

h
eir
s
ed
).

the
id
e.
ly
nd
nt

by
es
e.
in

r in
ing
 all
 of
any
ys-
le

ng
a is
o-
m
n-
s
e.
f
d
 a

a
se
n-
 is
wn
er
e

ely
n

h
o-
In
in
ss
ut
.
er-

ith
r-

di-
ch
sor
nt
ller
an

s in
ne
em
es
he
ly,
d-
 is

RAMA: Easy Access to a High-Bandwidth Massively Parallel
File System

Ethan L. Miller
University of Maryland Baltimore County

Randy H. Katz
University of California at Berkeley
Abstract

Massively parallel file systems must provide hig
bandwidth file access to programs running on th
machines. Most accomplish this goal by striping file
across arrays of disks attached to a few specializ
I/O nodes in the massively parallel processor (MPP
This arrangement requires programmers to give
file system many hints on how their data is to be la
out on disk if they want to achieve good performanc
Additionally, the custom interface makes massive
parallel file systems hard for programmers to use a
difficult to seamlessly integrate into an environme
with workstations and tertiary storage.

The RAMA file system addresses these problems
providing a massively parallel file system that do
not need user hints to provide good performanc
RAMA takes advantage of the recent decrease
physical disk size by assuming that each processo
an MPP has one or more disks attached to it. Hash
is then used to pseudo-randomly distribute data to
of these disks, insuring high bandwidth regardless
access pattern. Since MPP programs often have m
nodes accessing a single file in parallel, the file s
tem must allow access to different parts of the fi
without relying on a particular node. In RAMA, a file
request involves only two nodes — the node maki
the request and the node on whose disk the dat
stored. Thus, RAMA scales well to hundreds of pr
cessors. Since RAMA needs no layout hints fro
applications, it fits well into systems where users ca
not (or will not) provide such hints. Fortunately, thi
flexibility does not cause a large loss of performanc
RAMA’s simulated performance is within 10-15% o
the optimum performance of a similarly-sized stripe
file system, and is a factor of 4 or more better than
striped file system with poorly laid out data.
1995 USENIX Technical Conference - January 16-20, 1995
1. Introduction

Massively parallel computers are becoming
common sight in scientific computing centers becau
they provide scientists with very high speed at reaso
able cost. However, programming these computers
often a daunting task, as each one comes with its o
special programming interface to allow a programm
to squeeze every bit of performance out of th
machine. This applies to file access as well; massiv
parallel file systems require hints from the applicatio
to provide high-bandwidth file service. Eac
machine’s file system is different though, making pr
grams difficult to port from one machine to another.
addition, many scientists use workstations to aid
their data analysis. They would like to easily acce
files on a massively parallel processor (MPP) witho
explicitly copying them to and from the machine
Often, these scientists must use tertiary storage to p
manently save the large data sets they work w
[7,15], and current parallel file systems do not inte
face well with mass storage systems.

Traditional MPPs use disk arrays attached to de
cated I/O nodes to provide file service. This approa
is moderately scalable, though the single proces
controlling many disks is a bottleneck. Rece
advances in disk technology have resulted in sma
disks which may be spread around an MPP rather th
concentrated on a few nodes.

RAMA addresses both ease of use and bottleneck
massively parallel file systems using an MPP with o
or more disks attached to every node. The file syst
is easily scalable: a file read or write request involv
only the requesting node and the node with t
desired data. By distributing data pseudo-random
RAMA insures that applications receive high ban
width regardless of the pattern with which the data
accessed.
 - New Orleans, LA 59

ad
m

k is
 fit
lly
 for

to
the
e

des
f
w
e
he
er

es
d-
es
ust

r.
the
le
st

is
he
des
nt
or
ts

om-
l
or-

n
sk
he
 is
t-
 a
e

oes
 a
le
at

ny
se

e
d
ch
t-
ca-
se
ve-
llel

ot
e
h-
on
om
 a
 by

ir
-
rs
he
an-
ge

w-
 to
if-
, it
s-
ro-

e-
il-
li-

the
m-
em
g

s
f
e,
to
he
he
o
e
ly
ng
2. Background

Massively parallel processors (MPPs) have long h
file systems, as most applications running on the
require a stable store for input data and results. Dis
also used to run out-of-core algorithms too large to
in the MPP’s memory. It is the last use that genera
places the highest demand on file systems used
scientific computation [14].

2.1. Parallel File Systems

Early MPP file systems made a concerted effort
permit the programmer to place data on disk near
processor that would use it. This was primarily don
because the interconnection network between no
was too slow to support full disk bandwidth for all o
the disks. In the Intel iPSC/2 [16], for example, lo
network bandwidth restricted disk bandwidth. Th
Bridge file system [4], on the other hand, solved t
problem by moving the computation to the data rath
than shipping the data across a slow network.

Newer file systems, such as Vesta [2] run on machin
that have sufficient interconnection network ban
width to support longer paths between disked nod
and nodes making requests. These file systems m
still struggle with placement information, howeve
Vesta uses a complex file access model in which
user establishes various views of a file. The fi
system uses this information to compute the be
layout for data on the available disks. While th
system performs well, it requires the user to tell t
system how the data will be accessed. Vesta provi
a default data layout, but using this arrangeme
results in performance penalties if the file is read
written with certain access patterns. Supplying hin
may be acceptable for MPP users accustomed to c
plicated interfaces, but it is difficult for traditiona
workstation users who want their programs to be p
table to different MPPs.

The CM-5 sfs [11] is another example of a moder
MPP file system. The CM-5 uses dedicated di
nodes, each with a RAID-3 [8] attached, to store t
data used in the CM-5. The data on these disks
available both to the CM-5 and, via NFS, to the ou
side world. The system achieves high bandwidth on
single file request by simultaneously using all of th
disks to transfer data. However, this arrangement d
not allow high concurrency access to files. Since
single file block is spread over multiple disks, the fi
system cannot read or write many different blocks
the same time. This restricts its ability to satisfy ma
simultaneous small file requests such as tho
required by compilations.
1995 USENIX Technical Conference - January 16-20, 1995
A common method of coping with the difficulties in
efficiently using parallel file systems is to provid
additional primitives to control data placement an
manage file reads and writes efficiently. Systems su
as PASSION [1] and disk-directed I/O [9] use sof
ware libraries to ease the interface between appli
tions and a massively parallel file system. The
systems rely on the compiler to orchestrate the mo
ment of data between disk and processors in a para
application. While this solution may work well for
specialized MPP applications, though, it does n
allow the integration of parallel file systems with th
networks of workstations used by scientific researc
ers. The compute-intensive applications that run
the parallel processor may get good performance fr
the file system, but files must be explicitly copied to
standard file system before they can be examined
workstation-based tools.

Another shortcoming of parallel file systems is the
inability to interface easily with tertiary storage sys
tems. Traditional scientific supercomputer cente
require terabytes of mass storage to hold all of t
data that researchers generate and consume [6]. M
ually transferring these files between a mass stora
system and the parallel file system has two dra
backs. First, it requires users to assign two names
each file — one in the parallel file system, and a d
ferent one in the mass storage system. Second
makes automatic file migration difficult, thus increa
ing the bandwidth the mass storage system must p
vide [15].

2.2. Parallel Applications

Parallel file systems are primarily used by comput
intensive applications that require the gigaflops ava
able only on parallel processors. Many of these app
cations do not place a continuous high demand on
parallel file system because their data sets fit in me
ory. Even for these programs, however, the file syst
can be a bottleneck in loading the initial data, writin
out the final result, or storing intermediate results.

Applications such as computational fluid dynamic
(CFD) and climate modeling often fit this model o
computation. Current climate models, for exampl
require only hundreds of megabytes of memory
store the entire model. The model computes t
change in climate over each half day, storing t
results for later examination. While there is n
demand for I/O during the simulation of the climat
for each half day, the entire model must be quick
stored to disk after each time period. The resulti
large I/Os, are large and sequential.
 - New Orleans, LA 60

are
o-

ir
ry.

lf;
to
re
b-
trix
of
lly,
 to
er-
’s

at
net-
s
nd
ks.
at

/O
er
s
e

d
e
lt-
or
iety
al-
k
;

k
nd
ot
nd
y
ela-
s
e
t;
k
an
ap
is

k
s.

in
i-

file
y

a

n
sk

e.
le
di-
r)
e

he
not

ee

s
t

nd

Some applications, however, have data sets that
larger than the memory available on the parallel pr
cessor. These algorithms are described as running out-
of-core, since they must use the disk to store the
data, staging it in and out of memory as necessa
The decomposition of a 150,000 × 150,000 matrix
requires 180 GB of storage just for the matrix itse
few parallel processors have sufficient memory
hold the entire matrix. Out-of-core applications a
written to do as little I/O as possible to solve the pro
lem; nonetheless, decomposing such a large ma
may require sustained bandwidth of hundreds
megabytes per second to the file system. Traditiona
the authors of these programs must map their data
specific MPP file system disks to guarantee good p
formance. However, doing so limits the application
portability.

3. RAMA Design

We propose a new parallel file system design th
takes advantage of recent advances in disk and
work technology by placing a small number of disk
at every processor node in a parallel computer, a
pseudo-randomly distributing data among those dis
This is a change from current parallel file systems th
attach many disks to each of a few specialized I
nodes. Instead of statically allocating nodes to eith
the file system or computation, RAMA (Rapid Acces
to Massive Archive) allows an MPP to use all of th
nodes for both computation and file service.

The location of each block in RAMA is determine
by a hash function, allowing any CPU in the fil
system to locate any block of any file without consu
ing a central node. This approach yields two maj
advantages: good performance across a wide var
of workloads without data placement hints, and sc
ability from fewer than ten to hundreds of node-dis
pairs. This paper provides a brief overview of RAMA
a more complete description may be found in [13].

RAMA, like most file systems, is I/O-bound, as dis
speeds are increasing less rapidly than network a
CPU speeds. While physically small disks are n
necessary for RAMA, they reduce hardware cost a
complexity by allowing disks to be mounted directl
on processor boards rather than connected using r
tively long cables. High network bandwidth allow
RAMA to overcome the slight latency disadvantag
of not placing data “near” the node that will use i
thus, RAMA requires interconnection network lin
bandwidth to be an order of magnitude higher th
disk bandwidth; this is currently the case, and the g
in speeds will continue to widen. Network latency
1995 USENIX Technical Conference - January 16-20, 1995
less important for RAMA, however, since each dis
request already incurs a latency on the order of 10 m

3.1. Data Layout in RAMA

Files in RAMA are composed of file blocks, just as
most file systems.However, RAMA uses reverse ind
ces, rather than the direct indices used in most
systems, to locate individual blocks. It does this b
grouping file blocks into disk lines and maintaining a
per-line list of the file blocks stored there. Since
single disk line is 1 - 8 MB long, each disk in RAMA
may hold many disk lines. A disk line, shown i
Figure 1, consists of hundreds of sequential di
blocks and the table of contents (called a line descrip-
tor) that describes each data block in the disk lin
The exact size of a disk line depends on two fi
system configuration parameters: the size of an in
vidual disk block (8 KB for the studies in this pape
and the number of file blocks in each disk line. Th
number of blocks per disk line was not relevant for t
simulations discussed in this paper, since they did
run long enough to fill a disk line.

The line descriptor contains a bitmap showing the fr
blocks in the disk line and a block descriptor for each
block in the disk line. The block descriptor contain
the identifier of the file that owns the block, its offse
within the file, an access timestamp for the block, a

Figure 1: Layout of a disk line in RAMA.

Line descriptor

Intrinsic metadata

File 713, Block 4
Clean

File blocks

File 6594,Block 29
Clean

File 7363, Block 0
Dirty

Free Block Map

File 7363, Block 1
Clean

File 1824, Block 112
Clean

File 7363, Block 2
Dirty

File 89002, Block 341
Free
 - New Orleans, LA 61

r

 a
ks

e-
t
-

A
m
re
p

er
ks.

ap-

ne
 a
to
he
k
in-

isk
-

e
of
ven
ol

re

l
n-
-
r
i-
d-

 of
des

is

is

he
er
e

ut
or
e

 1.
 a
re
r-

an
i-
ock
.

n-
di-
s

ra-
g
is

not
ly
ked
ca-
-
is
r
r
ire

nd
 is

he
vi-
. In
 by

le
to
n-
e
he
hat
ot

ired
es
a few bits holding the block’s state (free, dirty, o
clean).

Every block of every file in RAMA may be stored in
exactly one disk line; thus, the file system acts as
set-associative cache of tertiary storage. File bloc
are mapped to disk lines using the function diskline =
hash(fileId, blockOffset). This mapping may be per-
formed by any node in the MPP without any file-sp
cific information beyond the file identifier and offse
for the block, allowing RAMA to be scaled to hun
dreds of processor-disk pairs.

The hash algorithm used to distribute data in RAM
must do two things. First, it must insure that data fro
a single file is spread evenly to each disk to insu
good disk utilization. Second, it must attempt to ma
adjacent file blocks to the same line, allowing larg
sequential disk transfers without intermediate see
This is done in RAMA by dividing the block offset by
an additional hash function parameter s. This scheme
yields the same hash value, and thus the same m
ping from file block to disk line, for s sequential
blocks in a single file. The optimal value for s depends
on both disk characteristics and the workload [13].S
is set to 4 for the simulations in this paper.

While any node in the MPP can compute the disk li
in which a file block is stored, direct operations on
disk line are only performed by the processor
which the line’s disk is attached. This CPU scans t
line descriptor to find a particular block within a dis
line, and manages free space for the line. The rema
der of the nodes in the MPP never know the exact d
block where a file block is stored; they can only com
pute the disk line that will hold the block. Since th
exact placement of a file block is hidden from most
the file system, each node may manage (and e
reorder) the data in the disk lines under its contr
without notifying other nodes in the file system.

RAMA’s indexing method eliminates the need to sto
positional metadata such as block pointers in a centra
structure similar to a normal Unix inode. This dece
tralization of block pointer storage and block alloca
tion allows multiple nodes to allocate blocks fo
different offsets in a single file without central coord
nation. Since there is no per-file bottleneck, the ban
width RAMA can supply is proportional to the
number of disks. If all nodes has the same number
disks, performance scales as the number of no
increases.

The remainder of the information in a Unix inode —
file permissions, file size, timestamps, etc. —
termed intrinsic metadata since it is associated with
the file regardless of the media on which the file
1995 USENIX Technical Conference - January 16-20, 1995
stored. The intrinsic metadata for a file is stored in t
same disk line as the first block of a file in a mann
similar to inodes allocated for cylinder groups in th
Fast File System [12].

Since each block in RAMA may be accessed witho
consulting a central per-file index, the line descript
must keep state information for every file block in th
disk line. Blocks in RAMA may be in one of three
states — free, dirty, or clean — as shown in Figure
Free blocks are those not part of any file, just as in
standard file system. Blocks belonging to a file a
dirty unless an exact copy of the block exists on te
tiary storage, in which case the block is clean. A cle
block may be reallocated to a different file if add
tional free space is needed, since the data in the bl
may be recovered from tertiary storage if necessary

RAMA, like any other file system, will fill with dirty
blocks unless blocks are somehow freed. Conve
tional file systems have only one way of creating ad
tional free blocks — deleting files. However, mas
storage systems such as RASH [6] allow the mig
tion of data from disk to tertiary storage, thus freein
the blocks used by the migrated files. RAMA uses th
strategy to generate free space, improving on it by
deleting migrated files until their space is actual
needed. Instead, the blocks in these files are mar
clean, and are available when necessary for reallo
tion. RAMA also supports partial file migration, keep
ing only part of a file on disk after a copy of the file
on tape. This facility is useful, for example, fo
quickly scanning the first block of large files fo
desired characteristics without transferring an ent
gigabyte-long file from tape.

3.2. RAMA Operation

A read or write request in RAMA involves only two
nodes: the node making the request (the client) a
the node on whose disk the requested data block
stored (the server). If several clients read from t
same file, they do not need to synchronize their acti
ties unless they are actually reading the same block
this way, many nodes can share the large files used
parallel applications without a per-file bottleneck.

Figure 2 shows the flow of control and data for a fi
block read in RAMA; a similar sequence is used
write a file block. First, the client hashes the file ide
tifier and offset, computing the disk line in which th
desired block is stored. The client then looks up t
owner of the disk line, and sends a message to t
server. The server reads the line descriptor (if it is n
already cached) and then reads or writes the des
block. If the operation is a write, the data to write go
 - New Orleans, LA 62

ed

a is
e
ld
the
ent
and
ing
text
il-
nds
p-
ws
e
ge

r-
tor
ich
i-

ot
he
’s
le

air
is-

P
d
 of
st,

ca-
r
le-
w.
s
ts
ed
the
r-

.5”
s a
3.5
me
tion
fi-

s
al
fer
-

am-

his
ow-

ner-
lel

he
he
rs
ta-

la-
ix

d
fit
re

es
e.
he
e
ro-
ing
m.
t
e

with the first message. Otherwise, the data is return
after it is read off disk.

The common case for the file system is that the dat
on disk. If a block not listed in the appropriate lin
descriptor is written, a free block is allocated to ho
the data. If a read request cannot be satisfied,
block must exist on tertiary storage; a request is s
to the user-level tertiary storage manager process
the requested data is fetched from tape. While runn
the tertiary storage manager at user level adds con
switch delays to the I/O time, the penalty of a few m
liseconds pales in comparison to the tens of seco
necessary to fetch data from tape. Additionally, kee
ing tertiary storage management at user level allo
much greater flexibility, as RAMA need not b
recompiled (or even restarted) if a new tertiary stora
device or migration policy is added.

4. Simulation Methodology

We used a simulator to compare RAMA’s perfo
mance to that of a striped file system. The simula
modeled the pseudo-random placement on wh
RAMA is based, but did not deal with unusual cond
tions such as full disk lines. This limitation does n
affect the findings reported later, since none of t
workloads used enough data to fill the file system
disks. The simulator also modeled a simple striped fi
system using the same disk models, allowing a f
comparison between striping and pseudo-random d
tribution.

The interconnection network and disks in the MP
were both modeled in the simulator. While it woul
have been possible to model the applications’ use
the network, this was not done for two reasons. Fir

Figure 2: Steps required to read a file block in RAMA.

1. Hash to find
server node

3. Read line
descriptor if
not cached

4. Find desired
block's address

5. Read data
blocks

CPU

CPUCPU

CPU

6. Return data

2. Request data
1995 USENIX Technical Conference - January 16-20, 1995
modeling every network message sent by the appli
tion would have slowed down simulation by a facto
of 10 or more. Second, the network was not the bott
neck for either file system, as Section 5.3 will sho
The simulator did model network communication
initiated by the file system, including control reques
from one node to another and file blocks transferr
between processors. This allowed us to gauge
effect of network latencies on overall file system pe
formance.

The disks modeled in the simulator are based on 3
low-profile Seagate ST31200N drives. Each disk ha
1 GB capacity and a sustained transfer rate of
MB/s, with an average seek of 10 ms. The seek ti
curve used in the simulation was based on an equa
from [10] using the manufacturer’s seek time speci
cations as inputs.

The workload supplied to the simulated file system
consisted of both synthetic benchmarks and re
applications. The synthetic access patterns all trans
a whole file to or from disk using different, but regu
lar, orderings and delays between requests. For ex
ple, one simple pattern might require each of n nodes
to sequentially read 1/nth of the entire file in 1 MB
chunks, delaying 1 second between each chunk. T
workload generated access patterns analogous to r
order and column-order transfers of a full matrix.

Real access patterns, on the other hand, were ge
ated by simulating the file system calls from a paral
application. All of the computation for the program
was converted into simulator delays, leaving just t
main loops and the file system calls. This allowed t
simulator to model applications that would take hou
to run on a large MPP and days to run on a works
tion, and require gigabytes of memory to complete.

The modeled program used for many of the simu
tions reported in this paper was out-of-core matr
decomposition [5,19], which solves a set of n linear
equations in n variables by converting a single n × n
matrix into a product of two matrices: one upper- an
one lower- triangular. Since large matrices do not
into memory, the file system must be used to sto
intermediate results. For example, a 128K × 128K
matrix of double-precision complex numbers requir
256 GB of memory — more than most MPPs provid
The algorithm used to solve this problem stores t
matrix on disk in segments — vertical slices of th
matrix each composed of several columns. The p
gram processes only one segment at a time, reduc
the amount of memory needed to solve the proble
Before “solving” a segment, the algorithm mus
update a it with all of the elements to its left in th
 - New Orleans, LA 63

of

ide
m
e
t

ev-
ro-
the

f
k.
ce
ts.
st,
e.

ly
ta
%
by

by
ar-
et-
ork
le
ork
ing

s
O
ce
-
r

sks
.
th

is
r-
n-

rd
e

ta

e

ire
s.
B,
ir
e.
nt
de
en-
s,
de.
ad a
ll
PP
did

ent
he
e
-

f
y-
f
 all
ore
m.
er-
es
ce
 not

upper-triangular result. This requires the transfer
c2/2 segments to decompose a matrix broken intoc
segments. The application prefetches segments to h
much of the file system latency; thus, the file syste
need only provide sufficiently fast I/O to prevent th
program from becoming I/O bound. The point a
which this occurs depends on the file system and s
eral other factors — the number and speed of the p
cessors in the MPP, and the amount of memory
decomposition is allowed to use.

5. Performance Comparison of RAMA
and Striping

The RAMA file system is the product of a new o
thinking about how a parallel file system should wor
It is easier to use than other parallel file systems, sin
it does not require users to provide data layout hin
If this convenience came at a high performance co
however, it would not be useful; this is not the cas
I/O-intensive applications using RAMA may run 10%
slower than they would if data were laid out optimal
in a striped file system. However, improper da
layout in a striped file system can lead to a 400
increase in execution time, a hazard eliminated
RAMA.

Parallel file system performance can be gauged
metrics other than application performance. Most p
allel file systems use the MPP interconnection n
work to move data between processors. This netw
is also used by parallel applications; thus, a fi
system must that places a high load on the netw
links may delay the application’s messages, reduc
overall performance. Uniform disk utilization is
another important criterion for parallel file system
with hundreds of disks. Using asynchronous I/
enables applications to hide some of the performan
penalties from poorly distributed disk requests. How
ever, uneven request distribution will result in lowe
performance gains from faster CPUs as some di
remain idle while others run at full bandwidth
RAMA meets or exceeds striped file systems in bo
network utilization and uniformity of disk usage.

5.1. Application Execution Time

The bottom line in any comparison of file systems
application performance. We simulated the perfo
mance of several I/O intensive applications, both sy
thetic and real, under both RAMA and standa
striped MPP file system with varying stripe sizes. W
found that RAMA’s pseudo-random distribution
imposed a small penalty relative to the best da
1995 USENIX Technical Conference - January 16-20, 1995
layout in a parallel file system, while providing a larg
advantage over poor data layouts.

The first benchmark we simulated read an ent
32 GB file on an MPP with 64 nodes and 64 disk
Each processor in the MPP repeatedly read 1 M
waiting for all of the other processors to read the
chunk of data before proceeding to the next on
These reads could be performed in two differe
orders resembling those shown in Figure 3: no
sequential and iteration sequential. For node sequ
tial access, the file was divided into 512 MB chunk
each of which was sequentially read by a single no
Iteration sequential accesses, on the other hand, re
contiguous chunk of 64 MB each iteration, using a
64 nodes to issue the requests. While the entire M
appeared to read the file sequentially, each node
not itself issue sequential file requests.

We simulated this access pattern on several differ
configurations for the striped file system as well as t
RAMA file system. Each curve in Figure 4 shows th
time required to read the file for the striping configu
ration with N disked nodes and D disks per node,
denoted by Nn, Dd on the graph. We varied the size o
the stripe on each disked node to model different la
outs of file data on disk. The horizontal axis o
Figure 4 gives the amount of file data stored across
of the disks attached to a single disked node bef
proceeding to the next disked node in the file syste
The dashed lines show the execution time for the it
ation sequential access pattern, while the solid lin
graph node sequential access. RAMA’s performan
for a given access pattern is constant since it does

Figure 3: Transfer ordering for iteration sequential and
node sequential access patterns.

P0
P1
P2
P3

P0
P1
P2
P3

P0
P1
P2
P3

P0
P1
P2
P3

P0
P1
P2
P3

P0
P1
P2
P3

Iteration sequential Node sequential

Iteration

1

2

3

 - New Orleans, LA 64

u-
ion
A
s

-
ta
n

r of
h

A.
ake
ss
ta
e-

rix
ar
 a
s,
s

by
If
 to
 5
le
y,
b-

of
xe-

de
e a

o-
h-
n
is

he
of
ce
 in
at

use layout information; thus, there is only one exec
tion time for each access pattern. Since the execut
times for the different access patterns under RAM
were within 0.1%, RAMA’s performance is shown a
a single line.

As Figure 4 shows, RAMA is within 10% of the per
formance of a striped file system with optimal da
layout. Non-optimal striping, on the other hand, ca
increase the time needed to read the file by a facto
four. Worse, there is no striped data layout for whic
both access patterns perform better than RAM
There is thus no “best guess” the file system can m
that will provide good performance for both acce
patterns. With RAMA, however, pseudo-random da
layout probabilistically guarantees near-optimal ex
cution time.

Real applications such as the out-of-core mat
decomposition described in Section 4, exhibit simil
performance variations for different data layouts in
striped file system. As with the earlier benchmark
however, RAMA provides consistent run time
despite variations in the algorithm.

Matrix decomposition stresses striped file systems
only transferring a portion of the file each iteration.
each of these partial transfers is distributed evenly
all of the disks, the performance shown in Figure
results. Most of the data layouts for the striped fi
system allow the application to run without I/O dela
while only the largest file system stripe sizes are su

Figure 4: Time required to read a 32 GB file on an MPP
with 64 processors and 64 disks.

0

500

1000

1500

2000

2500

1x101 1x102 1x103 1x104 5x104

T
ot

al
 ti

m
e

to
 r

ea
d

32
 G

B
 fi

le
 (

se
co

nd
s)

Per disked-node stripe size (KB)

RAMA

8n, 8d
8n, 8d

2n, 32d

4n, 16d

4n, 16d
2n, 32d
1995 USENIX Technical Conference - January 16-20, 1995
optimal. Performance under RAMA matches that
the best striped arrangements, and is better than e
cution time for the worst data layouts.

Just a small change in the algorithm’s source co
governing the placement of data, however, can caus
large difference in performance for matrix decomp
sition under striping. The data in Figure 6 were gat
ered from a simulation of a matrix decompositio
code nearly identical to that whose performance
shown in Figure 5. The sole difference between t
two is a single line of code determining the start
each segment in the matrix. An minor arbitrary choi
such as this should not result in a radical difference
performance; it is just this sort of dependency th

Figure 5: Execution time for LU decomposition under
RAMA and striped file systems on a 64 node MPP
with 64 disks.

Figure 6: Execution time for LU decomposition with an
alternate data layout.

0

2000

4000

6000

8000

1x102 1x103 1x104 1x105 4x105

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Per-disked node stripe size (KB)

16d, 4n

8d, 8n

{4d, 16n
2d, 32n

RAMA

0

5000

10000

15000

20000

25000

1x102 1x103 1x104 1x105 4x105

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Per-disked node stripe size (KB)

64n, 1d

16n, 4d

8n, 8d

4n, 16d

RAMA
 - New Orleans, LA 65

r-
r-
hat
e
ipe
eir

n-
ng

at-
lts.
s
u-

 to
-
e

o-
is-
to
in
ers
ore
e

ca-
ay
ly
isks
m
y
ng
he

by
he

ks
 of
ent
the
ot
 is
d
ce
ing

s,
r
e
8.

for

s
he
.

n-

th
ty
op
 is
ut
at-
ro-
at

makes programming parallel machines difficult. Pe
formance under file striping, however, is very diffe
ent for the two data layouts. The small stripe sizes t
did well in the first case now perform poorly with th
alternate data layout. On the other hand, large str
sizes serve the second case well, in contrast to th
poor performance with the first data layout. In co
trast, the execution times for the two variants usi
RAMA are within 0.1%.

Simulation results from other synthetic reference p
terns and application skeletons showed similar resu
A global climate model, for example, attained it
highest performance for medium-sized stripes. Exec
tion time using either large or small stripes was two
four times longer. Using RAMA’s pseudo-random dis
tribution, the climate model was able to run at th
same speed as the optimal striped data layout.

5.2. Disk Utilization

There are two reasons for the wide variation in pr
gram performance under file striping: poor spatial d
tribution and poor temporal distribution of requests
disks. The first problem occurs when some disks
the file system must handle more requests than oth
because the application needs the data on them m
frequently. Even if all of the disks satisfy the sam
number of requests during the course of the appli
tion’s execution, however, the second problem m
remain. At any given time, the program may on
need data on a subset of the disks; the remaining d
are idle, reducing the maximum available file syste
bandwidth. RAMA solves both of these problems b
scattering data to disks pseudo-randomly, eliminati
the dissonance caused by conflicting regularity in t
file system and the application’s data layouts.

Figure 7 shows the average bandwidth provided
each of 64 disks in a striped file system during t
decomposition of a 32K × 32K matrix. The band-
width is generally highest for the lowest-number dis
because they store the upper triangular portions
each segment which are read to update the curr
segment. The disks on the right, however, store
lower triangular parts of the segments which are n
used during segment updates. Since the file system
limited by the performance of the most heavily loade
disks, it may lose as much as half of its performan
because of the disparity between the disks servic
the most and fewest requests.

To prevent this poor assignment of data to disk
RAMA’s hash function randomly chooses a disk fo
each 32 KB chunk of the matrix file. The result is th
distribution of requests to disks shown in Figure
1995 USENIX Technical Conference - January 16-20, 1995
Each disk delivers between 0.584 and 0.622 MB/s
the 32K × 32K matrix decomposition, a spread of les
than 6.5%. This difference is much smaller than t
factor of two difference in the striped file system
Thus, RAMA can provide full-bandwidth file service
to the application, while the striped file system ca
not.

Striped file systems can also have difficulties wi
temporal distribution, as shown by the disk activi
during a 1 GB file read graphed in Figure 9. The t
graph shows the ideal situation in which every disk
active all of the time. Often, however, poor disk layo
results in the bottom situation. Though every disk s
isfies the same number of requests during the p
gram’s execution, only half of the disks are busy

Figure 7: Disk utilization in a striped file system for a
32K × 32K matrix decomposition.

Figure 8: Disk utilization in RAMA for a 32K × 32K
matrix decomposition.

••••

••

0

0.2

0.4

0.6

0 20 40 60

A
ve

ra
ge

 b
an

dw
id

th
 (

M
B

/s
)

Disk number (0-63)

average

••••••••
••••••

•••••••••
•••••••

•••••••••••
••••••••••••••••

•••••••

0

0.2

0.4

0.6

0 20 40 60

A
ve

ra
ge

 b
an

dw
id

th
 (

M
B

/s
)

Disk number (0-63)

average
 - New Orleans, LA 66

e

 is
e
A
i-
’s

ta
rk
er
an
s-
A

oo
r,
ch
ts
g

sk
is
cs.

by
n-
ll
ge

of
es.
ut
nd
rm
l”
r-

le
k
se
n
n
s
em
, as
m
.
ly
ide
k

t
s

any instant, cutting overall bandwidth for the fil
system in half.

Here, too, RAMA’s pseudo-random distribution
avoids the problem. As Figure 10 shows, each disk
active most of the time. By randomly distributing th
regular file offsets requested by the program, RAM
probabilistically assures that all disks will be approx
mately equally utilized at all times during a program
execution.

5.3. Interconnection Network Utilization

Many older parallel file systems [16,17] required da
placement hints from programs to reduce netwo
traffic as well as balance disk traffic. On some old
machines, each interprocessor link was slower th
10 MB/s — hardly faster than a disk. On such a sy
tem, pseudo-random placement as done in RAM
would be a poor choice because it would place t
high a load on the interprocessor links. Howeve
interconnection networks have become faster; ea
processor in the Cray T3D [3] is connected to i
neighbors by six links each capable of transferrin

Figure 9: Disk activity over time for a striped file
system during differently-ordered reads of a 1 GB file.

0

5

10

15

0 1 2 3 4 5 6 7 8

D
is

k
nu

m
be

r
(0

-1
5)

Elapsed time (seconds)

0

5

10

15

0 1 2 3 4 5 6 7 8 9

D
is

k
nu

m
be

r
(0

-1
5)

Elapsed time (seconds)
1995 USENIX Technical Conference - January 16-20, 1995
over 150 MB/s. The gap between network and di
speeds will only widen, since network technology
electronic while disk speeds are limited by mechani

As Figure 11 shows, the message traffic created
RAMA does not place high loads on a torus interco
nection network with 100 MB/s links, even while a
of the disks are transferring data at full speed. Avera
link utilization during the matrix decomposition
ranged from 1.6% to 2.8%, leaving the remainder
the bandwidth for application-generated messag
The network load was evenly distributed througho
the matrix with no hot spots because the disks a
requests to them were evenly spread. This unifo
load decreases the travel time variation for “norma
messages, simplifying (a little bit) the creation of pa
allel programs.

The striped file system also caused relatively litt
congestion of the interconnection network — no lin
averaged more than 5.9% utilization over the cour
of the matrix decomposition. However, variation i
file system link utilization was much higher than i
RAMA. The links connecting to the disked node
were, as expected, more heavily used by file syst
messages than those away from the disked nodes
Figure 12 shows. The overall amount of file syste
message traffic was similar for RAMA and striping
However, RAMA’s messages were more even
spread through the interconnection torus. Thus, a s
benefit for RAMA is better interconnection networ
load leveling from more uniform distribution of file
system message traffic.

6. Small File Performance

A major attraction of the RAMA file system is that i
performs well on high-volume small file workloads a

Figure 10: Disk activity over time for RAMA during a
read of a 1 GB file. The access pattern is the same as
the lower graph of Figure 9.

0

5

10

15

0 1 2 3 4 5 6 7 8

D
is

k
nu

m
be

r
(0

-1
5)

Elapsed time (seconds)
 - New Orleans, LA 67

ds
fer-
e a
es
m-
ro-

are
ut-
ad
s,

,
ess
e
d
h
e
ate
sec-

s
d.

-
is-
 a
m

st
ith
or
rd

he
le

ny
ues

well as on supercomputer workloads. The workloa
in Figure 13 use constant file sizes requested at dif
ent rates to generate each curve. Rather than us
closed system in which a fixed number of process
make requests as rapidly as possible, the RAMA si
ulator schedules requests according to a Poisson p

Figure 11: Interconnection network load under RAMA.
The shaded nodes have disks attached, all of which
are being used to read a file at full speed.

Figure 12: Interconnection network load under a striped
file system. The program run is the same as in
Figure 11.

< 1%

1% - 2%

2% - 3%

3% - 4%

4% - 5%

> 5%

< 1%

1% - 2%

2% - 3%

3% - 4%

4% - 5%

> 5%
1995 USENIX Technical Conference - January 16-20, 1995
cess whose average size and request rate
parameters to the workload. If there are too many o
standing requests, the simulator throttles the worklo
by delaying until an unfinished request complete
avoiding infinite queue growth.

RAMA has low latency for small file transfers
enabling workstations connected to an MPP to acc
files directly instead of copying them to and from th
MPP file system. Figure 13 shows RAMA’s simulate
performance on transfers of small files, 75% of whic
are reads. Even for 32 KB files, RAMA’s performanc
does not begin to decline until the average request r
exceeds 40 requests per MPP node (and disk) per
ond. For the 16 × 8 processor mesh in Figure 13, thi
is an average rate of over 5000 requests per secon

RAMA is able to maintain this high level of perfor
mance for small files because file data is already d
tributed pseudo-randomly. The request stream from
workstation network results in a disk request strea
similar to that for a single large file — both reque
lots of data in a somewhat random fashion. As w
large files, no layout information need be supplied f
small files, allowing workstations to use standa
Unix file access semantics.

7. Future Work

The simulation results in this paper show that t
RAMA file system design has great promise as a fi
system for future massively parallel machines. Ma
questions still remain to be answered, however. Iss
to be explored further include RAMA’s integration

Figure 13: RAMA read performance for small files.

0

0.2

0.4

0.6

0.8

1

1.2

0 40 80 120 160
A

ve
ra

ge
 ti

m
e

to
 r

ea
d

a
si

ng
le

 fi
le

 (
se

co
nd

s)

Per-node request rate (files per second)

32 KB files

16 KB files

8 KB files
 - New Orleans, LA 68

of
e-
i-

c
-
-

le
,
p-

of
in
ric
ys-
e

e
-

s
ot

he
o-

h
ore
sk
k

es

to
li-
 to
e
y a
n

ys-

ly
o-
a-
e
rly

ts,
-
-

e.
se
e

t of
its
’s

nt
-

a
r.
e
on
ed
-
o-
s
k
em
n a
d,

-
of
 to
ves
ny

at
e

 of
ata
-
u-

-
e

or
e
i-

,
d

t
d
.

nd
ta

v.
with tertiary storage and file migration, the testing
additional parallel applications, and the actual impl
mentation of the RAMA file system using the exper
ence gained from simulation.

One of the main attractions of RAMA for a scientifi
environment is its tight integration with tertiary stor
age. RAMA provides a facility unique among file sys
tems for scientific storage — support for partial fi
migration. We will explore file migration algorithms
considering partial file migration and other develo
ments in the fifteen years since [18].

We are also planning to build a prototype version
RAMA on a parallel processor. This can be done
two ways: as a software library layered over a gene
file system, or as a replacement for an MPP file s
tem. The first approach would be simpler, but th
latter will prove a better test of RAMA’s ideas. A tru
RAMA system will provide a good testbed for I/O
intensive parallel applications. Running real program
on this testbed will show that programmers need n
spend their energy trying to lay data out on disk; t
file system can do the job just as well using pseud
random placement.

An implementation of RAMA will also be a good
place to explore RAMA’s design space. How muc
consecutive file data should be stored on a disk bef
randomly selecting another? How big should a di
line be? How will performance be affected as dis
lines fill and allocation becomes more difficult? A
RAMA prototype will allow us to address these issu
by experimenting on a real system.

8. Conclusions

Traditional multiprocessor file systems use striping
provide good performance to massively parallel app
cations. However, they depend on the application
provide the file system with placement hints. In th
absence of such hints, performance may degrade b
factor of four or more, depending on the interactio
between the program’s data layout and the file s
tem’s striping.

RAMA avoids the performance degradation of poor
configured striped file systems by using pseud
random distribution. Under this scheme, an applic
tion is unlikely to create hot spots on disk or in th
network because the data is not stored in an orde
fashion. Laying files on disk pseudo-randomly cos
at most, 10-20% of overall performance when com
pared to applications that stripe data optimally. How
ever, optimal data striping can be difficult to achiev
Applications using striped file systems may increa
their execution time by a factor of four if they choos
1995 USENIX Technical Conference - January 16-20, 1995
a poor data layout. This choice need not be the faul
the programmer, as simply using a machine with
disks configured differently can cause an application
I/O to run much less efficiently. RAMA’s perfor-
mance, on the other hand, varies little for differe
data layouts in full-speed file transfers, matrix decom
position, and other parallel codes.

The flexibility that RAMA provides does not exact
high price in multiprocessor hardware, howeve
RAMA allows MPP designers to use inexpensiv
commodity disks and the high-speed interconnecti
network that most MPPs already have. It is design
to run on an MPP built from replicated units of pro
cessor-memory-disk, rather than the traditional pr
cessor-memory units. This method of building MPP
removes the need for a very high bandwidth lin
between an MPP and its disks; instead, the file syst
uses the high-speed network that already exists i
multiprocessor. Since the file system is disk-limite
though, the network is never heavily loaded.

Disks, too, are utilized well in RAMA. Pseudo
random distribution insures an even distribution
data to disks. Disk requests are evenly distributed
disks in time as well as in space. Thus, no disk ser
as a bottleneck by servicing too many requests at a
time. In addition, all disks are used nearly equally
every step of an I/O-intensive application without th
need for data placement hints.

The simulations of both synthetic traces and cores
real applications show that the pseudo-random d
distribution used in RAMA provides good perfor
mance while eliminating dependence on user config
ration. While RAMA’s performance may be 10-15%
lower than an optimally configured striped file sys
tem, it provides a factor of four or more performanc
improvement over a striped file system with a po
layout. It is this portability and scalability that mak
RAMA an excellent file system choice for the mult
processors of the future.

References
[1] A. Choudhary, R. Bordawekar, M. Harry

R. Krishnaiyer, R. Ponnusamy, T. Singh, an
R. Thakur. “PASSION: Parallel And Scalable
Software for Input-Output.” Technical Repor
NPAC Technical Report SCCS-636, NPAC an
CASE Center, Syracuse University, Sept. 1994

[2] P. F. Corbett, D. G. Feitelson, J.-P. Prost, a
S. J. Baylor. “Parallel access to files in the Ves
file system.” In Proceedings of Supercomputing
’93, pages 472–483, Portland, Oregon, No
1993.
 - New Orleans, LA 69

c-
n

s-

l
s

-

d
e
ile

e
-

.
e

6,
e,

-

,

e

r

y

-

-

y

nd

d
re
n

t

d
-

,
r

ity
B

ly
ata
g
the
-
s

ce
in
B
e
n,
y

[3] Cray Research, Inc. “Cray T3D system archite
ture overview manual,” Sept. 1993. Publicatio
number HR-04033.

[4] P. Dibble, M. Scott, and C. Ellis. “Bridge: A
high-performance file system for parallel proce
sors.” In Proceedings of the Eighth Internationa
Conference on Distributed Computer System,
pages 154–161, June 1988.

[5] G. A. Geist and C. H. Romine. “LU factorization
algorithms on distributed-memory multiproces
sor architectures.” SIAM Journal of Scientific
and Statistical Computing, 9(4):639–649, July
1988.

[6] R. L. Henderson and A. Poston. “MSS-II an
RASH: A mainframe UNIX based mass storag
system with a rapid access storage hierarchy f
management system.” In USENIX — Winter
1989, pages 65–84, 1989.

[7] D. W. Jensen and D. A. Reed. “File archiv
activity in a supercomputer environment.” Tech
nical Report UIUCDCS-R-91-1672, University
of Illinois at Urbana-Champaign, Apr. 1991.

[8] R. H. Katz, G. A. Gibson, and D. A. Patterson
“Disk system architectures for high performanc
computing.” Proceedings of the IEEE,
77(12):1842–1858, Dec. 1989.

[9] D. Kotz. “Disk-directed I/O for MIMD multipro-
cessors.” Technical Report PCS-TR94-22
Dept. of Computer Science, Dartmouth Colleg
July 1994.

[10] E. K. Lee and R. H. Katz. “An analytic perfor
mance model of disk arrays.” In Proceedings of
SIGMETRICS, pages 98–109, May 1993.

[11] S. J. LoVerso, M. Isman, A. Nanopoulos
W. Nesheim, E. D. Milne, and R. Wheeler. “sfs:
A parallel file system for the CM-5.” In Proceed-
ings of the 1993 Summer Usenix Conferenc,
pages 291–305, 1993.

[12] M. K. McKusick, W. N. Joy, S. J. Leffler, and
R. S. Fabry. “A fast file system for UNIX.” ACM
Transactions on Computer Systems, 2(3):181–
197, Aug. 1984.

[13] E. L. Miller. Storage Hierarchy Management fo
Scientific Computing. PhD thesis, University of
California at Berkeley, to be published in earl
1995.

[14] E. L. Miller and R. H. Katz. “Input/output behav
ior of supercomputing applications.” In Proceed-
ings of Supercomputing ’91, pages 567–576,
Nov. 1991.
1995 USENIX Technical Conference - January 16-20, 1995
[15] E. L. Miller and R. H. Katz. “An analysis of file
migration in a Unix supercomputing environ
ment.” In USENIX—Winter 1993, pages 421–
434, Jan. 1993.

[16] P. Pierce. “A concurrent file system for a highl
parallel mass storage system.” In Fourth Confer-
ence on Hypercube Concurrent Computers a
Applications, pages 155–160, 1989.

[17] T. W. Pratt, J. C. French, P. M. Dickens, an
S. A. Janet, Jr. “A comparison of the architectu
and performance of two parallel file systems.” I
Fourth Conference on Hypercube Concurren
Computers and Applications, pages 161–166,
1989.

[18] A. J. Smith. “Long term file migration: Develop-
ment and evaluation of algorithms.” Communi-
cations of the ACM, 24(8):521–532, August
1981.

[19] D. Womble, D. Greenberg, S. Wheat, an
R. Riesen. “Beyond core: Making parallel com
puter I/O practical.” In Proceedings of the 1993
DAGS/PC Symposium, pages 56–63, Hanover
NH, June 1993. Dartmouth Institute fo
Advanced Graduate Studies.

Author Information

Ethan Miller is an assistant professor at the Univers
of Maryland Baltimore County. He received a Sc
from Brown in 1987 and an MS from Berkeley in
1990. He will complete his PhD at Berkeley in ear
1995. His research interests are file systems and d
storage for high performance computing, includin
both disk and tertiary storage. Surface mail sent to
Computer Science Department, UMBC, 5401 Wilk
ens Avenue, Baltimore, MD 21228 will reach him, a
will electronic mail sent to elm@cs.umbc.edu.

Randy Katz has been on the Berkeley faculty sin
1983. He received his MS and PhD at Berkeley
1978 and 1980 respectively. He received his A
degree from Cornell University in 1976. He may b
contacted by mail at the Computer Science Divisio
University of California, Berkeley, CA 94720, and b
electronic mail at randy@cs.berkeley.edu.
 - New Orleans, LA 70

	Abstract
	1. Introduction
	2. Background
	2.1. Parallel File Systems
	2.2. Parallel Applications

	3. RAMA Design
	3.1. Data Layout in RAMA
	3.2. RAMA Operation

	4. Simulation Methodology
	5. Performance Comparison of RAMA and Striping
	5.1. Application Execution Time
	5.2. Disk Utilization
	5.3. Interconnection Network Utilization

	6. Small File Performance
	7. Future Work
	8. Conclusions
	References
	Author Information

