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Abstract

We demonstrate that high-level �le system events exhibit self-
similar behaviour, but only for short-term time scales of approxi-
mately under a day. We do so through the analysis of four sets of
traces that span time scales of milliseconds through months, and
that di�er in the trace collection method, the �lesystems being
traced, and the chronological times of the tracing. Two sets of
detailed, short-term �le system trace data are analyzed; both are
shown to have self-similar like behaviour, with consistent Hurst
parameters (a measure of self-similarity) for all �le system traf-
�c as well as individual classes of �le system events. Long-term
�le system trace data is then analyzed, and we discover that the
traces' high variability and self-similar behaviour does not per-
sist across time scales of days, weeks, and months. Using the
short-term trace data, we show that sources of �le system traf-
�c exhibit ON/OFF source behaviour, which is characterized by
highly variably lengthed bursts of activity, followed by similarly
variably lengthed periods of inactivity. This ON/OFF behaviour
is used to motivate a simple technique for synthesizing a stream
of events that exhibit the same self-similar short-term behaviour
as was observed in the �le system traces.

1 Introduction

Recent studies of high quality traces of network tra�c (see
[9], [2], and [15]) have revealed an unexpected property of
network tra�c, namely that the tra�c appears to be self-
similar in nature. Intuitively, a self-similar process looks
similar and bursty across all time-scales. Of course, physical
contraints (such as bandwidth limits and the �nite lifetime
of any given network) mean that no real network can ever
be truly self-similar | but the important properties of self-
similar systems do manifest themselves across many time
scales that are of practical importance.

The theoretical and practical consequences of having a
self-similar process cannot be dismissed. A common as-
sumption in the design of networks and operating systems
is that the aggregation of a large number of bursty sources
tends to be smooth. For example, statistical admissions
criteria in real-time channel establishment [5] assume that

while an individual source may exceed its average resource
requirements at any given time, the aggregate resource re-
quirements across many such sources has a low variance. If
the combined tra�c is self-similar, this is not necessarily the
case.

Further studies have shown that the total tra�c (mea-
sured in bytes/s or packets/s) on Ethernet LANs [9] and
on WANs [16] is self-similar. Similarly, investigations into
variable-bit-rate (VBR) video tra�c [2] have shown this traf-
�c to exhibit long-range dependence, which is an indicator of
self-similarity. The purpose of this paper is to demonstrate
the existence of self-similar behaviour in high-level �le sys-
tem events (such as �le opens, block reads or writes, �le
closes, and �le deletions) over short-term time scales of less
than a day in length, but to show that this behaviour does
not persist across time scales of days, weeks, and months.
We refer to this property as \short term self-similarity":
a process possesses short-term self-similarity if it is well
represented as a self-similar process over short time scales,
but not over larger time scales. Short term self-similarity
is nearly an oxymoron in the sense that it is strictly not
self-similarity; for a process to be truly self-similar, its self-
similar behaviour must extend through all time scales.

Our contributions in this paper are:

� to demonstrate that four di�erent �le systems exhibit
short term self-similarity through the analysis of traces
of those systems' activity,

� to explicitly show using two of those �le system traces
that the self-similar behaviour of the �le systems breaks
down past day, week, and month-long time scales,

� to show that over short time scales, �le system activity
is composed of highly variable ON/OFF activity from
a number of clients, which may explain the short term
self-similarity,

� and to present a model for synthesizing �le system
tra�c that exhibits self-similar behaviour.

This paper is structured as follows. Section 2 discusses
related work. In section 3, the theory behind self-similar
and long-range dependent processes is summarized. Section
4 describes the four �le system traces analyzed in this paper.
Section 5 contains the analysis of Sprite LFS and Auspex
NFS short-term �le system traces, which exhibit self-similar
behaviour. In section 6, a similar analysis is performed on
two sets of much longer time scale data (from an instruc-
tional �le system at U.C. Berkeley, and from an NFS �le
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system at the University of Maryland Baltimore Country),
which reveals that this self-similar nature does not persist
across these longer time scales. Finally, section 7 shows that
the short-term trace data exhibits highly variable ON/OFF
sources, which is used to motivate a method for synthesizing
self-similar data. A summary of this paper is presented and
general conclusions drawn in section 8.

2 Related Work

The study of self-similarity in computer networks was pio-
neered by the work of Leland et al., in which they demon-
strated that Ethernet tra�c was self-similar in nature [9].1

Further work showed that the self-similarity could be at-
tributed to the ON/OFF behaviour of tra�c sources within
their system [23]. We borrow heavily upon the theory and
analysis techniques presented in these two papers to demon-
strate the presence of self-similarity in �le system tra�c.
Self-similar behaviour in various other types of systems (such
as wide-area tra�c [16], ATM networks [6], variable-bit-rate
video [2], and World Wide Web tra�c [3]) has been detected
using similar techniques.

The analysis of �le system performance, access charac-
teristics, and tra�c patterns has received considerable at-
tention in the past few years. In [19], the e�ects of �le
layout and fragmentation of a disk on �le system perfor-
mance are measured using synthesized workloads. Baker et
al. analyzed the user-level �le access patterns in the Sprite
distributed �le system using traces gathered via kernel in-
strumentation in a Sprite installation [7, 1]. The design and
performance of a log-structured �le system is presented in
[18], including the analysis of various cleaning policies. The
HP AutoRAID hierarchical storage system is discussed in
[22].

3 Theory of Self-Similarity

The theory behind self-similar processes is brie
y presented
in this section. A more thorough treatment can be found in
[9], [23], or [16]; the goal of this section is to outline enough of
the theory to motivate the methodology discussed in section
5.

Consider a stochastic process X = (X1; X2; : : :) with

mean � = EfXig, variance �
2 = Ef(Xi � �)2g, and au-

tocorrelation function:

r(k) =
Ef(Xi � �)(Xi+k � �)g

Ef(Xi � �)2g
; for k � 0: (1)

This process is said to exhibit long-range dependence if

r(k) � k��L(t) for (0 < � < 2); as k!1 (2)

and L(t) is a slowly varying function with the property

lim
t!1

L(tx)=L(t) = 1 8 x > 0: (3)

A new aggregated time series X(m) = (X
(m)
k : k =

1; 2; 3; : : :) for each m = 1; 2; 3; : : : is obtained by averag-
ing non-overlapping blocks of size m from the original series
X. In other words,

X
(m)
k =

(Xkm�m+1 + � � �+Xkm)

m
; k � 1: (4)

1Since most Ethernet tra�c is NFS tra�c, it is not unreasonable to
expect that NFS tra�c shows behaviour akin to the Ethernet tra�c.

The process X is said to be exactly second-order self-similar
with Hurst parameter

H = 1�
�

2
(0 < � < 2) (5)

if, for any m = 1; 2; 3; : : :,

V ar
�
X(m)

�
/ m�� (6)

and
r(m)(k) = r(k) (k = 1; 2; 3; : : :): (7)

If the weaker condition

r(m)(k)! r(k) as m!1 (8)

is true, then the process X is said to be asymptotically
second-order self-similar, with Hurst parameter H again
given by equation 5.

As described in [9], self-similar processes provide an ex-
planation for an empirical law known as the Hurst e�ect.
The rescaled adjusted range (R/S) statistic for a set of ob-
servations (Xk : k = 1; 2; : : : ; n) having mean �X(n) and
sample variance S2(n) is given by the relation

R(n)=S(n) = (1=S(n))[max(0;W1;W2; : : : ;Wn)�

min(0;W1;W2; : : : ;Wn)] (9)

where

Wk = (X1 +X2 + � � �+Xk)� k �X(n) (k � 1): (10)

Short-range dependent sets of observations seem to satisfy

E[R(n)=S(n)] � c0n
1

2 , while long-range dependent processes
such as self-similar process are observed to follow

E

�
R(n)

S(n)

�
� c0n

H ; (0 < H < 1): (11)

This is known as the Hurst e�ect, and it can be used to
di�erentiate between self-similar and non-self-similar time
series, as will be demonstrated in section 5.1.2

4 File System Traces

We examine a total of four �le system traces in this paper.
The �rst set of traces was collected in 1991 for a study of
the �le access patterns and caching behaviour of the Sprite
distributed �le system [1]. The traces were collected on a
Sprite cluster of approximately 40 workstations sharing a
single Ethernet, over eight separate 24 hour intervals. Be-
cause of the nature of the Sprite distributed �le system and
the manner in which the traces were gathered, all �le sys-
tem events required communication between the client and
the server; thus, all �le system events could be gathered at
the servers themselves. The events within the �le trace were
collected through kernel call instrumentation on client ma-
chines with a precision of 10 milliseconds. All �le system

2The Hurst parameter can be broken down into three distinct cat-
egories; H < 0:5, H = 0:5, and H > 0:5. Ordinary Brownian motion
(e.g., a random walk) is produced when H = 0:5. If H > 0:5, the val-
ues produced are self-similar with a positive correlation. If H < 0:5,
the values produced are self-similar with a negative correlation. Neg-
ative correlated data tends to reverse itself instead of continuing along
the same path. Positive and negative correlated data is also called
persistent and anti-persistent data, respectively. [12] Most observed
self-similar data to date is persistent.



requests (including those that are satis�ed by a client-side
cache) are present within the trace. The Sprite traces su�er
from some minor limitations, such as a lack of fully com-
plete information on �le read and write events. The total
number of bytes read from and written to �les could be de-
duced from the seek and close events recorded in the trace.
However, each individual �le read and write event could not
be recovered | these events were recorded in our second set
of traces.

The second set of traces used in this paper was gathered
from a relatively large NFS installation served by a single
Auspex NFS server. These traces were collected in 1994
to study the impact of di�erent cache policies on scalable
network �le system performance [4]. The Auspex NFS server
straddled four separate Ethernets, and served a total of 237
clients. The traces were collected by monitoring network
activity on each of the four Ethernets. This implies that any
�le system request satis�ed by a client-side NFS cache was
not present in the trace. The NFS traces available to us had
been post-processed in order to remove NFS-related artifacts
and de�ciencies. For example, �le open and close events
were not visible from the network, and had to be added
to the traces using a heuristic method. Postprocessing was
also performed on NFS attribute operations; it was assumed
that most attribute read operations within the trace were
really NFS cache consistency validation operations, and thus
some were removed from the trace. Anomalies from this
postprocessing likely introduced some minor distortion into
our results, but this distortion is only on a very �ne time
scale (on the order of milliseconds), and the fact that the
statistical methods used to detect self-similarity take into
account many time scales (up to many hours) implies that
the e�ects of such distortion are minimal.

The third set of traces was collected on a cluster of
twenty instructional UNIX workstations used by undergrad-
uate classes at UC Berkeley [17]. These long term traces
(referred to as the INS traces throughout the paper) were
gathered by using the auditing system to log all system calls
relevant to the �le system on each workstation. Because the
traces were collected on the client workstations, requests
that are absorbed by the local cache are present in the traces.
File system calls recorded in the raw traces include indi-
vidual data operations, such as read and write requests, as
well as metadata operations, such as open, stat, and chmod.
However, in the processed version of these traces that is an-
alyzed in this paper, some calls (such as lseek and dup) have
been removed from the traces, and consecutive read or write
operations made by the same process during the same sec-
ond are coalesced. Time is recorded on the granularity of
one second. These traces were collected continuously for six
and one half months over the fall of 1996 and spring of 1997.

Event #Sprite # NFS Events # INS
Type Events R W RW Events

Open 38668 66845 8457 520 229968287
Close 48412 66714 8455 518 232488430

Block Xfer n/a 344564 71399 0 633158006
Delete 5764 0 3327 0 3147359

Attribute unused 1374402 144336 0 857738997
Directory unused 1890262 0 20201 32176538
Seeks 28371 n/a n/a

Total #: 121215 4000000 1988677617
Time: 14413s 91337s 17448960s

(4h) (25.37h) (6 mnth)

Table 1: Trace summaries: this table summarizes the
number and type of events available in the Sprite, Auspex
NFS, and INS traces.

Trace Attribute Value

FS type NFS
FS size 7.5 GB
# �les 250,000
# users 500

# workstation clients 150
Trace duration 287 days
Trace start October 23rd, 1996
# Creations 443,516 (1,545/day)
# Deletions 314,333 (1,100/day)

# File Accesses 807,968 (2,815/day)
# Modi�cations 108,262 (377/day)

Table 2: Summary of the UMBC trace data

The �nal set of traces were collected daily on a portion
of the University of Maryland Baltimore County's �le sys-
tems to generate data for a tape-migration simulation. The
tracing period spanned 287 days. These traces (referred to
as the UMBC traces) were not collected with kernel mod-
i�cations; instead, a modi�ed version of the \�nd" utility
was run nightly to collect information from a number of �le
systems in the University. This tracing process did not pro-
vide the �ne-grained data the Sprite and NFS traces possess
| the tape-migration simulator did not require such �ne-
grained measurements. For example, on the Sprite system
traces, a user modifying a �le will generate an open, a close,
and many intervening reads and writes. The UMBC traces
only show one action, a �le modi�cation. Thus, the long-
term traces collapse many events into one. Similarly, the
trace collection process does not track how many times a
�le is used during a day. Finally, it misses all the tempo-
rary �les the system creates and deletes during the day |
Ousterhout [14] noted that 80% of all �le creations have a
lifetime of less than three minutes; all of these are missed.

Tables 1 and 2 summarizes the number of events within
the portions of the traces analyzed in the paper. For the
Sprite �le system traces, four hours worth of events from
the most heavily used server, which had over 75% of the
Sprite cluster's �le system events. Access privileges (i.e.,
read, write, or read/write access) were not considered for
Sprite events in this section of the paper. Four million events
were analyzed from the Auspex traces | this represents
approximately 25 hours worth of trace data. All events from
the INS and the UMBC traces were considered.

4.1 Visualizing the Traces

Figure 1 illustrates the INS traces across 6 orders of mag-
nitude of time scales. Each plot within the �gure repre-
sents �le system event activity, enumerated as the number
of events per time unit. Successive plots are re�nements of
the previous plots; the top plot in each column has a time
unit of 32,768 seconds, the second of 4,096 seconds, and so
on. The left column illustrates �le system read or write
events (summarized as XFER events), and the right column
illustrates attribute read or write events (ATTR).

The most obvious feature of the XFER events is that
they appear bursty at all time scales, although the bursti-
ness appears to smooth out at coarser time granularities. For
example, at the 500-second time scale, the peak-to-average
ratio is about 60:1, but by the 6 month time scale, the ratio
drops to about 5:1. For the ATTR events, a similar but even
more pronounced e�ect can be observed. At �ne time gran-
ularities, very bursty, unpredictable behaviour occurs. For
coarse granularities (3-day and above), the traces become
extremely smooth and predictable, although a small num-



0

2e+06

4e+06

6e+06

8e+06

0 5e+06 1e+07 1.5e+07

200000

400000

600000

800000

1e+06

6e+06 7e+06 8e+06

50000

100000

150000

6.5e+06 6.6e+06 6.7e+06

4000

8000

12000

16000

6.55e+06 6.56e+06 6.57e+06 6.58e+06

0

1000

2000

3000

4000

5000

6.565e+06 6.567e+06 6.569e+06

0

500

1000

1500

2000

2500

6.5665e+06 6.56675e+06 6.567e+06

0

3e+06

6e+06

9e+06

1.2e+07

0 5e+06 1e+07 1.5e+07

0

200000

400000

600000

800000

6e+06 6.5e+06 7e+06 7.5e+06 8e+06

0

20000

40000

60000

80000

6.5e+06 6.6e+06 6.7e+06

0

1500

3000

4500

6000

6.55e+06 6.56e+06 6.57e+06 6.58e+06

0

250

500

750

1000

6.565e+06 6.567e+06 6.569e+06

0

40

80

120

160

200

6.5665e+06 6.5668e+06

32,768 second buckets
(6 months total)

4,096 second buckets
(24 days total)

512 second buckets
(3 days total)

64 second buckets
(8.9 hours total)

8 second buckets
(67 minutes total)

1 second buckets
(500 seconds total)

# 
ev

 /b
uc

ke
t

# 
ev

 /b
uc

ke
t

# 
ev

 /b
uc

ke
t

# 
ev

 /b
uc

ke
t

# 
ev

 /b
uc

ke
t

# 
ev

 /b
uc

ke
t

(a) INS XFER operations (b) INS ATTR operations

time (s)time (s)

Figure 1: Visualization of the traces: INS �le system events per unit time (or \bucket") are plotted for 6 increasingly
re�ned time units, varying by a total factor of 32,768. Column (a) shows read and write operations, and column (b) shows
�le attribute read or modi�cation events. The x-axis of all graphs is the number of seconds since the start of the trace that
each bucket begins; the y-axis shows the number events that occurred during that bucket.

ber of large spikes can be seen to interrupt this smoothness.3

A very strong diurnal cycle can also be seen in both event
traces at the 3-day and 24-day scales.

Process models that are typically used while modeling
systems events (such as those having Poisson or Markov
modulated Poisson interarrival times) tend to look uniform
at large time scales, primarily because of their �nite vari-
ance and short-tailed distributions. In contrast, self-similar
processes exhibit scale invariance; the processes will appear
to be bursty at all time scales, and will not degrade to uni-
formity. Figure 1 contains characteristics of both process
models; across short time scales (less than a day), the pro-
cess appears bursty, while across larger time scales (more
than a few days), the process smooths out to some degree.

3Closer examination of these large spikes at the coarse time scales
revealed that they were caused by misbehaving or extremely poorly
written programs. For example, a runaway program that was repeat-
edly reading a .logout �le dominated all other �le system activities
for 2 days, causing a large spike to appear in �gure 1.

5 Self-Similarity in File Systems (Short-term)

In this section, we demonstrate using rigorous statistical
techniques the presence of self-similar behaviour in the two
short-term �le system traces (Sprite and Auspex NFS). The
two techniques that we use are variance-time plots, and R/S
analysis.

5.1 Variance-time plots

We can take advantage of equation 6 to more rigorously
verify the self-similar nature of a process, and to estimate
the value of the Hurst parameter H. Taking the logarithm
of both sides of the equation results in the relation

log
�
V ar

�
X(m)

��
= c1 � � log (m) (12)

for some constant c1. Thus, plotting log
�
V ar

�
X(m)

��
ver-

sus log (m) for many values ofm of a self-similar process will
result in a linear series of points with slope ��; this plot is
known as a variance-time plot.
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Figure 2: Variance-time plots: Variance plots for (a)
Sprite �le open events and (b) NFS �le open (W) events
are illustrated, and linear curve �ts displayed.

Given a variance-time plot, an estimate of H can be
obtained by calculating the slope � and using equation 5.
Slopes between -2 and 0 correspond to Hurst parameters
H between 0.5 and 1; if 0:5 < H < 1, then the process is
self-similar. Figure 2 illustrates the variance-time plot for
Sprite �le open events (2a) and NFS �le open (W) events
(2b). Both are extremely linear, and have Hurst parameters
of 0.874 and 0.749, respectively. This veri�es the self-similar
nature of these processes.

Variance-time plots were generated for all of the events
listed in table 1; the resulting Hurst parameter estimates are
listed in table 3. In all cases except for open and close (RW)
events within the NFS traces, all estimated Hurst parame-
ters are well above 0.5, indicating that speci�c �le system
event types exhibit self-similarity across short time scales.
The two cases for which the estimated Hurst parameter is
low (NFS open and close events with RW privileges) cor-
respond to events for which scant amounts of trace data
were available (refer to table 1). These two estimated Hurst
parameters are thus unreliable.

Somewhat surprisingly, the estimated values of H for the
1991 Sprite �le system events seem to match their 1994 NFS
counterparts. For example, the estimated value of 0.8734
for Sprite open events is quite close to the NFS open (R)
value of 0.8413, although it is greater than the NFS open
for write (W) and open read/write (RW) values of 0.7491
and 0.5286, respectively. Considering that the number of
NFS open read (R) events dominate the NFS open (W) and
open (RW) events, this is not unreasonable. However, as
indicated by the con�dence intervals on these H estimates,
the di�erences between the NFS and Sprite values are sta-
tistically signi�cant.

Unsurprisingly, the measured Hurst parameters for open
events closely match the measured values for close events.
Open events are quickly followed by close events; the open
and close event processes should therefore be equally bursty
and asymptotically self-similar.

5.2 R/S-Analysis and Pox plots

A second estimate of the Hurst parameter can be obtained
through R/S analysis (originally presented in [13], and fully
explained in [2]). Given a set of observations (Xk : k =
1; 2; : : : ; N), that set is subdivided into K disjoint, contigu-
ous subsets of length (N=K). The R/S statistic R(ti; n)=S(ti; n)
(equation 11) is then computed for the starting points ti of
the K disjoint subsets and for values of n satisfying the re-
lationship (ti � 1) + n � N .
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Figure 3: Pox plots: Pox plots for (a) Sprite �le open
events and (b) NFS �le open (W) events are illustrated, and
linear curve �ts displayed.

From equation 11 can be derived:

log

�
R(ti; n)

S(ti; n)

�
= c2 +H log(n): (13)

Plotting log (R(ti; n)=S(ti; n)) versus log(n) should there-
fore result in a roughly linear graph with a slope equal to
the Hurst parameter H; such a graph is known as a Pox
plot.

Figure 3 contains Pox plots for the same Sprite �le open
and NFS �le open (W) events as were used to produce the
variance-time plots of �gure 2. A least-squares linear �t
of the data produced estimated Hurst parameter values of
0.890 and 0.747, respectively. These estimates are extremely
close to the previously estimated values of 0.874 and 0.749,
which gives con�dence to the variance and Pox plot analysis
techniques as well as to the estimated values of H.

Estimates of H were generated through R/S analysis for
all of the available �le system events. Table 3 summarizes
the results of this analysis. Once again, all estimated Hurst
parameters are well above 0.5, con�rming the presence of
self-similarity in the �le system traces. Furthermore, the



Event Analysis Sprite NFS H

Type Method H R W RW

Open variance-time 0:8739� 0:0012 0:8686� 0:0055 0:7489� 0:0039 0:5220 � 0:0016
pox plot 0:8898� 0:0047 0:8521� 0:0052 0:7472� 0:0059 0:5696 � 0:0039

Close variance-time 0:8695� 0:0012 0:8753� 0:0070 0:7355� 0:0035 0:5268 � 0:0023
pox plot 0:8750� 0:0042 0:8464� 0:0050 0:7324� 0:0054 0:5675 � 0:0039

Block Xfer variance-time n/a 0:8647� 0:0012 0:8681� 0:0050 n/a
pox plot n/a 0:8071� 0:0042 0:8424� 0:0077 n/a

Delete variance-time 0:7773� 0:0045 n/a 0:8489� 0:0070 n/a
pox plot 0:7463� 0:0040 n/a 0:7973� 0:0091 n/a

Attribute variance-time unused 0:8156� 0:0040 0:9899� 0:0007 n/a
pox plot unused 0:7578� 0:0048 0:7345� 0:0100 n/a

Directory variance-time unused 0:9832� 0:0005 n/a 0:7329 � 0:0039
pox plot unused 0:9316� 0:0057 n/a 0:6659 � 0:0054

Seeks variance-time 0:8323� 0:0073 n/a
pox plot 0:7712� 0:0049 n/a

All events variance-time 0:9033� 0:0011 0:9688� 0:0008
pox plot 0:9098� 0:0044 0:8960� 0:0048

Table 3: Estimates of H: This table summarizes the estimated values of the Hurst parameters H derived from variance-time
and pox plots of the Sprite and NFS trace data.

correlation between all Pox plot generated H estimates and
the previously presented variance-time plot generate H esti-
mates is extremely high, although the estimates' con�dence
intervals do not overlap. With the exception of NFS at-
tribute (W) events, all Pox plot and variance-time plot es-
timates were between 5-10% percent of each other.

The di�erence between the two measured H estimates
for NFS attribute (W) events is startling, and cannot be
easily explained. The uncharacteristically high value of the
variance-time plot estimate (0.9934) suggests the possibility
of an error in either the attribute (W) event traces, or per-
haps is a result of the anomalies introduced during the NFS
trace post-processing stage.

To summarize, we have used both variance-time and
R/S analysis to convincingly show that short-term �le sys-
tem tra�c exhibits self-similarity. The variance-time and
R/S analysis produced consistent measures of the degree of
burstiness of the two traces, and these measures appeared
to be closely correlated across the Sprite and NFS traces.

6 Lack of Long-Term Self-Similarity in File Systems

Self-similarity by de�nition spans all time scales, so �le sys-
tem tra�c over very long periods should still exhibit self-
similar behaviour. However, as we demonstrate in this sec-
tion, the self-similarity appears to break down at time scales
in the neighbourhood of a day to a week. We saw some
evidence of this in �gure 1 when the INS trace became
less bursty and more predictable at these time scales. We
demonstrate this more convincingly here using variance-time
analysis.

6.1 Variance-time Analysis of Long-Term Trace Data

Figure 4 shows the variance-time plots from three dif-
ferent traces. Figure 4(a) and (b) illustrate all and open
�le system events from the INS trace, respectively. Figure
4(c) shows all �le system events from the UMBC trace. In
all three plots, we can see that for �ne-grained time scales,
a linear relationship can be observed with a slope in the
range �1:0 < m < 0, indicating self-similarity. However, at
time scales approaching a day, this linear relationship breaks
down, as evidenced by the \knees" in each curve.

This e�ect can also be observed in previously published
work. In �gure 4(d) we have replicated a previously pub-
lished variance-time plot from [3] that illustrates self-similarity

in world wide web tra�c. This e�ect of non-linearity can be
observed here; the plot just begins to fall o� of the straight
line as the dataset's time scales are exhausted. We hypoth-
esize that if another order of magnitude of trace data had
been analyzed, this e�ect would have been unmistakable.

This evidence, in combination with the visual con�rma-
tion of a smoothing out of the burstiness of the long-term
tra�c in �gure 1, leads us to the conclusion that �le sys-
tem tra�c is observably not self-similar|the burstiness
of the tra�c simply does not uniformly extend across all
time scales. This is completely reasonable and intuitive:
human behaviour dominates the tra�c at the day through
week level, as evidenced by the traces' unmistakably diur-
nal cycle. Across several weeks and months, there is some
burstiness, but the burstiness is limited in scale and far less
frequent than at short time scales. For such short time
scales, however, the �le system tra�c is well-represented by
a self-similar process, but for long time scales, self-similarity
does not give a good representation of the tra�c.

In [10], an analysis of a subset of heavy-tailed distributions4

known as Power-tail distributions is presented. This work
argues that the self-similarity identi�ed in systems (includ-
ing the Ethernet tra�c from [9]) can be explained by an
arrival process with such a power-tail distribution. Power-
tail distributions do obey the central limit theorem, but only
for extremely large aggregation values. [10] argues that Le-
land et al. would have observed their tra�c instability to
smooth out if only they had increased the time scale of their
analysis by another 2 orders of magnitude to a total of 7.

In comparison, our INS traces ostensibly span a total of
more than 6 orders of magnitude. The INS traces are unique
in that they a�orded us the possibility of observing such a
wide time range of trace data that it resulted us in observing
the cessation of the self-similar behaviour.

7 ON/OFF Sources

We have not yet attempted to explain the underlying cause
of the short term self-similar behaviour of �le-system tra�c.
Willinger et al.[23] proposed a physical explanation of ob-
served self-similarity in Ethernet LAN tra�c, based on the-

4A heavy-tailed distribution is typically one which exhibits in�nite
variance. An example of a heavy-tailed distribution is the Pareto
distribution, whose general form is P (x) = �a�x���1 with a; � � 0
and x � a. The Pareto distribution has in�nite variance for values of
� < 1.
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Figure 4: Variance-time plots: these plots clearly demonstrate a substantial change in tra�c characteristics at a time scale
between 104 and 105 seconds per bucket, i.e. at the day to week long time scale. The �rst two �gures (a) and (b) are of INS
trace events, and the second is of the UMBC trace events. (d) is a reproduced �gure from a published paper on self-similarity
in World Wide Web tra�c [3].

ory developed initially by Mandelbrot[11] and then Taqqu
and Levy[20].

The theory states that the aggregation of many ON/OFF
sources, each exhibiting a characteristic known as the Noah
e�ect, results in self-similar total tra�c. An individual source
is classi�ed as being ON/OFF if its tra�c appears to con-
tain highly variably lengthed ON and OFF periods; an ON
period contains much activity, while an OFF period has a
complete lack of activity. The Noah e�ect refers to the high
variability of the ON and OFF periods. If the distribution
of ON and OFF period lengths from individual sources is
heavy-tailed, then the aggregate tra�c exhibits the Noah
e�ect, and can be shown to exhibit self-similarity.

The theory presented in [20] makes the simplifying as-
sumption that events within an ON period are evenly dis-
tributed. The ON/OFF source model is thus similar to
packet-train models often used to model network sources,
but with the exception that packet interarrival times must
have a heavy-tailed distribution.

7.1 ON/OFF Behaviour in the Short-term Traces

An examination of the trace events from individual source
hosts within the Sprite cluster and NFS installation should
identify whether or not the self-similarity of the �le system
traces can be explained using this ON/OFF model. Fig-
ure 5 presents two textured dot strip plots obtained from
the Sprite and NFS traces. A textured dot strip plot (pro-
posed in [21]) is a two-dimensional representation of a one-
dimensional time-series. Each vertical column in a plot cor-
responds to one time unit; the displacement of dots (repre-
senting events) within that column represents the fractional
position of the event in that time unit.

In order to better depict the ON/OFF behaviour of the
sources, the subset of the Sprite traces that was analyzed
was extended from a four hour subset to an approximately

41 hour subset; access privilege information was also ex-
tracted from the Sprite traces. Figure 5a illustrates the
textured strip dot plot for Sprite open (W) events origi-
nating from host workstation ID 42 (4168 such events were
extract from the trace.) Similarly, �gure 5b illustrates NFS
block reads from host workstation ID 3068, for which 23025
events were extracted. These two hosts were chosen be-
cause they were both quite active throughout the period of
analysis, and their high activity resulted in visually striking
ON/OFF periods within the dot plots. It should be noted
that even relatively lightly active hosts could be seen to ex-
hibit this ON/OFF behaviour, although the behaviour was
not as pronounced in their textured dot plots.

The ON/OFF behaviour of these two sources is unmis-
takable. It is also clear that the ON periods for NFS block
read events are much sharper and more dense than for Sprite
�le open (W) events. This di�erence is easily explainable.
First and foremost, �les are known to be read far more fre-
quently than they are written[1]; from table 1 we see that
approximately 13.4% of NFS �les are opened with write or
RW privileges, while 86.6% of �les are opened with read-only
privilege. Similarly, [1] reported that 88% of �les within the
Sprite traces were opened with read-only privilege. Sec-
ondly, many �le read and write events occur in between a
given �le open and close pair. The total amount of read
and write events therefore greatly outnumbers the amount
of open or close events.

7.1.1 The Analysis of ON and OFF periods

In order to verify the presence of the Noah e�ect, the ON
and OFF periods for these sources �rst need to be identi�ed.
To do so, we use a method similar to that described in [23].
The source's trace is scanned linearly; given an event from
the trace, we assume that subsequent events belong to the
same ON period if they occur within some threshold amount
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Figure 5: Textured dot strip plots: Textured dot strip plots with time units of 1 second for the (a) Sprite �le open (W)
events of host 42 and (b) NFS block read events of host 3068 are illustrated.

of time, otherwise we mark the interval to the next event
as an OFF period. The ON/OFF period size distributions
were calculated for the Sprite �le open (W) events, using a
threshold value of 60 seconds.5 The resulting number of ON
and OFF periods was 182 and 181, respectively.

If both the ON and OFF period length distributions are
heavy-tailed, i.e. they satisfy

P (U > u) � cu�� with u!1; 1 < � < 2; (14)

for period length U, and if the activity within an ON-period
is uniform, then the aggregation of many such sources results
in a self-similar process with Hurst parameterH = 3��

2
. [23]

Once the ON and OFF periods from a given source have
been identi�ed, we can verify the presence of the Noah e�ect
using complementary cumulative distribution plots, or \qq-
plots."[8] The idea is simple: if we assume that the period
length distribution under analysis obeys equation 14, then
by taking the log of both the sides of equation, we obtain

log P (U > u) � log(c)� � log(u) as u!1: (15)

Plotting the measured complementary cumulative period
length distribution P (U > u) versus period length u in a
log-log plot should thus yield a straight line with slope ��,
for large enough values of u. We performed this analysis,
and did indeed observe a linear relationship, with a slope
of approximately �1:16. We also used a second method for
identifying the Noah e�ect known as a Hill plot. We omit
details of this analysis, but merely state that its results con-
�rm those of the qq-plot. Interested readers are referred to
[23] for a treatment of Hill plots.

Both the Hill and qq-plot analysis con�rm that the ob-
served ON and OFF periods lengths are Pareto distributed.
This is consistent, since we have already shown that the
aggregate tra�c of all observed ON/OFF sources from the
short-term traces is self-similar in nature.

7.2 Synthesizing Self-Similar Trace Data

The ON/OFF source behaviour for individual clients in the
short-term traces suggests a simple method for synthesiz-
ing a stream of self-similar events. We can model an indi-
vidual client's activity as a set of ON/OFF periods, i.e. a

5The threshold value of 60 is somewhat arbitrary. We observed a
large range in potential threshold values that gave very similar results;
the value 60 gave representative results.

packet train with heavy-tailed train lengths and inter-train
arrival times. We can then aggregate many such synthesized
clients, and the resulting tra�c should exhibit the desired
self-similar behaviour.

In section 7.1, we demonstrated that the �le open (W)
event series generated by a client exhibits ON-OFF behaviour.
Our simple model therefore generates ON and OFF peri-
ods whose lengths are Pareto distributed and populates the
ON periods by generating a succession of �le open events
within each of these periods. To do this correctly, we re-
quire knowledge of the distribution for inter-arrival times
between �le-open events. Having generated an open event,
we then generate subsequent write events and �nally a close
event.

In order to test our simple packet train model, we ex-
tracted a number of distributions from the Sprite and NFS
�le system traces to use as inputs to the model. The pa-
rameter � extracted from the Hill plot in section 7.1.1 was
used to create ON/OFF periods. In order to populate the
ON periods with open events, the distribution of �le open
(W) inter-arrival time was measured and used.

Figure 6a shows the measured distribution of �le open
(W) events from the Sprite traces.6 The illustrated distri-
bution was truncated at 4 seconds for the sake of clarity,
but in reality it extended as far out as 900 seconds. Clearly
this distribution is heavy-tailed (which is consistent, since
we previously demonstrated that Sprite open events are self-
similar). In order to model this distribution, we �t the data
against the general form of a Pareto distribution:

P (x) = c3 x
��: (16)

Taking the logarithm of both sides of equation 16 results in
the linear relation log(P (x)) = log(c3) � � log(x). Thus, a
log-log plot of the measured distribution should result in a
linear function with slope �� and intercept log(c3). Figure
6b illustrates the log-log plot of distribution 6a. The least-
squares �t of this plot resulted in an estimated � value of
1:105 and c3 value of 52:66. These values were then substi-
tuted into equation 16, and the resulting distribution over-
layed on top of �gure 6a. The strong resemblance between
this generated distribution and the observed data indicates
that the choice of a Pareto distribution as a model for �le

6We chose to measure distributions from the Sprite �le traces in or-
der to avoid the post-processing anomalies present in the NFS traces.
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open inter-arrival times is reasonable. Note that for the pur-
poses of modeling, only the � = 1:105 value is important,
since c3 is only an indicator of the number of events in our
measured distribution, and is replaced by a normalization
constant in the model.

Given the value �, we can now generate �le open events
within ON periods. To generate the �le close events to
match the open events, we need the distribution of times
between �le open events and their corresponding closes. A
similar analysis revealed that this distribution (for the Sprite
traces) was also well represented by a Pareto distribution
with � = 1:131. The distribution of �le sizes (measured at
the time of close (W) events) was also seen to be heavy-
tailed. Analysis of this distribution resulted in an estimated
� = 1:481.

7.2.1 Model Results

To test the validity of our model, we synthesized �le sys-
tem events for 20 clients and aggregated them to obtain the
overall tra�c for the server. The textured plot for all events
generated by a representative individual client (number 15)
is shown in �gure 7. The plot looks remarkably similar to the
ones encountered by us during our studies. To verify that
the OFF period lengths for this source indeed follow the
Pareto distribution, we generated a qq-plot and Hill plot for
a synthesized client. The estimate of � that we measured
using both techniques was approximately 1.25, which is the
same value that had been used as a parameter to our model.

To test the behaviour of the aggregate tra�c, we per-
formed R/S analysis and variance-time analysis. The value
for the Hurst parameter calculated from both is 0.615 and
0.697 respectively | this shows that the aggregate synthe-
sized tra�c is self-similar. The strength of our model there-
fore lies in being able to exhibit the same bulk properties as
those of the traces input to it.

7.3 ON/OFF Summary

We have shown that:

� �le system clients from both the NFS and Sprite �le
system traces show ON/OFF behaviour.

� the distribution of ON/OFF period lengths in both
traces is heavy-tailed, and therefore the traces show
the Noah e�ect.

� it is possible to use this ON/OFF behaviour as the
motivation for a simple packet train model that can
be used to synthesize tra�c that exhibits self-similar
behaviour.

8 Conclusions

Previous studies have demonstrated that byte or packet level
network tra�c is self-similar in nature. In this paper, we
have shown that high-level �le system events also exhibit
this self-similar behaviour, but only across time scales of
less than a day. The total �le system tra�c and individ-
ual classes of �le system events (such as �le opens, closes,
writes, etc.) seen by the �le server were both observed to
exhibit this self-similar behaviour. This \short-term self-
similarity" was observed in four �le system traces (of a 1991
Sprite distributed system cluster, a 1994 Auspex NFS instal-
lation, a 1996/1997 instructional UNIX cluster, and a 1997
NFS installation) with signi�cantly di�erent characteristics.
The load, typical application usage, tracing technique, and
dates of tracing all di�ered between the three traces, but
the measured self-similarity parameters were observed to be
relatively consistent across all traces.

Two of the traces were then analyzed across a much wider
set of time scales, and the self-similar behaviour ceased for
time scales of days, weeks, and months. Although burstiness
did persist, the bursts began to smooth out. This smoothing
out had the e�ect of showing up as very pronounced non-
linearities in the variance-time plots of the long-term traces.

A proposed causative factor of short-term self-similarity,
namely ON/OFF source behaviour, was also observed for
the Sprite and Auspex traces. Individual sources of �le sys-
tem activity (i.e. workstations) were seen to have the hy-
pothesized behaviour, and an analysis of the ON/OFF pe-
riod lengths demonstrated them to exhibit the Noah e�ect
required for aggregate self-similar tra�c. Both the ON/OFF
behaviour of individual sources and the resulting short-term
self-similar aggregate �le system tra�c are intrinsic to �le
systems, and must be considered during the design and sim-
ulation of �le systems. We demonstrated that this ON/OFF
behaviour could be used to synthesize a stream of �le system
events that show the desired short-term self-similarity.

In conclusion, the four �le system traces that we analyzed
had signi�cant di�erences: the �le system being traced, the
method of gathering the traces, the chronological time that
the traces were gathered, the information gathered within
the traces, and the user and system environments all dif-



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
E

ve
nt

s
Time in seconds

Textured plot for traffic generated by one source
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fered. Despite these di�erences, we found the same short
term self-similar behaviour in all three traces. However,
since we found that this self-similar behaviour is limited to
short time scales, we must conclude that �le system tra�c
is, strictly speaking, not self-similar in nature.
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