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Abstract

In petabyte-scale distributed file systems that decouple
read and write from metadata operations, behavior of the
metadata server cluster will be critical to overall system
performance and scalability. We present a dynamic sub-
tree partitioning and adaptive metadata management sys-
tem designed to efficiently manage hierarchical metadata
workloads that evolve over time. We examine the relative
merits of our approach in the context of traditional work-
load partitioning strategies, and demonstrate the perfor-
mance, scalability and adaptability advantages in a simu-
lation environment.

1 Introduction

A compelling architecture for large distributed storage
systems involves decoupling metadata transactions from
file read and write operations. In such a system a client
will consult a metadata server (MDS) cluster, which is re-
sponsible for maintaining the file system namespace, to
receive permission to open a file and information speci-
fying the location of its contents. Subsequent reading or
writing takes place independent of the MDS cluster by
communicating directly with one or more object-based
storage devices (OSDs) [4, 9], which intelligently man-
age their own on-disk storage and enforce security poli-
cies. Although the size of metadata are relatively small
compared to the overall size of the system, metadata op-
erations may make up over 50% of all file system oper-
ations [19], making the performance of the MDS clus-
ter of critical importance. Furthermore, while the over-
all capacity of the OSD cluster can easily scale by in-
creasing the number of (relatively independently operat-
ing) devices, metadata exhibit a higher degree of interde-
pendence, making the design of a scalable system much
more challenging.

The metadata server cluster in such a system should
efficiently maintain file system directory and permission
semantics for a variety of workloads, including both sci-
entific computing applications and general purpose com-
puting. Such workloads and file systems may involve files
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ranging from a few bytes to multiple terabytes, directories
containing millions of files, and many thousands of clients
accessing either disparate or identical files. Furthermore,
as the character of the workload may change over time,
the MDS cluster must be able to continually adapt to cur-
rent demands by dynamically repartitioning workload to
maintain high system performance and long-term scala-
bility.

We describe a dynamic metadata management system
to efficiently distribute responsibility for metadata for ex-
tremely large file systems across a cluster of servers. We
utilize a dynamic subtree partitioning strategy to continu-
ally adapt the metadata distribution to current demands
and facilitate traffic control, while simultaneously pre-
serving and exploiting locality. Finally, we evaluate com-
peting metadata management strategies by simulation on
the basis of overall system performance, adaptation to file
systems and workloads that evolve over time, and ulti-
mately their ability to scale to efficiently manage metadata
for large storage systems. Our results demonstrate the
effectiveness of dynamic subtree partitioning over both
static partitioning and hash-based approaches.

2 Background

We examine distributed metadata management in the con-
text of a petabyte-scale (1015 or 250 byte) storage sys-
tem being designed at the University of California, Santa
Cruz to handle both general-purpose and scientific com-
puting workloads by exporting a POSIX-compliant inter-
face [12, 25]. This architecture will consist of tens of
metadata servers (MDSs), thousands of object-based stor-
age devices (OSDs), and potentially hundreds of thou-
sands of clients. Applications of such a system will
include scientific computing environments, the Internet
Archive, and large data centers, whose storage demands
may well be typical of distributed file systems in a few
years time.

2.1 System Architecture

One of the primary design features of object-based storage
systems is the separation of metadata from data manage-
ment. By decoupling metadata operations, which depend
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Figure 1: Storage system architecture.

on a more complicated and interdependent set of seman-
tics, from file data I/O, which is trivially parallelizable,
the I/O bottleneck typical of conventional file servers is
avoided. Intelligent object storage devices (OSDs) sim-
plify file system design by handling block-level allocation
internally and presenting a simple object-based interface.
Clients first communicate with a separate metadata server
cluster which is responsible for managing the file system
namespace and directory hierarchy, file and directory per-
missions, and the mapping from files to objects. Clients
then read or write data by contacting OSDs directly, al-
lowing very efficient data transfers between large numbers
of clients and OSDs.

2.1.1 Data Distribution

File data is striped and replicated across a large number
of objects on a large number of OSDs to maximize I/O
throughput and data safety. Unlike data storage in tradi-
tional file systems, which typically seek to group related
files together, data is distributed to OSDs based on a deter-
ministic pseudo-random algorithm that guarantees a prob-
abilistically balanced distribution of data throughout the
system [11].

A critical feature of our file data distribution algorithm
is that the sequence of object identifiers and OSD de-
vices can be recalculated by the client—without inter-
action with the MDS cluster—given a single small in-
put value for the algorithm, such as an inode number.
In our system, that value is augmented by a replication
group identifier to facilitate reliable replication and recov-
ery [28]. Although the details of this distribution and reli-
ability mechanism are not described here, the implication
is that the file to object mapping that must be defined for
every file has a fixed size of only a few bytes. This simpli-
fies metadata management and storage by avoiding cum-
bersome block or object lists typical of most file systems.

2.1.2 Metadata Partitioning

The metadata workload must be effectively partitioned
across the cluster of metadata servers such that average
case behavior properly utilizes available resources and the
system can efficiently cope with extreme workloads, such
as thousands of clients opening the same file or writing
to the same directory. The partition should be such that
cache overlap between servers is minimized, thus max-

imizing the MDS cluster’s ability to mask I/O requests
to the underlying metadata storage subsystem. The sys-
tem can be augmented with a failover mechanism such
that a failed node’s workload is redistributed among other
servers or assumed by a standby. More significantly, as
the size of the storage system grows, the MDS cluster
should be able to expand to encompass additional servers
with minimal effort required to redistribute workload.

2.1.3 Storage

Ultimately all metadata must be stored on some sort of
permanent disk storage. Metadata for a petabyte file sys-
tem that may contain more than a billion files might con-
sume a terabyte or more of disk space. This is likely to
be too large to reside completely in the collective RAM
of the metadata server cluster. Ideally, the MDS memory
caches will satisfy most reads, but they will periodically
need to go to disk to retrieve requested information, and
all updates must be saved to a stable store such as disk.
Generally speaking, a shared metadata store (e.g. consist-
ing of OSDs) is necessary and appropriate for many parti-
tioning strategies (including ours), and offers fundamental
advantages over directly-attached storage by easing MDS
failover and utilizing more generic hardware.

2.2 Workload

Because file read and write operations involve primarily
the client and one or more OSDs, the metadata cluster
need only concern itself with a relatively restricted set of
operations. Metadata transactions fall into two categories:
operations like open, close, and setattr are applied
to metadata records for files and directories (“inodes”),
and operations like rename and unlink manipulate the
directory entries defining the file system namespace and
hierarchy. A few typical sequences of operations tend to
represent a majority of a file system’s metadata workload:
open followed by close, and readdir followed by
many stats [19]. In addition to efficient operation in
the general case, the system must additionally handle the
extreme usage patterns common to scientific computing
applications and less common “flash crowd” behavior in
general purpose workloads, including many thousands of
clients opening the same file or creating files in the same
directory.

Because the MDS will not be able to keep all metadata
in RAM, the cluster design must scale such that its collec-
tive cache can mask sufficient read operations to reduce
I/O demands and response times to a reasonable level.



3 Related Work

This work draws from a number of areas including dis-
tributed metadata management architectures, file system
simulation and file system workload characterization.

3.1 Metadata Distribution

With the emergence of large-scale storage architectures
that separate metadata management from file read/write
operations, metadata management has become an inter-
esting research problem on its own. When designing a
metadata server cluster, the partitioning of the metadata
among the servers is of critical importance for maintain-
ing efficient MDS operation and a desirable load distribu-
tion across the cluster. Current approaches used in tradi-
tional and more modern distributed file systems serve as
a basis for discussion of the performance and scalability
issues involved.

3.1.1 Subtree Partitioning

Networked file systems have traditionally partitioned
workload and storage by statically assigning portions of
the directory hierarchy to different file servers; this is the
approach taken by systems based on NFS [17], AFS [15],
Coda [20], Sprite [16] and countless others. Static sub-
tree partitioning typically requires a system administrator
to decide how the file system should be distributed and
manually assign subtrees of the hierarchy to individual file
servers. A static distribution simplifies the clients’ task of
identifying servers responsible for metadata, and servers
are able to process requests without communicating with
(or even being aware of) other nodes because subtrees of
the hierarchy are treated as independent structures.

This strategy can allow a storage system to scale for
breadth, but not depth. A statically partitioned cluster
can only accommodate file system expansion if growth is
such that data remains evenly partitioned across available
servers, or new data is written exclusively to new servers
allocated new portions of the hierarchy. File systems do
not typically expand in such a regular fashion, however,
requiring manual redistribution of the hierarchy to accom-
modate new data or even increased client demand for ex-
isting data. Furthermore, if client workload is not evenly
distributed across all file data, static partitioning is vulner-
able to imbalance as individual servers can be overloaded
by “hot spots” of popularity in certain parts of the hierar-
chy.

3.1.2 Hashing

To provide good load balancing across metadata servers,
many recent systems distribute files across servers based
on a hash of some unique file identifier, such as an in-
ode number or path name. Vesta [5], Intermezzo [1],

RAMA [14], zFS [18] and Lustre [2, 22] all hash the
file pathname and/or some other unique identifier to de-
termine the location of metadata and/or data. As long as
such a mapping is well defined, this simple strategy has
a number of advantages. Clients can locate and contact
the responsible MDS directly and, for average workloads
and well-behaved hash functions, requests are evenly dis-
tributed across the cluster. Further, hot-spots of activity in
the hierarchical directory structure, such as heavy create
activity in a single directory, do not correlate to individual
metadata servers because metadata location has no rela-
tion to the directory hierarchy.

However, hot-spots consisting of individual files can
still overwhelm a single responsible MDS. Directing re-
quests at random servers would allow the cluster to dis-
tribute the sudden load by caching the metadata else-
where, but only at the expense of a more costly average
case. The Google file system [8] attempts to address this
problem by using read-only replication of metadata on
shadow metadata servers to alleviate hot-spots formed by
many clients trying to read the same file, at the expense of
vastly simplified metadata semantics. A hashed metadata
distribution also makes the process of expanding the MDS
cluster to accommodate growth more difficult because the
size of the desired output range suddenly changes.

More significantly, distributing metadata by hashing
eliminates all hierarchical locality, and with it many of the
locality benefits typical of local file systems. Some sys-
tems distribute metadata based on a hash of the directory
portion of a path only to allow directory contents to be
grouped on MDS nodes and on disk. This approach facil-
itates prefetching and other methods of exploiting locality
within the metadata workload.

Even so, to satisfy POSIX directory access semantics,
the MDS cluster must traverse prefix (ancestor) directo-
ries containing a requested piece of metadata to ensure
that the directory permissions allow the current user ac-
cess to the metadata and data in question. Because the
files and directories located on each MDS are scattered
throughout the directory hierarchy, a hashed metadata dis-
tribution results in high overhead, either from a traver-
sal of metadata scattered on multiple servers, or from the
cache of prefixes replicated locally. Prefix caches between
nodes will exhibit a high degree of overlap because par-
ent directories inodes must be replicated for each MDS
serving one or more of their children, consuming memory
resources that could be caching other data.

3.1.3 Lazy Hybrid

Lazy Hybrid (LH) metadata management [3] seeks to cap-
italize on the benefits of a hashed distribution while avoid-
ing the problems associated with path traversal by merg-
ing the net effect of the permission check into each file
metadata record. Like other hashing approaches, LH uses
a hash of the file’s full path name to distribute metadata.



To alleviate the potentially high cost of traversing paths
scattered across the cluster, LH uses a dual-entry access
control list that stores the effective access information for
the entire path traversal with the metadata for each file.
We have found that this information can usually be rep-
resented very compactly even for large general-purpose
file systems. LH need only traverse the path when ac-
cess controls need to be updated because an ancestor di-
rectory’s access permissions are changed, affecting the ef-
fective permissions of all files nested beneath it. Similarly,
renaming or moving a directory affects the path name
hash output and hence metadata location of all files nested
beneath it, requiring metadata to be migrated between
MDSs. Previous trace analysis has shown that changes
like this happen very infrequently [19] and it is likely that
they will affect small numbers of files when they do oc-
cur. Moreover, it is possible to perform this update at a
later time to avoid a sudden burst of network activity be-
tween metadata servers, by having each MDS maintain a
log of recent updates that have not fully propagated and
then lazily update nested items as they are requested.

LH avoids path traversal in most cases, provided cer-
tain metadata operations are sufficiently infrequent in the
workload. Analysis has shown that update cost can be
amortized to one network trip per affected file; as long
as updates are eventually applied more quickly than they
are created (changes to directories containing lots of items
could trigger potentially millions of updates with a single
update), LH delivers a net savings and good scalability.
Like other file hashing approaches, it avoids overloading
a single MDS in the presence of directory hot-spots by
scattering directories. However, in doing so the locality
benefits are lost while the system remains vulnerable to in-
dividually popular files. More importantly, the low update
overhead essential to LH performance is predicated on
the low prevalence of specific metadata operations, which
may not hold for all workloads.

4 Dynamic Metadata Management

We present a metadata cluster architecture utilizing a dy-
namic subtree partitioning strategy for distributing meta-
data across a cluster of metadata servers. Subtree-based
partitioning is a natural approach to partitioning a hier-
archy and provides a number of advantages over hashed
distributions, including greater MDS independence and
greater locality of reference within the workload. Al-
though it is more difficult to create and maintain a good
partition, a dynamic partitioning strategy must be em-
ployed to adapt to a changing file system and workload.
Moreover, dynamic partitioning has a number of advan-
tages over other techniques in terms of metadata storage,
traffic control, and flexible resource utilization policies.

4.1 Hierarchical Partition

Central to the dynamic subtree partitioning approach is
the treatment of the file system as a hierarchy. The file
system is partitioned by delegating authority for subtrees
of the hierarchy to different metadata servers. Delegations
may be nested: /usr may be assigned to one MDS, for
instance, while /usr/local is reassigned to another. In the
absence of an explicit subtree assignment, however, the
entire directory tree nested beneath a point is assumed to
reside on the same server.

Implicit in this structure is the process of hierarchy
traversal in order for nested inodes to be located and
opened for subsequent descent into the file hierarchy.
Such path traversal is also necessary to verify user ac-
cess permissions for nested items as required by POSIX
semantics. Although this process may seem costly for lo-
cating a file deep within the directory hierarchy, the local-
ity of reference typical of both scientific and general pur-
pose computing workloads [6, 26] allows those costs to
be amortized over subsequent accesses to the same direc-
tories. More importantly, unlike LH permission manage-
ment, a hierarchically defined structure allows the system
to move or change the effective permissions of arbitrarily
sized subtrees of the directory tree by modifying the sub-
tree’s root directory with fixed cost. Likewise, individual
subtrees of the hierarchy are fully independent from their
siblings; semantics are dependent only on the prefix (an-
cestor) directories leading to the root of the file system.

To allow client requests (and the path traversal required
to properly respond to them) to be processed efficiently,
each MDS caches prefix inodes for all items in the cache,
such that at any point the cached subset of the hierarchy
remains a tree structure. That is, only leaf items may be
expired from the cache; directories may not be removed
until items contained within them are expired first. This
allows permission verification for all known items to pro-
ceed without any additional I/O costs, and for hierarchical
consistency to be preserved.

4.2 Authority and Collaborative Caching

Metadata updates must be serialized at some point within
the metadata cluster such that atomicity and consistency
are maintained. A significant body of research has in-
vestigated distributed locking and consistency strategies
in potentially unreliable environments, but experience has
shown that the simplest solutions perform the best, pro-
vided they can scale appropriately. To maximize average
case performance, each metadata item has a well-defined
authority MDS based on the hierarchical partition that is
responsible for serializing updates, committing changes
to stable storage, and managing cache consistency and co-
herence when that record is replicated on other nodes in
the MDS cluster.



If a MDS node receives a request for a portion of the
hierarchy it is not responsible for, it will ordinarily for-
ward the request to the authority. If it needs to replicate
some metadata (either because the directory is popular
and flagged for replication, or the MDS needs some pre-
fix metadata to traverse to a subtree of the hierarchy it is
responsible for), it will request the relevant inode(s) from
the authority. Once an item is replicated in another MDS’s
cache, the authoritative MDS is responsible for communi-
cating updates to maintain cache coherence. Similarly, if
a node discards an inode for which it is not authoritative
from its cache, it will notify the authority, who will then
be free to remove its own copy from memory. This ap-
proach ensures that within the MDS cluster the state of
the file system remains consistent and well defined.

In certain cases, updates to metadata can be distributed.
For instance, fields like modification time and file size
are monotonically increasing for most operations, such
that replicas serving concurrent writers can periodically
send their most recent value to the authority, which retains
the maximum value seen thus far and initiates a callback
for the latest information on client reads (e.g. a stat
to check file size). This approach is taken in the GPFS
file system to facilitate shared parallel write access to files
typical of scientific computing workloads [21].

The requirements for client consistency are potentially
less demanding. A system serving hundreds of thousands
of clients will require a significant amount of memory to
maintain the state necessary to provide clients with strong
consistency guarantees with callback-based cache coher-
ence at the data block level, as with the Sprite [16] and
Coda [20] file systems. Conversely, the weak consistency
provided with fully stateless approaches such as NFS (v3
and earlier) can cause a number of problems for client ap-
plications. We believe that relatively simple (and inex-
pensive) metadata coherence strategies may prove suffi-
cient for, although the appropriate approach is likely to be
dependent on specific workload requirements and outside
the scope of this paper.

4.3 Load Balancing

It order to adapt to file system evolution and changing
workload demands the MDS cluster must adjust the di-
rectory partition to maintain an optimal distribution of its
workload. A dynamic distribution is necessary because
both the size and popularity of portions of the hierar-
chy change over time in a non-uniform and unpredictable
fashion. The metadata partition is modified over time by
allowing MDS nodes to transfer authority for subtrees of
the directory hierarchy. Periodically the MDS nodes ex-
change heartbeat messages that include a description of
their current load level. At that point busy nodes can iden-
tify portions of the hierarchy that are appropriately pop-
ular and initiate a double-commit transaction to transfer
authority to non-busy nodes. During this exchange all ac-

tive state and cached metadata are transfered to the newly
authoritative node, both to maintain consistency and to
avoid the disk I/O that would otherwise be required for the
newly authoritative node to re-read it and which would be
orders of magnitude slower.

In our prototype, a busy node will initially try to re-
delegate entire trees that were delegated to it before dele-
gating subtrees of its workload to other nodes. This helps
keep the overall partition as simple as possible. Further in-
vestigation of distributed algorithms for exchanging sub-
trees of the hierarchy is warranted to minimize the com-
plexity of the partition, as there is a small overhead as-
sociated with each delegation because the authority must
cache the containing directory (prefix) inodes for each of
its subtrees. Nevertheless, a dynamic subtree partition is
always an improvement over a statically hashed directory
distribution, where individual directories are essentially
randomly delegated.

The smallest unit of authority delegation with a purely
subtree-based partition is a directory. If a single directory
becomes extraordinarily large or busy, however, it may be
undesirable or inefficient for it to reside on a single MDS.
To address such a situation an individual directory’s con-
tents can be hashed across the cluster, such that the author-
ity for a given directory entry is defined by a hash of the
file name and the directory inode number. Because the
delegation of authority is well defined for any given file
name, individual MDS nodes can act authoritatively and
independently for all directory operations except read-
dir (and rename, which often requires communication
between two directories). Although a similar directory
hashing approach is utilized in Lustre [22, 2], we propose
that the decision to hash (or unhash) a directory be dy-
namic: as directories grow or become popular it may be-
come appropriate to hash them, but if they shrink or be-
come less popular they should be consolidated on a single
node for more efficient manipulation and storage.

The distribution of workload across a cluster typically
seeks to balance load. Such a distribution is dependent on
an appropriate load metric: a number of MDS resources
may limit MDS performance, including memory, CPU,
and network utilization. Although distributing metadata
based on MDS throughput might equalize relative perfor-
mance of all MDS nodes, this may not maximize overall
cluster efficiency because different nodes may be bound
by different resource constraints. Not all portions of the
hierarchy—or the cluster’s current working set—may be
equally busy; nodes managing widely but sparsely uti-
lized portions of the hierarchy may be limited by memory
while nodes serving busy “hot spots” may be bound by
CPU or network and utilize a small fraction of their avail-
able cache. A robust load balancing strategy might seek
to equalize utilization of all resources across the cluster.

A balanced distribution may not always be ideal, how-
ever. A “fair” distribution of workload consuming a
scarce resource like memory may only ensure that all



MDS caches operate equally inefficiently, for example.
Our experimentation indicates that maximizing total clus-
ter throughput is not necessarily achieved by a balanced
workload distribution. Furthermore, it may not be ap-
propriate to assume—as most systems do—that all meta-
data is equally important. Hashed partitioning strategies
probabilistically equalize resource utilization by pseudo-
randomly distributing metadata across the cluster, but in
reality MDS performance will favor items near the root
of the hierarchy because those items (and their prefixes)
are most likely to be cached. In contrast, a dynamic
distribution algorithm can be predicated on any hierar-
chical performance metric, and need not be based on
vanilla balancing. Policies can be formulated that prior-
itize active portions of the file system at the expense of
archival data, for instance, by adjusting the subtree parti-
tion appropriately—a flexibility that is not possible with
hashed distributions that ignore file system structure.

4.4 Traffic Control

To effectively adapt to a changing workload, the MDS
cluster must also cope with situations where a large num-
ber of clients access the same file or directory in the hier-
archy at the same time, either over some period of time
or even suddenly and without warning. Unfortunately,
extremely popular files and directories and sudden “flash
crowds” are common in both scientific computing work-
loads (where large numbers of nodes may be acting in
unison) and general purpose workloads where large num-
bers of users access similar files due to external events. If
tens of thousands of clients access a single MDS simulta-
neously, that node will not be able to handle the request
workload efficiently.

The fundamental problem is client knowledge of the
metadata partition: if all clients know where to access
any given piece of metadata at any time (based on a well-
defined hashing strategy, for instance) then there is noth-
ing to prevent them from simultaneously accessing the
same item. Similarly, if clients are ignorant of the meta-
data distribution, then their requests must be directed ran-
domly and forwarded within the MDS cluster, or pass
through some sort of proxy, in either case requiring an
extra network hop for all requests. Ideally, one would like
a combination of the two situations: access to unpopular
items to be directed at the authoritative MDS nodes, and
access to popular items to be directed at many or all nodes
(each replicating the popular metadata) to distribute traf-
fic.

A dynamic subtree partitioning strategy can control
how client requests are directed by using clients’ initial
ignorance of the metadata distribution to achieve near-
ideal traffic flow for both popular and unpopular metadata.
MDS nodes monitor the popularity of metadata using a
simple access counter whose value decays over time, or
any other measure or estimate of the extent to which an

item appears in client caches (precision isn’t necessary).
All responses sent to clients include current distribution
information—that is, which MDS nodes the client should
contact in the future—for the metadata requested and their
prefix directories, which are then cached on the client. For
unpopular items, the MDS cluster will tell clients to direct
future requests only at the authoritative node, while for
popular items the client is told the item is replicated on
many or all nodes. Because the popularity metric approx-
imates the prevalence of an item in all client caches, the
MDS cluster can effectively bound the number of nodes
believing any particular file or subtree of the file hierar-
chy is located in any one place at all times, thus avoiding
potential flash crowds before they can occur while still
allowing most requests for unpopular data to be directed
efficiently.

This strategy works for both explored and unexplored
portions of the hierarchy. Because client requests are di-
rected based on the deepest known prefix, any potential
flood of requests will initiate from a set of mutually known
(and thus popular) directories—in extreme cases, the root
directory, which is known to all clients and consequently
highly replicated.

4.5 Directory Locality

A hierarchical partition of metadata facilitates the ex-
ploitation of locality within the workload because the ex-
isting structure of the file system is preserved. We exploit
workload locality by storing directly related information
together whenever possible, and prefetching potentially
related information—inodes within the same directory—
to more efficiently satisfy requests in typical workloads.

Traditional file systems store inodes in a large table,
typically split into “cylinder groups” in order to keep them
close to their associated directory entries on disk [13]. A
global inode table also facilitates the ability to create mul-
tiple “hard” links from different file names (in different
directories) to the same inode, while the distribution of
the table across a disk serves to minimize expensive disk
seeks when a directory lookup is invariably followed by
an operation involving a file’s inode. This general ap-
proach to metadata storage has persisted in various forms
for decades, despite the fact that the overwhelming major-
ity of files are only linked by a single directory entry.

Instead, we store inode metadata directly with the di-
rectory entries that link to them, much like the embed-
ded inodes used in C-FFS [7]. In the process of per-
forming a readdir or directory lookup, the MDS clus-
ter simultaneously fetches embedded inodes that subse-
quent transactions will likely require, without any addi-
tional disk seeks or table lookups. In addition to mak-
ing single lookup operations faster, the entire contents of
directories can be prefetched into cache, such that mul-
tiple lookups within the same directory—common in sci-
entific and general purpose computing workloads—can be



be satisfied with no further disk I/O. Prefetched metadata
is inserted near the tail of the cache’s LRU list to avoid dis-
placing known useful information with information that is
only potentially useful, reducing the window in which it
can be used.

Embedding inodes in directories also avoids the diffi-
cult problem of efficiently and consistently managing a
distributed table sparsely populated by potentially billions
of inodes. The lack of a globally indexed inode table has
certain implications, however, most notably that an alter-
native (though simpler) mechanism for allocated unique
identifiers must be employed. Further, if inodes are no
longer globally locatable by inode number, the contexts
in which inode numbers may be revealed becomes lim-
ited to those in which the containing directory is known
and accessible. When inodes are exposed to clients (when
a file is opened for read or write, for instance), the MDS
must take care to remember where the inode is stored in
the hierarchy and on disk, and to retain inodes that are
deleted while still open.

Similarly, the usual POSIX treatment of multiple hard
links to the same file or directory requires modification,
as a directory entry linking to an inode already embedded
in a different directory will have no index with which to
locate it. This problem is fundamentally complicated by
the fact that an inode’s location within the file system hi-
erarchy will change if any of its containing parent (prefix)
directories are moved or renamed—a path name is not a
reliable identifier for the same reasons that symbolic links
are not durable. Fortunately, hard links are rare enough
that most operations can avoid a lookup in an inode ta-
ble containing only multiply-linked inodes (a table that
would much cheaper to maintain because of the its vastly
reduced size). Instead of slower access from both names,
however, the locality benefits of embedded inodes can still
be partially exploited by locating the inode with the most-
popular directory entry and providing a mechanism with
which to locate it. This can be accomplished with a global
table mapping inode numbers to parent directory inode
numbers, and populating it only with multiply-linked in-
odes and their ancestor directories. Combined with a ref-
erence count of all such nested items, embedded inodes
can be located by recursively identifying containing di-
rectories. The table is easily modified when directories
are moved around the hierarchy, and the reference counts
facilitate the inclusion of only those directories and inodes
that are necessary. (This is similar to the structure used
in C-FFS, except that C-FFS does not use a counter and
subsequently has to include all directories in the lookup
table.)

4.6 Storage

All metadata transactions must be quickly written to sta-
ble storage for safety. Since a significant portion of reads
are expected to be satisfied by the metadata in-memory

caches, the primary demand will be on raw write band-
width. We utilize a bounded log structure for the imme-
diate storage of updates on each metadata server. Entries
that fall off the end of the log without subsequent modi-
fications are written to a second, more permanent, tier of
storage. With a log size on the order of the amount of
memory in the MDS, such an arrangement has the con-
venient property that the log represents an approximation
of that node’s working set, allowing the memory cache to
be quickly preloaded with millions of records on startup
or after a failure. The use of NVRAM in the metadata
servers can further mask the latency of writes to the log or
other storage.

Ideally, long-term data layout should be optimized for
reads such that expected access patterns allow related
records to be fetched without additional disk seeks. In the
WAFL file system [10], this strategy is abandoned in fa-
vor of a write-anywhere approach; the authors found that
simply writing metadata to disk in the order it is modi-
fied preserves some temporal locality, which can be sim-
ilarly advantageous. However, in a system with 100,000
clients or more, we expect any temporal correlation with
future access patterns to be insignificant. We store direc-
tory contents, along with embedded inodes, together to
better match expected file system usage patterns. As di-
rectory sizes vary widely, variably sized objects located in
a collection of OSDs provide an appropriate shared stor-
age medium. Directory contents (entries and inodes) can
be stored in a B-tree-like structure (similar to XFS [23])
that allows incremental updates (small numbers of creates
or deletes) with minimal modifications to on-disk struc-
tures (rewriting changed B-tree nodes). The tree structure
also facilitates copy-on-write techniques for safe updates
and advanced file system features like snapshots. OSDs
appear to be an appropriate choice for the short-term per-
MDS logs as well, as shared access facilitates takeover in
the case of a node failure.

5 Evaluation

To validate our design decisions and evaluate the ef-
fectiveness of specific design choices we have imple-
mented our dynamic metadata management system within
an event-driven simulation environment, along with static
subtree partitioning, hashing of either files or directories,
and Lazy Hybrid metadata strategies to serve as points of
comparison.

Our simulations validate a number of our design hy-
potheses. We show that subtree partitioning strategies al-
low metadata servers to operate with higher efficiency by
avoiding duplication of data between nodes and more ef-
fectively utilizing available memory. We show the util-
ity of exploiting directory locality in improving MDS per-
formance by reducing I/O demands. We demonstrate the
ability of a dynamic partitioning strategy to control flash



crowds by exploiting client ignorance. And finally we il-
lustrate that the distribution of workload is a complex is-
sue and that traditional load balancing and homogeneous
distributions are not always ideal.

5.1 Simulation

Although simulation-based analysis provides a practical
mechanism to evaluate file system design behavior, the
accuracy of the results are very much dependent on the de-
tail with which the file system code is implemented [24].
The focus of our simulation efforts is on MDS behavior
and workload generation, and not on underlying disk stor-
age behavior. Although a significant body of research
has investigated the use of accurate disk simulation for
storage system evaluation [27], the distributed metadata
management systems we are evaluating can exist on any
underlying disk subsystem. For this reason, we simplify
the storage simulation to reflect average disk latencies and
transactional throughputs only. In contrast, our metadata
server prototype implements or simulates most features of
the system design, including metadata updates, callback-
based cache coherence (within the MDS cluster only),
embedded inodes, a two-tiered storage mechanism, dy-
namic subtree partitioning and load balancing, and traffic
control. The hashing and static subtree servers implement
subsets of this functionality to accommodate the different
partitioning mechanisms.

Because metadata is already quite small, it is not fea-
sible to simulate a full scale system consisting of tens
of MDS nodes and millions of files—a simulated server
maintains most of the same state a real system would. In-
stead, we have run our simulations on much smaller file
systems with less MDS memory, somewhat fewer clients
and appropriately throttled I/O rates. Within this environ-
ment we demonstrate efficiency, performance and scaling
behavior over a range of system variables, including MDS
cluster size, cache size, and file system size.

The initial metadata partition for dynamic and static
subtree partitioning is created by hashing directories near
the root of the hierarchy. In a dynamic subtree partitioning
system, this is clearly a suboptimal strategy, as even small
subtrees near the root of the hierarchy are still scattered,
but it facilitates testing by generating a relatively even dis-
tribution quickly with only a minor performance penalty.
The prototype real-time workload distribution algorithm
attempts to balance load by redistributing metadata based
on a single load metric (a weighted combination of node
throughput and cache misses). Although this approach is
primitive, and (our experience has shown) a poor choice
for maximizing total cluster throughput, it is sufficient to
show the promise of a dynamic partitioning strategy over
the alternatives.

5.2 Workload

The effectiveness of file system simulations relies heavily
on the type of workload utilized. In general, using a trace
from a real system is preferable to a generated workload
as it more accurately reflects realistic access patterns. Al-
though a number of file system traces analyzed in the liter-
ature are publicly available, correct metadata server sim-
ulation requires both a trace of file system activity and a
snapshot of file system metadata [24]. Instead, we chose
to simulate client workload based on prior research char-
acterizing file system usage, executed against snapshots
of actual file systems (which are more readily available).
This approach provides us with a larger body of available
content to feed our simulations as well as allowing us to
easily scale our simulated client workload.

The metadata operations comprising our generated
client workload are based primarily on a study of a 1997
trace of a general-purpose workload [19]. Our simu-
lated clients submit different types of metadata operations
with frequencies that mimic observed general usage pat-
terns. Client activity is also engineered to favor opera-
tions within localized areas of the file hierarchy to resem-
ble typical general-purpose workloads [6].

Our simulations of scientific computing workloads are
based on a recent analysis [26] of file system traces from
scientific computing clusters at Lawrence Livermore Na-
tional Labs in 2003. This analysis found bursts of activity
for which all the nodes access the same file or a set of
files in the same directory. The extreme locality of ref-
erence exhibited between many clients accessing similar
files presents a more difficult challenge to metadata man-
agement than general purpose workloads in which clients
exhibit individual (but independent) locality, as the sys-
tem must facilitate highly concurrent access to individual
files ordinarily residing on individual servers.

5.3 Performance and Scalability

Initially, we evaluate the relative performance and scala-
bility of the different metadata management strategies by
fixing MDS memory and scaling the entire system: file
system size, number of MDS servers, and client base. Fig-
ure 2 shows the performance degradation of individual
MDS nodes for different system sizes under a predomi-
nately static (file system and client) workload. Dynamic
and static subtree partitioning show the best performance,
the only difference between the two being that the static
strategy does not employ load balancing to adjust the ini-
tial partition. In a real workload environment, a static par-
tition is unlikely to be practical as file systems and work-
loads evolve over time and hierarchies are not typically as
easily partitioned as our workload (a large collection of
home directories). The apparent performance penalty for
load balancing is interesting, however, and is discussed
in detail in Section 5.3.2. More significantly, the perfor-
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Figure 2: MDS performance as file system, cluster size,
and client base are scaled.

mance of file and directory hashed distributions degrades
more quickly than subtree based partitions due to ineffi-
ciencies analyzed in Section 5.3.1.

File hashing and lazy hybrid distributions show signif-
icantly lower performance due to inefficient metadata I/O
operations, which involve disk requests to load individ-
ual inodes into cache. In contrast, the subtree and direc-
tory hashing partitioning strategies exploit the presence
of locality in the workload by embedding inodes and stor-
ing entire directories together on disk to allow efficient
lookups and prefetching. The benefits of this approach are
best seen by contrasting the performance of the directory
and file hashing strategies, which are otherwise identical.

Lazy Hybrid performance is interesting because it
scales almost linearly due to its ability to avoid perform-
ing most path traversals under the evaluated workload.
However, this ability is predicated on the rarity of modifi-
cations to the directory permissions and hierarchy which
must be (lazily, but eventually) propagated to potentially
large quantities of metadata.

5.3.1 Prefix Caching

The performance of metadata partitioning strategies is
tightly linked to metadata cache efficiency. One of the
primary factors affecting cache utilization is the need to
cache prefix inodes of ancestor directories for the pur-
poses of path traversal. The overhead associated with
caching prefix inodes for hashed partitions is particularly
high because directories are scattered throughout the hi-
erarchy and the prefix directory inodes to locate them
must be replicated widely throughout the cluster. Figure 3
shows the percentage of MDS cache associated with pre-
fix inodes as file system, client base and cluster size scale
(as in Figure 2). The utilization for the static subtree parti-
tioning represents a baseline for the file system simulated
and is related to the ratio of directories to files, the aver-
age branching factor and average file depth. The dynamic
subtree partition devotes slightly more cache to prefixes
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efficient cache utilization due to replicated prefixes results
in lower hit rates.

to anchor subtrees nested within the hierarchy that have
been re-delegated to other MDS nodes to balance load.

The consumption of cache memory by prefix inodes has
the effect of decreasing the cache hit rate and thus over-
all MDS performance. The extent to which this affects
performance is related to the average depth of directories
in the hierarchy; obviously, a mostly flat namespace is
more easily distributed—Lazy Hybrid tries to artificially
flatten the namespace to achieve this effect. Prefix cache
overhead is also greater for smaller cache sizes both be-
cause memory is more scarce and because the demand for
prefixes for path traversal is related to the distribution of
requests throughout the file system, not just factors pro-
portional to the size of the cache. Figure 4 shows how
cache performance varies with the cache size, expressed
as a fraction of the total size of the file system’s meta-



data. Note that the convergence of the hit rates as cache
size increases is predicated on the degree of locality in
the workload; a more random distribution of requests will
result in a performance similar to smaller cache sizes.

5.3.2 Dynamic Partitioning and Workload Evolution

Static and dynamic subtree partitioning strategies show
similar performance, and in many cases the total through-
put for a static partition is actually better. The difference
between these two mechanisms as tested is that the dy-
namic approach implements a simple load balancing algo-
rithm to dynamically redistribute workload and replicate
popular items. There are two key points to be made about
the relative performance and merit of these approaches.

The most interesting observation is that a perfectly
balanced distribution of load may not be ideal, depend-
ing on the overall benefit metric being used. If cluster
performance is measured simply with the overall cluster
throughput, a perfect load balance is actually counter-
productive, and tends to ensure that all nodes achieve
equally mediocre performance. In contrast, serving por-
tions of the hierarchy disproportionately can result in ex-
tremely high cache hit rates for certain nodes and ex-
tremely fast response times for some clients, while over-
burdened nodes have very poor cache performance and
go to disk for most requests. This effect highlights the
fact that load balancing and “fairness” are not always the
best approach, and is reflected by irregular static partition-
ing performance in Figure 2 due to an irregular partition.
A dynamic partitioning strategy can ultimately implement
any kind of workload distribution policy—even taking a
laissez-faire hands-off approach resembling a static parti-
tion, though more likely implementing policies favoring
more important portions of the hierarchy.

The more fundamental problem with a static partition
of the hierarchy is that neither file systems nor file sys-
tem workloads are static. Directory hierarchies grow
in non-uniform ways over time, and the distribution of
client requests changes even faster. Although hashed ap-
proaches can rely on well behaved hash functions to main-
tain a good distribution, subtree approaches are intention-
ally coarse for simplicity and efficiency, and subsequently
must intelligently adjust to workload demands. Figure 5
shows the relative performance of a dynamic and static
subtree partitioning approach under a changing workload.
After a short time, about half of the clients change their
local region of activity and create new files in portions
of the hierarchy served by a single MDS. Although the
static approach results in heavy load and MDS saturation
on a single busy MDS while other nodes remain rela-
tively idle, the dynamic strategy adapts by re-delegating
subtrees in the busy node’s workload to non-busy nodes.
Despite the primitive load balancing algorithm employed,
average MDS throughput is significantly higher under the
dynamic approach because the cluster can adapt.
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Figure 5: The range and average throughput of MDSs
is shown under a dynamic workload. When clients mi-
grate and create files in new portions of the hierarchy, a
static subtree distribution remains unbalanced, while the
dynamic partition re-balances load and achieves higher
average performance by migrating newly popular portions
of the hierarchy to non-busy nodes.

5.3.3 Client Ignorance

One consequence of a dynamic and (to a lesser degree)
static subtree partitioning is that clients are initially ig-
norant of the location of metadata in the MDS clus-
ter. Until clients discover new portions of the hierarchy
their requests may be directed at non-authoritative MDS
servers, incurring some forwarding overhead. Similarly,
the movement of metadata between MDS nodes as the
workload partition changes over time will result in mis-
directed requests. Although forwarding requests within
the clusters interconnect network is likely to be cheap,
it will have some effect on observed client latency. Fig-
ure 6 shows forwarded requests for the dynamic work-
load above in which client activity shifts to a new portion
of the file system. When static partitioning is employed,
forwards reflect only clients initial process of discovering
new portions of the file system, while a dynamic approach
additionally requires them to rediscover metadata that is
migrated between nodes due to load balancing. The spike
at time 25 represents a shift in workload as clients move
to and modify new portions of the file system, while the
higher level thereafter under dynamic partitioning is due
to the load balancing algorithm being used.

5.4 Traffic Control

One of the key advantages of a dynamic partitioning strat-
egy is the ability to manage client ignorance to prevent
simultaneous access by tens of thousands of users from
overwhelming an individual metadata server. Figure 7
shows the number of requests processed over time by in-
dividual nodes in the MDS cluster when 10,000 clients
simultaneously request the same file, a scenario typical
of many scientific computing workloads. Requests are
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titioning under a dynamic workload. The spike represents
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Figure 7: No traffic control (top): nodes forward all re-
quests to the authoritative MDS who slowly responds to
them in sequence. Traffic control (bottom): the authorita-
tive node quickly replicates the popular item and all nodes
respond to requests.

directed randomly because clients do not already know
which MDS node is responsible for the file. Without traf-
fic control (top), MDS nodes simply forward requests to
the authoritative node who is quickly saturated and slowly
(and, in real situations, inefficiently) responds. When
traffic control is enabled (bottom), the authority quickly
recognizes the file’s sudden popularity and replicates the
metadata on other nodes.

The response time from when the flash crowd begins
until it is effectively distributed across the cluster is de-
pendent on a number of factors, including the replication
threshold, the rate at which client requests can be received
and then forwarded by MDS nodes, and the latency of I/O
requests that may be required to load the requested meta-
data into the cache. This response time could be reduced
if non-authoritative MDS nodes recognized the sudden
flood of requests and preemptively cached the metadata

being requested without waiting to be told to do so, or if
the authoritative node noticed the flood of requests before
waiting for the metadata to be loaded from disk.

6 Conclusions

We have presented a metadata server cluster designed to
service a petabyte-scale distributed file system. Our sys-
tem utilizes a dynamic subtree partitioning strategy to
distribute workload while maximizing overall scalability.
We utilize embedded inodes to exploit the locality of ref-
erence present in both scientific computing and general
purpose workloads and to simplify storage. Metadata is
stored using a two-tiered strategy, initially writing updates
to a log for fast commits to stable storage and for quick
recovery and cache warming, and later committing direc-
tory contents to an object storage pool. We leverage the
dynamic metadata distribution and collaborative caching
framework to avoid flash crowds by preemptively repli-
cating popular metadata and distributing client requests to
file system hot spots. Further, our simulations indicate
that uniform workload distributions inherent in hashing
approaches are often not ideal, and that static subtree par-
titions fail to adapt to file system and workload evolution
over time. Finally, we show that a dynamic partitioning
approach can accommodate a variety of load distribution
policies and can effectively accommodate heterogeneous
system growth, scaling in terms of both the total file sys-
tem size and client base.

7 Future Work

Ultimately the performance of a dynamically partitioned
system will depend on good algorithms to appropri-
ately distribute the workload based on load balancing or
other policies. Although the simple load balancing algo-
rithm utilized by our simulation prototype is sufficient to
demonstrate the adaptability and scalability advantages of
a dynamic approach relative to static subtree and hashed
distributions of metadata, more intelligent algorithms and
heuristics may be necessary to control incremental redis-
tribution of a changing directory hierarchy and workload
in a real system.

Furthermore, to fully validate our simulation findings,
a fully distributed working prototype will be necessary
to evaluate real-world performance at scale. We are cur-
rently completing development of metadata cluster server
software for an object-based distributed file system to test
our design in a large cluster environment.

Finally, thorough performance evaluation will require
testing based on a wider range of workloads. The use of
actual workload traces with matching file system meta-
data snapshots would allow us to evaluate system behav-
ior based on more realistic workloads. For full scale eval-



uation, more realistic synthetic workloads will need to be
generated to reflect expected workload characteristics at
scale.
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