or indirectly.

A state-based or convergent replicated data type (CvRDT) is
a state-based object equipped with a partial order <, written as a
tuple (S, <, s°, ¢, u, m), that has the following properties:

e S forms a join-semilattice ordered by <.

e The merge method m computes the join of two states with
respect to <.

e State is inflationary across updates: if u updates a state s to s,
then s < s'.

Shapiro et al. show that a state-based object that meets the criteria
for a CvRDT is SEC [13].

Differences between CvRDTs and LVars While CvRDTs have
much in common with LVars, they differ in the following ways:

e In the CvRDT model, there is no notion of threshold reads; the
query operation g reads the exact contents of its local replica,
and therefore different replicas may see different states at the
same time, if not all updates have been propagated yet. That is,
it is possible to observe intermediate states of a CvRDT replica.
Such intermediate observations are not possible with LVars.

In the LVars model, there is no “update” operation that is dis-
tinct from “merge”—since LVar puts compute the join of the
old and new values, every LVar update is the analogue of a
CvRDT merge operation.

e In the LVars model, we do not have to contend with replication!
The LVars model is a shared-memory model, and when an LVar
is updated, all reading threads can immediately see the update.
In the CvRDT model, updates to a replica are only propagated
to other replicas by means of subsequent merge operations.

dates have been delivered to all correct replicas is sufficient to ensure that
those replicas have equivalent state, whereas in an object that is merely con-
vergent, there might be some further delay before all replicas agree.

6 There is a potentially misleading terminology overlap here: the definitions
of convergence and strong convergence above pertain not only to CvRDTs
(where the C stands for “Convergent”), but to all CRDTs.
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Each of these differences suggests possibilities for extending the
LVars and CvRDT models, bringing them closer together. In this
paper, we consider the first two, and propose the following changes:

e Extend the definition of CvRDTs to add a mechanism for speci-
fying LVar-style threshold queries by adding a new g (for “get”)
operation. Threshold queries made via g would guarantee that
the order in which information is added to a CvRDT cannot be
observed, ensuring a greater degree of consistency at the price
of read availability. A threshold consistency property should
hold of threshold queries: if they return, they will always return
the same value. For a CvRDT where all queries are made via
g, it will be impossible to observe the order in which updates
occur.

Extend the LVars model to allow non-join update operations—
that is, allow update operations other than put—while neverthe-
less preserving determinism. We propose extending the LVar-
based calculus of our previous work [9] with a non-join update
operation bump, discussed below in Section[5] A bump operation
is crucial for certain applications of LVars, and in fact is already
included in a forthcoming release of the LVish library [10], but
has not yet been formalized or proved deterministic. We con-
jecture that support for bump will make the LVars model more
expressive, while retaining determinism.

4. Bringing Threshold Queries to CvRDTs

In this section, we extend Shapiro et al.’s CvRDTs to add support
for threshold queries, and we state the threshold consistency prop-
erty that we claim should hold for CvRDTs extended thusly.

Motivation Since the purpose of CVRDTs is eventual consis-
tency, one might wonder why we would want threshold queries
of CvRDTs. After all, if strong consistency were important to us,
would we be using CvRDTs in the first place? We argue that the ad-
vantage of bringing threshold queries to CvRDTs is that they make
it possible to use a single framework—that of lattice-based data
structures—for formally reasoning about both strong consistency
and eventual consistency. Such a framework is useful because real
distributed storage services, such as Amazon’s SimpleDB [[15]], are
“multi-consistency”: they allow client applications to choose be-
tween strong and eventual consistency at the level of individual
read operations. The recently proposed Pileus distributed storage
system [14] goes a step further and allows consistency choices to
be made dynamically, in response to changing network and server
load conditions. Such systems motivate the need for tools for for-
mally reasoning about a range of consistency options.

Objects with threshold queries Definition |1| extends Shapiro et
al’s definition of a state-based object to add the threshold query
method g:

Definition 1 (state-based object with threshold queries). A state-
based object with threshold queries (henceforth object) is a tuple
(S,5° q,g,u,m), where S is a set of states, s € S is the initial
state, q is a query method, g (short for “get”) is a threshold query
method, u is an update method, and m is a merge method.

We assume a finite set of n processes pi,...,pn, and consider
a single replicated object with one replica at each process, with
replica ¢ at process p;. Processes may crash silently; we say that a
non-crashed process is correct.

Every replica has initial state s°. Methods execute at individual
replicas, possibly updating that replica’s state. The kth method
execution at replica ¢ is written fF(a), where f is either ¢, g, u,
or m, and a is the arguments to f. The state of replica ¢ after the
Kth method execution at i is s¥. We say that states s and s’ are
equivalent, written s = ', if ¢(s) = q(s').
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Next, we can give the definition of a CvRDT supporting thresh-
old queries:

Definition 2 (CvRDT with threshold queries). A convergent
replicated data type with threshold queries (henceforth thresh-
old CvRDT) is an object equipped with a partial order <, written
(S, <, 5%, q, g,u,m), that has the following properties:

e S forms a join-semilattice ordered by <.

e S has a greatest element T according to <.

e The merge method m computes the join of two states with
respect to <.

e State is inflationary across updates: if u updates a state s to s,
then s < s'.

e The threshold query method g takes a threshold set subset S’
of S as its argument, blocks at replica i until s < sf for some
(unique) s € S’ and some k, then unblocks and returns s.

As with LVar threshold reads, the element of a threshold set for
which g unblocks is unique because the threshold set is pairwise
incompatible with respect to <: every two distinct elements in .S’
have a join of T.

Causal histories An object’s causal history is a record of all the
updates that have happened at all replicas. The causal history does
not track the order in which updates happened, merely that they
did happen. The causal history at replica i after execution k is the
set of all updates that have happened at replica ¢ after execution
k. Definition B updates Shapiro et al.’s definition of causal history
for a state-based object to account for g (a trivial change, since
execution of g does not change a replica’s causal history):

Definition 3 (causal history). A causal history is a sequence
[e1,...,cn], where ¢; is a set of the updates that have occurred
at replica 7. Each ¢; is initially (). If the kth method execution at
replica i is:
e a query g or a threshold query g, then the causal history at
replica 7 after execution k does not change: ¢f = ¢!,
e an update uf(a): then the causal history at replica ¢ after exe-
cution k is ¢f = ¢t Uuk(a).
® a merge mf(sf,/): then the causal history at replica 4 after
execution k is the union of the local and remote histories:
k= c,’f_l U cf/’.

We say that an update is delivered at replica 1 if it is in the causal
history at replica 4.

Eventual consistency and strong eventual consistency With the
previous definitions in place, we can define eventual consistency
and strong eventual consistency. Informally, eventual consistency
means that correct replicas eventually reach the same final value
if updates stop arriving. (A correct replica is a replica at a correct
process.) Formally:

Definition 4 (eventual consistency (EC)). An object is eventually
consistent (EC) if the following three conditions hold (the symbol
¢ means “eventually”):

e Eventual delivery: An update delivered at some correct replica
is eventually delivered to all correct replicas:

Vi,j: f€c = Of €c¢j.

e Convergence: Correct replicas at which the same updates have
been delivered eventually have equivalent state:

VZ,.] 1C=Ccj = <>SZ = Sj.
e Termination: All method executions terminate.

Finally, we can define strong eventual consistency:
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Definition 5 (strong eventual consistency (SEC)). An object is
strongly eventually consistent (SEC) if it is eventually consistent
and the following condition holds:

e Strong convergence: Correct replicas at which the same updates
have been delivered have equivalent state:

Vi,j:ci:cj = Si = §j.
It is easy to show that a threshold CvRDT is SEC:

Theorem 1 (strong eventual consistency of threshold CvRDTs).
An object that meets the criteria for a threshold CvRDT is SEC.

Proof. From Shapiro et al., we have that an object that meets the
criteria for a CvRDT is SEC [13]. Since threshold queries do not
affect causal history, a threshold CvRDT is SEC as well. O

Threshold consistency Neither eventual consistency nor strong
eventual consistency imply that intermediate results of the same
query g on different replicas of a threshold CvRDT will be consis-
tent. For consistent intermediate results, we must use the threshold
query method g, for which we can define a threshold consistency
property. Threshold consistency does not require that the same up-
dates have been delivered to the replicas in question. Instead, if
replica ¢ has received a subset of the updates that replica j has re-
ceived and g, (a) blocks, then g;(a) also blocks; but if g;(a) returns
a value s, then g;(a) may either block or also return s.

Definition 6 (threshold consistency). An object is threshold con-
sistent (TC) if, for all 4, j:

e If ¢; C ¢; and g;(a) blocks, then g;(a) blocks.
o If ¢; C ¢j and g;(a) = s, then g;(a) either blocks or returns s.

Claim 1 (threshold consistency of threshold CvRDTSs). An object
that meets the criteria for a threshold CvRDT is TC.

5. Bringing Inflationary Updates to LVars

As we have seen, CVRDTs support inflationary updates—that
is, updates that are nondecreasing with respect to the lattice in
question—that are not necessarily join operations. Indeed, the only
requirement on a CvRDT update is that it be inflationary. With
LVars, on the other hand, all updates are joins. In this section we
propose adding inflationary non-join updates to the LVars model.

As a canonical example of an LVar update that cannot be di-
rectly modeled as a join, consider an atomically incremented
counter that occupies one memory location. Atomic increments to
such a counter are efficient, commutative, and ultimately fit well in-
side the LVar framework. Atomic increment is a useful primitive—
an example use case is PhyBirﬂ a bioinformatics application that
we parallelized with LVish [10]]. PhyBin uses atomic increment op-
erations to gradually build a distance matrix, concurrently incre-
menting the distance in each cell of the matrix.

More generally, for an LVar with lattice (D, <, 1, T), adata
structure author may define a set of bump operations bump, : D —
D, which must meet the following two conditions:

® Ya,i. a < bump,(a)
e Va,i,j. bumpi(bu.mpj (a)) = bump; (bump, (a))

When extending LVish to include bump, we must keep in mind
that bump and put operations on the same LVar do not nec-
essarily mix. For example, consider a set of bump operations
{bump, 41y, DU (4 o), - - - } for atomically incrementing a counter
represented by a natural number LVar, with a lattice ordered by the

"http://hackage.haskell.org/package/phybin
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usual < on natural numbers. A put of 4 and a bump, 1) do not com-
mute! If we start with an initial state of 0 and the put occurs first,
then the state of the LVar changes to 4 since max(0,4) = 4, and
the subsequent bump_ ;) updates it to 5. But if the bump_ ;) hap-
pens first, then the final state of the LVar will be max(1,4) = 4.
Furthermore, multiple distinct families of bump functions only com-
mute among themselves and cannot be combined. In fact, put op-
erations themselves, with their underlying join operations on the
single state replica, meet the above two conditions for bump, and
therefore can be viewed as a special case of bump that, in addition
to being inflationary, also happens to compute a join.

Fortunately, in the LVish library, the author of a particular LVar
data structure can choose what operations that data structure should
provide, and the Haskell type system will statically rule out pro-
grams that attempt to use other, incompatible bump operations on
the same LVar. Moreover, it is safe to compose LVars that sup-
port different families of bump operations. For example, if we de-
fined a Counter LVar type with a bump operation, an LVar of type
Set Counter could contain a monotonically growing set of bump-
able counters that each monotonically increase. What remains is to
formally define the operational semantics of bump and update the
determinism proofs for LVar calculi [8,|9] to account for it; we ex-
pect this to be a straightforward change to the existing proofs.

6. Related Work

Concurrent Revisions The Concurrent Revisions (CR) [L1] pro-
gramming model uses isolation types to distinguish regions of the
heap shared by multiple mutators. Rather than enforcing exclusive
access, CR clones a copy of the state for each mutator, using a de-
terministic “merge function” for resolving conflicts at join points.

In CR, variables can be annotated as being shared between
a “joiner” thread and a “joinee” thread. Unlike the least-upper-
bound writes of LVars, CR merge functions are not necessarily
commutative; indeed, the default CR merge function is “joiner
wins”. The programming model allows the programmer to specify
which of two writing threads should prevail, regardless of the order
in which their writes arrive. The states that a shared variable can
take on need not form a lattice. Still, semilattices turn up in the
metatheory of CR: in particular, Burckhardt and Leijen [4]] show
that, for any two vertices in a CR revision diagram, there exists a
greatest common ancestor state that can be used to determine what
changes each side has made—an interesting duality with LVars.

Although versioned variables in CR could model lattice-based
data structures—if they used least upper bound as their merge
function for conflicts—the programming model nevertheless dif-
fers from the LVars model in that effects only become visible at the
end of parallel regions, as opposed to the asynchronous commu-
nication within parallel regions that the LVars model allows. This
semantics precludes the use of traditional lock-free data structures
for representing versioned variables.

Bloom and Bloom™  The Bloom language for distributed database
programming guarantees eventual consistency for distributed data
collections that are updated monotonically. The initial formulation
of Bloom [1]] had a notion of monotonicity based on set inclusion.
More recently, Conway et al. [5] generalized Bloom to a more
flexible lattice-parameterized system, Bloom”. Bloom” combines
ideas from CRDTs with monotonic logic, resulting in a lattice-
parameterized, confluent language that is a close relative of LVish.
A monotonicity analysis pass rules out programs that would per-
form non-monotonic operations on distributed data collections,
whereas in the LVars model, monotonicity is enforced by the API
presented by LVars. Moreover, since LVish is implemented as a
Haskell library (whereas Bloom(*) is implemented as a domain-
specific language embedded in Ruby), we can rely on Haskell’s
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static type system for fine-grained effect tracking and monadic en-
capsulation of LVar effects.

7. Conclusion and Future Work

Although the CvRDT and LVar models were developed indepen-
dently and serve different purposes, they both leverage lattice prop-
erties to ensure that a property of the model holds—determinism in
the case of LVars; eventual consistency in the case of CvRDTs.
We propose extending CvRDTs to support threshold reads, allow-
ing for reasoning about strong consistency, and extending LVars
to support inflationary non-least-upper-bound updates, making a
wider range of LVar applications possible while still ensuring de-
terminism. In future work, we will prove the claims that threshold-
queryable CvRDTs enforce threshold consistency and that infla-
tionary non-join LVar updates retain determinism.
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