
Managing Databases with Binary Large Objects

Michael Shapiro
University of Maryland at Baltimore County, Boeing IS at NASA GSFC

Ethan Miller
University of Maryland at Baltimore County

Abstract

We present recommendations on Performance Management for databases supporting Binary Large Objects
(BLOB) that, under a wide range of conditions, save both storage space and database transactions
processing time. The research shows that for database applications where ad hoc retrieval queries prevail,
storing the actual values of BLOBs in the database may be the best choice to achieve better performance,
whereas storing BLOBs externally is the best approach where multiple Delete/Insert/Update operations on
BLOBs dominate. Performance measurements are used to discover System Performance Bottlenecks and
their resolution. We propose a strategy of archiving large data collections in order to reduce data
management overhead in the Relational Database and maintain acceptable response time.

1 Introduction

Most Relational Database Management Systems
(RDBMS) experience performance problems when
working with Binary Large Data Objects. Although
decisions made at the physical database design
phase can improve database performance in the
long run, tuning of database systems is an essential
process in achieving satisfactory performance. This
paper describes different approaches to organizing
both database storage and physical schema that, in
many situations, favorably impact database query
processing time.

An enormous amount of work has been done
by file system developers and Relational Database
Management System (RDBMS) designers to
provide better support for large data object
management. Nevertheless, no solution has been
found as yet in the database world to guarantee high
performance with respect to reading and writing
large objects.

Storage space and database transaction
processing time are the most important primary
performance characteristics for optimizing RDBMS
performance. Selecting the right storage option
offered by the database vendor may be a very

intricate process. In most cases, documentation
does not provide information on the best choice for
good performance, and the best guess often leads to
poor performance. Performance measurements can
be used to tune databases that have BLOB objects.
Database prototyping can be used where databases
with real data are unavailable.

We examine two ways for managing large
objects, and determine under which access patterns
a given storage management scheme is preferred.

The next section of this paper discusses
related work on storage organization and
management to support BLOBs. The database
prototype that was used to perform benchmarking
and performance measurements is presented in
Section 3. Section 4 describes the measurement
planning, implementation and database
performance tuning.

2 Problem Background

Historically Relational Database Management
Systems (RDBMS) were developed to support
transaction processing. The key design

This paper appeared in the Proceedings of the 16th IEEE Mass Storage System Symposium, March
1999, San Diego, California, pages 185-193.

considerations were driven by the necessity to
provide rapid access to tabular data. This affected
the choice of tuning parameters and resulted in the
logical database block size to being set only 4K.

These days multimedia applications are
gaining in popularity. The necessity to store and
manipulate very large data objects (LOB) provides
a significant challenge for relational databases.
Improving database performance for large object
manipulation requires development of new storage
strategies.

2.1 Related Work

Most of the past database systems were designed to
manage simple facts - values that could be
represented in fields of 255 bytes or less [1]. Larger
fields, such as those containing thousands or
millions of bytes, presented problems to the
database record manager. The large fields were
typically implemented via a separate long field
mechanism. For some experimental RDBMSs the
long field manager uses the buddy system for
managing disk space. The buddy system allocates a
range of small to very large disk extents (buddy
segments) quickly and efficiently. When possible, a
small number of large buddy segments are used to
store long fields, which allows the long field
manager to perform fewer disk seeks when
transferring large objects to and from disks.

Most of the research that has been done on
development of RDBMS mechanisms to manage
databases with LOBs, concentrates on the following
design goals:

1) Storage allocation and deallocation
must be efficient. It is important that
the allocation mechanism minimizes
the time spent allocating and
deallocating space to hold a LOB
field.

2) The LOB field manager must have
excellent I/O performance; LOB field
read and write operations should
achieve I/O rates near disk transfer
speeds.

3) LOB field must be recoverable, but
the recovery mechanism must not
substantially slow down the LOB field
operations.

The latest version of IBM DB2 - Universal
Database (UDB) stores tablespaces within a high
performance storage system (HPSS), supports
caching of tablespaces on local disk, and supports

manipulation of LOBs within the tablespace. This
system effectively is able to manipulate petabytes
of data.

A Massive Data Archive System (MDAS)
testbed is being built at the San Diego
Supercomputing Center. The system is a prototype
to demonstrate the feasibility of managing and
manipulating terabyte data sets derived from
petabyte-sized archives [2]. The key software
components of the MDAS testbed are a metadata
library, a parallel database system (IBM DB2) [3]
and HPSS.

Oracle demonstrates excellent performance
for very large databases (VLDB) and constantly
improves mechanisms to maintain BLOB objects.
Extension of the storage capacity of a very large
database cost-effectively within an Oracle 7 data
warehouse system by integrating a long term
archival storage sub-system with traditional
magnetic media was presented in [4]. Based on
these results, we have focused on Oracle
performance for large BLOBs.

Oracle, version 7, offers two data types [5]
that can accommodate LOBs. The data type LONG
is used for storing strings with a size of up to 2GB.
The data type LONG RAW is used for storing any
BLOBs that are up to 2GB in size. This paper will
concentrate on performance tuning for a database
with BLOBs.

The latest release of Oracle8 [6] provides
support for defining and manipulating LOBs.
Oracle8 extends the SQL Data Definition Language
(DDL) and Data Manipulation Language (DML)
commands to create and update LOB columns in a
table or LOB attributes of an object type. Further,
Oracle8 provides an Oracle Call Interface (OCI)
and a PL/SQL package Application Programming
Interface (API) to support random, piecewise
operations on LOBs. In addition release 8 of Oracle
offers four extra data types to accommodate LOBs,
to support both internal and external data
representation.

There are three SQL datatypes for defining
instances of internal LOBs:

1) BLOB, a LOB whose value is
composed of unstructured binary
(“raw”) data;

2) CLOB, a LOB whose value is
composed of single-byte fixed-width
character data that corresponds to the
database character set defined for the
Oracle8 database;

3) NCLOB, a LOB whose value is
composed of fixed-width multi-byte
character data that corresponds to the

national character set defined for the
Oracle8 database.

There is one external LOB datatype: BFILE, a
LOB whose value is composed of binary (“raw”)
data, and is stored outside of the database
tablespace in a server-side operating system file.

The idea of improving database performance
by storing data outside of the database in a server-
side operating system file is not new. For example,
a tokenization mechanism has been proposed to
store separately object values and pointers to these
objects [7].

Tokenization is an encoding mechanism that
replaces data values in a database by short, fixed-
length rank-preserving tokens and stores the actual
values separately. The actual values are stored
nonredundantly, either in a separate database table
or in a file, depending on the type of database
application. Since tokens are, in general, much
smaller than the values they represent, a database
that exhibits some degree of value duplication will
require less total storage than would be needed in
the traditional approach.

If tokens are assigned to values in such a way
that the rank property is preserved, comparison
operations can be performed on the tokens
themselves without referring to the actual values.
Such operations are an essential component of
retrieval, update and deletion transactions.

Performance measurements on the Oracle 7.3
database demonstrates the effectiveness of
tokenization. Nevertheless for certain average size
and number of LOBs stored in the database, usage
of internal LOB types versus external files may
give better performance especially for transactions
that result in data retrieval.

2.2 Storage Systems

Research on database systems and file systems has
resulted in fast and efficient storage mechanisms.
To see how we might tune databases with LOBs,
we look at existing storage systems.

2.2.1 Storing Large Data Objects in Database
Systems

The SQL relational database system, System R [8],
supported long fields with lengths up to 32,767
bytes. The System R long field manager divided
long fields into a linked list of small manageable
segments, each 255 bytes in length. Later, an
extension to SQL was proposed that provided
operators for long field manipulation. Along with

this language extension, a storage mechanism was
proposed that stored long fields as a sequence of 4
KB data pages. The maximum length of a long field
in extended SQL was about 2 GB[9].

The database system EXODUS [10] stored all
data objects through a general-purpose storage
mechanism that could handle objects of any size -
the limit being the amount of physical storage
available. EXODUS uses a data structure that was
inspired by the ordered relation data structure
proposed for use in INGRES [11]. The data
structure is basically a B+ Tree indexed on byte
position within the object, with the B+ Tree leaves
as the data blocks. Although the EXODUS data
structures were designed more for random access
than for sequential access, scan performance was
improved if the data blocks comprised several
sequential disk pages.

Oracle allocates logical database space for all
data in a database. The units of database space
allocation are data blocks, extents, and segments.
The relationships among these data structures are
shown in Figure 1.

 Figure 1. The Relationships Among Segments,
Extents, and Data Blocks .

At the finest level of granularity, Oracle stores
data in data blocks (also called logical blocks,
Oracle blocks, or pages). One data block

corresponds to a specific number of bytes of
physical database space on disk.

The next level of logical database space is
called an extent. An extent is a specific number of
contiguous data blocks allocated for storing a
specific type of information.

The level of logical database storage above an
extent is called a segment. A segment is a set of
extents that have been allocated for a specific type
of data structure. For example, each table’s data is
stored in its own data segment, while each index’s
data is stored in its own index segment. If the table
or index is partitioned, each partition is stored in its
own segment.

Oracle allocates space for segments in units of
one extent. When the existing extents of a segment
are full, Oracle allocates another extent for that
segment. Because extents are allocated as needed,
the extents of a segment may or may not be
contiguous on disk.
A segment (and all its extents) is stored in one
tablespace. Within a tablespace, a segment can span
datafiles (have extents with data from more than
one file). However, each extent can contain data
from only one datafile.

Oracle manages the storage space for the data
files of a database in units called data blocks. A
data block is the smallest unit of I/O used by a
database. In contrast, at the physical, operating
system level, all data are stored in blocks. Oracle
requests data in multiples of Oracle data blocks, not
operating system blocks.

In two circumstances, the data for a row in a
table may be too large to fit into a single data block.
In the first case, the row is too large to fit into one
data block when it is first inserted. In this case,
Oracle stores the data for the row in a chain of data
blocks (one or more) reserved for that segment.
Row chaining most often occurs with large rows,
such as rows that contain a column of data type
LONG or LONG RAW. Row chaining in these
cases is unavoidable.

However, in the second case, a row that
originally fit into one data block is updated so that
the overall row length increases, and exceeds the
block’s free space. In this case, Oracle migrates the
data for the entire row to a new data block,
assuming the entire row can fit in a new block.
Oracle preserves the original row piece of a
migrated row to point to the new block containing
the migrated row; the ROWID of a migrated row
does not change.

When a row is chained or migrated, I/O
performance associated with this row decreases
because Oracle must scan more than one data block
to retrieve the information for the row.

We have examined the Oracle 7.3.4 database
system with respect to reading and writing large
objects and conclude that it can exhibit satisfactory
performance if the size of the objects and the
number of objects in the database are right. The
database performance improved when the majority
of the transactions were Update/Insert/Delete and
the combination of external LOB with tokenization
mechanism was used.

2.2.2 File Systems

File systems store data contiguously or clustered in
physical extents. Files with sequentially allocated
disk blocks have high I/O performance, but
sequential allocation causes disk space
fragmentation.

Early IBM operating systems such as DOS
and OS/MVS had file systems that left disk
allocation up to the user; the user specified the
number and location (for DOS) of disk extents
required to hold the file. IBM’s CMS file system
running under VM/SP provided both automatic
sizing and placement. Using the reasoning that
blocks recently written will be read soon, the CMS
file system allocated extents that were close to the
current position of the virtual disk arm.

The original UNIX file system [12] used 512
byte data pages that were allocated from random
disk locations. As virtually every disk page fetch
operation resulted in a disk seek, the UNIX random
page allocation scheme provided only a medium-
level performance at best.

The UNIX Fast File System (FFS) is an
improvement over the original UNIX File System
because it uses the idea of physical clustering of
disk pages. The FFS uses larger data pages that are
allocated from cylinder groups, thus sequential scan
performance is improved significantly.

The file system used by the Dartmuth Time
Sharing System (DTSS) [13] uses the binary buddy
system [14] for space allocation. A comparison of
DTSS against the FFS shows that DTSS is much
more efficient in allocating disk space. Through the
use of large disk extents supplied by the buddy
system, DTSS is able to sustain a high disk
throughput with much less CPU usage. The average
number of extents per file is a system parameter,
and is chosen to minimize the number of disk seeks
per file scan, while providing a maximum of 3
percent disk space loss to fragmentation. File
systems designer came to the important conclusion
that for the large files such as 100 megabytes, both
larger extents and a larger number of them would
be required.

3 The Prototype

Our objective is the development of relational
database technology that provides better I/O
performance than all of the systems described
above. Although the existing systems show the
benefits of using external large objects versus
internal LOBs, we could not find any specific case
description on where and when to use a particular
technique. Lack of practical recommendations on
when to use external versus internal LOB type
objects provided the motivation to develop a
prototype and perform measurements for both
configurations on a variety request scales and types.

3.1 The Environment

We decided to chose Oracle 7.3.4, as the most
popular commercial RDBMS, to carry out the
performance measurements and evaluate the
database performance tuning recommendations.

We used UNIX OSF/1 on a DEC Alpha with
256 MB RAM and a 5/300 CPU as the testbed for
determining when each of the methods may
improve database performance. OSF/1 was
configured with POLYCENTER Advanced File
System (AdvFS), a journaled local file system that
provides higher availability and greater flexibility
than traditional UNIX file systems (UFS). AdvFS
provides greater flexibility by allowing filesets to
share a single storage pool, enabling hard and soft
fileset quotas in addition to user and group quotas.

Although, AdvFS supports a maximum file
size of 128 GB, only a 3GB RAID 5 partition was
available to develop the prototype.

In order to query the prototype database, two
major test programs were used: one based on
“SELECT-dominant” accesses and one based on
“INSERT/UPDATE-dominant accesses. Programs
were implemented using the ProcC capabilities.

3.2 Database Prototype Schemes

We call the database scheme for storing external
large objects a “Scheme with Reference Tokens”
and the database scheme for storing internal large
objects a “Scheme with Key Tokens”. The
“Scheme with Reference Tokens” (SRT) and “
Scheme with Key Tokens” (SKT) are shown in Fig.
2 and Fig. 3 respectively.

Figure 2. The Scheme with Key Tokens .

Figure 3. The Scheme with Reference Tokens.

IDEF1X notation was used to depict the
cardinality of the relationship “Has Responses”,
indicating that for each “Channel_ID” of the entity
“Channel Table”, there exists zero, one or multiple
instances of the entity “BLOB Table”. [PK1]
stands for primary key while [FK] stands for
foreign key.

We attempted to store exactly the same
amount of data in both database schemes. The only
difference is the location of the large object; in the
case with reference tokens, the large objects were
managed by the file system and in the case with key
tokens the large objects were managed by the
database system. The reference token was used to
provide a pointer to a file, whereas the key token
just uniquely identified the object itself.

3.3 Application Classes

Before we started planning the performance
measurements, the typical workload for a database

supporting large objects was analyzed [15]. The
following classes of applications appeared to
characterize the workload and affect the system
performance the most:

By Query Type:
BLOB ad-hoc select - the
application class where BLOB
retrieval operations dominate.
BLOB modifications - the
application class where BLOB
modification operations
dominate.

By Size:
Average Number of Objects
stored.
Average Size of an Object

4 The measurements

4.1 Performance characteristics

We divided the performance characteristics into
primary attributes that we measured and secondary
attributes that implicitly affected the primary
attributes.

Primary:
Transaction Processing Time.
Storage Demands.

Correlated Performance Characteristics:
Numbers Of Chaining Rows.
Numbers of Extents:

Unix file system
Oracle database.

4.2 Implementation

We performed two sets of measurements: one
sending the BLOB to the client, the other sending
the BLOB to the server. Each set included two
subsets: one for a schema with external LOB
objects and one for a schema with internal LOB
objects. In addition each subset included
measurements for two LOB object sizes (0.5 MB
and 5MB) and 3 database sizes (0.5 GB, 1,5GB and
3GB).

“SELECT-dominant” and
“INSERT/UPDATE-dominant” programs were
used to generate database transactions on both the
client and server sides.

Our analysis of applications using LOB
objects showed that random access to the LOB
object is the most common. Thus the LOB object
requests are uncorrelated.

4.3 Performance observations on the Server side

We ran the measurement programs on the Server
first in order to reduce the number of factors that
might influence system performance.

The graphs in Fig. 4,5 depict the transaction
processing time for the different database scales for
each of the BLOB sizes of 0.5 MB and 5MB. The
transactions were generated with the “SELECT-
dominant” program. The label SKT+0.5 means that
transactions were run against the Scheme with Key
Tokens (SKT) with average size of an object
0.5MB.

Select Query (T)

0
0.5

1
1.5

2

0.5 1.5 3

Database Size
(GB)

T
im

e
(S

)

SKT +
0.5

SKT +
5

Figure 4. Transaction processing time versus
database scale for ”SELECT-dominant” random
queries for SKT scheme.

Select Query (T)

1

1.5

2

0.5 1.5 3

Database Size
(GB)

T
im

e
(S

)

SRT +
0.5

SRT +
5

Figure 5. Transaction processing time versus
database scale for ”SELECT-dominant” random
queries for SRT scheme.

The response time for 0.5MB objects for the
Scheme with Reference Tokens increased by a
factor of two as the size of the database increased.
We believe that this fact is explained by the growth
of the number of external files stored in the AdvFs
system. For the 3 GB database this number reached
2,458 files.

Before the data were loaded the database was
defragmented. This minimized the number of
extents. However, multiple extents that were
allocated for the new inserts may have affected
system performance for the Scheme with Key
Tokens.

Overall, Oracle demonstrated similar
performance for “SELECT-dominant” random

queries for both internal and external types of LOB
objects.

The graphs in Fig. 6,7 shows the transaction
processing time for different database sizes with the
average size of a large object of 0.5 MB and 5MB,
when the transactions were generated with the
“INSERT/UPDATE-dominant” program.

Insert/Update Query (T)

0
20
40
60

0.5 1.5 3

Database Size
(GB)

T
im

e
(S

)

SKT +
0.5

SKT +
5

Figure 6. Transaction processing time versus
database size for “INSERT/UPDATE-dominant”
queries for SKT scheme.

Insert/Update Query (T)

0
2

4
6

0.5 1.5 3

Database Size
(GB)

T
im

e
(S

)

SRT +
0.5

SRT +
5

Figure 7. Transaction processing time versus
database size for “INSERT/UPDATE-dominant”
queries for SRT scheme.

Again, the database storage fragmentation was
reduced to the minimum. Updates of objects stored
internally in the database were substantially longer
than for the objects stored to external files. The
average response time for SRT approach was about
seven times longer than for SKT approach. This is
explained by the enormous number of I/O
operations Oracle needs to maintain rollback and
log information in addition to processing multiple
migration and chaining rows. This number is
substantially larger than the number of I/O
operations AdvFs performs to execute the same
INSERT/UPDATE request.

4.4 System Performance tuning considerations
in the lights of prospective data collection
growth and archiving strategy

As the database size grows, the response time
gradually increases and the system must be tuned

and redeployed [16]. The typical tuning process
includes: design tuning, application tuning, memory
and I/O tuning, and contention tuning.

Design Tuning - we examined system
performance for SKT and SRT schemes in chapter
4.3 using Oracle database prototyping. We
recommend design system having in mind possible
future transition from a Scheme with Reference
Tokens to a Scheme with Key Tokens and vice
versa. This allows cost effective transition from one
scheme to another in case such transition results in
performance gain.

 Application Tuning - we investigated the
implications of application tuning on system
performance. The application code can be analyzed
to determine its effectiveness.

For Oracle it can be achieved by running the
ANALYZE command on the tables with LOBs.
This command collects statistics about the tables
and stores them in the system tables. Switching the
SQL TACE option on tells Oracle to collect
statistics about queries that were executed against
tables with LOBs. The TKPROF utility provides
information about different phases of SQL
statement execution. After analyzing these statistics
we modified the SQL statements to substitute
constants with bind variables. In addition, in order
to keep SQL statements parsing to a minimum we
pinned all SQL statements that operate on LOBs.
Pinning SQL statement prevents it from being
removed from the Library Cache.

The response time for both “SELECT-
dominant” and “INSERT/UPDATE-dominant”
programs improved by 3%. The observed
difference in performance is understandable in
terms of the decrease of number of I/O operations
due to a Library Cache Hits increase.

Due to the limitations of Data Manipulation
Language (DML) statements performing operations
on LOBs, application code tuning can only
insignificantly improve the system performance.

Memory and I/O tuning - we considered the
implications of I/O and memory optimization on
system performance.

For Oracle this is affected through use of the
multiple kernel parameters. Tuning the following
parameters affected the system performance:
DB_BLOCK_SIZE , DB_BLOCK_BUFFERS and
DB_FILE_MULTIBLOCK_READ_COUNT .
These parameters can be considered for each phase
of system deployment.

The first kernel parameter we tested was
DB_BLOCK_SIZE. This parameter represents the
database logical data block size and must be set up
prior to allocating database space and loading data.
The initial testing was performed using a 4K setting

(see performance observations on the Server side in
chapter 4.3).

We reset this parameter to 16K and loaded
into a newly installed database the same data using
the same physical schemes. The response time for
the “SELECT-dominant” program improved by
12% whereas the response time for the
“INSERT/UPDATE-dominant” program improved
by 30%.The observed difference in performance
can be explained in terms of the decrease of
physical data blocks read and written that reduced
the total number of I/O operations needed to
execute a transaction. The statistics were obtained
by querying joined V$FILESTAT and
V$DATAFILE views. The database logical data
block size and size of a LOB correlate.
Performance improves significantly when the LOB
can be stored in one logical database block.
Unfortunately this parameter is limited by a
database.

The buffer cache is one of the most important
structures which needs to be sized correctly when
tuning memory. Its size in bytes is equal to
DB_BLOCK_BUFFERS multiplied by
DB_BLOCK_SIZE. The kernel parameter
DB_BLOCK_BUFFERS represents the number of
logical database blocks loaded into buffer cache.
The effectiveness of this parameter can be
determined by the cache hit ratio statistics, which
show the proportion of data found in cache when
requested. These statistics can be obtained by using
the TLBSTAT/UTLESTAT utility. When object
requests are uncorrelated. the
DB_BLOCK_BUFFERS parameter can be tuned to
accommodate the query result set. For example,
having a buffer cache size of four megabytes
degraded the response time by 20% when the table
with 5 MB BLOBs was queried. At the same time,
a buffer cache size of 10 megabytes improved the
response time for “INSERT/UPDATE-dominant”
programs by 5%. We found that the size of the
buffer cache should be at least equal to 150% of the
size of the largest LOB in the database to preclude
substantial performance degrading. The observed
difference in performance is understandable in
terms of the decrease in the number of database
accesses when the size of buffer cache is big
enough to accommodate the query result set.

The parameter
DB_FILE_MULTIBLOCK_READ_COUNT
defines multiple block reads and sets the batch size.
This parameter should be large enough to allow
reading the entire LOB in one batch operation.
Tuning this parameter can substantially improve
database performance. After this parameter was
reset from 50 to 400 we observed a 10%

performance improvement for “SELECT-
dominant” queries. This is explained by the
decrease in latency of reading entire LOB object
into buffer cache.

One or more rollback segments are allocated
for a database to temporarily store “undo”
information. Using deletes for LOB tables creates
an extra overhead on the database system due to the
large volume of data that must be temporarily (until
commit is issued) stored in the rollback segment. In
addition to a substantial performance degrading,
the overflowed rollback segment crashes the system
and the application terminates. The SQL
TRUNCATE statement deletes without storing
“undo” information. We observed 90%
performance improvement by using TRUNCATE
statement for deleting LOBs. The observed
difference in performance can be explained in terms
of the decrease in the number of database accesses.
The TRUNCATE statement can be used where
undoing delete operations is not application
critical.

5. Conclusion.

Two ways of storing LOB objects in a database
were presented. The database performance was
measured for each case and compared to determine
the preferred mechanism. The measurements on
the server side proved:

1) For “Select-dominant” applications,
using the Scheme with Key Tokens
leads to better performance. The
overhead for UNIX AdvFs was bigger
than the overhead for database access.
The difference in overhead is
understandable in terms of the smaller
number of I/O operations required to
execute the respective transactions.

2) For “Insert/Update-dominant”
applications, using the Scheme with
Reference Tokens can significantly
decrease the response time. The
database overhead was bigger than the
UNIX AdvFS overhead. Again, the
difference in overhead can be
explained by the large number of I/O
operations that Oracle needs to
maintain rollback and log information
in addition to processing multiple
migration and chaining rows. The
larger the size of a LOB, the bigger
the performance gain. Nevertheless,
after database tuning we observed a

60% performance improvement. This
resulted in similar response times for
a LOB size of 0.5 MB for both the
SKT and SRT approaches.

3) Tuning a database with LOBs can be
productive in terms of system
performance improvement. On Oracle
example we achieved the better
performance by tuning the following
kernel parameters:
DB_BLOCK_SIZE ,
DB_BLOCK_BUFFERS and
DB_FILE_MULTIBLOCK_READ_C
OUNT. Application tuning provided
us with only insignificant
performance gain.

4) Increasing the database size and
average object size adversely affects
system performance. The bigger the
size of the database the worse the
response time. This trend held
constant no matter how we stored the
data and which physical scheme was
used.

Acknowledgements

The authors thank the anonymous referees for their
valuable comments and suggestions. Part of the
material contained in this paper was first presented
at the Mid-Atlantic Association of Oracle
Professionals Special Interest Group Conference.
This article research was supported, in part, by the
NASA Goddard Space Flight Center Office of
Flight Assurance, Applied Engineering and
Technology Directorate and Management
Operations Directorate.

References

[1] T. J. Lehman and B.G. Lindsay “The Starburst
Long Field Manager,” Proceedings of the Fifteenth
International Conference on Very Large Data
Bases, pp. 375-383, 1989.
[2] R. Moore, “High Performance Data
Assimilation”, 1995.
 [3] C.K. Baru et al, “DB2 Parallel Edition,” IBM
System Journal, Vol 34, No. 2, 1995.
[4] S. M. Moran and V. J. Zak., “Incorporating
Oracle On-Line Space Management with Long-
Term Archival Technology,” Proceedings of the
Fourteenth IEEE Symposium on Mass Storage
Systems, March 1996.
[5] ORACLE 7 Server Concepts User’s Guide.

[6] ORACLE 8 Server Concepts User’s Guide.
[7] R.C. Goldstein and C. Wagner, “Database
Management with Sequence Trees and Tokens”,
IEEE Transactions on Knowledge and Data
Engineering, Vol. 9, No. 1, January-February 1997.
 [8] M.M. Astrahan et al., “System R: Relational
Approach to Database Management,” ACM TODS,
Vol.1, no. 2, June 1976.
[9] R. Lorie and J. Daudenarde, “Design System
Extensions User ‘s Guide,” April 1985.
[10] M. J. Carey et al., “Object and File
Management in the EXODUS Extensible Database
System,” Proceedings of the Twelfth International
Conference on Very Large Data Bases, August
1989.
[11] M. Stonebraker et al., “Document Processing
in a Relational Database System,” ACM TOFS,
vol. 16, no. 4, December 1984.
[12] D.M. Ritchie and K. Thompson, “The UNIX
Time-Sharing System,” CACM, vol. 24, no. 7, July
1981.
[13] P.D.L. Koch, “Disk File Allocation Based on
the Buddy System”, ACM TOCS, vol. 5, no. 4,
November 1987.
[14] D.E. Knuth, “The Art of Computer
Programming, Vol 1, Fundamental Algorithms,”
Addison-Wesley, Reading Mass., 1969.
[15] D.A. Menasce and V.A.F. Almeida, “Capacity
Planning and Performance Modeling,” Prentice
Hall PTR, Englewood Cliffs New Jersey, 1994.
 [16] Eal Aronoff and Kevin Loney, “Oracle8
Advance Performance Tuning and Administration”,
Osborne/McGraw-Hill, Berkeley California, 1998.

