ANALYZING THE I/O BEHAVIOR OF SUPERCOMPUTER APPLICATIONS

Ethan L. Miller and Randy H. Katz

University of California at Berkeley
Berkeley, California

ABSTRACT

This paper describes the collection and analysis of
supercomputer I/O traces on a Cray Y-MP. Analyzing
these traces, which came primarily from programs with
high I/O requirements, shows the file system I/O patterns
that these applications exhibit.

INTRODUCTION

Over the last few years, CPUs have seen tremendous gains
in performance. 1/O systems and memory systems,
however, have not enjoyed the same rate of increase. Asa
result, supercomputer applications are generating more
data, but I/O systems are becoming less able to cope with
this huge volume of information. Multiprocessors are
exacerbating this problem, as the number of disks and tape
drives in the I/O system and thus aggregate I/O bandwidth,
increase. Bandwidth is not usually scaled up at the same
rate as the aggregate processing speed, however. Accord-
ing to Amdahl’s metric, each MFLOP should be accompa-
nied by one Mbit/second of 1/O. Providing this requires
correct matching of bandwidth capability to application
bandwidth requirements, and using buffering to reduce the
peak bandwidth that the 1/O system must handle. To better
determine the necessary hardware bandwidth and software
buffer sizing and policies, applications’ 1/O patterns must
first be analyzed. This requires gathering J/O traces from
real applications, which we have done.

BACKGROUND
Supercomputer environment

The majority of the I/O traces gathered in this study came
from applications running on the Cray Y-MP 8/8128 at
NASA Ames [1,2]. This computer has eight processors,
each with a 6-ns cycle time. The system has a total of 128
MW (each word is eight bytes long) shared among the
eight processors. The 1/O system has 35.2 GB of storage
on high-speed disks, each capable of sustaining 9.6 MB/
second; a 256-MW solid-state disk (SSD) acting as an
operating system-managed cache for a single filesystem;
and several terabytes of nearline and offline tape storage.
The tape storage is divided into two parts—a nearline
storage facility called the Mass Storage System (MSS-ID)
[3], which can automatically mount tapes with requested
data, and the extensive offline tape library which requires

CH?3039-5/91/0000/0051/801.00 © 1991 IEEE

51

operator intervention. The NASA Cray system already has
the maximum configuration of Y-MP memory, so [/O
problems cannot be alleviated simply by adding more
primary memory.

The UNICOS process scheduling mechanism at NASA
affects the way programmers choose to structure their
implementations, and thus I/O demands seen by the
operating system. Batch jobs, which include any program
requiring over 10 minutes of Cray CPU time, are queued
according to two resource requirements—CPU time and
memory space. As the Cray Y-MP does not have virtual
memory, all of a program’s memory must be contiguously
allocated when the program starts up. To simplify
memory allocation, each queue is given a fixed memory
space to run its programs in. A job ready to run and
residing in memory is run on any of the eight processors
that are available. It runs until it must wait for a disk 1/O,
at which time it is suspended. The program remains in
memory while it waits, and another program that is ready
to run is given to that processor. Since there are eight
processors, there must be at least eight jobs in memory to
keep all the processors busy, assuming no jobs use more
than one processor. In practice, n+1I or n+2 jobsin
memory will keep n processors busy. To insure this many
ready jobs despite memory space limitations, a single
queue may have multiple jobs in memory at once, espe-
cially if the queue is small. Thus, for a given CPU time
requirement, turnaround time is shortest for the job that
requires the least memory. Programmers take advantage
of this by structuring their program to use smaller in-
memory data structures while using the I/O system for
staging.

Because of their high-speed vector processing ability,
supercomputers are ideally suited to problems that require
manipulations of large arrays of data [4]. These problems
include computational chemistry, computational fluid
dynamics, structural dynamics, and seismology, to name a
few. These disciplines all require large numbers of
floating-point computations that are usually vectorizable
over large data sets: from hundreds of megabytes up to
tens or hundreds of gigabytes for some seismic computa-
tions. In most cases, the application performs multiple
iterations over the data set, as when simulating a model
through time. The next section will discuss the applica-
tions traced for this study.

This paper appeared in the Eleventh IEEE Symposium on Mass Storage Systems, Monterey, CA, October 1991.

Ethan L. Miller
This paper appeared in the Eleventh IEEE Symposium on Mass Storage Systems, Monterey, CA, October 1991.

APPLICATIONS TRACED

We gathered traces from a variety of applications running
on Cray Y-MPs. The majority of these programs were run
at NASA Ames. We chose to trace applications with high
1/O rates, both in megabytes per second and 1/Os per
second. While many supercomputer applications do not
perform large amounts of /O, we decided to concentrate
on those that do a lot of I/O. I/O-intensive applications
stress the I/O system more, revealing performance
bottlenecks. Those that perform little I/O are easy to
characterize, as will be shown by the two traces that did
little 1/O.

The first group of applications is the climate models.
These included gem (General Circulation Model) and ccm
(Community Climate Model). The two applications
differed in their approach to data organization—gcm kept
all of its data in memory, while ccm used less memory and
staged data to and from disk. Venus was also a “climate”
model which modeled Venus’ atmosphere instead of
Earth’s. It required far more I/O than the other two
models because it used a very small in-memory array.
While it did more /O than the other two programs, it often
had a shorter turnaround time since it was able to fit in the
queue for jobs requiring little memory.

Bvi and les were other computational fluid dynamics
(CFD) applications which modeled smaller systems. Bvi
modeled the interaction between a helicopter blade and the
air around it. It used a relatively large in-memory array,
but still did a large amount of I/O. It was the only pro-
gram that was explicitly designed to use the SSD. This
was reflected in the small transfers the program made;
since they were to the low-latency SSD rather than the
high-latency disk, the program did not incur a high per-
access penalty. Les, another CFD program, also requested
a lot of I/O. It was the only program that explictly used
asynchronous I/O; as a result, it rarely had to wait for data
to be staged into or out of memory.

Forma used sparse matrices to solve a structural dynamics
problem. This program was ported (with few changes)

from a Cray 1, a machine that was even more memory-
limited than the Cray Y-MP. Thus, it only used 2 MW of
main memory, but did huge amounts of I/O to shuttle
pieces of the matrices in and out of memory.

The final program, upw, performed an approximate
polynomial factorization. It did the least I/O of any
program traced. The program read a small input file,
computed for ten CPU minutes, and wrote out its answer.
While no other program we traced showed this behavior, it
is a representative I/O pattern for some applications.

Basic information about the applications is summarized in
Figure 1. Running time is the amount of CPU time (not
wall time) each application required. All of the other
numbers are relative to running time. Total data size is
the sum of the sizes of all the files the application ac-
cessed.

TRACING METHODS
Information traced

The traces gathered included two types of data. First, they
included information sufficient to reconstruct the sequence
of I/O system calls that an application made. Second, they
included wall clock timestamps so the actual performance
(including other programs) could be measured. We
focused on the first type of data.

Each trace record contained a file identifier, I/O size, and
1/0 offset within the file. The file identifier was generated
by the system call that opened the file; if a file was opened
twice by the same program, it had two different file
identifiers. All records also had three timestamps. Two of
these were in wall clock time—I/O start time and /O
duration. These measured the wall clock time between 1/
Os and how long the program was suspended for each 1/O.
The third timestamp recorded CPU time between 1/O
requests. This timestamp was independent of how heavily
loaded the system was, as it only measured how much
CPU time the application used between I/Os. This
timestamp was the most important in analyzing the traces,

Running Total data | Total /O | Number | Avgl/O MB/sec | I/Os/sec

Application Time (sec) | size (MB) | done (MB) | of /Os size (MB)

bvi (CFD) 1258 171.0 22.835.0 | 1,380,457 0.016 18.20 1097.0
ccm (climate) 205 11.6 1,812.0 54,125 0.031 8.80 264.0
forma (structural) 206 30.0 15,155.0 475,826 0.030 73.60 2310.0
gem (climate) 1897 229.0 266.2 7,953 0.031 0.14 4.2
les (large eddy) 146 224.0 7,803.0 22,384 0.317 53.40 153.0
venus (climate) 379 55.2 16,712.0 34,904 0.032 44.10 92.0
upw (polynomial) 596 - - - 61.5 1,840 0.445 0.10 3.1

Figure 1. Characteristics of the traced applications.

52

as it was the only one that showed program behavior rather
than system load.

Trace gathering methods

All of the data gathered on the Cray Y-MP were logical-
level traces. This data included logical file numbers, file
offsets, request sizes, and wall clock and process clock
timestamps. Because no collected data were internal to the
operating system (as physical disk block numbers would
be), all the data could be collected by code running at user
level. Thus, no modifications to the operating system were
necessary. This was a distinct advantage on the Cray,
since it would have been very difficult to obtain the
dedicated time necessary to debug changes to the operat-
ing system.

Instead of modifying the operating system, we changed the
user libraries dealing with I/O. Cray provides data
collection hooks in standard Unicos 5.0 system libraries.
These hooks provide aggregate data on a program’s 1/O,
such as the total number of bytes requested and the
average and maximum times to do an IfO. Major events
such as file opens and process forks are also recorded. We
modified the libraries to record information for each
individual read and write call as well. This information
was buffered up and sent, via Unix pipe, to a process that
collected the data and wrote it out to a trace file. The
tracing mechanism and trace format are described in more
detail in [5).

There was very little CPU overhead required to collect
traces in this manner. The tracing code was small relative
to the operating system code executed for each system
call, and was only active during system calls. This limited
overheads to less than 20% of 1/O system call time. Total
overhead depended on how many times I/O system calls
were made, but was typically only a few percent of
execution time.

I/O PATTERN ANALYSIS

There has been much analysis of overall supercomputer
performance in both I/O and CPU usage. However, the I/
O usage studies have focused primarily on overall system
performance over relatively long periods, ranging from
many minutes to several weeks, as in [6]. These studies
are useful for evaluating current systems, but are ill-suited
for inferences to future systems. Many parameters may
change, and it is hard to isolate the parameters that affect
system performance. Studying the individual applications
can make it easier to predict the interactions between
applications for a new system.

53

Types of application 1/O

All of the I/O accesses made by the programs can be
divided into three types—required, checkpoint, and data
staging. Required I/Os are similar to hardware cache
misses called compulsory in [7]. They consist of I/Os that
must be made to read a program’s initial state from the
disk and write the final state back to disk. For example, a
program might read a configuration file and an initial set
of data points. It would write out the final set of data
points along with graphical and textual representations of
the results after it finished. These I/Os, however, do not
contribute much to the [/O rate between CPU and disk.
For a program that runs 200 seconds, reading 50 MB of
configuration data and writing 100 MB of output, the
overall data rate is 0.75 MB/second. This rate is sustain-
able by most workstations. While the peak I/O rates at the
start and the end are high, they will only occupy a small
fraction of the total running time of the program. Upw
and gcm are examples of programs that only do compul-
sory I/O.

Checkpoints, the second type of 1/O, are used to save the
state of a computation in case of a hardware or software
error which would require the simulation to be restarted.
A checkpoint file generally consists of some subset,
possibly complete, of the program’s in-memory data.
Checkpoints are generally made every few iterations,
though making them too often slows the program down
unnecessarily. The application writer balances the cost of
writing the checkpoint against the cost of redoing lost
iterations of the simulation. The likelihood of failure
determines the number of iterations between checkpoints.
Since checkpoints occur multiple times per program, they
add more to the bandwidth requirement than required 1/0,
but they also do not place a continuous high demand on
the 1/O system. For a program that saves 40 MB of state
every 20 CPU seconds, the average /O rate is only 2 MB/
second, far less than the maximum rate most
supercomputers provide. As with required 1/Os, dealing
with peak rates may present a problem, but since the 1/Os
occur relatively infrequently, it is easy to have another
program ready to run (and not in the checkpoint stage
itself) while the first program is waiting for checkpoint I/
Os to complete.

The third type of [/Os are those done because the memory
allocated to the problem is insufficient to hold the entire
problem. These I/Os are the equivalent of paging under a
paging virtual memory operating system, but they are
generally done under program control because many
supercomputers lack paging. Even when paging exists, the
program is better able than the operating system to predict
which data it will need. Unlike the other two types of I/O
above, memory-limitation I/O must be done on every
iteration of the algorithm. The entire data set is usually

shuttled in and out of memory at least once, and perhaps
more often. If each data point consists of 3 words and
requires 200 floating-point operations, there must be 24
bytes of I/O for every 200 FLOPS (this is quite close to
Amdahl’s metric, which would require 200 bits, or 25
bytes of I/O for those 200 FLOPS) . For a 200-MFLOP
processor, the average sustained rate will be almost 25
MB/second, far more than either the compulsory I/O data
rate or the checkpoint I/O data rate. Peak rates are higher
still, and in fact are higher than 200 MB/second of requests
sustained over several CPU seconds.

1/0O access characteristics

The I/O accesses that the applications make can be
characterized in several ways. These included the total
amount of I/O, the read/write ratio both overall and for
given files, and the size of each individual I/O, again
overall and for each file. In looking at these characteris-
tics, however, only “large” files were considered. In most
cases, these files were over a few megabytes long, and
some were hundreds of megabytes long. While “small”
files, which include parameter files and human-read text
output, are important, they do not contribute much to the
overall I/O that a supercomputer application must do, as
their contribution is dwarfed by accesses to large machine-
generated data files.

Reads Writes Avg /O R/W
Prog | (MB/sec) | (MB/sec) | size (KB) | ratio
bvi 12.3000 5.340 16.1 2.310
ccm 4.2500 3.960 31.9 1.070
forma 62.2000 5.680 30.4 11.00
gem 0.0107 0.120 319 0.089
les 24.0000] 25.200 325.0]0.950
upw 0.0012 0.010 32.7 0.120
venus 26.4000 14.700 456.0 1.800

Figure 2. Data rates of the traced applications.

The only applications that had read/write ratios much
under one were gcm and upw, as can be seen in Figure 2.
They were the programs that did not do much I/O in the
first place, since they did little I/O other than compulsory
writes. The programs that did higher amounts of I/O had
higher read/write ratios because, for those programs, the
disk was used to hold large parts of the array. For each
cycle of the algorithm, each section of the data is written
once. However, that data may be read more than once so
it can be used in the computation in different places. This
pattern will remain no matter how large the memory of the
system gets, since a larger memory will simply encourage
larger problems, which will keep the same patterns. A file
cache will not greatly change the read/write ratio to disk.
The files are usually so large that they will not fit into the
cache. Since the entire file is both read and written each
iteration, there are no “hot” blocks that can remain in the

54

cache between iterations. A cache might, however,
decrease the read/write ratio to disk slightly because
“paging” the data array might show spatial locality for
reads.

Access size varied between programs, but was relatively
constant within programs. The access size was completely
under the programmer’s control, so it varied according to
how the algorithm was implemented. As seen in Figure 2,
accesses on the large files ranged from 32 KB to 512 KB.
The notable exception was bvi, which used the SSD for
most of its “disk” accesses. There was no seck penalty for
the SSD, so the small I/O penalty was much less than it
would be for a normal disk. A SSD access still paid
operating system overhead and transfer time, but it did not
incur any latency as a disk access would.

Cycles in program I/O

Since all of the programs implemented iterative algo-
rithms, the programs’ I/O patterns followed cycles that
matched the iterations of the program. Often, the data in
the files would be read in the same sequence and with the
same I/O request size each cycle. Even when the sequence
was not the same between cycles, each program had a
typical I/O request size that stayed constant throughout the
program. Times of high data request rates also followed a
pattern; request rate peaks were generally evenly spaced
through the program’s execution.

1/O was bursty, as expected, but the bursts came in cycles.
The demand patterns for all of the cycles in a single
application were remarkably similar, as Figures 3 and 4
show.

120

MB per CPU second

1200

400 800
Process CPU time (seconds)

120

100 H
80
60

40

MB per CPU second

"

50 100
Process CPU time (seconds)

20

Figure 4. Data rate over time for les.

File reference patterns also followed cycles. This was
especially true for algorithms that operated on an unchang-
ing array that was larger than the program’s memory size.
For such applications, the reference patterns were essen-
tially identical from cycle to cycle. For other applications,
the array might change between iterations of the algorithm.
For example, a common method in a CFD problem is to
create more data points in areas of interest for detailed
examination. Since these areas cannot be predicted in
advance, the program itself identifies the arcas and creates
more points, changing the data array and the disk reference
patterns.

" Mass storage implications

The mass storage systems attached to a supercomputer are
only involved in some of the I/Os that applications request.
In particular, each file is read from the mass storage
system (MSS) and written at most once to the MSS for a
single execution of an application. For the MSS, then, the
most important number is the data set size. While the total
1/O done varies from 61 MB to 22 GB, the data set sizes
vary much less—from 55 MB to 229 MB. This suggests
that MSS I/O requests are more closely linked to processor
speed than they are to memory size. In a system with an
infinitely large memory, only compulsory and checkpoint
1/0s would be requested. This would eliminate a large
fraction of the I/Os to disk. However, the data rate to the
MSS, which is proportional to the amount of compulsory
1/0, would remain constant. Higher MFLOPS would
increase the data rate to the MSS, though, since the CPU
could process more data in a given time, thus increasing
the amount of compulsory I/O a program would need.

CONCLUSIONS

While much attention has been given to CPU performance
in supercomputers, the I/O system, which includes the file

55

cache, SSD, disks, and tape storage, will play an increas-
ingly larger role in utilizing the CPU efficiently.

We have classified application I/Os into three categories—
required, checkpoint, and data staging—and shown how
memory size and CPU speed are likely to affect each
category. An analysis of the data shows that data staging
1/O dominates when it is present. If an application
requests data staging 1/O, its read/write ratio is greater than
1; otherwise, its read/write ratio will be less than 1. 1/O
requests are often sequential and cyclical; this information
can be used to predict a program’s I/O demands and
anticipate them, thus reducing the load on the 1/O system.

REFERENCES

NAS User Guide, Version 5.0, NAS Systems Division,
NASA Ames Research Center, Moffett Field, CA,
January 1990.

Bonifas, Cathy, “Searching For a Unix Mass Storage
System For a Supercomputer Environment,” Digest of
Papers, Proc. Tenth IEEE Symposium on Mass
Storage Systems, May 1990, pp. 129-133, (1990).

Henderson, Robert, and Alan Poston, “MSS-II and
RASH,” Conference Proceedings, Winter 1989
USENIX Technical Conference, pp. 65-84.

Peterson, et. al., “Supercomputer Requirements for
Selected Disciplines Important to Aerospace,”
Proceedings of the IEEE, Vol. 77, No. 7 (July 1989),
pp. 1038-1054.

Miller, Ethan, “Input/Output Behavior of
Supercomputing Applications,” Tech. Report No.
UCB/CSD 91/616, University of California, Berkeley,
January 1991.

Williams, Elizabeth, et. al., “The Characterization of
Two Scientific Workloads Using the Cray X-MP
Performance Monitor,” Proceedings of
Supercomputing ‘90, November, 1990.

Hill, Mark, “Aspects of Cache Memory and Instruc-
tion Buffer Performance,” Ph.D. dissertation, Tech.
Report No. UCB/CSD 87/381, University of Califor-
nia, Berkeley, November 1987.

