
Verified Causal Broadcast with Liquid Haskell
Patrick Redmond

University of California, Santa Cruz
USA

Gan Shen
University of California, Santa Cruz

USA

Niki Vazou
IMDEA
Spain

Lindsey Kuper
University of California, Santa Cruz

USA

ABSTRACT
Protocols to ensure that messages are delivered in causal order are
a ubiquitous building block of distributed systems. For instance,
distributed data storage systems can use causally ordered message
delivery to ensure causal consistency, and CRDTs can rely on the
existence of an underlying causally-ordered messaging layer to
simplify their implementation. A causal delivery protocol ensures
that when a message is delivered to a process, any causally preced-
ing messages sent to the same process have already been delivered
to it. While causal delivery protocols are widely used, verification
of their correctness is less common, much less machine-checked
proofs about executable implementations.

We implemented a standard causal broadcast protocol inHaskell
and used the Liquid Haskell solver-aided verification system to ex-
press and mechanically prove that messages will never be deliv-
ered to a process in an order that violates causality. We express
this property using refinement types and prove that it holds of our
implementation, taking advantage of Liquid Haskell’s underlying
SMT solver to automate parts of the proof and using its manual
theorem-proving features for the rest. We then put our verified
causal broadcast implementation to work as the foundation of a
distributed key-value store.
ACM Reference Format:
Patrick Redmond, Gan Shen, Niki Vazou, and Lindsey Kuper. 2022. Verified
Causal Broadcast with Liquid Haskell. In Symposium on Implementation
and Application of Functional Languages (IFL 2022), August 31-September 2,
2022, Copenhagen, Denmark. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3587216.3587222

1 INTRODUCTION
Causal message delivery [Birman and Joseph 1987a; Birman et al.
1991; Birman and Joseph 1987b; Schiper et al. 1989] is a funda-
mental communication abstraction for distributed computations in
which processes communicate by sending and receiving messages.
One of the challenges of implementing distributed systems is the
asynchrony ofmessage delivery; messages arriving at the recipient
in an unexpected order can cause confusion and bugs. A causal de-
livery protocol can ensure that, when a message𝑚 is delivered to a
process 𝑝 , any message sent “before”𝑚 (in the sense of Lamport’s
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of thisworkmust be honored.
For all other uses, contact the owner/author(s).
IFL 2022, August 31-September 2, 2022, Copenhagen, Denmark
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9831-2/22/08.
https://doi.org/10.1145/3587216.3587222

Alice Bob Carol

!

“I lost my wallet…”

“Found it!”

“I lost my wallet…”

“Found it!”

“Glad to hear it!”

Bob

"
#

CarolAlice

!

Figure 1: Two executions that violate causal delivery (Defini-
tion 2). On the left, Carol sees Alice’s messages in the oppo-
site order of how they were sent. On the right, Carol sees
Bob’s message before seeing Alice’s second message. The
dashed arrows in both diagrams depict how a causal deliv-
ery mechanism (Section 2.2) might delay received messages
in a buffer for later delivery.

“happens-before”; see Section 2.1) will have already been delivered
to 𝑝 . When a mechanism for causal message delivery is available,
it simplifies the implementation of many important distributed al-
gorithms, such as replicated data stores that must maintain causal
consistency [Ahamad et al. 1995; Lloyd et al. 2011], conflict-free
replicated data types [Shapiro et al. 2011b], distributed snapshot
protocols [Acharya and Badrinath 1992; Alagar and Venkatesan
1994], and applications that “involve human interaction and con-
sist of large numbers of communication endpoints” [van Renesse
1993]. A particularly useful special case of causal delivery is causal
broadcast, in which each message is sent to all processes in the sys-
tem. For example, a causal broadcast protocol enables a straightfor-
ward implementation strategy for a causally consistent replicated
data store — one of the strongest consistency models available
for applications that must maximize availability and tolerate net-
work partitions [Mahajan et al. 2011]. Conflict-free replicated data
types (CRDTs) implemented in the operation-based style [Shapiro
et al. 2011a,b] typically also assume the existence of an underlying
causal broadcast layer [Shapiro et al. 2011b, §2.4].

What can go wrong in the absence of causal broadcast? Suppose
Alice, Bob, and Carol are exchanging group text messages. Alice
sends the message “I lost my wallet…” to the group, then finds the
missing wallet between her couch cushions and follows up with a
“Found it!” message to the group. In this situation, depicted in Fig-
ure 1 (left), Alice has a reasonable expectation that Bob and Carol

https://doi.org/10.1145/3587216.3587222
https://doi.org/10.1145/3587216.3587222
https://doi.org/10.1145/3587216.3587222

IFL 2022, August 31-September 2, 2022, Copenhagen, Denmark Patrick Redmond, Gan Shen, Niki Vazou, and Lindsey Kuper

will see the messages in the order that she sent them, and such
first-in first-out (FIFO) delivery is an aspect of causal message or-
dering. While FIFO delivery is already enforced1 by standard net-
working protocols such as TCP [Postel 1981], it is not enough to
eliminate all violations of causality. In an execution such as that in
Figure 1 (right), FIFO delivery is observed, and yet Carol sees Bob’s
message only after having seen Alice’s initial “I lost my wallet…”
message, so from Carol’s perspective, Bob is being rude. The issue
is that Bob’s “Glad to hear it!” response causally depends on Alice’s
secondmessage of “Found it!”, yet Carol sees “Glad to hear it!” first.
What is called for is a mechanism that will ensure that, for every
message that is applied at a process, all of the messages on which
it causally depends — comprising its causal history — are applied
at that process first, regardless of who sent them.

One way to address the problem is to buffer messages at the re-
ceiving end until all causally preceding broadcast messages have
been applied. The dashed arrows in Figure 1 represent the behav-
ior of such a buffering mechanism. A typical implementation strat-
egy is to have the sender of a message augment the message with
metadata (for instance, a vector clock; see Section 2.2.1) that sum-
marizes that message’s causal history in a way that can be effi-
ciently checked on the receiver’s end to determine whether the
message needs to be buffered or can be applied immediately to the
receiver’s state. Although such mechanisms are well-known in the
distributed systems literature [Birman and Joseph 1987a; Birman
et al. 1991; Birman and Joseph 1987b], their implementation is “gen-
erally very delicate and error prone” [Bouajjani et al. 2017], mo-
tivating the need for machine-verified implementations of causal
delivery mechanisms that are usable in real, running code.

To address this need, we use the Liquid Haskell [Vazou et al.
2014] platform to implement and verify the correctness of a well-
known causal broadcast protocol [Birman et al. 1991]. LiquidHaskell
is an extension to the Haskell programming language that adds
support for refinement types [Rushby et al. 1998; Xi and Pfenning
1998], which let programmers specify logical predicates that re-
strict, or refine, the set of values described by a type. Beyond giv-
ing more precise types to individual functions, Liquid Haskell’s
reflection [Vazou et al. 2018, 2017] facility lets programmers use
refinement types to extrinsically specify properties that can relate
multiple functions (see Section 3.2), and then prove those proper-
ties by writing Haskell programs to inhabit the specified types. We
use this capability to prove that in our causal broadcast implemen-
tation, processes deliver messages in causal order, ruling out the
possibility of causality-violating executions like those in Figure 1.

We express causal delivery as a refinement type. By doing so,
we can take advantage of Liquid Haskell’s underlying SMT au-
tomation where possible, while still availing ourselves of the full
power of Liquid Haskell’s theorem-proving capabilities via reflec-
tion where necessary. A further advantage of Liquid Haskell as
a verification platform is that it results in immediately executable
Haskell code, with no extraction step necessary, as with proof as-
sistants such as Coq [Bertot and Castéran 2004] or Isabelle [Wenzel
et al. 2008] — making it easy to integrate our library with existing
Haskell code.

1TCP’s FIFO ordering guarantee applies so long as the messages in question are sent
in the same TCP session. Across sessions, additional mechanisms are necessary.

Our causal broadcast implementation is a Haskell library that
can be used in a variety of applications. While previous work has
mechanically verified the correctness of applications of causal or-
dering in distributed systems (such as causally consistent distributed
key-value stores [Gondelman et al. 2021; Lesani et al. 2016]), fac-
toring the causal broadcast protocol out into its own standalone,
verified component means that it can be reused in each of these
contexts. There is a need for such a standalone component: for
instance, recent work on mechanized verification of CRDT con-
vergence [Gomes et al. 2017] assumes the existence of a correct
causal broadcast mechanism for its convergence result to hold. Our
separately-verified library could be plugged together with such
verified CRDT implementations to get an end-to-end correctness
guarantee. Therefore our library enables modular verification of
higher-level properties for applications built on top of the causal
broadcast layer. While recent work [Nieto et al. 2022] takes pre-
cisely such a modular approach to verification of applications that
use causal broadcast, our work is to the best of our knowledge the
first to do so by expressing causal message delivery as a refinement
type and leveraging SMT automation.

We make the following specific contributions:
• We identify local causal delivery, a property that allows us

to reduce the problem of determining that a distributed ex-
ecution observes causal delivery to one that can be veri-
fied using information locally available at each process (Sec-
tion 2.3).

• We identify design choices thatmake a standard causal broad-
cast protocol amenable to verification. In particular, we im-
plement the protocol in terms of a state transition system,
and we implement message broadcast in terms of message
delivery, leading to a simpler proof development (Section 3.3).

• Wepresent novel encodings of local causal delivery and causal
delivery as refinement types, andwe give amechanized proof
that our causal broadcast library implementation satisfies
the causal delivery property (Section 4).

To evaluate the practical usability of our library, we put it to work
as the foundation of a distributed in-memory key-value store and
empirically evaluate its performance when deployed to a cluster
of geo-distributed nodes (Section 5). Section 6 contextualizes our
contributions with respect to existing research, and Section 7 sum-
marizes our work. All of our code, including our causal broadcast
library, our proof development, and our key-value store case study,
is available at https://github.com/lsd-ucsc/cbcast-lh.

2 SYSTEM MODEL AND VERIFICATION TASK
In this section, we describe our system model (Section 2.1) and
the causal broadcast protocol that we implemented and verified
(Section 2.2), and we define the property that we need to show
holds of our implementation (Section 2.3).

2.1 System Model
We model a distributed system as a finite set of 𝑁 processes (or
nodes) 𝑝𝑖 , 𝑖 : 1..𝑁 , distinguished by process identifier 𝑖 . Processes
communicate with other processes by sending and receiving mes-
sages. In our setting, all messages are broadcast messages, mean-
ing that they are sent to all processes in the system, including

https://github.com/lsd-ucsc/cbcast-lh

Verified Causal Broadcast with Liquid Haskell IFL 2022, August 31-September 2, 2022, Copenhagen, Denmark

the sender itself.2 Our network model is asynchronous, meaning
that sent messages can take arbitrarily long to be received. Fur-
thermore, for our safety result we need not assume that sent mes-
sages are eventually received, so our network is also unreliable (al-
though such an assumption would be necessary for liveness; see
Section 4.4 for a discussion).

We distinguish between message receipt and message delivery:
processes can receive messages at any time and in any order, and
they may further choose to deliver a received message, causing
that message to take effect at the node receiving it and be handed
off to, for example, the user application running on that node. Im-
portantly, although nodes cannot control the order in which they
receive messages, they can control the order in which they deliver
those messages. Imagine a “mail clerk” on each node that inter-
cepts incoming messages and chooses whether, and when, to de-
liver each one (by handing it off to the above application layer and
recording that it has been delivered). We must ensure that the mail
clerk delivers the messages in an order consistent with causality,
regardless of the order in which messages were received — imple-
menting the behavior illustrated by the dashed arrows in Figure 1.

For our discussion of causal delivery, we need to consider two
kinds of events that occur on processes: broadcast events and de-
liver events. We will use broadcast (𝑚) to denote an event that
sends a message 𝑚 to all processes,3 and deliver𝑝 (𝑚) to denote
an event that delivers 𝑚 on process 𝑝 . We refer to the totally or-
dered sequence of events that have occurred on a process 𝑝 as the
process history, denoted ℎ𝑝 . For events 𝑒 and 𝑒′ in a process history
ℎ𝑝 , 𝑒 and 𝑒′ are in process order, written 𝑒 →𝑝 𝑒′, if 𝑒 occurs in the
subsequence of ℎ𝑝 that precedes 𝑒′.

An execution of a distributed system consists of the set of all
events in all process histories, together with the process order re-
lation →𝑝 over events in each ℎ𝑝 and the happens-before relation
→ℎ𝑏 over all events. The happens-before relation, due to Lamport
[1978], is an irreflexive partial order that captures the potential
causality of events in an execution: for any two events 𝑒 and 𝑒′,
if 𝑒 →ℎ𝑏 𝑒′, then 𝑒 may have caused 𝑒′, but we can be certain that
𝑒′ did not cause 𝑒 .

Definition 1 (Happens-befoRe (→ℎ𝑏) [LampoRt 1978]). Given
events 𝑒 and 𝑒′, 𝑒 happens before 𝑒′, written 𝑒 →ℎ𝑏 𝑒′, iff:

• 𝑒 and 𝑒′ occur in the same process history ℎ𝑝 and 𝑒 →𝑝 𝑒′; or
• 𝑒 = broadcast (𝑚) and 𝑒′ = deliver𝑝 (𝑚) for a given message
𝑚 and some process 𝑝 ; or

• 𝑒 →ℎ𝑏 𝑒′′ and 𝑒′′ →ℎ𝑏 𝑒′ for some event 𝑒′′.

Events in the same process history are totally ordered by the happens-
before relation (For example, in Figure 1, Alice’s broadcast of “I lost
my wallet…” happens before her broadcast of “Found it!”), and the
broadcast of a given message happens before any delivery of that
message.We say that𝑚 →ℎ𝑏 𝑚′ iff broadcast (𝑚) →ℎ𝑏 broadcast (𝑚′),
using the notation →ℎ𝑏 for both relations.

To avoid executions like those in Figure 1, processes must de-
liver messages in an order consistent with the →ℎ𝑏 partial order.
2For simplicity, we omit the messages that processes send to themselves from ex-
amples in Figures 1, 2, and 3. We assume that these self-sent messages are sent and
delivered in one atomic step on the sender’s process.
3Although a broadcast message has 𝑁 recipients, and may be implemented as 𝑁 in-
dividual unicast messages under the hood, we treat the sending of the message as a
single event on the sender’s process.

This property is known as causal delivery; our definition is based
on standard ones [Birman et al. 1991; Raynal et al. 1991]:

Definition 2 (Causal deliveRy). An execution𝑥 observes causal
delivery if, for all processes 𝑝 in 𝑥 , for all messages𝑚1 and𝑚2 such
that deliver𝑝 (𝑚1) and deliver𝑝 (𝑚2) are in ℎ𝑝 ,

𝑚1 →ℎ𝑏 𝑚2 =⇒ deliver𝑝 (𝑚1) →𝑝 deliver𝑝 (𝑚2).

The causal delivery property says that if message 𝑚1 is sent be-
fore message𝑚2 in an execution, then any process delivering both
𝑚1 and𝑚2 should deliver𝑚1 first. For example, in Figure 1 (left),
the “I lost my wallet…” message causally precedes the “Found it!”
message, because Alice broadcasts both messages with “I lost my
wallet…” first, and so Bob and Carol would each need to deliver “I
lost my wallet…” first for the execution to observe causal delivery.
Furthermore, under causal delivery𝑚1 and𝑚2 must be delivered
in causal order even if theywere sent by different processes. For ex-
ample, in Figure 1 (right), Alice’s “Found it!” message causally pre-
cedes Bob’s “Glad to hear it!” message, and therefore Carol, who
delivers both messages, must deliver Alice’s message first for the
execution to observe causal delivery.

2.2 Background: Causal Broadcast Protocol
The causal broadcast protocol that we implemented and verified
is due to Birman et al. [1991]; in this section, we describe how it
works at a high level before discussing our Liquid Haskell imple-
mentation in Section 3.

The protocol is based on vector clocks, a type of logical clockwell-
known in the distributed systems literature [Fidge 1988; Mattern
1989; Schmuck 1988]. Like other logical clocks, vector clocks do
not track physical time (which would be problematic in distributed
computations that lack a global physical clock), but instead track
the order of events. Readers already familiar with vector clocks
may skip ahead to Section 2.2.2.

2.2.1 Vector Clock Protocol. A vector clock is a sequence of length
𝑁 (the number of processes in the system), which is indexed by
process identifiers 𝑖 : 1..𝑁 , and where each entry is a natural num-
ber. At the beginning of an execution every process 𝑝 initializes its
own vector clock, denoted VC (𝑝), to zeroes. The protocol proceeds
as follows:

• When a process 𝑝𝑖 broadcasts a message 𝑚, 𝑝𝑖 increments
its own position in its vector clock, VC (𝑝𝑖) [𝑖], by 1.

• Each message broadcast by a process 𝑝 carries as metadata
the value of VC (𝑝) that was current at the time the message
was broadcast (just after incrementing), denoted VC (𝑚).

• When a process 𝑝 delivers a message𝑚, 𝑝 updates its own
vector clock VC (𝑝) to the pointwise maximum of VC (𝑚) and
VC (𝑝) by taking the maximum of the integers at each index:
for𝑘 : 1..𝑁 , we updateVC (𝑝) [𝑘] tomax(VC (𝑚) [𝑘],VC (𝑝) [𝑘]).

Figure 2 illustrates an example execution of three processes run-
ning the vector clock protocol.

We can define a partial order on vector clocks of the same length
as follows: for two vector clocks a and b indexed by 𝑖 : 1..𝑁 ,

• a ≤𝑣𝑐 b if ∀𝑖 . a[𝑖] ≤ b[𝑖], and
• a <𝑣𝑐 b if a ≤𝑣𝑐 b and a ≠ b.

IFL 2022, August 31-September 2, 2022, Copenhagen, Denmark Patrick Redmond, Gan Shen, Niki Vazou, and Lindsey Kuper

p₁ p₂ p₃
[0, 0, 0]

[1, 0, 0]

[1, 1, 0]

[0, 0, 0] [0, 0, 0]

[1, 0, 0]

m₁

m₁

[1, 1, 0]

m₂m₂
[1, 1, 1]

[1, 1, 1]

[0, 0, 1]

[1, 1, 1] [1, 1, 1]

m₃
m₃

Figure 2: An example execution using the vector clock pro-
tocol. As each process broadcasts and delivers messages, it
updates its vector clock according to the protocol. For exam-
ple, when process 𝑝1 broadcasts𝑚1, it increments its own po-
sition in its clock just before broadcasting the message, and
𝑚1 carries the incremented clock [1,0,0] as metadata.

This ordering is not total: for example, in Figure 2, 𝑚1 carries a
vector clock of [1,0,0] while𝑚3 carries a vector clock of [0,0,1],
and neither is less than the other. Correspondingly, 𝑚1 and 𝑚3
are causally independent (or concurrent): neither message has a
causal dependency on the other. On the other hand, 𝑚2 causally
depends on𝑚1; correspondingly,𝑚1’s vector clock [1,0,0] is less
than [1,1,0] carried by 𝑚2. In fact, vector clocks under this pro-
tocol precisely characterize the causal partial ordering [Fidge 1988;
Mattern 1989]: for all messages𝑚,𝑚′, it can be shown that

𝑚 →ℎ𝑏 𝑚′ ⇐⇒ VC (𝑚) <𝑣𝑐 VC (𝑚′). (1)

This powerful two-way implication lets us boil down the problem
of reasoning about causal relationships between messages in a dis-
tributed execution to a locally checkable property.

By itself, the vector clock protocol does not enforce causal deliv-
ery of messages. Indeed, the execution in Figure 2 violates causal
delivery: under causal delivery, process 𝑝3 would not deliver 𝑚1
before 𝑚2. However, the vector clock metadata attached to each
message can be used to enforce causal delivery of broadcast mes-
sages, as we will see next.

2.2.2 Deliverability. The vector clock attached to a message can
be thought of as a summary of the causal history of that message:
for example, in Figure 2,𝑚2’s vector clock of [1,1,0] expresses that
one message from 𝑝1 (represented by the 1 in the first entry of the
vector) causally precedes 𝑚2. Furthermore, each process’s vector
clock tracks how many messages it has delivered from each pro-
cess in the system. We can exploit this property by having the re-
cipient of each broadcast message compare the message’s attached
vector clock with its own vector clock to check for deliverability,
as follows:

Definition 3 (DeliveRability [BiRman et al. 1991]). A mes-
sage𝑚 broadcast by a process 𝑝𝑖 is deliverable at a process 𝑝 𝑗 ≠ 𝑝𝑖
if, for 𝑘 : 1..𝑁 ,

VC (𝑚) [𝑘] = VC (𝑝 𝑗) [𝑘] + 1 if 𝑘 = 𝑖 , and

VC (𝑚) [𝑘] ≤ VC (𝑝 𝑗) [𝑘] otherwise.

Alice Bob CarolBob CarolAlice
[1, 0, 0]

[2, 0, 0]
[1, 0, 0]

m
lost

m
found

m
lost

m
found

[2, 0, 0]

[1, 0, 0]

[2, 0, 0]

mlost

m
lost

m
found

m
found

m
gladm glad

[1, 0, 0]

[2, 0, 0]

[2, 1, 0]

[1, 0, 0]

[2, 0, 0] [1, 0, 0]

[2, 1, 0]

[2, 1, 0]

[2, 0, 0]

mglad buffered

mfound buffered

Figure 3: The executions from Figure 1, annotated with vec-
tor clocks used by the causal broadcast protocol. On the left,
Carol buffers 𝑚found until she has delivered 𝑚lost . On the
right, Carol buffers𝑚glad until she has delivered𝑚found .

Our notional “mail clerk” will use Definition 3’s deliverability con-
dition to decide when to deliver received messages. How it works
is a bit subtle, but worth understanding because of the key role it
plays in the protocol:

• Thefirst clause of Definition 3 ensures that𝑚 is the recipient
𝑝 𝑗 ’s next expected message from the sender, 𝑝𝑖 . The number
of messages from 𝑝𝑖 that 𝑝 𝑗 has already delivered will ap-
pear in VC (𝑝 𝑗) at index 𝑖 , so VC (𝑚)[i] should be exactly one
greater than VC (𝑝 𝑗)[i].

• The second clause ensures that𝑚’s causal history does not
include anymessages sent by processes other than 𝑝𝑖 that 𝑝 𝑗
has not yet delivered. If𝑚’s vector clock is greater than 𝑝 𝑗 ’s
vector clock in any position 𝑘 ≠ 𝑖 , then it means that, before
sending𝑚, process 𝑝𝑖 must have delivered somemessage𝑚′

from 𝑝𝑘 that has not yet been delivered at 𝑝 𝑗 .
Combining the vector clock protocol of Section 2.2.1 with the de-

liverability property of Definition 3 gives us Birman et al.’s causal
broadcast protocol.Whenever a process receives amessage, it buffers
the message until it is deliverable according to Definition 3. Each
process stores messages that need to be buffered in a process-local
queue, the delay queue. Whenever a process delivers a message
and updates its own vector clock, it can check its delay queue for
buffered messages and deliver any messages that have become de-
liverable (which may in turn make others deliverable).

2.2.3 Example Executions of the Causal Broadcast Protocol. To il-
lustrate how the protocol works, Figure 3 shows the two problem-
atic executions we saw previously in Figure 1, but now with the
causal broadcast protocol in place to prevent violations of causal
delivery. Each process keeps a vector clockwith three entries corre-
sponding to Alice, Bob, and Carol respectively. Suppose that𝑚lost
is Alice’s “I lost my wallet…” message,𝑚found is Alice’s “Found it!”
message, and𝑚glad is Bob’s “Glad to hear it!” message.

In Figure 3 (left), Bob receives Alice’s messages in the order she
broadcasted them, and so he can deliver them immediately. For
example, when Bob receives𝑚lost , his own vector clock is [0,0,0]
, and the vector clock on the message is [1,0,0]. The message is
deliverable at Bob’s process because it is one greater than Bob’s
own vector clock in the sender’s (Alice’s) position, and less than

Verified Causal Broadcast with Liquid Haskell IFL 2022, August 31-September 2, 2022, Copenhagen, Denmark

or equal to Bob’s vector clock in the other positions, so Bob delivers
it immediately after receiving it. Carol, on the other hand, receives
𝑚found first. This message has a vector clock of [2,0,0], so it is not
immediately deliverable at Carol’s process because Carol’s vector
clock is [0,0,0], and so the entry of 2 at the sender’s index is too
large, indicating that the message is “from the future” and needs
to be buffered in Carol’s delay queue for later delivery, after Carol
delivers𝑚lost .

In Figure 3 (right), Bob delivers two messages from Alice and
then broadcasts 𝑚glad . 𝑚glad has a vector clock of [2,1,0], indi-
cating that it has two messages sent by Alice in its causal history.
When Carol receives𝑚glad , her own vector clock is only [1,0,0],
indicating that she has only delivered one of those messages from
Alice so far, so Carol must buffer 𝑚glad in her delay queue until
she receives and delivers𝑚found , the missing message from Alice,
increasing her own vector clock to [2,0,0]. Now𝑚glad is deliver-
able at Carol’s process, and Carol can deliver it, increasing her own
vector clock to [2,1,0].

2.3 Verification Task
Thanks to the relationship between the happens-before ordering
and the vector clock ordering expressed by Equation (1), we can
reduce the problem of determining that a distributed execution ob-
serves causal delivery to a condition that is locally checkable at
each process. We call this condition local causal delivery:

Definition 4 (Local causal deliveRy). A process 𝑝 observes lo-
cal causal delivery if, for all messages𝑚1 and𝑚2 such that deliver𝑝 (𝑚1)
and deliver𝑝 (𝑚2) are in ℎ𝑝 ,

VC (𝑚1) <𝑣𝑐 VC (𝑚2) =⇒ deliver𝑝 (𝑚1) →𝑝 deliver𝑝 (𝑚2).

The heart of our verification task will be to prove that our imple-
mentation of the causal broadcast protocol of Section 2.2 ensures
that processes that run the protocol observe local causal delivery.
From there, given Equation (1), we can prove that executions pro-
duced by a distributed system of processes that run the causal
broadcast protocol observe global causal delivery:

TheoRem 1 (Global CoRRectness of Causal BRoadcast PRo-
tocol). An execution in which all processes run the causal broadcast
protocol observes causal delivery.

In the following sections, we show how we use Liquid Haskell
to implement the causal broadcast protocol, to make the statement
of Theorem 1 precise, and to prove Theorem 1. After presenting
the implementation in Section 3, in Section 4 we develop the ma-
chinery necessary to express Definitions 2 and 4 andTheorem 1 as
refinement types.

3 IMPLEMENTATION
In this section, we describe our implementation of Birman et al.’s
causal broadcast protocol as a Liquid Haskell library. Section 3.1
describes the types we use to implement our systemmodel and vec-
tor clock operations, and in Section 3.2 we give a brief overview of
refinement types and Liquid Haskell before diving into our imple-
mentation of the protocol itself in Section 3.3. Finally, Section 3.4
discusses how a user application would use our library.

3.1 System Model and Vector Clocks
Webegin by definingHaskell types to implement our systemmodel
and vector clock operations. Process identifiers are natural num-
bers and double as indexes into vector clocks, which are repre-
sented by a list of natural numbers. Messages have type M r, where
the r parameter is the application-defined type of the raw message
content (e.g., a JSON-formatted string).
type PID = Nat

type VC = [Nat]

data M r = M { mVC::VC, mSender ::PID , mRaw::r }

A message has three fields: mVC and mSender are respectively the
metadata that capture when the message was sent (as a VC) and
who sent it (as a PID), and mRaw contains the raw message content.

An event can be either a Broadcast (to the network) or a Deliver
(to the local user application for processing), and a process history
H is a list of events.
data Event r = Broadcast (M r) | Deliver PID (M r)

type H r = [Event r]

To implement the vector clock protocol of Section 2.2.1, we need
some standard vector clock operations, with the below interface:
vcEmpty :: Nat → VC

vcTick :: VC → PID → VC

vcCombine :: VC → VC → VC

vcLessEqual :: VC → VC → Bool

vcLess :: VC → VC → Bool

vcEmpty initializes a vector clock of a given size with zeroes, vcTick
increments a vector clock at a given index, vcCombine computes
the pointwise maximum of two vector clocks, and vcLessEqual and
vcLess implement the vector clock ordering described in Section 2.2.1.
As we will see in the following sections, our causal broadcast im-
plementation uses vcTick and vcCombine when broadcasting and
delivering messages, respectively.The prose definitions of all these
operations translate directly into idiomatic Haskell; for example,
the implementation of vcCombine is zipWith max.

3.2 Brief Background: Refinement Types and
Liquid Haskell

Traditionally, refinement types [Rushby et al. 1998; Xi and Pfen-
ning 1998] have let programmers specify types augmented with
logical predicates, called refinement predicates, that restrict the set
of values that can inhabit a type. For example, in Liquid Haskell
one could give vcCombine the following signature:
vcCombine :: v:VC → {v' :VC | len v' == len v}

→ {v'':VC | len v'' == len v}

The refinement on v' expresses the precondition that v and v' will
have the same length, and the return type expresses the postcondi-
tion that the returned vector clock will have the same length as the
argument vector clocks. Liquid Haskell automatically proves that
such postconditions hold by generating verification conditions that
are checked at compile time by the underlying SMT solver (by de-
fault, Z3 [de Moura and Bjørner 2008]). If the solver cannot ensure
that the verification conditions are valid, typechecking fails. In our
actual implementation, additional Liquid Haskell refinements on
VC and PID — elided in this paper for readability — ensure that

IFL 2022, August 31-September 2, 2022, Copenhagen, Denmark Patrick Redmond, Gan Shen, Niki Vazou, and Lindsey Kuper

all functions are called with compatible vector clocks (having the
same length) and PIDs (natural numbers smaller than the length of
a vector clock).4

Aside from preconditions and postconditions of individual func-
tions, though, Liquid Haskell makes it possible to verify extrinsic
properties that relate two functions, or calls to the same function
applied to different inputs. As an example, here is a Liquid Haskell
proof that vcCombine is commutative:

type Comm a A

= x:a → y:a → {_:Proof | A x y == A y x}

vcCombineComm :: n:Nat → Comm n {vcCombine}

vcCombineComm _n [] [] = ()

vcCombineComm n (_x:xs) (_y:ys) =

vcCombineComm (n - 1) xs ys

Here, vcCombineComm is a Haskell function that returns a value of
Proof type (a type alias for (), Haskell’s unit type), refined by the
predicate vcCombine x y == vcCombine y x. The proof is by induc-
tion on the structure of vector clocks. The base case, in which both
x and y are empty lists, is automatic for the SMT solver, so the body
of the base case need not say anything but (). The inductive case
has a recursive call to vcCombineComm. We use a similar approach to
prove that vcCombine is associative, idempotent, and inflationary,
and that vcLess is a strict partial order. In general, programmers
can specify arbitrary extrinsic properties in refinement types, in-
cluding properties that refer to arbitrary Haskell functions via the
notion of reflection [Vazou et al. 2017]. The programmer can then
prove those extrinsic properties by writing Haskell programs that
inhabit those refinement types, using Liquid Haskell’s provided
proof combinators — with the help of the underlying SMT solver
to simplify the construction of these proofs-as-programs [Vazou
et al. 2018, 2017].

Liquid Haskell thus occupies a position at the intersection of
SMT-based program verifiers such as Dafny [Leino 2010], and theo-
rem provers that leverage the Curry-Howard correspondence such
as Coq [Bertot and Castéran 2004] and Agda [Norell 2009]. A Liq-
uidHaskell program can consist of both application code like vcCombine
(which runs at execution time, as usual) and verification code like
vcCombineComm (which is never run, but merely typechecked), but,
pleasantly, both are just Haskell programs, albeit annotated with
refinement types. Since Liquid Haskell is based on Haskell, pro-
grammers can gradually port Haskell programs to Liquid Haskell,
adding richer specifications to code as they go. For instance, a pro-
grammer might begin with an implementation of vcCombine with
the type VC → VC → VC, later refine it to the more specific refine-
ment type above, even later prove vcCombineComm, and still later use
the proof returned by vcCombineComm as a premise to prove another,
more interesting property.

4Recall from Section 2.1 that we model a distributed system as a finite set of 𝑁 pro-
cesses. We want our implementation to be agnostic to 𝑁 , yet we need to know what
𝑁 is because it determines the length of vector clocks (and hence what constitutes
a valid index into a vector clock). We accomplish this in Liquid Haskell by param-
eterizing types with an 𝑁 expression value which will be provided at initialization
by application code. For readability, we elide these length-indexing parameters from
types in this paper, although they are ubiquitous in our implementation.

3.3 Causal Broadcast Protocol Implementation
We express the causal broadcast protocol of Section 2.2 as a state
transition system.

3.3.1 Process Type. The state data structure P r represents a pro-
cess and is parameterized by the type of raw content, r:

data P r = P { pVC::VC, pID::PID , pDQ::[M r]

, pHist ::{ h:H r | histVC h == pVC }}

The fields of P include the local vector clock pVC, the local process
identifier pID, a delay queue of received but not-yet-delivered mes-
sages pDQ, and (importantly for our verification task) the process
history pHist. We provide a pEmpty :: Nat → PID → P r function
that initializes a process with a vector clock of the given length
containing zeroes, the given process identifier, and an empty de-
lay queue and empty process history.

The type of the process history pHist deserves further discus-
sion, as it is our first use of a Liquid Haskell feature called datatype
refinements. The datatype refinement on the pHist field says that it
contains a history h of the type H r defined in the previous section,
but with an additional constraint histVC h == pVC. This constraint
expresses the intuition that the vector clock pVC and the history h

“agree” with each other: for any process p starting with a pVC con-
taining all zeros and an empty pHist, each addition of a Deliver

(pID p) m event to the history for some message m must coincide
with an update to pVC p of the form vcCombine (mVC m) (pVC p).
Accordingly, histVC h is defined as the supremum of vector clocks
on Deliver events in h. We extrinsically prove in Liquid Haskell
that this pVC-pHist agreement property is true for the empty pro-
cess and preserved by each transition in our state transition system.
We next describe these transition functions.

3.3.2 State Transitions. The transition functions are receive, deliver
, and broadcast, with the following interface:

receive :: M r → P r → P r

deliver :: P r → Maybe (M r, P r)

broadcast :: r → P r → (M r, P r)

The receive function adds a message from the network to the de-
lay queue, the deliver function pops a deliverable message (if any)
from the delay queue, and the broadcast function prepares raw con-
tent of type r for network transport by wrapping it in a message.
Of these transition functions, only deliver and broadcast are par-
ticularly interesting from the perspective of our verification effort,
since receive only adds messages to the delay queue and cannot
affect whether causal delivery is violated. We next discuss the im-
plementation of deliver and broadcast, respectively.

3.3.3 Deliver. Figure 4 shows the implementation of deliver, as
well as its constituents dequeue, deliverable, and deliverableHelper

. At a high level, deliver calls dequeue on a process’s delay queue
and then performs bookkeeping: If dequeue popped a deliverable
message, then deliver returns that message and updates the pro-
cess with a new vector clock according to the vector clock protocol,
the new delay queue returned by dequeue, and a new process his-
tory which records the delivery of the message. The dequeue func-
tion plays its part by removing and returning the first deliverable
message found in the delay queue.

Verified Causal Broadcast with Liquid Haskell IFL 2022, August 31-September 2, 2022, Copenhagen, Denmark

deliver :: P r → Maybe (M r, P r)

deliver p =

case dequeue (pVC p) (pDQ p) of

Nothing → Nothing

Just (m, pDQ ') →
Just (m, p{ pVC = vcCombine (mVC m) (pVC p)

, pDQ = pDQ '

, pHist =

Deliver (pID p) m : pHist p })

dequeue :: VC → DQ r → Maybe (M r, DQ r)

dequeue _now [] = Nothing

dequeue now (x:xs)

| deliverable x now = Just (x, xs)

| otherwise = case dequeue now xs of

-- Skip past x.

Nothing → Nothing

Just (m, xs ') → Just (m, x:xs ')

deliverable :: M r → VC → Bool

deliverable m p_vc = let n = length p_vc in

and (zipWith3 (deliverableHelper (mSender m))

(finAsc n) (mVC m) p_vc)

deliverableHelper

:: PID → PID → Clock → Clock → Bool

deliverableHelper m_id k m_vc_k p_vc_k

| k == m_id = m_vc_k == p_vc_k + 1

| otherwise = m_vc_k <= p_vc_k

finAsc :: n:Nat →
{ xs:[{x:Nat | x < n}]<{\a b → a < b}>

| len xs == n }

Figure 4: Implementation of deliver and its helpers.

The deliverable predicate implements the deliverability condi-
tion of Definition 3 to check whether a message m is deliverable
at time p_vc. It works by calling deliverableHelper (mSender m)

on each offset in the message vector clock mVC m and process vec-
tor clock p_vc, and returning the conjunction of those results. The
function finAsc n provides those offsets in ascending order, and,
combined with zipWith, lets us implement the subtle deliverabil-
ity condition of Definition 3 in deliverableHelper, almost exactly
as Definition 3 is written (except that our vector clocks are zero-
indexed). We omit the implementation of finAsc from Figure 4 for
brevity, but its refinement type guarantees that it returns an as-
cending list of length n containing Nats less than n, using Liquid
Haskell’s abstract refinements feature [Vazou et al. 2013].

3.3.4 Broadcast. Figure 5 shows the implementation of the broadcast
function. First, broadcast constructs a message m for the value raw

by incrementing the pID p index of its own vector clock pVC p, and
attaching that pID p to m as mSender. Next, broadcast constructs an
intermediate process value p' containing m at the head of the de-
lay queue and a new process history recording the broadcast event

broadcast :: r → P r → (M r, P r)

broadcast raw p =

let m = M { mVC = vcTick (pVC p) (pID p)

, mSender = pID p

, mRaw = raw }

p' = p { pDQ = m : pDQ p

, pHist = Broadcast m : pHist p }

Just tup = deliver p'

in tup

Figure 5: Implementation of broadcast. We prove that deliver
p' is a Just value using an extrinsic proof.

for this message. Last, broadcast delegates to deliver to deliver m
at its own sender, p'. As we will see in Section 4, implementing
broadcast in terms of deliver simplifies proving properties about
our implementation, because proofs about broadcast can often del-
egate to existing proofs about deliver.

Although deliver’s return type is Maybe (M r, P r), the deliver
p' call in broadcast is guaranteed by Liquid Haskell to evaluate

to a Just value containing the next process and the message to
be broadcast. We prove this property using an extrinsic proof, not
shown here. The intuition is that messages a process sends to itself
are always immediately deliverable, because when a process incre-
ments its own index in the vector clock that it places in a message,
the message immediately becomes deliverable at that process.

3.4 Example Application Architecture
The receive, deliver, and broadcast functions are the interface
made available to user applications of our causal broadcast library.
When deliver returns a message, the user application must pro-
cess it immediately. The user application must also immediately
put the message returned by broadcast on the network and also
process the message locally.5 This design implies that user appli-
cations should not update their own state directly when communi-
cation is in order, but rather, generate a message and then update
their state in response to its delivery.

Figure 6 shows an example architecture of an application us-
ing our causal broadcast library. A collection of (potentially geo-
distributed) peer nodes, which we call the causal broadcast cluster,
each run the causal broadcast protocol along with their user appli-
cation code (for instance, a key-value store or a group chat appli-
cation). Clients of the application communicate their requests to
the nodes; one or more clients may communicate with each node.
The application instance on a node generates messages, broadcasts
them to other nodes, and delivers messages received from other
nodes. Later on, in Section 5, we will see a case study of an appli-
cation with this architecture.

4 VERIFICATION
In this section we mechanize causal delivery and local causal de-
livery (Definitions 2 and 4) for our implementation of the causal

5In practical applications, it may be advantageous to separate these concerns about
handling return values into an additional message-handling layer, but that is beyond
our scope.

IFL 2022, August 31-September 2, 2022, Copenhagen, Denmark Patrick Redmond, Gan Shen, Niki Vazou, and Lindsey Kuper

Client

Client

Client

Node Client

Client

Client

Node
Client

Client

Client

Client

Client

Client

 Mes
sag

e

deliverable?

Process

pVC VC

pID PID

pHist [Event]

pDQ [Message]

Node

Application
State

Application
Logic

Application
message
transport

receive

broadcast

deliver

WAN

Node

Client Requests

Figure 6: Example architecture for a distributed application
using our causal broadcast library. The mnemonic standins
Process, Event, and Message refer to the types P r, Event r, and M

r defined in our implementation. An applicationnode using
this architecture participates in the causal broadcast proto-
col using a single process data structure and the functions
receive, broadcast, and deliver to safely manage message-
passing state. Clients make requests to a node, possibly up-
dating application state, and the node may generate mes-
sages to replicate updates or perform other tasks.

broadcast protocol, and we describe the highlights of our Liquid
Haskell proof development, culminating in a mechanized proof of
Theorem 1. In Section 4.1 we show how we express local causal de-
livery (abbreviated “LCD” henceforth) as a refinement type in Liq-
uid Haskell, and in Section 4.2 we show that each of the receive,
deliver, and broadcast transitions of Section 3.3 results in a pro-
cess that observes LCD. We then leverage this fact to prove Theo-
rem 1 in Section 4.3. Finally, in Section 4.4 we briefly discuss the
liveness of our implementation.

4.1 Local Causal Delivery as a Refinement Type
As we saw in Section 3.3.1, a process tracks the history of events
that have occurred on it so far, including message broadcasts and
deliveries. We can examine a process’s history and see whether the
process has been delivering messages in an order consistent with
the messages’ vector clock ordering. Therefore, we can express lo-
cal causal delivery (Definition 4) as a refinement type as follows:

type LocalCausalDelivery r ID HIST

= {m1 : M r | elem (Deliver ID m1) HIST }

→ {m2 : M r | elem (Deliver ID m2) HIST

&& vcLess (mVC m1) (mVC m2) }

→ { _:Proof | processOrder HIST

(Deliver ID m1) (Deliver ID m2) }

The type alias LocalCausalDelivery r ID HIST fixes a process
identifier ID and a process history HIST.6 It is the type of a function
that given messages m1 and m2, both of which have already been
delivered in the specified process history and for which the vector
clock of m1 is less than that of m2, produces a proof that the delivery
event of m1 precedes the delivery event of m2 in the process history.
The vcLess function is part of the vector clock interface described
in Section 3.1, and the predicate processOrder h e e' returns True
if event e is present in the list of events that precede event e' in a
process history h.

6In Liquid Haskell, type aliases can be parameterized either with ordinary Haskell
type variables or with Liquid Haskell expression variables. In the latter case, the pa-
rameter is written in ALL CAPS.

The LocalCausalDelivery type captureswhat itmeans for a given
process to observe LCD: it says that if we consider any two mes-
sages that are in the process’s history, and those messages’ vector
clocks have an order, then there is evidence – in this case, in the
form of an affirmative answer from an SMT solver – that those
messages appear in the process history in their vector clock order,
rather than the other way around. Our next step will be to show
that this LCD property actually holds for processes running our
implementation of the causal broadcast protocol.

4.2 Local Causal Delivery Preservation
Recall the state transition system consisting of the process type
P r and the functions receive, deliver, and broadcast discussed
in Section 3.3. We need to prove (1) that a process observes LCD
in its initial, empty state returned by pEmpty, and (2) that when-
ever a process satisfying LCD transitions to a new state via any
sequence of steps of the receive, deliver, or broadcast transition
functions, the resulting process state still observes LCD. A proof
that the empty process observes LCD as defined in Section 4.1 is
trivially discharged by Liquid Haskell, so we turn our attention to
proving that each of the state transitions preserves LCD. Most of
the action of our proof development happens in handling deliver

steps, as we will see below in Section 4.2.1.
To use the LocalCausalDelivery type alias with the process type,

P r, we need a small adapter to extract the pID and pHist fields.7

type LCD r PROC =

LocalCausalDelivery r {pID PROC} {pHist PROC}

To encode the inputs to each of the causal broadcast protocol
transition functions, we define a sum type over the arguments, Op
r. Each function takes a P r input and additional arguments cor-

responding to one of the Op r constructors.
data Op r = OpReceive (M r)

| OpDeliver

| OpBroadcast r

To apply those transition functions to a process value, we define
step. It branches on the constructor of Op r, calls a transition func-
tion discussed in Section 3.3, extracts the next process value, and
throws away information unneeded for the proof.
step :: Op r → P r → P r

step (OpReceive m) p = receive m p

step (OpBroadcast r) p = case broadcast r p of

(_, p') → p'

step (OpDeliver) p = case deliver p of

Just (_, p') → p'

Nothing → p

Next, we prove a stepLCD lemma, which states that for a given op-
eration op and process p, if LCD holds for p, then it still holds after
applying op to p using step:
stepLCD :: op : Op r

→ p : P r

→ LCD r {p}

→ LCD r {step op p}

7When instantiating a LiquidHaskell type alias parameterized by expression variables,
the expressions are wrapped with braces to distinguish them from type parameters.

Verified Causal Broadcast with Liquid Haskell IFL 2022, August 31-September 2, 2022, Copenhagen, Denmark

The proof of stepLCD branches on the constructors for op, followed
by delegation to lemmas about each of the transition functions.

stepLCD op p pLCD =

case op ? step op p of

OpBroadcast r → broadcastLCDpres r p pLCD

OpReceive m → receiveLCDpres m p pLCD

OpDeliver → deliverLCDpres p pLCD

By far the most involved of these three lemmas is deliverLCDpres,
the one that deals with deliver steps. Proving broadcastLCDpres is
straightforward because calling broadcast only adds a Broadcast

event to the process history (and then calls deliver), and so if a
process observes LCD before calling broadcast, then it is easy to
show that it still does after adding the event (and for calling deliver

to deliver the message locally, we can delegate to deliverLCDpres).
Proving receiveLCDpres is even more straightforward because call-
ing receive does not modify the process history, and so if a process
observes LCD before calling receive, it is easy to show that it still
does afterward. We therefore omit discussion of receiveLCDpres

and broadcastLCDpres and focus on the proof of deliverLCDpres in
the next section.

4.2.1 Deliver Transition Preservation Lemma. The deliverLCDpres

lemma states that a process’s observation of LCD is preserved
through calls to the deliver function. The proof begins by decon-
structing the two cases of dequeue, echoing the definition of deliver
(Figure 4). In the case that dequeue returns Nothing, so does its
caller deliver, and the process state is unchanged. This line of rea-
soning is automatically carried out by LiquidHaskell without need-
ing to be explicitly written in the proof. As a result, we can use the
input evidence that the original process observes LCD to complete
the case.

More interesting is the case in which dequeue returns a message
m that has been deemed deliverable. We need to show that in an up-
dated process state p' in which m has been delivered, the process
still observes LCD. Recalling the definition of LocalCausalDelivery
from Section 4.1, we need to show that for all messages m1 and
m2 where the vector clock of m1 is less than that of m2, m1’s deliv-
ery event occurs before m2’s delivery event in p'’s process history.
There are three cases to consider:

• Case m == m1. When m is equal to m1, it is the most recently
delivered message on p', but since vcLess (mVC m1) (mVC

m2), this would be a causal violation, and so we show this
case is impossible. Recall that since mwas deliverable on the
original process p, deliverable m (pVC p) is True, which im-
plies a relationship between mVC m and pVC p: the mSender m

offset in mVC m is exactly one greater than that of pVC p, and
all other offsets of mVC m are less than or equal to that of pVC
p. Additionally, vcLessEqual (mVC m1) (mVC m2) by vcLess,

and vcLessEqual (mVC m2) (histVC p) because the delivery
of m2 is in pHist p and because vcCombine is inflationary, and
histVC p == pVC p by the data refinement on processes. Fi-
nally, since vcLessEqual is transitive, we can combine these
facts to conclude that vcLessEqual (mVC m1) (pVC p), which
contradicts the relationship implied by deliverable m (pVC

p).

Description LOC

Implementation without refinements 236
Implementation-supporting proofs and refinements 448
List lemmas, extra proof combinators, shims 161
Proofs about relations (Section 3.1) 217
Model for preservation of LCD (Section 4.1) 27
LCD preservation (Section 4.2) 51
LCD preservation, broadcast case 64
LCD preservation, receive case 44
LCD preservation, deliver case (Section 4.2.1) 273
Model for preservation of CD (Section 4.3) 130
CD preservation 138
CD preservation via LCD 139

Table 1: Lines of code used in our implementation and proof
development.The LOC count includes Liquid Haskell defini-
tions, theorems, proofs, and other annotations.

• Case m == m2. When m is equal to m2, it is the most recently
delivered message on p'. Let e1 be the delivery event for m1
with the definition Deliver (pID p') m1 and similarly let e2
be the delivery event for the equivalent messages m2 and m

. Since pHist p' is e2:pHist p, and e1 is known to already
be in pHist p, we can conclude that e1 precedes e2 in p'’s
history, and so processOrder (pHist p') e1 e2, as required
by LCD.

• Case m /= m1 && m /= m2. Finally, when m is a new message
distinct from both m1 and m2, we show that the addition of a
deliver event for m to pHist p does not change the delivery
ordering of m1 and m2. That is, with event e1 for delivery
of m1, e2 for m2, and e3 for m, since pHist p' is e3:pHist p,
and since e1 and e2 were in pHist p (and both are still in
pHist p'), we can conclude that orderings about elements
in pHist p are unchanged in pHist p'.

With these pieces in place, we can conclude that a LCD-observing
process continues to observe LCD after any call to deliver.

4.3 Global Causal Delivery Preservation
The lcdStep property we proved in the previous section says that
running the causal broadcast protocol for one step on a given pro-
cess preserves local causal delivery for that process. However, The-
orem 1 pertains to entire executions as opposed to individual pro-
cesses. To complete the proof, then, we must define an additional
global state transition system, where states represent executions,
and a step nondeterministically picks any process in an execution
and runs the causal broadcast protocol for one (local) step on that
process. Unlike the local state transition system, which is actually
what is used at run time to execute the causal broadcast protocol,
our global states and global steps are for verification purposes only.

We define a global execution state as a mapping from PIDs to
P r process states. We can then express (global) causal delivery
(Definition 2) as a refinement type, as follows:

IFL 2022, August 31-September 2, 2022, Copenhagen, Denmark Patrick Redmond, Gan Shen, Niki Vazou, and Lindsey Kuper

type CausalDelivery r X

= pid : PID

→ {m1 : M r | elem (Deliver pid m1)

(pHist (X pid)) }

→ {m2 : M r | elem (Deliver pid m2)

(pHist (X pid))

&& happensBefore X

(Broadcast m1)

(Broadcast m2) }

→ {_: Proof | processOrder (pHist (X pid))

(Deliver pid m1)

(Deliver pid m2) }

The CausalDelivery type is reminiscent of the LocalCausalDelivery
type that we saw in Section 4.1, but instead of referring to one par-
ticular process, it refers to an entire execution, X. CausalDelivery
r X says that for any process in X, messages are delivered in causal
order on that process. Another key difference is that instead of us-
ing vcLess, CausalDelivery uses a happensBefore predicate, which
takes an execution argument and two events.This is as it should be;
the definition of causal delivery should be agnostic to the mecha-
nism used by our particular protocol. However, our lcdStep lemma
only establishes that messages on a process are delivered in an or-
der consistent with their vector-clock ordering, not the happens-
before ordering. To bridge this gap and get from local causal deliv-
ery to global causal delivery, we must leverage Equation (1)’s cor-
respondence between vector clocks and happens-before, which we
express as a pair of axioms in Liquid Haskell, one for each direction
of the correspondence.

We can now prove that a single global execution step preserves
causal delivery. The xStepCD lemma states that if we have a causal-
delivery-observing execution x, if we pick out any given process
(identified by pid) from that execution and run any given operation
op on that process, then the resulting execution will also observe
causal delivery.

xStepCD :: op: Op r

→ x: Execution

→ pid: PID

→ CausalDelivery r x

→ CausalDelivery r {xStep op pid x}

The proof of xStepCD proceeds in three stages:
(1) Global to local. First, we show that if the original execution

observes causal delivery, then every process in it observes
local causal delivery. For this, we use the reflection direction
of the vector-clock/happens-before correspondence, which
says that messages with a given vector clock ordering were
broadcast in the corresponding happens-before order.

(2) Local step.Next, we show that if any process in an execution
takes a local step, then every process in the execution will
still observe local causal delivery.This is easy to show using
our lcdStep lemma.

(3) Local to global. Finally, we show that if every process in an
execution observes local causal delivery, then the entire ex-
ecution observes causal delivery. For this, we use the preser-
vation direction of the vector-clock/happens-before corre-
spondence, which says that messages broadcast in a given

Figure 7: A high-level overview of the key components of
our proof development. Arrows indicate dependencies, solid
boxes indicate theorems and lemmas, and dashed boxes in-
dicate axioms.

happens-before order have the corresponding vector clock
order.

Since the vector-clock/happens-before correspondence lets us rea-
son in a process-local fashion, instead of having to reason about
events spread across a global execution using happens-before, we
enjoy a sort of “local reasoning for free” without the need for a
more heavyweight proof technique such as separation logic. With
the proof of xStepCD complete, all that remains to proveTheorem 1
is to extrapolate from global executions that take one step to those
that take any number of steps, which is straightforward to do in
LiquidHaskell by induction on the number of steps. Since an empty
global execution observes causal delivery, we can conclude that
any global execution where all processes are running our protocol
observes causal delivery, completing the proof of Theorem 1.

Table 1 summarizes the size of each component of our proof de-
velopment in terms of lines of Liquid Haskell code, and Figure 7
gives a visual overview of the important components of the proof:
the xStepCD property and its proof in three stages outlined above;
the stepLCD property and its reliance on lemmas for broadcast,
receive, and deliver, and our use of the two directions of the vector-
clock/happens-before correspondence. In all, our proof develop-
ment weighs in at 1692 lines of code for 236 lines of implemen-
tation code.

4.4 Discussion: Liveness
A useful implementation is not only safe, but live, which in our
case would mean that messages will not languish forever in the
delay queue. As mentioned in Section 2.1, for our safety result we
need not make any assumption of reliable message receipt, since
we do not have to worry about the delivery order of messages
that are never received. A proof of liveness, though, would need
to rest on the assumption of a reliable message transport layer,
that is, one in which sent messages are eventually received — al-
beit in arbitrary order and with arbitrarily long latency. Other-
wise, a message could be stuck forever in the delay queue if a
message that causally precedes it is lost, because it would never
become deliverable. Proofs of liveness properties are considered
“much harder” [Hawblitzel et al. 2015] than proofs of safety prop-
erties. While we do not offer any mechanized liveness proof, in

Verified Causal Broadcast with Liquid Haskell IFL 2022, August 31-September 2, 2022, Copenhagen, Denmark

the following section we argue informally for the liveness of our
implementation under the reliable message reception assumption.

5 CASE STUDY
In this section we describe a key-value store (KVS) application im-
plemented in the architectural pattern depicted by Figure 6 and
using our causal broadcast library from Section 3.The KVS is an in-
memory replicated data store consisting of message-passing nodes,
each of which simultaneously serves client requests via HTTP. Sec-
tion 5.1 covers the implementation of the KVS and demonstrates
that it is not difficult to integrate our causal broadcast protocol
with an application to obtain the benefits of causal broadcast. In
particular, causal broadcast can be used to ensure causal consis-
tency of replicated data [Ahamad et al. 1995; Lloyd et al. 2011].8 In
Section 5.2 we describe how we deployed the KVS to a cluster of
geo-distributed nodes and evaluated its performance.

5.1 Design and Implementation
We implemented the KVS using several commonly used Haskell
libraries, such as servant [Mestanogullari et al. 2015] to express
HTTP endpoints concisely as types, stm to express multithreaded
access to state, ekg to gather runtime statistics, and aeson to pro-
vide JSON (de)serialization. Clients may request to PUT a value
at a key, DELETE a key-value pair specified by key, or GET the
value corresponding to a specified key. Servers broadcast by di-
rectly POSTing messages to each other. Nodes receiving PUT or
DELETE requests from their local clients call broadcast to prepare
a message to be immediately applied locally and broadcast to other
nodes.When a nodemakes a POST request, the endpoint calls receive
to inject the message into the node’s delay queue. Changes to the
delay queue wake a background thread which calls deliver, possi-
bly removing a message from the delay queue and applying it to
the process state. Since messages received via the POST endpoint
are from other nodes, deliver will return Nothing in cases where
the causal dependencies of the message are not satisfied.Therefore
all nodes (and hence all clients of those nodes) observe the effects
of causally-related KvCommands in the same (causal) order.

5.2 Deployment and Evaluation
We deployed an eight-node KVS causal broadcast cluster, globally
distributed across AWS regions (two nodes in us-west-1 (N. Califor-
nia), one in us-west-2 (Oregon), two in us-east-1 (N. Virginia), one
in ap-northeast-1 (Tokyo), and two in eu-central-1 (Frankfurt)), and
24 client nodes with three clients assigned to each KVS node. All
the nodes were AWS EC2 t3.micro instances with 2 vCPUs at 2.5
GHz and 1 GiB of memory. The 50th-percentile inter-region ping
latencies vary from about 20ms between us-west-1 and us-west-2
to about 225ms between ap-northeast-1 and eu-central-1. Each of
the eight nodes in the cluster ran an instance of our KVS applica-
tion compiled with GHC 8.10.7.

8For simplicity, we adopt a “sticky sessions” model, in which a given client will only
ever talk to a given server. In a setting where clients can communicate with more
than one server, clients would need to participate in the propagation of causal meta-
data generated by the servers [Lloyd et al. 2011], whereas with sticky sessions, causal
metadata is only exchanged among the servers.

Weconducted a simple experiment inwhich each of the 24 clients
made 10,000 curl requests at 20 requests per second to their as-
signed KVS replica in the same region (for a total of 240,000 client
requests), uniformly distributed over GET, PUT, and DELETE requests.
For PUT requests, we used randomly generated JSON data for val-
ues, and ensured that there were key collisions, requiring resolu-
tion by causal order, by drawing keys from among the lowercase
ASCII characters.

Two-thirds (160,000) of the 240,000 requests generated by clients
were PUT and DELETE requests. Each resulted in a broadcast from
the client’s assigned KVS replica to the seven other nodes in the
cluster, generating 160,000× 7 = 1,120,000 unicast messages among
the eight KVS nodes. To alleviate this message amplification and
maintain throughput, we sent multiple unicast messages in each
request; typically, two or three messages were sent at a time. The
KVS replicas handled all requests and delivered all messages in the
time it took for clients to send them (10 minutes) with a load aver-
age of 0.10, indicating that the cluster was not CPU-bound and that
no messages got stuck indefinitely in delay queues. As a static ver-
ification approach, Liquid Haskell itself imposes no running time
overhead compared to vanilla Haskell, and no Liquid Haskell an-
notations were required in the KVS application code.

We recorded the length of the delay queue after each message
delivery and maintained an average. Over all nodes, the average
length of the delay queue after a delivery came to 7.2 delayed mes-
sages. From prior experiments with a different mix of KVS nodes
and clients, we observe that more nodes in the causal broadcast
cluster results in increased likelihood of messages being received
out of causal order, motivating the need for causal broadcast.

6 RELATEDWORK
Machine-checked correctness proofs of executable distributed pro-

tocol implementations. Much work on distributed systems verifica-
tion has focused on specifying and verifying properties of models
using tools such as TLA+ [Lamport 2002], rather than of executable
implementations. Here, our focus is on mechanized verification of
executable distributed protocol implementations; lacking space for
a comprehensive account of the literature, we mention a few high-
lights.

Verdi [Wilcox et al. 2015] is a Coq framework for implementing
distributed systems; verified executable OCaml implementations
can be extracted from Coq. IronFleet [Hawblitzel et al. 2015] uses
the Dafny verification language, which compiles both to verifica-
tion conditions checked by an SMT solver and to executable code.
Both Verdi and IronFleet have been used to verify safety properties
(in particular, linearizability) of distributed consensus protocol im-
plementations (Raft andMulti-Paxos, respectively) and of strongly-
consistent key-value store implementations, and IronFleet addi-
tionally considers liveness properties.The ShadowDBproject [Schiper
et al. 2014] uses a language called EventML that compiles both to
a logical specification and to executable code that is automatically
guaranteed to satisfy the specification, and correctness properties
of the logical specification can then be proved using the Nuprl
proof assistant. Schiper et al. [2014] used this workflow to verify
the correctness of a Paxos-based atomic broadcast protocol. None

IFL 2022, August 31-September 2, 2022, Copenhagen, Denmark Patrick Redmond, Gan Shen, Niki Vazou, and Lindsey Kuper

of Wilcox et al., Hawblitzel et al., or Schiper et al. looked at causal
broadcast or causal message ordering in particular.

Lesani et al. [2016] present a technique and Coq-based frame-
work formechanically verifying the causal consistency of distributed
key-value store (KVS) implementations, with executable OCaml
KVSes extracted from Coq. Lesani et al.’s verification approach
effectively bakes a notion of causal message delivery into an ab-
stract causal operational semantics that specifies how a causally
consistent KVS should behave. In more recent work, Gondelman
et al. [2021] use the Coq-based Aneris distributed separation logic
framework [Krogh-Jespersen et al. 2020] — itself built on top of the
Iris separation logic framework [Jung et al. 2018] — to specify and
verify the causal consistency of a distributed KVS and further ver-
ify the correctness of a session manager library implemented on
top of the KVS. These implementations are written in AnerisLang,
a domain-specific language intended to be used with the Aneris
framework for implementing distributed systems. Both Lesani et al.’s
andGondelman et al.’s work is specific to the KVS use case, whereas
our verified causal broadcast implementation factors out causal
message delivery into a separate layer, agnostic to the content of
messages, that can be used as a standalone component in a vari-
ety of applications. Moreover, Liquid Haskell’s SMT automation
simplifies our proof effort by comparison. Unlike Lesani et al. and
Gondelman et al., we did not attempt to verify the causal consis-
tency of our KVS. However, we hypothesize that building on an un-
derlying verified causal messaging layer would simplify the KVS
verification task by separating lower-level message delivery con-
cerns from higher-level application semantics.

Causal broadcast for CRDT convergence. Conflict-free replicated
data types (CRDTs) [Shapiro et al. 2011a,b] are data structures de-
signed for replication. Their operations must satisfy certain math-
ematical properties that can be leveraged to ensure strong conver-
gence [Shapiro et al. 2011b], meaning that replicas are guaranteed
to have equivalent state if they have received and applied the same
unordered set of updates. While the simplest CRDTs ask little of
the underlying messaging layer, many CRDTs implemented in the
operation-based style rely on causal delivery to ensure that, for ex-
ample, a message updating an element of a set will not be delivered
before the message inserting that element.

Gomes et al. [2017] use the Isabelle/HOL proof assistant [Wen-
zel et al. 2008] to implement and verify the strong convergence of
operation-based CRDTs under an assumption of causal delivery,
modeled by the network axioms in their proof development. Our
work is complementary to Gomes et al.’s: one could deploy their
verified-convergent CRDTs atop our verified causal broadcast pro-
tocol to get an “end-to-end” convergence guarantee on top of a
weaker network model that offers no causal delivery guarantee.

Liu et al. [2020] use Liquid Haskell to verify the convergence of
operation-based CRDT implementations. Liu et al.’s CRDTs do not
assume causal delivery, which complicates their implementation
(and verification). In fact, Liu et al.’s verified two-phase map im-
plementation includes a “pending buffer” for updates that arrived
out of order, and a collection of data-structure-specific rules to de-
termine which updates should be buffered. These mechanisms re-
semble the delay queue and the deliverable predicate, but are spe-
cific to application-level data structures and use an ad hoc delivery

policy, rather than operating at the messaging layer and using the
more general principle of causal delivery. We hypothesize that our
library could lessen the need for such ad hoc mechanisms.

Themost closely related work to this paper — and the only other
mechanically verified causal broadcast implementation that we are
aware of — was recently carried out by Nieto et al. [2022] as part
of a larger proof development that verifies the correctness of a va-
riety of CRDTs using the aforementioned Aneris separation logic
framework. Nieto et al.’s proof development consists of a verified
stack of components, at the base of which is a verified causal broad-
cast library, followed by a library of CRDT components, and finally
CRDT implementations. To verify the causal broadcast library, Ni-
eto et al. take a similar approach to Gondelman et al.’s aforemen-
tioned verified key-value store, but adapted to the more general
setting of causal broadcast. Their approach thus supports our hy-
pothesis that it is possible to simplify the verification of higher-
level application properties, such as causal consistency of a key-
value store or convergence of CRDTs, by decoupling them from
lower-level message delivery properties, such as causal broadcast.

Compared to our work, Nieto et al.’s verification effort is more
broadly scoped: most obviously, they tackle verification of clients
of causal broadcast, in addition to the causal broadcast protocol
itself. Additionally, their implementation is intended to be used
on top of an unreliable transport protocol, UDP, and as such it in-
cludes mechanisms to ensure reliable message delivery (although
their verification, like ours, is limited to safety properties only).9
We deploy and empirically evaluate the performance of our im-
plementation, whereas Nieto et al. do not. Finally, our approach
differs from Nieto et al.’s conceptually in that we frame the prob-
lem in terms of refinement types, whereas Nieto et al. take the
separation-logic approach of defining logical resources and giving
specifications about how those resources are used by their imple-
mentations. Our use of Liquid Haskell lets us take advantage of
SMT automation where possible, using manual proofs only when
needed. On the other hand, Nieto et al.’s use of standard separation
logic mechanisms is a boon for modularity.

7 CONCLUSION
Causal message broadcast is a widely used building block of dis-
tributed applications, motivating the need for practically usable
verified implementations.We use Liquid Haskell to give a novel en-
coding of causal message delivery as a refinement type. We then
verify the safety of an executable causal broadcast library imple-
mented in Haskell using a combination of manual theorem prov-
ing and SMT automation. Our verified-safe library can be used in
real distributed systems, as we demonstrate with a case-study im-
plementation and deployment of a distributed key-value store.

Acknowledgments. This material is based upon work supported
by the National Science Foundation under Grant No. CCF-2145367.
Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not nec-
essarily reflect the views of the National Science Foundation.

9Our own protocol implementation also makes no assumptions about the reliability
of the underlying transport layer, but it has no mechanisms to ensure reliable delivery
itself, so users of our librarywho do require reliable delivery should opt for a transport
protocol such as TCP that provides reliable delivery out of the box.

Verified Causal Broadcast with Liquid Haskell IFL 2022, August 31-September 2, 2022, Copenhagen, Denmark

REFERENCES
Arup Acharya and B.R. Badrinath. 1992. Recording distributed snapshots based on

causal order of message delivery. Inform. Process. Lett. 44, 6 (1992), 317 – 321.
https://doi.org/10.1016/0020-0190(92)90107-7

Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and Phillip W. Hutto.
1995. Causal memory: definitions, implementation, and programming. Distributed
Computing 9, 1 (1995), 37–49. https://doi.org/10.1007/BF01784241

Sridhar Alagar and S. Venkatesan. 1994. An optimal algorithm for distributed snap-
shots with causal message ordering. Inform. Process. Lett. 50, 6 (1994), 311 – 316.
https://doi.org/10.1016/0020-0190(94)00055-7

Yves Bertot and Pierre Castéran. 2004. Interactive Theorem Proving and Program De-
velopment - Coq’Art: The Calculus of Inductive Constructions. Springer. https:
//doi.org/10.1007/978-3-662-07964-5

K. Birman and T. Joseph. 1987a. Exploiting Virtual Synchrony in Distributed Systems.
SIGOPS Oper. Syst. Rev. 21, 5 (Nov. 1987), 123–138. https://doi.org/10.1145/
37499.37515

Kenneth Birman, André Schiper, and Pat Stephenson. 1991. Lightweight Causal and
Atomic Group Multicast. ACM Trans. Comput. Syst. 9, 3 (Aug. 1991), 272–314.
https://doi.org/10.1145/128738.128742

Kenneth P. Birman and Thomas A. Joseph. 1987b. Reliable Communication in the
Presence of Failures. ACM Trans. Comput. Syst. 5, 1 (Jan. 1987), 47–76. https:
//doi.org/10.1145/7351.7478

Ahmed Bouajjani, Constantin Enea, Rachid Guerraoui, and Jad Hamza. 2017. On Ver-
ifying Causal Consistency. In Proceedings of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages (Paris, France) (POPL 2017). Association
for Computing Machinery, New York, NY, USA, 626–638. https://doi.org/10.
1145/3009837.3009888

Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Tools
and Algorithms for the Construction and Analysis of Systems, C. R. Ramakrishnan
and Jakob Rehof (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 337–340.

C. J. Fidge. 1988. Timestamps in message-passing systems that preserve the partial
ordering. Proceedings of the 11th Australian Computer Science Conference 10, 1
(1988), 56–66.

Victor B. F. Gomes, Martin Kleppmann, Dominic P. Mulligan, and Alastair R. Beres-
ford. 2017. Verifying Strong Eventual Consistency in Distributed Systems. Proc.
ACM Program. Lang. 1, OOPSLA, Article 109 (Oct. 2017), 28 pages. https:
//doi.org/10.1145/3133933

Léon Gondelman, Simon Oddershede Gregersen, Abel Nieto, Amin Timany, and Lars
Birkedal. 2021. Distributed CausalMemory:Modular Specification andVerification
in Higher-Order Distributed Separation Logic. Proc. ACM Program. Lang. 5, POPL,
Article 42 (Jan. 2021), 29 pages. https://doi.org/10.1145/3434323

Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno,
Michael L. Roberts, Srinath Setty, and Brian Zill. 2015. IronFleet: Proving Prac-
tical Distributed Systems Correct. In Proceedings of the 25th Symposium on Operat-
ing Systems Principles (Monterey, California) (SOSP ’15). Association for Comput-
ing Machinery, New York, NY, USA, 1–17. https://doi.org/10.1145/2815400.
2815428

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and
Derek Dreyer. 2018. Iris from the ground up: A modular foundation for higher-
order concurrent separation logic. Journal of Functional Programming 28 (2018),
e20. https://doi.org/10.1017/S0956796818000151

Morten Krogh-Jespersen, Amin Timany, Marit Edna Ohlenbusch, Simon Oddershede
Gregersen, and Lars Birkedal. 2020. Aneris: A Mechanised Logic for Modular Rea-
soning about Distributed Systems. In Programming Languages and Systems - 29th
European Symposium on Programming, ESOP 2020, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland,
April 25-30, 2020, Proceedings. 336–365. https://doi.org/10.1007/978-3-030-
44914-8_13

Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed Sys-
tem. Commun. ACM 21, 7 (July 1978), 558–565. https://doi.org/10.1145/
359545.359563

Leslie Lamport. 2002. Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley Longman Publishing Co., Inc., USA.

K. Rustan M. Leino. 2010. Dafny: An Automatic Program Verifier for Functional Cor-
rectness. In Proceedings of the 16th International Conference on Logic for Program-
ming, Artificial Intelligence, and Reasoning (Dakar, Senegal) (LPAR’10). Springer-
Verlag, Berlin, Heidelberg, 348–370.

Mohsen Lesani, Christian J. Bell, and Adam Chlipala. 2016. Chapar: Certified Causally
Consistent Distributed Key-Value Stores. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (St. Peters-
burg, FL, USA) (POPL ’16). Association for Computing Machinery, New York, NY,
USA, 357–370. https://doi.org/10.1145/2837614.2837622

Yiyun Liu, James Parker, Patrick Redmond, Lindsey Kuper, Michael Hicks, and Niki
Vazou. 2020. Verifying Replicated Data Types with Typeclass Refinements in
Liquid Haskell. Proc. ACM Program. Lang. 4, OOPSLA, Article 216 (Nov. 2020),
30 pages. https://doi.org/10.1145/3428284

Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. 2011.
Don’t Settle for Eventual: Scalable Causal Consistency forWide-Area Storage with
COPS. In Proceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles (Cascais, Portugal) (SOSP ’11). Association for Computing Machinery,
New York, NY, USA, 401–416. https://doi.org/10.1145/2043556.2043593

P. Mahajan, L. Alvisi, and M. Dahlin. 2011. Consistency, Availability, Convergence.
Technical Report TR-11-22. Computer Science Department, University of Texas at
Austin.

Friedemann Mattern. 1989. Virtual Time and Global States of Distributed Systems. In
Parallel and Distributed Algorithms. North-Holland, 215–226.

Alp Mestanogullari, Sönke Hahn, Julian K. Arni, and Andres Löh. 2015. Type-Level
Web APIs with Servant: An Exercise in Domain-Specific Generic Programming. In
Proceedings of the 11th ACM SIGPLANWorkshop on Generic Programming (Vancou-
ver, BC, Canada) (WGP 2015). Association for Computing Machinery, New York,
NY, USA, 1–12. https://doi.org/10.1145/2808098.2808099

Abel Nieto, Léon Gondelman, Alban Reynaud, Amin Timany, and Lars Birkedal. 2022.
Modular Verification of Op-Based CRDTs in Separation Logic. Proc. ACM Program.
Lang. 6, OOPSLA2, Article 188 (Oct. 2022), 29 pages. https://doi.org/10.1145/
3563351

Ulf Norell. 2009. Dependently Typed Programming in Agda. Springer Berlin Heidelberg,
Berlin, Heidelberg, 230–266. https://doi.org/10.1007/978-3-642-04652-0_
5

Jon Postel. 1981. Transmission Control Protocol. STD 7. RFC Editor. http://www.rfc-
editor.org/rfc/rfc793.txt

Michel Raynal, André Schiper, and Sam Toueg. 1991. The causal ordering abstrac-
tion and a simple way to implement it. Inform. Process. Lett. 39, 6 (1991), 343–350.
https://doi.org/10.1016/0020-0190(91)90008-6

J. Rushby, S. Owre, and N. Shankar. 1998. Subtypes for specifications: predicate sub-
typing in PVS. IEEE Transactions on Software Engineering 24, 9 (1998), 709–720.
https://doi.org/10.1109/32.713327

André Schiper, Jorge Eggli, and Alain Sandoz. 1989. A New Algorithm to Implement
Causal Ordering. In Proceedings of the 3rd International Workshop on Distributed
Algorithms. Springer-Verlag, Berlin, Heidelberg, 219–232.

N. Schiper, V. Rahli, R. Van Renesse,M. Bickford, and R. L. Constable. 2014. Developing
Correctly Replicated Databases Using Formal Tools. In 2014 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks. 395–406. https:
//doi.org/10.1109/DSN.2014.45

Frank B Schmuck. 1988. The use of efficient broadcast protocols in asynchronous dis-
tributed systems. Ph. D. Dissertation.

Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. 2011a. A com-
prehensive study of Convergent and Commutative Replicated Data Types. Research
Report RR-7506. Inria – Centre Paris-Rocquencourt ; INRIA. 50 pages. https:
//hal.inria.fr/inria-00555588

Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. 2011b. Conflict-
Free Replicated Data Types. In Proceedings of the 13th International Conference on
Stabilization, Safety, and Security of Distributed Systems (Grenoble, France) (SSS’11).
Springer-Verlag, Berlin, Heidelberg, 386–400.

Robbert van Renesse. 1993. Causal Controversy at Le Mont St.-Michel. SIGOPS Oper.
Syst. Rev. 27, 2 (April 1993), 44–53. https://doi.org/10.1145/155848.155857

Niki Vazou, Joachim Breitner, Rose Kunkel, David Van Horn, and Graham Hutton.
2018. Theorem Proving for All: Equational Reasoning in Liquid Haskell (Functional
Pearl). In Proceedings of the 11th ACM SIGPLAN International Symposium onHaskell
(St. Louis, MO, USA) (Haskell 2018). Association for Computing Machinery, New
York, NY, USA, 132–144. https://doi.org/10.1145/3242744.3242756

Niki Vazou, PatrickMaximRondon, and Ranjit Jhala. 2013. Abstract Refinement Types.
In Programming Languages and Systems - 22nd European Symposium on Program-
ming, ESOP 2013, Held as Part of the European Joint Conferences onTheory and Prac-
tice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings. 209–228.
https://doi.org/10.1007/978-3-642-37036-6_13

Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton-Jones.
2014. Refinement Types for Haskell. In Proceedings of the 19th ACM SIGPLAN
International Conference on Functional Programming (Gothenburg, Sweden) (ICFP
’14). Association for Computing Machinery, New York, NY, USA, 269–282. https:
//doi.org/10.1145/2628136.2628161

Niki Vazou, Anish Tondwalkar, Vikraman Choudhury, Ryan G. Scott, Ryan R. Newton,
PhilipWadler, and Ranjit Jhala. 2017. Refinement Reflection: Complete Verification
with SMT. Proc. ACM Program. Lang. 2, POPL, Article 53 (Dec. 2017), 31 pages.
https://doi.org/10.1145/3158141

MakariusWenzel, Lawrence C. Paulson, and Tobias Nipkow. 2008. The Isabelle Frame-
work. In Theorem Proving in Higher Order Logics, Otmane Ait Mohamed, César
Muñoz, and Sofiène Tahar (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
33–38.

James R.Wilcox, DougWoos, Pavel Panchekha, Zachary Tatlock, XiWang, Michael D.
Ernst, and Thomas Anderson. 2015. Verdi: A Framework for Implementing and
Formally Verifying Distributed Systems. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation (Portland, OR,
USA) (PLDI ’15). Association for Computing Machinery, New York, NY, USA, 357–
368. https://doi.org/10.1145/2737924.2737958

https://doi.org/10.1016/0020-0190(92)90107-7
https://doi.org/10.1007/BF01784241
https://doi.org/10.1016/0020-0190(94)00055-7
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1145/37499.37515
https://doi.org/10.1145/37499.37515
https://doi.org/10.1145/128738.128742
https://doi.org/10.1145/7351.7478
https://doi.org/10.1145/7351.7478
https://doi.org/10.1145/3009837.3009888
https://doi.org/10.1145/3009837.3009888
https://doi.org/10.1145/3133933
https://doi.org/10.1145/3133933
https://doi.org/10.1145/3434323
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1007/978-3-030-44914-8_13
https://doi.org/10.1007/978-3-030-44914-8_13
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/2837614.2837622
https://doi.org/10.1145/3428284
https://doi.org/10.1145/2043556.2043593
https://doi.org/10.1145/2808098.2808099
https://doi.org/10.1145/3563351
https://doi.org/10.1145/3563351
https://doi.org/10.1007/978-3-642-04652-0_5
https://doi.org/10.1007/978-3-642-04652-0_5
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc793.txt
https://doi.org/10.1016/0020-0190(91)90008-6
https://doi.org/10.1109/32.713327
https://doi.org/10.1109/DSN.2014.45
https://doi.org/10.1109/DSN.2014.45
https://hal.inria.fr/inria-00555588
https://hal.inria.fr/inria-00555588
https://doi.org/10.1145/155848.155857
https://doi.org/10.1145/3242744.3242756
https://doi.org/10.1007/978-3-642-37036-6_13
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/3158141
https://doi.org/10.1145/2737924.2737958

IFL 2022, August 31-September 2, 2022, Copenhagen, Denmark Patrick Redmond, Gan Shen, Niki Vazou, and Lindsey Kuper

Hongwei Xi and Frank Pfenning. 1998. Eliminating Array Bound Checking through
Dependent Types. In Proceedings of the ACM SIGPLAN 1998 Conference on Program-
ming Language Design and Implementation (Montreal, Quebec, Canada) (PLDI ’98).

Association for Computing Machinery, New York, NY, USA, 249–257. https:
//doi.org/10.1145/277650.277732

https://doi.org/10.1145/277650.277732
https://doi.org/10.1145/277650.277732

	Abstract
	1 Introduction
	2 System Model and Verification Task
	2.1 System Model
	2.2 Background: Causal Broadcast Protocol
	2.3 Verification Task

	3 Implementation
	3.1 System Model and Vector Clocks
	3.2 Brief Background: Refinement Types and Liquid Haskell
	3.3 Causal Broadcast Protocol Implementation
	3.4 Example Application Architecture

	4 Verification
	4.1 Local Causal Delivery as a Refinement Type
	4.2 Local Causal Delivery Preservation
	4.3 Global Causal Delivery Preservation
	4.4 Discussion: Liveness

	5 Case study
	5.1 Design and Implementation
	5.2 Deployment and Evaluation

	6 Related Work
	7 Conclusion
	References

