Input/Output Behavior of Supercomputing Applications

Ethan L. Miller
Randy H. Katz

Computer Science Division
Department of Electrical Engineering and Computer Science
University of California at Berkeley
Berkeley, CA 94720

Abstract

This paper describes the collection and analysis of
supercomputer I/0 traces and their use in a sel of
buffering and caching simulations. Qur analysis of
these traces shows that program accesses are cyclical
and bursty. We classify file references into three types,
and show the general access pattern and intensity for
each type. Simulations of a Cray Y-MP’s file system
and attached disks using these traces show what re-
sources are needed to mazrimize the CPU utilization of
a supercompuler given the very bursty I/0 request pal-
tern. By using read-ahead and write-behind in a large
solid-state disk, one or two applications were sufficient
to fully utilize a Cray Y-MP CPU.

1 Introduction

Over the last few years, CPUs have seen tremen-
dous gains in performance. I/0O systems and memory
systems, however, have not enjoyed the same rate of
increase. As a result, supercomputer applications are
generating and consuming more data, but I/O sys-
tems are not becoming better able to cope with this
huge volume of information. Multiprocessors are ex-
acerbating this problem, as the number of disks and
tape drives, and thus aggregate bandwidth required,
increase. The actual bandwidth available is not usu-
ally scaled up at the same rate as the aggregate pro-
cessing speed, however. According to Amdahl’s met-
ric [3], each MIPS (million instructions per second)
should be accompanied by one megabit per second of
I/0. Solving this problem requires correct matching
of bandwidth capability to application requirements,
and using buffering to reduce the peak bandwidth that
the T/O system must handle. To better determine the
necessary hardware bandwidth and software buffer siz-
ing and policies, we must analyze the I/O patterns of
applications running on such computers To do this
requires I/O access traces from real supercomputing
applications, which we have gathered for the analysis
in this paper.

This paper first examines general file system char-
acteristics, especially those important to supercom-

puters. Next, we describe and analyze the access pat-
terns of the applications which we traced. Finally, we
present the results of simulations of various methods,
such as read-ahead and write-behind, to reduce peak
and overall I/O demand for supercomputer file access
patterns.

2 Overview
2.1 Conventional File Systems

Caching, the most effective method for reducing
I/O bandwidth requirements, has been widely used
in conventional file systems. It succeeds because of
the properties commonly exhibited by many worksta-
tion and minicomputer applications, such as locality
of reference in time and space [7]. For example, with a
2 MB cache on a VAX, only 17.7% of the applications’
requests had to be fetched from disk. Prefetching data
into a cache also reduces the instantaneous demand on
an I/O system by spreading out demand and by pre-
dicting references [10]. This may reduce the number of
separate disk requests, but the amount of data trans-
ferred will not go down. In [7], sequential reads and
writes accounted for over 90% of the accesses to files
which were either read or written, but not both, and
about 67% of total data transferred.

Another method of reducing I/Os from cache to
disk 1s delayed writes. Delayed writes require a write-
behind cache policy, which allows a program to con-
tinue executing after writing data to the cache without
waiting for the data to be written to disk. In Sprite
[6], data is not written back to disk for 30 to 60 sec-
onds. Every 30 seconds, all data in the cache that is
older than 30 seconds is written to disk, allowing the
operating system to group all the writes. This allows
temporary files which exist for less than 30 seconds,
such as those generated by compilers, to be deleted
and thus never written to disk. The 30 second delay
is itself a file system parameter, and balances the re-
duced load on the disk system against the risk of losing
data by not writing it to disk immediately. By totally
eliminating disk I/Os associated with very short-lived

This paper appeared in Supercomputing ‘91, November 1991, pages 567-576.

files, the required bandwidth from cache to disk is re-
duced further.

These methods can be applied to supercomputer file
systems, but there must be some changes to reflect the
differences between interactive and small batch jobs
run on smaller computers and the large vectorized ap-
plications run on supercomputers.

2.2 Supercomputer Environment

The production supercomputer environment is dif-
ferent from a conventional workstation and minicom-
puter environment. It is characterized by a few very
large processes that consume huge amounts of memory
and CPU time. Jobs are not interactive; instead, they
are submitted in batch and run whenever the scheduler
can find memory space and CPU time for them. This
difference allows the scheduler to better plan usage
of memory and CPU resources, as there is a relatively
static queue of jobs to run and none of the jobs require
fast response time. Such resource scheduling is often
necessary, however, since many jobs require hundreds
of megabytes of memory and hours of CPU time.

An example of a large supercomputing environment
is the Cray Y-MP 8/8128 at NASA Ames, the com-
puter on which we traced the applications. This com-
puter has eight processors, each with a 6 ns cycle
time. The system has a total of 128 MW of memory
(each word is eight bytes long) shared among the eight
processors. The I/O system has 35.2 GB on high-
speed disks, each capable of sustaining 9.6 MB/sec, a
256 MW solid-state disk (SSD) acting as an operat-
ing system-managed cache for a single filesystem (not
the entire collection of disks), and several terabytes of
nearline and offline tape storage [1, 2, 5]. The tape
storage is divided into two parts—a nearline storage
facility called the Mass Storage System (MSS), which
can automatically mount tapes with requested data,
and the extensive offline tape library which requires
operator intervention. The NASA Cray Y-MP sys-
tem already has the maximum configuration of Y-MP
memory (128 MW), so I/O problems cannot be alle-
viated simply by adding more main memory.

The UNICOS process scheduling mechanism at
NASA affects the way programmers choose to struc-
ture their implementations, and thus I/O demands.
Batch jobs, which include any program requiring more
than ten minutes of Cray CPU time, are queued ac-
cording to two resource requirements—CPU time and
memory space. As the Cray Y-MP does not have vir-
tual memory, all of a program’s memory must be con-
tiguously allocated when the program starts up, and
cannot be released until the program finishes. To sim-
plify memory allocation, each queue is given a fixed
memory space, sufficient to run one or more jobs from
the queue. A job ready to run and residing in mem-
ory is run on any of the eight processors that is avail-
able. Tt runs until it must wait for a disk 1/0, at
which time it is suspended. This program remains in
memory, and another program that i1s ready to run
is given to that processor. Since there are eight pro-
cessors, there must be at least eight jobs in memory
and ready to run to keep all of the processors busy.

In practice, only a few more jobs than processors are
required to keep all processors busy. Each queue may
have sufficient space to run more than one job in; in
particular, queues with low memory requirements may
run several jobs at once. Thus, for a given amount
of CPU time required by an application, turnaround
time is shortest for the application which requires the
least main memory. Programmers take advantage of
this by structuring their program to use smaller in-
memory data structures while staging data to/from

SSD or disk.
2.3 Supercomputer Applications

Because of their high-speed vector processing abil-
ity, supercomputers are ideally suited to problems that
require manipulations of large arrays of data such as
computational chemistry, computational fluid dynam-
ics, and seismology, to name a few. These problems
all require large numbers of floating-point computa-
tions, which are usually vectorizable, over large data
sets: from hundreds of megabytes up to tens or hun-
dreds of gigabytes for some seismic computations. In
most cases, the application performs multiple itera-
tions over the data set, both to simulate a model
through time and to gain higher accuracy for approx-
imations.

3 Applications Traced

The first part of the study was an analysis of the
I/O patterns of actual applications. We gathered
traces from a variety of user codes running on the
Cray Y-MP. We chose to trace applications with high
I/0 rates, both in megabytes per second and accesses
per second. While many supercomputer applications
do not perform a lot of I/O [11], we decided to con-
centrate on codes that did require it. I/O-intensive
applications stress the file system and I/O hardware
more, revealing performance bottlenecks. Programs
that perform few accesses are easy to characterize, as
will be shown with the two traces that had low levels
of /0.

The traces fell into several categories. Most were
computational fluid dynamics (CFD) problems, which
are concerned with modeling the flows of fluids, such
as water and air. However, each modeled different
physical objects and made use of different algorithms.
Several of the programs were climate models, while
others modeled vortices around a moving blade. One
program solved a structural dynamics problem, and
one did polynomial factorization. In Table 1, we sum-
marize some basic information about the applications.
Running time is the amount of CPU time each pro-
gram required. All of the other numbers are relative
to this time, not elapsed wall clock time. Total I/O
done is the total amount of data the program read
and wrote, and number of I/Os is the number of
read and write calls the program made to the file sys-
tem. The total size of the data set, which was the
sum of the sizes of all the files the program accessed,
is listed under total data size. The first group is the

Application Running | Total data Total I/O | Number Avg 1/O0 | MB/ | 10s/

Time (sec) | size (MB) | done (MB) of I/0s | size (MB) sec sec
bvi (CFD) 1258 171 22,835 | 1,380,457 0.016 18.2 1097
cem (climate) 205 11.6 1,812 54,125 0.031 8.8 264
forma (structural) 206 30.0 15,155 475,826 0.030 73.6 2310
gem (climate) 1897 229 266 7,953 0.031 0.1 4
les (large eddy) 146 224 7,803 22,384 0.317 53.4 153
upw (polynomial) 596 56 62 1,840 0.445 0.1 3
venus (climate) 379 55.2 16,712 34,904 0.032 44.1 92

Table 1: Characteristics of the traced applications.

climate models. These included gem (General Circu-
lation Model), cem (Community Climate Model), and
venus (a simulation of Venus” atmosphere). These
were CFD models which simulated atmospheres.

The major differences between the atmosphere
models were the sizes of the data arrays in the simu-
lations, the methods used to actually implement the
algorithms, and the tradeoff each algorithm made
between main memory size and I/O system usage.
Gem was primarily an in-memory simulation—the
only data that went through the operating system
were final results. The data fit into a main memory
array, obviating the need to stage data from disk. As
a result, the program did few I/Os. The venus code
went to the other extreme. To get into a shorter job
queue, the program’s implementor decided to use a
very small in-memory array. Thus, the program ac-
cessed the file system frequently to stage the required
data to and from memory. Cem took the intermedi-
ate point between the two, requiring fewer megabytes
per second of program execution than venus but far
more than gecm, probably because its in-memory data
array was intermediate in size between the other two
programs’.

The bvi (blade-vortex interaction) program was
also a CFD program, but it simulated the motion of a
helicopter blade through the surrounding air. It was
the only one of the programs traced explicitly designed
for use with the SSD on the Cray. Since the SSD has
zero seek time and a very high transfer rate, the pro-
gram did not suffer a major performance loss from the
many small I/Os it made. I/Os to and from the SSD
are done without suspending the process requesting
the I/O because the data is retrieved quickly. How-
ever, as will be discussed later, the file system over-
head may have slowed the program down by using
more operating system time. This added a sizable
penalty, more than would be incurred for a large re-
quest replacing several small ones.

The les application used the Navier-Stokes equa-
tions to model turbulence. This algorithm only calcu-
lates large-scale effects and directly models the small-
scale effects. A more complete description of the algo-
rithm is beyond this paper, but one can be found in

8.

Upw (approximate polynomial factorization) did

the least 1/O of any application traced. This program
read a small input file, computed for ten CPU minutes,
and wrote out an answer. It is an important program,
however, since this is a representative 1/O pattern for
some applications. The program infrequently requests
a few large 1/0s.

The last program traced was called forma. This
program was originally written for a Cray 1, with its
small memory, and uses sparse matrices to solve struc-
tural dynamics problems. In this program, I/O serves
a secondary purpose beyond just staging data in and
out. By breaking up the data array into blocks, empty
blocks (corresponding to empty parts of the matrix)
can be easily identified and created in memory instead
of being staged in. Thus, there is a secondary tradeoff
between 1/0 size and required bandwidth. A larger
block would allow more efficient 1/O requests, but it
also might require more I/O bandwidth. A matrix
block of size 2N x 2N, which consists of 4 subblocks
of size N x N, contains 4N? elements, all of which must
be read in. If three of the four subblocks are actually
empty, though, only one subblock, with N? elements
need be read in. This saves 75% of the I/O bandwidth.
The program, however, seems to have chosen a rela-
tively large access size despite the possible advantages
of a smaller one.

4 Tracing Methods

4.1 Information Traced

The traces gathered included two types of infor-
mation. First, they recorded file and disk reference
information, so the pattern of references to the file
system (for logical-level traces) and physical sectors
(for physical-level traces) could be reconstructed. File
identifiers corresponded to file opens; if the same file
was opened twice by a program, it received two differ-
ent identifiers. Second, timestamps were recorded for
each I/O. There were three timestamps for each 1/0
event. The first was total elapsed wall time, which
was obtained from a timer register in the CPU. This
value was in units most convenient to the system; for
the Cray Y-MP, it was in 6 ns clock ticks, as there
is a counter in the CPU which is incremented every
clock cycle. For traces in our format, this value was

Field Sample | Meaning
Value
flags 0xFE logical /physical I/O, read/write,

synchronous/asynchronous

which fields can be calculated
from previous records?

compression | 0

offset 0 offset within file of this I/O
size 10 size of the I/O (in bytes)
start time 3590 wall time when this I/O started

elapsed time | 129 wall time duration of this I/O

think time 10 process CPU time elapsed

since the last I/O

file ID 22 which file the I/O occurred on

Op ID 138

unique for each call
to the file system

Process ID 4891

process requesting this I/O

Figure 1: A sample trace record

converted to 10 ps units, as we believed this was the
correct tradeoff between timer resolution and trace
size. The second timestamp measured the wall clock
time between when the I/O request was made by the
application and when the completion status was re-
turned. This timestamp might have been affected by
the scheduler, since a program that waits for I/O is not
guaranteed to be restarted immediately when the 1/0
completes. The third timestamp was process elapsed
time, indicating the amount of CPU time the partic-
ular process had been running when the 1/O started.
Thus, the effects of multiprogramming could be fil-
tered, as the process elapsed time between 1/O events
would be dependent only on the application itself and
not on how often the process was swapped out.

4.2 Trace Format

The 1/0O accesses the applications made were all
recorded in a standard trace format that was designed
to be used for both logical and physical T/O traces.
The format was also designed with trace compression
in mind, as mentioned in [9]. This section gives a
high-level overview of the format.

Figure 1 shows a sample trace record. Compression
techniques worked especially well on supercomputer
I/O traces for two reasons—file accesses were highly
sequential, and a very large majority of the accesses
went to only a small number of files. Both of these
characteristics will be discussed in more detail later.

To save disk space and trace-gathering time, the
traces were compressed in two ways. First, some fields
could be specified relative to the immediately preced-
ing record. These fields included the timestamp fields
and the file identifier field. Instead of recording a full 8
or 9 digit time, only the difference between successive
times were recorded. Also, a bit in the compression
field was set if the file identifier was the same as in the
previous record. The second method of compressing
the trace was to record the size, length, and process
identifier of an I/O relative to the last access made to
that file. Again, a few bits in the compression field
could indicate that the access was sequential with the

last one to that file, or that the request was the same
size as the previous one to that file. In this way, the
trace of a program which made interleaved accesses
to several files, such as venus, was still compressed
efficiently. While we only collected logical-level trace
data on the Cray, we included provisions for our trace
format to include physical I/Os as well.

4.3 Trace Gathering Methods on the
Cray Y-MP

All of the data collected on the Cray Y-MP were
logical-level traces. This data included logical file
numbers, file offsets, request sizes, and wall clock and
process clock timestamps. Because none of the col-
lected data was internal to the operating system (as
physical block numbers would be), all the data could
be collected by code running at user level. Thus, mod-
ifications to the operating system were unnecessary.
This was a distinct advantage on the Cray, since it
would have been very difficult to obtain the amount
of dedicated time necessary to debug changes to the
operating system.

Instead of modifying the operating system, we
changed the user libraries dealing with 1/O. Cray
provides data collection hooks in standard system
libraries shipped with UNICOS 5.0. These hooks
merely provide aggregate data on I/0, such as the
total number of bytes a process requested from a file
and the average and maximum times to do an I/0.
Major events such as file opens, file closes, and pro-
cess forks are traced by the standard Cray software,
but we did not use the data in these trace packets ex-
cept to check some of our results. Trace packets are
sent to a process on the Cray called procstat. The
procstat process collects these packets, which include
an 8 word header and whatever data is necessary for
the system call being recorded, and writes them to a
trace file for later analysis. A diagram of the path
trace information takes is shown in Figure 2.

Merely modifying the libraries to produce one
packet per read and write call would have produced
far too much data. The packet headers are large com-
pared to the three to five words recorded per call. Read
and write records for each file were sent in batches,
so one header served for hundreds of I/O calls and
the overhead was amortized over many trace records.
In addition, trace packets were forced out every hun-
dred thousand I/Os. This was done since each packet
recorded data for just one file, and a file with little
I/0, such as a parameter file, might have two I/Os
separated by hundreds of thousands of 1/Os to a data
file. Reconstructing a single time-ordered stream of all
the accesses from the trace packet file requires buffer-
ing all the I/Os between flushes, since a packet written
during the flush might contain an I/O access from just
after the previous flush. If the interflush interval was
too high, this could require buffering many megabytes
of trace data, which was impractical on the worksta-
tions we used to analyze the data.

Collecting traces in this manner required very lit-
tle CPU overhead. There was no overhead during

application
/0 requests &
write data
trace trace
read data records records
[|

standard library

system calls

trace
file

system call

results
|

operating system

Figure 2: File data and trace record movement in the
Cray Y-MP

non-1/0 operations because the tracing mechanism
was only active during an I/O system call. Also, the
amount of tracing code executed per I/O was small
relative to the code the operating system would exe-
cute anyway. Overhead per system call was less than
20% of the unmodified call. The total overhead per
program was dependent on the number of I/O system
calls.

While this trace collection method is standard on
UNICOS, and vendor-supplied software contains most
of the code necessary for tracing, the same method
could easily be used to instrument standard libraries
on other computers and collect traces from applica-
tions on them. The only major requirement is an
accurate system clock. An operating system which
supports Unix-style pipes would also make it easier
to implement the trace collection software because we
used pipes to pass trace data from applications to
procstat.

5 1I/0 Pattern Analysis

There has been much analysis of overall supercom-
puter performance in both 1/O and CPU usage. How-
ever, the I/O usage studies have focused primarily on
overall system performance over relatively long peri-
ods, ranging from many minutes to several weeks [11].
While these studies are very useful for analyzing cur-
rent CPUs, inferences from current systems to future
systems may be difficult because parameters change in

different ways. For example, larger or smaller mem-
ory systems relative to CPU speed will certainly affect
overall system performance, but an accurate picture
requires examining individual applications and their
interactions under new system parameters.

5.1 Types of Application I/0O

All of the T/O accesses made by the programs can
be divided into three types—required, checkpoint, and
data staging. Required I/Os are similar to hardware
cache misses called compulsory in [4]. These consist
of I/Os that must be made to read a program’s initial
state from disk and write the final state back when
the program has finished. For example, a program
might read a configuration file and perhaps an initial
set of data points, and then write out the final set
of data points along with graphical and textual rep-
resentations of the results. These 1/Os, however, do
not contribute much to the overall I/O rate. For a
program which runs for only 200 seconds, reading 50
MB of configuration and initialization data and writ-
ing 100 MB of output, the overall I/O rate is only
0.75 MB/sec. This rate is easily sustainable by most
workstations, and certainly does not demand complex
solutions. While the peak rates at the start and end
of the program will be high, they will only occupy a
small fraction of the total running time of the pro-
gram. Upw and gcm are examples of programs that
only do compulsory 1/0.

Checkpoints, the second type of 1/O, are used to
save the state of a computation in case of a hardware
or software error which would require the program to
be restarted. A checkpoint file generally consists of
some subset, possibly complete, of the program’s in-
memory data. Checkpoints are usually made every few
iterations, though making them too often slows the
program down unnecessarily. The application writer
balances the cost of writing the checkpoint against the
cost of redoing lost iterations of the computation. The
likelihood of failure determines the number of itera-
tions between checkpoints. Since checkpoints occur
multiple times per program, they add more to the
bandwidth requirement than required I/O, but they
also do not place a continuous high demand on the
I/0 system. For a program that saves 40 MB of state
every 20 CPU seconds, the average I/O rate is only
2 MB/sec, far less than the maximum rate most su-
percomputers provide. As with required I/Os, dealing
with peak rates may present a problem. Since the
I/0s occur relatively infrequently, however, it is easy
to have another program ready to run (and not in
the checkpoint stage itself) while the first program is
writing its checkpoint out.

The third type of 1/Os, staging 1/Os, are done be-
cause the memory allocated to the problem is insuffi-
cient to hold the entire problem. These I/Os are the
equivalent of paging under a paging virtual memory
operating system, but they are generally done under
program control because many supercomputers lack
paging. Even when paging exists, the program is bet-
ter able than the operating system to predict which

data it will need. Unlike the other two types of 1/O
above, data staging 1/O must be done on every iter-
ation of the algorithm. The entire data set is usually
shuttled in and out of memory at least once per it-
eration, and perhaps more often. If each data point
consists of 3 words and requires 200 floating-point op-
erations, there must be 24 bytes of 1/O for every 200
FLOPS—quite close to Amdahl’s metric, which pre-
dicts 200 bits (25 bytes) of I/O for 200 FLOPS. For
a 200 MFLOP processor, the average sustained rate
will be almost 25 MB/sec, far more than either the
compulsory I/O data rate or the checkpoint I/O data
rate. Peak rates are higher still, and in fact are higher
than 200 MB/sec of requests sustained over several

CPU seconds.

5.2 I/O Access Characteristics

The I/0 accesses that the applications make can be
characterized in several ways. These include the total
amount of 1/0, the overall and per file read/write ra-
tio, and the overall and per file average 1/O size. In
looking at these characteristics, however, only “large”
files were considered. In most cases, these files were
over a few megabytes long, and some were hundreds
of megabytes long. While “small” files, which include
parameter files and human-read text output, are im-
portant, they do not contribute much to the overall
I/0 that a supercomputer application must do. Their
contribution to total I/O is dwarfed by accesses to
large data files, such as those generated by computer
or gathered by automatic sensors.

All of the programs, with the exception of gem
and upw, made many read and write accesses and
did many I/Os, as Table 2 shows. These numbers are
per second of CPU time used by the process.

The only applications which had read/write ratios
much less than one were gem and upw, as can be
seen in Table 2. They were the programs that did
not do much I/O in the first place, since they did lit-
tle I/O other than compulsory writes. The programs
that did higher amounts of I/O had higher read/write
ratios because, for those programs, the disk was used
to hold large parts of the data array. For each cycle
of the algorithm, each section of the data is written
once. However, that data may be read more than
once so it can be used in the computation in different
places. This pattern will remain no matter how large
the memory of the system gets, as a larger memory
will simply encourage larger problems which will have
the same access patterns.

A file cache will not greatly change the read/write
ratio seen by the disk. The files are usually so large
that they will not fit into the cache. Programmers
already try to utilize locality in their algorithms, so
there are few “hot” blocks that can remain in the cache
between iterations. A cache might, however, decrease
the read/write ratio to disk slightly because “paging”
the data array might show spatial locality for reads.

Access size varied between programs, but was rela-
tively constant within programs. The access size was
completely under the programmer’s control, so it var-
ied according to how the algorithm was implemented.

90

80

704

60

50

404

30

MB per CPU second

204

10

0 T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100
Process CPU tinme (seconds, 1sec resol ution)

Figure 3: Data rate over time for venus.

120

110

1004

90

80

704

60

MB per CPU second

504

40

30

20 T T T T T T T
0 20 40 60 80 100 120 140 160
Process CPU tinme (seconds, 1sec resol ution)

Figure 4: Data rate over time for les.

As seen in Table 2, accesses on the large files ranged
from 32 KB to 512 KB. The notable exception was
bvi, which used the SSD for most of its “disk” ac-
cesses. There was no seek penalty for the SSD, so the
penalty for small I/Os was much less than it would
have been for a normal disk. An SSD access still paid
operating system overhead and transfer time (about
16ps for a 16 KB block), but it did not incur any
latency as a disk access would.

5.3 Cycles in Program I/0

Since all of the programs implemented iterative al-
gorithms, the programs’ I/O patterns followed cycles

Application Reads Writes Reads Writes | Avg I/O | Read/Write

(MB/sec) | (MB/sec) | (I0s/sec) | (I0s/sec) | size (KB) | ratio (data)
bvi 12.3 5.34 913 185 16.1 2.31
ccm 4.25 3.96 135 128 31.9 1.07
forma 62.2 5.68 1990 300 30.4 11.0
gcm 0.011 0.12 0.3 3.8 31.9 0.09
les 24.0 25.2 74 81 325 0.95
venus 26.4 14.7 60 32 456 1.80
upw 0.001 0.01 < 0.1 3.1 32.7 0.12

Table 2: 1/O request rates and data rates of the traced applications.

that matched the iterations of the program. Often, the
data in the files would be read in the same sequence
and with the same I/O request size each cycle. Even
when the sequence was not the same between cycles,
each program had a typical I/O request size which
stayed constant throughout the program. Times of
high data request rates also followed a pattern; request
rate peaks were generally evenly spaced through the
program’s execution.

I/0O was bursty, as expected, but the bursts came in
cycles. As Figures 3 and 4 show, the demand patterns
for all of the cycles in an application were remarkably
similar.

File reference patterns also followed cycles. This
was especially true for algorithms that operated on
an unchanging array that was larger than the pro-
gram’s memory size. For such applications, the refer-
ence patterns were essentially identical from cycle to
cycle. For other applications, the array might change
between iterations of the algorithm. For example, a
common method in a CFD problem is to create more
data points in areas of interest for detailed examina-
tion. Since these areas cannot be predicted in advance,
the program itself identifies the areas and creates more
points, changing the data array and the disk reference
patterns.

6 Caching Simulations

The traces collected from the applications can, by
themselves, show the behavior of an individual pro-
gram. However, a supercomputer rarely runs only one
job per processor even when in batch mode. CPU cy-
cles would go unused if there were no additional pro-
grams to run because an application often must wait
for a disk access to complete, and all programs do
some I/O. On a typical Cray Y-MP system there are
usually few enough I/0 requests that only one or two
more processes than processors are sufficient to avoid
wasted cycles. This rule of thumb requires that pro-
grams fit their entire data array in memory, since any
program that must use the disk to store its data will
do large amounts of I/O each cycle. If all currently
in-memory programs make many I1/O requests, it is
likely that more than one will be awaiting I/O all the
time.

physical I/0s =] disk
model

logical I/0

Figure 5: Path an I/O takes from application request
to disk.

6.1 Cache Simulator

We constructed a cache simulator that models the
behavior of a single CPU with multiple processes mak-
ing /0O requests. For each process, there is an input
trace in our format which determines the size of each
I/0 and the elapsed time between it and the next 1/0.
Using this information, a simple scheduler built into
the simulator, and a simple disk model, the overall
sequence of I/Os that the process will make can be
simulated. The position of our buffer simulator rela-
tive to a simulation of the entire file system is shown
in Figure 5.

The simulator uses a simple round-robin scheduler
with a quantum that can be specified each time it is
run. The context-switch overhead, file system code
overhead, and interrupt service time are also parame-
ters to the simulator.

The disk model, like the scheduler, is a simple one.
Since ours were logical traces and we did not model
the file system, we could not use physical block num-
bers. Thus, seek times could only be approximated.
There was no queueing at the disks, so the completion
time of a specific I/O was dependent only on the lo-
cation of the I/O and how “close” the /O was to the
previous I/O. This simplification significantly affected
our results, as will be shown later.

6.2 Main Memory Buffering

The first set of simulation runs involved file caches
that were small enough to fit in a Y-MP’s main mem-
ory. On a standard Cray, the file system cache is
shared among all the processors; however, we were
only modeling one processor. To avoid modeling the
dynamic division of the file cache between the pro-
cessors, we restricted the cache size to a fraction of

the memory “allocated” to a single processor. For
example, in a system with 128 MW of memory, the
file system cache might take up between 4 MW and
16 MW of memory—5% to 12%. This would be dis-
tributed among eight processors, though, so each pro-
cessor could only use 1/8th of the available cache, as-
suming all were running I/O-intensive jobs. In this
example, each processor would be limited to 0.5 MW
to 2 MW of file cache space.

Very few of the applications traced had I/O that
fit into such a small cache. This, combined with the
sequential nature of the programs’ I/O, meant that
most logical I/Os resulted in disk accesses. This is
in contrast to the study in [7] that reported that up
to 80% or more of the I/Os could be satisfied in a
file cache. In a supercomputer, a main-memory file
system cache is thus used more as a speed-matching
and load-averaging buffer than it is to exploit access
locality.

We used two techniques to decrease idle time for a
given set of process, thus increasing CPU utilization.
The first method was prefetching data from disk. Its
success was not unexpected as [7] and [10] showed that
prefetching was useful. Because supercomputer I/0 is
both regular and sequential, it was easy to predict
the next data bytes the program would request. In
several of the programs, including les, an I/O request
was not only sequential with the previous 1/0, but
was also the same size. Thus, prefetching the amount
of data just read allowed the application to continue
without waiting, but did not fill the cache with data
that would be unused for some time.

The second method used was write-behind. While
Sprite’s delayed writes [6] would have been difficult
to implement in the simulator, it was easy to allow a
process to continue executing while written data had
not yet gone to disk. This would also be easier to im-
plement on a supercomputer. Delayed writes would
require a separate process to check all cache data and
decide which of it goes to disk, but the per-process
overhead 1s high on many supercomputers because of
the large state which must be saved on process con-
text switches. A simple write-behind, on the other
hand, merely requires that the operating system note
when the write has finished and does not require a
separate process. In Unix workstation workloads, de-
layed writes can often result in temporary files being
deleted from the cache before they must be written to
disk [6, 7]. However, most data written to a super-
computer’s main memory file cache must go to disk
because iterations take many seconds and files are hun-
dreds of megabytes long, and do not fit into the cache.
There is therefore little advantage to waiting a short
time to see if data is deleted.

The main goal of using write-behind and prefetch-
ing is to reduce CPU idle time, given a set of processes
executing and requesting 1/0. Ideally, there should be
no idle CPU cycles, and several of our simulations ap-
proached that with just one or two I/O intensive pro-
grams running at the same time. The program that
came closest to fully utilizing a CPU by itself while
doing large amounts of I/O was les, since it was the
only program that used asynchronous reads and writes

explicitly. Clearly, its designer spent much time opti-
mizing it for the Cray Y-MP system. Venus was an-
other program benefiting from write-behind, though
not as much from prefetching. In this program, the
short cycles of reading and writing several relatively
small files required over 40 MB/s of bandwidth to disk.
While the disks were certainly capable of this rate,
the seeks required by interleaving accesses to six dif-
ferent files inserted extra delays. Much of this delay
may have been due to our disk model, which penalized
programs for switching files often. With write-behind,
the delays did not affect the programs’ running time
as much. For example, write-behind reduced idle time
from 211 seconds to 1 second for a simulation of two
identical copies of venus running with a 4 MW cache.

Read-ahead and write-behind did not have all the
effects we expected. We had expected that the peak
demands on the disks would decrease and the 1/0 re-
quest rate would remain relatively constant over the
execution time of the program. As can be seen from
Figure 6, this did not happen. There are several rea-
sons for this. First, the simulator did not slow down
disk access times when the disks had many outstand-
ing requests, as would happen in a real system from
queueing delay. Because the requests were logical file
requests, it was impossible to map requests to individ-
ual disks for queueing, so we used an unvarying access
time distribution that did not depend on the number
of currently outstanding I/Os in the disk system. An-
other reason the request rate was not smoothed out
was bunching at times of high I/O request rates. Ide-
ally, the programs should have their periods of high
I/O rate arranged in such a way that the high 1/0
rate period of one program comes during the compu-
tation phase of another program. Often, though, the
two programs would both wait for I/O at the same
time, such as when one program stops to request a
large transfer of uncached data. Such a transfer might
take as long as 15 ms (the Cray Y-MP disks seek rela-
tively slowly). The other program might then make a
similar request, requiring 15 ms as well. Both requests
would finish at approximately the same time, and the
process would repeat. In this way, the large seek and
rotational delays might not be covered by computa-
tions in other processes, and the requests would be
unevenly spread out over time.

Another problem that occurred when two high-1/0
programs ran simultaneously is that one of the pro-
grams grabbed most of the buffers. This denied the
other program a chance to do much I/O and use the
CPU while the first program was waiting. A limit
on the number of buffers a process could own did not
relieve the problem, and actually worsened CPU uti-
lization in several cases. The disadvantage of artifi-
cially slowing down the process that was doing large
amounts of I/0O did not outweigh the advantage of al-
lowing multiple processes to run.

6.3 SSD buffering

While supercomputers do some caching in their
main memory, there is far more space available in
the SSD, which cannot be directly used as program

80 T T T T

venus(1l) —
70 venus(1) + venus(2) ——-

60 | | [
50 1 | o] I‘HJ

I I
40 - b gt
AN BT

I

I

I

[N [

30 | v
/

MB/ s seen by di sk

|
|
|
20 !

10

0 20 40 60 80 100
time (seconds)

Figure 6: Data rate for 2 simultaneously running
copies of venus with a 2 MW cache

(first 100 seconds of wall time)

memory. In addition, SSDs are built from less expen-
sive DRAM, instead of the expensive SRAM used in
the Cray Y-MP’s memory. Currently, UNICOS 5.0
allows for two options for using the SSD— system-
managed buffers or user-managed buffers. The advan-
tage of the latter is that the user has more knowledge
of which data to stage from disk. However, managing
that staging 1s a programming problem which many
supercomputer application programmers do not want
to undertake. In addition, resource allocation becomes
much more difficult, since the SSD must be allocated
among multiple processors, each with programs that
(presumably) would want as much SSD as possible.
While system-managed buffers in the SSD are less ef-
ficient than optimally-managed user buffers, they are
considerably easier to use and provide better utiliza-
tion in a multiprocessor system.

To simulate the SSD on the Cray Y-MP, we treated
it as a huge main-memory cache and added per-block
penalties for cache hits. These were approximately
1ps per kilobyte transferred (at 1 GB/sec), with some
additional overhead to set up the transfer. These
times were relatively small compared to the time re-
quired to execute a system call.

Several of our traces had small enough data sets
that they fit into the SSD entirely. For these pro-
grams, there was little or no idle time, as data was
read from disk once and written back while the pro-
gram continued executing. Figure 8 shows an example
of this, with two identical venus programs running
on the same CPU and not sharing data sets. Venus,
bvi, and cem all ran with low idle times in the SSD.
Gcem and upw had low idle times in all of our simula-
tions because they did so few I/Os—even in a 1 MW
cache, gecm had only 1 second of idle time. Since les
ran with little idle time on both the SSD and main-
memory cache (because of explicit asynchronous I/0),
all but one of the applications nearly completely uti-
lized a Cray Y-MP CPU by itself when using a 32 MW
SSD cache. The Cray Y-MP at NASA has a 256 MW

100 T T T T
venus(1l) —
|)/enus(l) +‘venus(2) ——-
™~ 80 | | i
[|
° b
Lo
2 60 J* i
n 40 |
» ‘J)
o) I
= 20 !
i
I
|
0 Ui
0 20 40 60 80 100

time (seconds)

Figure 7: Data rate for 2 simultaneously running
copies of venus with a 16 MW cache.

(first 100 seconds of wall time)

SSD, so each processor’s share is 32 MW. Almost all
of the read requests were satisfied by the SSD, so there
were very few disk read requests. However, as can be
seen from Figure 7, the writes from cache to disk still
did not come evenly; instead they were bursty in the
same way that the requests to cache were bursty.

6.4 I/0 System Configuration

The best configuration for an 1/O system, accord-
ing to our simulations, is to provide as much SSD stor-
age as possible, and maintain a smaller main memory
cache. The largest main memory cache we believed
would be reasonable, a 4 MW cache in a processor’s
allotment of 16 MW, still did not allow most I/0-
intensive programs to execute without waiting for I/0,
even with read-ahead and write-behind. The cache did
not have enough buffer space to allow full read-ahead
and write-behind to relatively slow disks. Figure 8
shows the effects of cache size on the total execution
time of two simultaneously running venus programs.

SSD, on the other hand, appears to be a much bet-
ter solution. In a 32 MW SSD, all of programs except
one utilized the CPU over 99%. SSD is more likely
than memory to scale with processor speed, since the
constraints on an SSD memory’s speed, physical size,
and distance from the CPU are less likely to be af-
fected by designing for a faster CPU. An SSD 1s appro-
priate for a multiprocessing environment as well; since
the SSD communicates like a disk, multiple processors
can access 1t in file-block-sized chunks instead of word
by word, as main memory is accessed. Instead of low
latency channels required for memory, higher latency
channels like those used for network communications
can be used.

7 Conclusions

While much attention has been given to CPU per-
formance in supercomputers, the I/O system, which

500
450+
4004

4K cache bl ocks ——
8K cache bl ocks —+—-

350 N

300 ®

250 \

200 \

150+ Yo
100+ AN

50 ———

Idle tinme (seconds)

16 64
Cache size (MB)

Figure 8: Idle time while running two instances of
venus with varying cache sizes.

Execution time would be 761 seconds if there were
no idle time.

includes the file cache, SSD, disks, and tape storage,
will play an increasingly larger role in utilizing the
CPU efficiently. We have examined several high-1/0
demand supercomputer applications and shown that
they are highly sequential and very regular in their
access patterns. This information can be used to bet-
ter design a supercomputer I/O system to fully utilize
a supercomputer CPU, as our buffering simulations
show. With a large SSD, only one or two processes
per processor are needed to keep the CPU fully uti-
lized. While main memory sizes may not scale as fast
as processor speed, SSD sizes may scale more closely
as constraints on physical size, distance from the CPU,
and access speed of short accesses are not as stringent
for an SSD. By implementing read-ahead and write-
behind in a supercomputer’s file system and using a
solid-state disk, a few very large processes staging data
to and from secondary storage can keep supercom-
puter CPUs busy.

References

[1] C. Bonifas. Searching for a Unix mass storage
system for a supercomputer. In Digest of Papers,
pages 129-133. Tenth IEEE Symposium on Mass
Storage Systems, May 1990.

[2] R. L. Henderson and A. Poston. MSS IT and
RASH: A mainframe UNIX based mass storage
system with a rapid access storage hierarchy file
management system. In USENIX — Wainter '89,
pages 65—84, 1989.

[3] J. L. Hennessy and D. A. Patterson. Computer
Architecture: A Quantitative Approach. Morgan
Kaufmann Publishers, Inc., 1990.

[4]

[5]

M. D. Hill. Aspects of Cache Memory and In-
struction Buffer Performance. PhD thesis; Uni-
versity of California at Berkeley, November 1987.

NAS Systems Division, NASA Ames Research
Center, Moffett Field, CA. NAS User Guide, Jan-
uary 1990.

M. N. Nelson, B. B. Welch, and J. K. Quster-
hout. Caching in the Sprite network file sys-
tem. ACM Transactions on Computer Systems,
6(1):134-154, February 1988.

J. K. Ousterhout, H. Da Costa, D. Harrison, J. A.
Kunze, M. Kupfer, and J. G. Thompson. A trace-
driven analysis of the UNIX 4.2 BSD file system.
In Proceedings of the 10th ACM Symposium on
Operating System Principles, pages 15-24, De-
cember 1985.

V. L. Peterson, J. Kim, T. L. Holst, G. S. Dei-
wert, D. M. Cooper, A. B. Watson, and F. R.
Bailey. Supercomputer requirements for selected
disciplines important to aerospace. Proceedings

of the IEEE, 77(7):1038-1054, July 1989.

A. D. Samples. Mache: No-loss trace compaction.
Technical Report UCB/CSD 88/446, University
of California at Berkeley, September 1988.

A. J. Smith. Disk cache-miss ratio analysis and
design considerations. ACM Transactions on

Computer Systems, 3(3):161-203, August 1985.
E. Williams, C. T. Myers, and R. Koskela. The

characterization of two scientific workloads using
the CRAY X-MP performance monitor. In Pro-
ceedings of Supercomputing 90, pages 142-152,
1990.

