esim: A Structural Design Language and Simulator for Computer

Architecture Education

Ethan Miller!? 1

elm@acm.org

Jon Squire
squire@csee.umbc.edu

1 Computer Science & Electrical Engineering Dept., University of Maryland, Baltimore County

2Department of Computer Science, University of California, Santa Cruz

ABSTRACT

We have developed a structural design language for use in undergraduate computer architecture classes
that has much of the power of VHDL with little of the complexity. This language, esim, allows students
to build arbitrarily complex digital logic designs using simple hierarchical design techniques. Students
can simulate and debug their designs using a simulator implemented as a Tcl module. Because esim was
not intended for designing and building physical circuits, it omits many of the primitives necessary for
“real” hardware design and instead focuses on the concepts necessary for teaching students about digital
designs.

We have used esim as a teaching tool in undergraduate computer architecture classes at UMBC for sev-
eral semesters. Students in these classes have implemented projects as complex as a pipelined RISC
processor and a full 16x16 combinational multiplier. The compiler and simulator for the language are
freely distributable, and may be expanded using standard Tcl packages and Tcl code. Current simulator
modules include one for displaying signal values on the screen; modules that graph signal values are

planned.

1 Introduction

Computer architecture has traditionally been a rela-
tively difficult subject for both students and instruc-
tors because of the difficulty in providing good tools
for “hands-on” learning. Although most computer
science students are familiar with programming lan-
guages such as C and Java, they have little experi-
ence with hardware design languages.

A good hardware design language is a very useful
tool for teaching computer architecture, but common
hardware design languages such as VHDL [1,2] and
Verilog [5] suffer from several problems. First, both
languages are very complex because they need to be
usable for real hardware design. This complexity
makes it more difficult for undergraduates, many of
whom have little interest in architecture beyond tak-
ing an introductory course, to learn the language.
Second, the tools necessary to run both languages
are both complex, expensive, and resource-intensive.
While this may be an acceptable tradeoff for stu-

dents in an advanced digital design class, it is unde-
sirable for a core class required of all computer
science majors. The alternative approach of using
graphical design tools to wire components together
has a similar problem — existing tools are either too
powerful and complex (and expensive) or too simple
for use in a computer architecture class.

We have developed a new hardware design lan-
guage, esim, for use in computer science classes.
Because we designed the language for instructional
rather than production use, we were able to leave out
many of the more complex constructs present in
VHDL and Verilog. The language is purely digital
— signals can only take values of 0, 1, conflict, and
undriven — and has primitives for both regular sig-
nals and memory, providing an efficient way to sim-
ulate microprocessor designs with registers and
caches. Esim encourages hierarchical design by
allowing the inclusion of modules in other modules.

This paper appeared at the 2000 Workshop on Computer Architecture Education, held in conjunction with the
International Symposium on Computer Architecture, Vancouver, BC, Canada, June 2000, pages 42-48.



elm
This paper appeared at the 2000 Workshop on Computer Architecture Education, held in conjunction with the International Symposium on Computer Architecture, Vancouver, BC, Canada, June 2000, pages 42–48.


Esim designs can be simulated easily and quickly on
an inexpensive PC running Linux or other Unix-like
operating system. The simulator is implemented as a
Tcl [6] module, so it can be programmed to provide
inputs to particular signals in the circuit. In addition,
Tcl has facilities for graphical display, allowing the
development of graphical signal displays. We have
used esim for several semesters in a junior/senior-
level computer architecture class, and feedback from
students has been quite positive.

This paper describes the esim hardware design lan-
guage, and includes short samples of designs written
in esim. We will not include a formal description of
the esim language; rather, we will informally
describe the language and how to use it to imple-
ment computer architecture class assignments. We
will then describe the Tcl interface to esim, which
allows students and instructors to write scripts to
control their simulations. Tcl also allows the con-
struction of display tools that can help students
understand what is happening in the projects they
have designed. The esim language described in this
paper is freely available at http://
www.csee.umbc .edu/~elm/esim; installation requires
only standard GNU/Unix tools such including gcc,
flex, bison, and Tcl/Tk.

2 Hardware descriptions in esim

Esim is a simple hardware design language that
allows the implementation of large, complex digital
design projects using hierarchical design techniques.
The language corresponds closely to hardware com-
ponents such as AND and OR gates, but allows users
to build up complex designs from simple reusable
components. As with most hardware design lan-
guages, all operations occur in parallel; esim is not a
sequential language. This difference from software
programming languages is the largest conceptual
problem for computer science students who are used
to programs that execute one line at a time.

2.1 Data types

Esim has two data types: signal and memory. A sin-
gle signal may have one of four different values: 0,
1, Z (undriven) or X (conflict/indeterminate). Sig-

nals may be aggregated together; for example, the
definition

signal inputA[32];

declares a signal inputA that is 32 bits wide. Any
value that is assigned to inputA must then be exactly
32 bits wide, and may include any combination of 0,
1,7, and X values. A definition may also include an
initial value for a signal specified as a sequence of
bits. For example,

signal inputA[32] <= #h01234567;
states that inputA should be given the initial value
0x1234567. This is most useful for initializing sig-
nals such as clocks that oscillate between two val-
ues; if no initial value is given, the signal will be
stuck at X for the entire simulation.

Values in esim may be specified as either hexadeci-
mal or binary using the #h and #b notations, respec-
tively. Values are not case-sensitive (@ and A both
refer to the hex digit whose value is 10), and may
include undefined (X) and undriven (Z) digits. For
hexadecimal numbers, X and Z digits translate four
consecutive X or Z digits, respectively. Thus, the hex
value #h9X3Z would be equivalent to the binary
value #b1001XXXX00117ZZZZ.

The memory data type is used for structures such as
register files or main memory. It is implemented
very efficiently; memories of megabytes can be sim-
ulated on inexpensive PCs. A memory is defined as:

memory reg[1024];

Values in a memory remain until they are changed
by a memory statement (see Section 2.2). Memory
cannot be initialized from within an esim program,
but the simulator can read and write memory values.
By using Tcl scripts and memory write commands, a
memory can be loaded with the appropriate values.

2.2 Assignments

All statements in esim operate in parallel; essen-
tially, each statement defines a gate or small collec-
tion of gates. A single statement in esim is of the
form

signal <= expression;

where expression may include signals and other
expressions combined by the operators listed in
Figure 1. The only restriction on composing expres-



a AND b

aOR b

a XOR b

NOT a

bits x down to y of signal a (result is x-y+1 bits wide)
a is equal to b (result is 1 bit wide)

a is unequal to b (result is 1 bit wide)

. b a concatenated with b (result is as wide as a and b combined)
when cond else b

a whenever cond (a 1 bit wide signal) is 1, b otherwise
constant in hexadecimal (16 bits wide in this example)
constant in binary (4 bits wide in this example)

Qo o
>—
o oo

!
Q

[x:y]
= b
b

— I X

Q0 0 0 0

#h0123
#b0101

Figure 1. Operators in esim.

reg read s from rs
reg write d to rd .

. #b00000 when #bl;

#b00000 when wEnb on rising clk;

// always enabled

Figure 2. Sample memory statements.

sions is that the number of bits for a two-input oper-
ator must match.

All of the binary operators (AND, OR, XOR) are
bitwise operators, as are tests for equality; if the
inputs to an operator are wider than 1 bit, the opera-
tion is applied bit by bit and placed into the corre-
sponding position in the result. This restriction
applies to constants as well; #4012 is a 12-bit wide
signal.

Most operators produce a result as wide as that of
either input. However, some operators produce a
result of different width. For example, equality and
inequality operators produce a one-bit result regard-
less of the width of their inputs.

In most expressions, constants have the interpreta-
tion described in Section 2.1. However, comparison
operations (equality and inequality) use a slightly
different definition. For these operators, a constant
of X means “don’t care,” and will match any input
signal (including X and Z). There is thus no easy
way to construct a test that will be true only if a sig-
nal is undetermined. For example, the expression
a==#h8X will result in 1 as long as the high-order 4
bits of a are 1000.

Another statement type involves memories, which
can be both read and written. Sample memory state-

ments are shown in Figure 2. The first statement
reads a value from memory into s using the address
(rs . #b00000) and reading as many consecutive bits
from this address as s is wide. Since the read state-
ment is always enabled, values are always put into s.
If the memory were not enabled, it would output Z
values. The second statement writes a value into the
memory when wEnb is set to 1. However, values are
only written when clk rises from O to 1.

Assignments in esim can take two types of modifi-
ers. The first type of modifier is the after modifier,
indicating that the assignment takes place after the
specified delay. For example

a <= b after 10ns

means that a will get b’s value after 10 ns of simu-
lated time have passed. This modifier can be used to
simulate gate delays; the default delay for esim
assignments is 5 ns. The second type of modifier is
the on modifier. This modifier can be of the form on
rising a or on falling b. In the first case, the assign-
ment in the modified statement only takes place
when a changes from O to 1. In the second case, the
assignment only occurs when b changes from 1 to 0.
These two modifiers can be combined to result in a
delayed assignment when a clock signal rises or
falls.



define regfile (rd[3], rs[3], d[1l6], s[l16], wEnb, clk)
memory reg[128];
circuits
reg read s from rs
reg write d to rd
end circuits;
end regfile;

. #b0000 when #bl; // always enabled
. #b0000 when wEnb on rising clk;

Figure 3. Definition of a register file in esim.

// 8-bit latch clocked on the clk signal when enbl and enb2 are both enabled
define latch8 (g[8], d[8], enbl, enb2, clk)

signal enabled;

signal gInternal[8];

circuits
gInternal <= d when (enbl & enb2)
g <= gInternal on rising clk;

end circuits;

end latch8;

define latchl6é (qg[l6], d[16], clk)
circuits

end circuits;
end latchlé6;
signal g[32];

signal d[32];
circuits

end circuits;

else gInternal;

// Set up a 16 bit latch as 2 8-bit latches

low use latch8 (g[7:0], d[7:0], #bl, #bl, clk);
high use latch8 (g[15:8], d[15:8], #bl, #bl, clk);

low use latchlé (gq[l15:0], d[15:0],
high use latchlé (gq[31:16], d[31l:16], clk);

clk);

// always enabled
// always enabled

Figure 4. Full implementation of a 32-bit latch in esim.

2.3 Components

Basic hardware modules defined in esim are called
components. A sample component (a register file
with 8 registers of 16 bits each) is shown in Figure 3.
Parameters to the component definition do not spec-
ify input or output; rather, parameters are simply
placeholders allowing external signals to be used by
the internals of the component. Parameters may be
either a single bit wide (WEnb, clk), or multiple bits
wide (s is 16 bits wide). Internal signals and defini-
tions are not visible outside the component, though
their effects may be. For example, components that
include regfile may not directly reference reg,
though they can store and read values by appropri-

ately manipulating the addresses and control signals
of regfile.

Components may themselves include other compo-
nents, as shown in Figure 4. This is done via the use
statement, which assigns different names to the dif-
ferent instances of each component. In the Figure 4
example, the first instance of latch8 is named low,
and the second instance is named high. Note that
parameters to an instance can include signals, signal
slices, and constants.



define foo (a, b) //
circuits
a<=>bs& 1l;
end circuits;
end foo;

define bar (x[2], vI[2]) /1
circuits
s use foo (x[0], y[0]);
t use foo (x[1], vI[11);
end circuits;
end bar;

signal topx[4], topy[4];
circuits
hi use bar(topx[3:2], topy[3:2]);
lo use bar(topx[1:0], topy[1l:0]);
end circuits;

define component foo

define component bar

// use component foo in bar

// main circuit

// use component bar in main

Figure 5. Sample esim code demonstrating component and signal naming.

2.4 Building a full hardware description

Figure 4 contains a complete description of a 32-bit
latch. It includes two components, latch8 and
latch16, and a top-level circuit that has two instances
of latchl6. The signals in the top-level circuit are
passed down to the latchl6 and latch8 instances as
needed.

Esim is compiled in two passes. In the first pass, the
input file is parsed and converted to an internal rep-
resentation. The second pass creates an output file,
similar to a netlist, that is used as input to the simu-
lator. Because the input file is parsed in a single
pass, forward references are not allowed — every
component must be defined before it used. However,
there is no limit to nesting level; esim allows as
many levels of hierarchy as necessary. If the compi-
lation is successful, a netlist file suitable for input to
the simulator is generated.

3 Using the esim simulator

The esim simulator is embedded within a Tcl shell,
and can be programmed and operated just as any
other Tcl/Tk program. It can take advantage of Tk
graphics, and includes mechanisms for activating
Tcl callbacks when signals change. As with many
Tcl extensions, all esim commands are really sub-
commands of a single Tcl command: esim. This

means that a sample esim command would be esim
load default.net. This instructs the simulator to use
the esim command interpreter, which then loads the
netlist default.net.

3.1 Variable names and values

The simulator has access to all variables in the esim
program that has been loaded. Because the use state-
ment requires each instance to have a name unique
within the component, each signal has a unique
name composed of a period-separated list of compo-
nent names followed by the signal name within the
component. For example, consider the circuit shown
in Figure 5. In the circuit, the top-level symbols are
topx and topy. Each instance of the bar component
creates its own copy of the symbols x and y. The hi
use statement creates hi.x and hi.y, and the lo use
statement creates lo.x and lo.y. Since each instance
of bar itself creates two instances of foo, the follow-
ing signals are defined: lo.s.a, lo.s.b, lo.t.a, lo.t.b,
hi.s.a, hi.s.b, hi.t.a, and hi.t.b. Each of these signals
may have its own value; even though there are 4
instances of the signal a in foo, each may have its
own value (and thus has its own name) because each
belongs to a different instance of the foo component.

Symbol values may be specified in either binary or
hex (using the -hex or -binary switch to various esim



commands). The default for all commands is binary.
Possible symbol values include 0, 1, X, and Z. 0 and
1 are high and low logic values. Z refers to a node
that isn't currently driven by any gate. X means that
the value of the node can't be determined. This can
occur for several reasons. First, the node could be
driven to different values (0 and 1) by two or more
different gates at the same time. Second, the node
could be driven by a single gate whose output value
can't be determined for some reason, such as indeter-
minate inputs (X-valued). For binary, each bit is rep-
resented individually by one of these four symbols.
For hex, however, nodes are shown in groups of four.
If all nodes in a group of four have “real” values, a
hex digit is displayed. If all are undriven, Z is dis-
played. Otherwise, X is displayed. This means that
the four bits 010X would be shown as a single hex
digit of X, as would 0Z11.

3.2 Controlling the simulation

The simulation is controlled by Tcl commands, each
prefixed with the keyword esim. The simulator has
commands to load a netlist, run for a set period of
time, run for a fixed number of events, or simply run
until the circuits have settled. The latter mode is not
advised for complex systems with a clock; a line
such as

clk <= ~clk after 100 ns

will never settle.

Running the simulation is not very useful without
the ability to examine and set signals, and esim can
do both. The esim set command can be used to force
a signal, named as described in Section 3.1, to a par-
ticular value. This value is maintained even if the
circuit tries to set it to a different value. The signal
can be freed by issuing an esim unset command to
allow the signal to once again vary normally. The
unset command, however, does not erase the value to
which the signal was set; it only allows it to change.
For example, setting a clock to 0 and then issuing an
unset command will initialize the clock to a fixed
value and then allow it to vary over time.

The simulator also has commands for reading and
writing memory. These commands are particularly
useful for setting the contents of registers and cache

for simulations as well as for checking their contents
after a simulation has run. The esim read and esim
write command work in similar ways, and allow the
writing of an arbitrary number of bits starting from a
given bit offset. Unlike the esim set command, how-
ever, the esim write command is a one-time write of
memory; future writes to the location by the circuit
will succeed. The esim write command is particu-
larly useful in scripts; a ten line script can read the
contents of memory from a file and write them to a
particular memory in the simulated circuit.

Perhaps the most useful feature of the simulation is
the esim trace command. This command ties a Tcl
variable’s value to that of a signal in the circuit,
updating the variable whenever the signal’s value
changes. For example, a command such as:

esim trace -hex a

will update the Tcl variable Esim(a) with the current
value of signal a each time it changes. This feature is
particularly useful when combined with the Tcl
trace command; it allows Tcl to execute arbitrary
code when a signal in the circuit changes. The trace
on a signal can be removed with the esim untrace
command.

The tracing feature is underutilized in the current
esim distribution. There are simple routines to print
the value of a signal when it changes, and there is a
simple graphic display that can show the current val-
ues of various signals. However, we have not yet
implemented more complex display mechanisms. In
particular, esim cannot display signal values graphi-
cally, though this feature is planned for future
releases.

4 Future work

In its current form, esim is a very powerful tool for
teaching computer architecture. However, there are
several additions and modifications that would sig-
nificantly improve its usability. The first major
change that we are currently working on is a rewrite
of the core code for the application to use the stan-
dard template library (STL), removing the need for
libg++. Though libg++ was previously the best way
to implement platform-independent code for com-
mon data structures, it has been supplanted by the



STL. The rewrite will improve performance by
doing more to merge duplicate events in the event-
driven simulator. This rewrite will also incorporate
an interface generated by SWIG [3]. This change
will standardize the Tcl/Tk interface code, improv-
ing the simulator’s compatibility with Tcl and allow-
ing it to work with other languages such as Python

[4].

We are also planning to add graphical display of sig-
nal values and histories, taking advantage of the
many graph widget packages available for Tk. This
display will allow students to view the contents of
signals and busses over time, and will resemble stan-
dard timing diagrams. By using the flexibility of Tcl,
we can allow the simulator to display some or all of
the signals, and can even use color and other cues to
show “important” events in the display. Other possi-
ble features include zooming in and out to show
shorter or longer time scales in the graph.

The esim language itself is stable, and we do not
plan any major changes to it. One minor change we
are considering is the addition of non-bitwise opera-
tors such as addition and subtraction. These opera-
tors make it easier to quickly design circuits;
however, they do not correspond directly to simple
digital logic components, making them less useful
pedagogically.

5 Conclusions

We have designed and implemented a simple struc-
tural design language for use in undergraduate com-
puter architecture classes. This language is easy for
students to learn, and includes lacks the complex
features necessary in VHDL and Verilog for building
real hardware. By integrating the logic simulator
into Tcl, esim allows students and instructors to use
scripts and graphics to enhance the simulation and
debugging process. As a result, esim should not be
used to design actual hardware, but rather makes an
excellent (and portable) pedagogical tool for teach-
ing computer design to undergraduates.

The source code for the esim compiler and simulator
is available from http://www.csee.umbc.edu/~elm/
esim/. It has been compiled on Linux, and requires

flex, bison, tcl, and libg++. It is currently being
rewritten to use Standard Template Library classes
in place of libg++.

References

[1] Peter J. Ashenden, The Designer’s Guide to
VHDL, Morgan Kaufmann, 1996.

[2] Peter J. Ashenden, The Student’s Guide to
VHDL, Morgan Kaufmann, 1998.

[3] David M. Beazley, “SWIG: An Easy to Use
Tool for Integrating Scripting Languages
with C and C++,” 4th Annual Tcl/Tk Work-
shop, Monterey, CA, July 1996, pages 129-
139.

(4] John E. Grayson, Python and Tkinter Pro-
gramming, Manning Publications, 2000.

[5] Samir Palnitkar, Verilog HDL: A Guide to
Digital Design and Synthesis, Prentice Hall,
1996.

[6] Brent B. Welch, Practical Programming in
Tcl and Tk, Prentice Hall, 1999.





