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ABSTRACT

Information retrieval has become more and more important due to the rapid growth of all
kinds of information. However, there are few suitable systems available. This paper pre-
sents a few approaches that enable large-scale information retrieval for the TELLTALE
system. TELLTALE is a dynamic hypertext information retrieval environment. It provides
full-text search for text corpora that may be garbled by OCR (Optical Character Recogni-
tion) or transmission errors, and that may contain multiple languages by using several
techniques based on n-grams (n character sequences of text). It can find similar documents
against a 1KB query from 1G text data in 45 seconds. This remarkable performance is
achieved by integrating new data structures and gamma compression into the TELLTALE
framework. This paper also compares several different types of query methods such as TF/
IDF and incremental similarity to the original technique of centroid subtraction. The new
similarity techniques give better performance but less accuracy.

1 Introduction

Scientists, researchers, reporters and the rest of humanity all need to find documents relevant to
their needs from a growing amount of textual information. For example, the World Wide Web cur-
rently has over 320 million indexable pages containing over 15 billion words [1], and is growing

at an astonishing rate. As a result, information retrieval (IR) systems have become more and more
important. However, traditional IR systems for text suffer from several drawbacks, including the
inability to deal well with different languages, susceptibility to optical character recognition
errors and other minor mistakes common on the WWW, and reliance on queries composed of rel-
atively few keywords.

The TELLTALE system information retrieval system [2] was developed to address these con-
cerns. It uses n-grams (sequences obnsecutive Unicode characters) rather than words as the
index terms across which retrieval is done. By using statistical IR techniques, the TELLTALE sys-
tem can index text in any language; the current version has been used unmodified for documents
in English, French, Spanish, and Chinese. Additionally, n-grams provide resilience against minor
errors in the text by allowing matches on portions of words rather than requiring the entire word to
match. A third advantage for TELLTALE is that users need not learn query languages and query
optimization methods. Instead, they can simply ask for “more documents like the one I've got
know,” allowing for greater ease-of-use.

Previously, however, the TELLTALE system was unable to index large volumes of text. While tra-
ditional word-based IR systems have a bevy of tricks and tools at their disposal, many of these
methods must be modified or discarded when used in n-gram based systems. This paper describes
our successful efforts to apply traditional techniques to an n-gram based IR system, showing
which methods work, which don’t, and describing new techniques we implemented for n-gram
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based retrieval. By using our techniques, we were able to construct an n-gram based IR engine
that permitted full-document queries against a gigabyte of text. Both the size of the corpus and the
speed with which our methods operate allow such a query to complete in a few seconds on inex-
pensive PC-class hardware. These improvements represent a hundred-fold increase in corpus size
over previous n-gram-based efforts. Moreover, the compression techniques we adapted from
word-based IR systems reduced the size of the index file from seven times larger than the text cor-
pus to approximately half the size of the original text, a fifteen-fold improvement.

2 Background

Our work builds on a large body of research in information retrieval covering both traditional
word-based IR systems and systems based around n-grams. In this section, we discuss some of the
most relevant previous work. Of course, a full treatment of prior work in information retrieval
would require a full book (if not more), and such texts exist [3,4].

2.1 Word-based information retrieval systems

There are many information retrieval systems in existence, but space prevents us from mentioning
more than a small selection. We will only discuss four of them: INQUERY, MG, SMART and
TELLTALE; the reader is referred to [3] and [4] for a more detailed treatment of information
retrieval systems.

2.1.1 INQUERY

The INQUERY system is the product of the Center for Intelligent Information (CIIR) at the Uni-
versity of Massachusetts at Amherst. INQUERY [5] uses a probabilistic model based on a Baye-
sian network [6] that considers the probability that a term or concept appears in a document, or
that a document satisfies the information need. Because a Bayesian network is a graphical model
that encodes probabilistic relationships among variables of interest, it makes a good framework
for this style of model. INQUERY has two parts: a document net and a query net. The document
net is static for a given collection. Nodes representing documents are connected to nodes repre-
senting terms. Thus, INQUERY can calculate, given a document, the probability that a particular
term is instantiated. The query net is constructed by connecting terms in the query to nodes repre-
senting how those terms should be combined. For example, the probability an “AND” node is sat-
isfied given a number of terms would simply be the product of the individual probabilities of
appearance for each term. These combination terms could themselves be combined to represent a
user's entire information need. To perform retrieval, the system connects these two networks
together, and can thus calculate the conditional probability that the information needed with each
given document. The system then ranks the documents by this probability.

The CIIR has some very useful web pages on their systipy/€iir.cs.umass.edu/
demonstrations/InQueryRetrievalEngine.shtml ). They give an overview of the
features of the system, and a number of different domains to try it out. They have set up their sys-
tem to search a WWW page database, but it only contains 100,000 URLS, as opposed to millions
for a system like Lycos. Also, while INQUERY has the capability to do sophisticated queries, the
interface in the demos requires the user to know the exact formulations.
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2.1.2 MG (Managing Gigabytes)

MG (Managing Gigabytes) [7] is a full-text retrieval system that gives instant access to a collec-
tion of documents while requiring far less storage space than the original documents. It is a word-
based information retrieval system, using words as the basic terms on which matching and lookup
are performed. MG uses a vector space model that represents documents and queries as vectors of
term frequencies. This approach weights entries in the vectors to give emphasis to terms that
exemplify meaning and are useful in retrieval.

The MG system has two main parts: a program that turns a collection of documents into a com-
pressed and indexed full-text database, and a program that services several types of interactive
gueries for words that appear in the documents. By default, queries are Boolean and are con-
structed using a collection of terms linked by the Boolean operators AND, OR, and NOT. MG also
supports ranked queries, which take a list of terms and use frequency statistics from the docu-
ments to determine which of the terms should be given the most weight when they appear in a
document. Additionally, MG supports approximate-ranked query which is similar to ranked query
but is only an approximation, providing higher speed at the cost of worse retrieval.

While the engine behind MG is quite powerful, it has only a rudimentary command-line interface
because it is only a research prototype. Its main use has been as a testbed for research involving
large-scale information retrieval.

2.1.3 SMART

SMART [8], developed by Gerard Salton and his students at Cornell University, also uses a vector
space model for representing documents. SMART performs automatic indexing by removing stop
words (words that are too common to be useful in distinguishing between documents) from a pre-
determined list, stemming (the process of removing prefixes and suffixes from words in a docu-
ment or query in the formation of terms in the system’s internal model) via suffix deletion, and
term weighting. Given a new query, SMART converts it to a vector, and then uses a similarity
measure to compare it to the documents in the vector space. SMART ranks the documents, and
returns the top n documents, where n is a number determined by the user. SMART can perform
relevance feedback, a process of refining the results of retrieval using a given query, based on the
results of the retrieval process.

The disk space requirements for the indexed collection require roughly 0.8 times the space of the
text version. This space includes a dictionary, display information, and both an inverted file and a
sequential representation of the indexed documents. While this system is relatively old, it includes
many modern techniques such as stemming and stop word removal. As will be described shortly,
TELLTALE mimics both stemming and stop word removal by using statistical techniques based
on n-grams.

2.2 N-gram based information retrieval using TELLTALE

TELLTALE [2,9] is a dynamic hypertext environment that provides full-text information retrieval

from text corpora using a hypertext-style user interface. The most important difference between
TELLTALE and the systems described in the previous sections is that TELLTALE is n-gram-
based while the others are word-based. Because of its use of n-grams, TELLTALE has some
unique features including language independence and garble tolerance. These features and others
will be discussed in this section.
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2.2.1 N-gram basics

An n-gram [10] is a character sequence of lemg#xtracted from a document. Typically,is

fixed for a particular corpus of documents and the queries made against that corpus. To generate
the n-gram vector for a document, a windoesharacters in length is moved through the text, slid-

ing forward one character at a time. At each position of the window, the sequence of characters in
the window is recorded. For example, the first four 5-grams in the sentence “ character
sequences...” are “ char”, “chara”, “harac” and “aract”. In some schemes, the window may be slid
more than one character after each n-gram is recorded.

The concept of n-grams was first discussed in 1951 by Shannon [11]. Since then the concept of n-
grams have been used in many areas, such as spelling-related applications, string searching, pre-
diction and speech recognition.

Most information retrieval systems are word-based because there are several advantages for word-
based systems over n-gram based systems. First, the number of unique words is smaller than
unique n-grams (fon>3) in the same text corpus, as shown in Figure 1. As a result, the index for
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Figure 1. Number of unique terms (words and n-grams) in corpora of varying sizes.

an n-gram-based system will be much larger than that of a word-based system. Second, stemming
techniques can be used in word-based systems but not in n-gram-based systems. Stemming is the
process that removes prefixes and suffixes from words in a document or query in the formation of
terms in the system’s internal model. This is done to group words that have the same concept
meaning, such as “walk”, “walked”, “walker” and “walking,” freeing the user from needing to
match the particular form of a word in a query and document. Stemming also reduces the number
of unique terms to be indexed. Third, in word-based system, a table can be established for each
word to list all of its synonyms. By doing this, if in the query there is a word “home,” according to

that table, the system will also retrieve the documents containing the word “house.” Finally, most
word-based systems use stop words. Since stop words appear in most documents, and are thus not
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helpful for retrieval, these words are usually removed from the internal model of a document or
query.

At the same time, there are several advantages for using n-grams. First, the system can be garble
tolerant by using n-gram as basic term. If a document is scanned using OCR (Optical Character
Recognition), there may be some misread characters. For example, suppose “character” is
scanned as “claracter”. The word-based system will not be able to match this word because it is
misspelled, but an n-gram based system will still match the other n-grams such as “aract”,
“racte”... and take their frequency into account. From this we can see that by using n-gram tech-
nology system can be garble tolerant.

Second, by using n-grams the system can achieve language independence. In a word-based infor-
mation retrieval systems there is language dependency. For example, in some Asian languages,
different words are not separated by spaces, so a sentence is composed of many consecutive char-
acters. Grammar knowledge is needed to separate those characters into words, which is a very dif-
ficult task to perform. Using n-grams, the system does not need to separate characters into words.

Additionally, n-gram based systems do not use stop words. This is because the number of unique
n-grams in a document is very big and distribution is very wide. There are few n-grams that have
high frequency. From Ekmekcioglu’s research [12], stop words and stemming are superior for
word-based system but are not significant for an n-gram based system.

2.2.2 Document similarity computation

Similarity is the measure of how alike two documents are, or how alike a document and a query
are. In a vector space model, this is usually interpreted as how close their corresponding vector
representations are to each other. One way of determining this is to compute the cosine of the
angle between the vectors.

In TELLTALE, each document is represented by a vector of n-grams. That is, a particular docu-

ment i is identified by a collection of n-gramgram,, ngram,, ... . For each n-gram, a count
C;, records how many timesgram, occurred in document . The frequigpcy ngraim, IS
its countc;, normalized by the total number of n-grams in docunhent ¢, Om, . The

weight of each n-gram is the difference betwégn and the average normalized frequency over
all documentsa, = Z f, fongram . This provides a weight for each n-gram in a document
|

relative to the average for the collection. A document is then represented as a vector

> o .
di = (di;, di,, ...), where the individual element}, = (c,/m)—-a,  have been normalized
and the n-gram’s average value has been removed. The similarity between two document vectors

> >

di anddj is then calculated as the cosine of the two representation vectors,
NN Z(dikdjk)

SIM,(di, dj) =
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Sincecos(B) = 1 when the vectors are colinear aod(6) = 0 when the vectors are orthogo-
nal, the similarity measure can be taken as the cosine of the angle between the document and
guery vector — the larger this cosine value, the greater the similarity.

2.2.3 Multilingual operation

The language independence of TELLTALE is achieved by its n-gram techniques, unique algo-
rithms, Unicode [13] and display system based on Tcl/Tk [14]. As mentioned in Section 2.2.1,
using n-grams can eliminate language-dependent features because the program need not know
about grammar for stemming, stop words, or even matters as simple as where to break individual
words. In languages such as German, for example, words are often built from smaller words with-
out including spaces between them. A German IR system would thus have to know how to break
up a long word, or risk missing similarities between long compound words. For TELLTALE,
however, this is not a problem because the text is broken into relatively short sequences of charac-
ters without knowledge of where individual words begin or end.

Second, the algorithms used in TELLTALE are independent of the language texts to be analyzed.
We have found that our algorithms work well not only for English, but also for other languages
such as Spanish and Chinese. We do not rely upon particulars of the English language to attain
good retrieval accuracy.

Third, TELLTALE uses Unicode to represent a character. Unicode is a 16-bit encoding standard in
which each character is represented in two bytes. This encoding is necessary because many Asian
languages require 16 bits for each character; one byte has no meaning in those languages. Thus,
the use of Unicode in the algorithms is necessary to achieve language independence. While it may
be necessary to convert a document from “native” format into Unicode, such conversion is
mechanical, and would be unnecessary if all documents were encoded in Unicode.

TELLTALE's fourth advantage is the ability to easily include non-English fonts in Tcl/Tk. This
allows us to quickly build a system that has the ability to display a variety of fonts, such as Rus-
sian, Hebrew, and Chinese. Using this ability, the system can display documents in their native
scripts.

2.2.4 TELLTALE interfaces

Because TELLTALE has a Tcl/Tk interface, implementing the user interface was relatively easy

and fast. A sample view of the interface is shown in Figure 2. The interface has several main
areas, as noted in Figure 2. These include the main document window (A), the query text window
(B), the document list (C), the status area (D), and various controls (E). Additionally, the interface

supports the execution of any Tcl/Tk commands via a small floating window.

When TELLTALE is first started, a user can initiate a search either by listing all documents and
selecting the one she wants or by entering some text into the query window and finding docu-
ments “similar” to the entered text. In response, TELLTALE shows a ranked list of all documents
that satisfy minimum similarity criteria specified by the controls. If the user clicks on one of the
documents in the list, the full text of the document will be displayed in the document window. The
searching process can be continued by either looking for documents similar to the one in the doc-
ument window or by cutting some of the document text and placing it into the query window. Of
course, other text can be used in the query in addition to or instead of text from the displayed doc-
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Figure 2. TELLTALE’s graphical user interface.

ument. This method allows the user to incrementally approach the documents that match her
needs. The user may also limit the documents selected by changing minimum similarity thresh-
olds.

The display also includes a good deal of status information about the TELLTALE system. This
information includes corpus statistics such as the amount of text indexed, number of unique n-
grams, and number of postings. It also includes memory usage statistics; these are particularly
useful when trying to ensure that TELLTALE fits into RAM for best performance.

3 Approaches to large-scale retrieval in TELLTALE

Because TELLTALE is n-gram based and the number of n-grams in a document is much larger
than the number of words in the same document, the index for TELLTALE is much larger than
that of a word-based system. Thus, building a large-scale n-gram based retrieval system is a tech-
nical challenge. In this section, we describe the way in which we increased the capacity of TELL-
TALE to handle gigabyte-sized queries in a reasonably short time.

All of the performance figures reported in this paper were measured by running on a Silicon
Graphics Origin200 with two 180 MHz MIPS R10000 processors, 256 MB of main memory, and
32 KB each of instruction and data cache. While this may seem an impressive machine, it is cur-
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rently possible to purchase a more powerful machine relatively inexpensively from commodity
PC vendors. Thus, we expect that our techniques will be applicable to those who can't afford
large-scale computers as well as those who can.

3.1 Textual data used in experiments

To allow practical comparison of various algorithms and techniques, we performed our experi-
ments on real-world collections of data obtained from TIPSTER [15], a DARPA (Defense
Advanced Research Projects Agency)-funded program of research and development in informa-
tion retrieval and extraction. The TREC [16] (Text REtrieval Conference) is part of the TIPSTER
Text Program, and provides a very large text data collection. Three types of text data from TREC
are used in this paper: a selection of computer magazines and journals published by Ziff-Davis
(ZIFF), the Associated Press newswire (AP), and the Wall Street Journal (WSJ). Here we use:
ZIFF1 to represent the collection from 1989's ZIFF, ZIFF2 to represent the text data from 1988,
AP1 to represent the text data from 1989's AP, AP2 to represent the data from 1988 and WSJ to
represent the data from 1989's Wall Street Journal.

ZIFF1 (1989) | ZIFF2 (1988)| AP1 (1989)| AP2(1988) WSJ (1989)

Documents 75,029 56,903 83,719 78,789 12,046

Unique 5-grams 562,492 498,653 499,807 478,519 268,810

Total 5-grams 185,159,683 134,110,587 202,636,790 186,822,009 31,863,179

Size (MB) 257 180 260 240 4(

Table 1. Statistics for the document collections.

Every corpus is composed of tens or hundreds of individual files, each of which averages one
megabyte long and contains one or more documents. Individual documents within a file are sepa-
rated by SGML (Standard Generalized Mark-Up Language) tags. The overall characteristics of all

of the corpora on which we ran experiments are summarized in Table 1. Note that the figures for
unique and total n-grams are calculatedrfer 5; we used this value forin all of our experi-

ments. XXX - why did we choose 5?

3.2 Data structures

The data structures used in TELLTALE are similar to those used in other information retrieval
systems, but with modifications to make them efficient for managing tables of n-grams that are
considerably larger than the word-based tables used elsewhere. Over the course of our work,
structures evolved from relatively simple solutions to more advanced mechanisms that allow
TELLTALE to index gigabytes of textual data, a hundredfold increase over its original capacity.

3.2.1 In-memory data structures

The first set of data structures in TELLTALE are in-memory data structures similar to those used
in traditional word-based IR systems. The three hash tables represent all of the information gath-
ered from the raw text scanned into TELLTALE. There is one hash table for n-grams, one for doc-
ument information, and a third detailing information about the files that contain the documents.
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The relationship between these three hash tables is shown in Figure 3. While all three data struc-
tures are crucial to TELLTALE, the n-gram hash table and associated postings lists consume by
far the largest fraction of memory.

Ngraminfoq Ngraminfo, NgramlInfo
Count Count Count N-gram
Hash
FregSum FregSum . = om FregSum
< g £ Table

NumbDocs NumDocs NumbDocs

PostingsList PostingsList PostingsList

Countq | DocPtrq |

Count, [ DocPtr,

Documentinfoq Documentinfo, Documentinfo;

Document
TotalNgrams TotalNgrams TotalNgrams
J J d Hash

UniqueNgrams UniqgueNgrams [« « UniqueNgrams Table

Location Location Location

FilePtr FilePtr FilePtr
Filelnfo, Filelnfo, Filelnfoy

FileName FileName FileName File

LI Hash

FileSize FileSize FileSize Table

Figure 3. Relationships between hash tables in TELLTALE.

The file table provides a link between documents and the files that contain them. While it would
be possible to fold this information into the document hash table, storing it separately results in a
large memory savings at little cost because file names are long. For example, a corpus with
500,000 documents at 2 KB apiece might pack an average of 500 documents into each 1 MB file.
If file names average 60 bytes in length, the file table requires 60 + 4 = 64 bytes of data and 4
bytes of overhead per file for a total of just 64 KB of storage. On the other hand, storing a file
name with each document requires over 3 MB. Thus, large corpora benefit greatly from the sav-
ings provided by a separate file table. Additionally, this structure works well for systems that don’t
use traditional file systems. For example, a system might optimize performance for access via the
WWW by consolidating references to a single URL together; pointing all documents from a par-
ticular URL to the same place would make retrieval and caching simpler.
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The document table contains a great deal of information about each individual document. In addi-
tion to the usual information such as document length and location (file and offset), the document
table contains a document serial number, which is allocated from a single integer incremented for
each document scanned in. Thus, the document serial number is guaranteed unique in a given cor-
pus. The document hash table also stores precomputed values for each document to assist in rapid
similarity calculations. As will be described in Section XXX, precomputed per-document values
greatly reduce similarity calculation times for some similarity measures.

Additionally, each document in the hash table contains an identifier generated by cryptographic
hash. In the current version of TELLTALE, this hash is generated by MD5 [17], though there is no
reason that would prevent switching to a different algorithm such as SHA [18]. This document ID

is probabilistically unique across all corpora, with a chance of collision k0o even for bil-
lions of documents. Thus, it can be used to uniquely refer to a document in a massive environment
that might contain tens or hundreds of TELLTALE engines. The document ID can also be used to
remove duplicate documents from corpora; since the ID is based on the document’s content, iden-
tical documents will have identical IDs. Memory usage for the document hash table is approxi-
mately 48 bytes per document, most of which is used to store the 128-bit (16 byte) document ID.

In a system with10° documents, this means that 48 MB will be required to store the document
hash table.

The n-gram hashtable is the central data structure in TELLTALE and, when the postings are
included, the one that requires the most memory. This data structure is the one that is hardest to
optimize for n-grams rather than documents because of the far greater number of both unique n-
grams in the corpus and unique n-grams in a document. For example, a typical 1 MB file from the
WSJ corpus has XXX documents with XXX postings — one posting for each different n-gram in

a document. When terms are words, however, the same file has just XXX word postings, a reduc-
tion of XXX. It is this difference that makes it more difficult to build IR systems using n-grams
rather than words as terms.

In this version of TELLTALE, each posting contains three things: a normalized frequency for n-
gramk in document, a pointer to document and a pointer to the next posting for n-griam

Thus, each posting requires 12 bytes on a machine that supports 32-bit floating point numbers and
32-bit pointers. It is the space required for postings that consumes the lion’s share of memory for
corpora of almost any size. In typical documents, the number of unique 5-grams is about 65%-
75% of the total number of 5-grams, so a 4 KB document will have 2500 - 3000 unique 5-grams,

resulting in12 x 3000= 36000 bytes of storage. On the other hand, the word count for such a

document will total perhaps 800 words with perhaps 400 different words — a reduction of an
order of magnitude. It is this difference that makes building n-gram based IR difficult.

To obtain good performance on cosine similarity using these data structures, we broke the similar-
ity formula down as follows:
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N Z(dikdjk)
SIM(di, dj) -

Z((fik_ak)(fjk_ak))

) Z(fikfjk)"'Z(fikak)+2(fjkak)+gak2

Note that, in the final equation, all of the terms with the exception of the first term in the numera-
tor can be precalculated. The remaining term is non-zero only when a term appears in both the
guery and a document in the corpus. Thus, we can precompute all of the “constant” expressions in
the formula for each document, and only need compute the sum of the term frequencies on the fly.
Because there are relatively few n-grams in common between any pair of documents, this calcula-
tion can be done quickly once the precomputation time has been invested.

Based on our experiments with sample data, scanning in 10 MB of text data requires 88.9 MB for
the resulting data structures. Using the data structures described above, TELLTALE can compute
the similarity against a 1 KB document in two seconds. The performance is good, but TELLTALE
consumes too much memory.

The problem of memory consumption becomes worse as the corpus grows. In particular, the size
of the posting list grows dramatically while the other data structures grow considerably more
slowly. This is shown in Figure 4, which displays both the total memory consumed by each data
structure and the percentage of memory consumed by each data structure for varying corpus sizes
using 5-grams. As Figure 4 shows, by far the largest consumer of space is the postings list. Even
for a small corpus of 1 MB, the postings list consumes 75% of the space. For larger corpora, the
contribution of all other data structures shrinks further. By the time the corpus has reached 1 GB,
the postings list consumes over 6 GB of memory, while all other data structures combined use less
than 100 MB, or 1/60th the space. This is hardly unexpected — the number of unique n-grams in
a corpus grows slowly after the corpus reaches a certain size because the number of unique n-
grams in English (or any other language) grows rapidly for the first few megabytes of text but con-
siderably more slowly for additional text. Moreover, some combinations (such as “zzyqv”) are
unlikely to occur in any documents in a corpus (though this sentence showsytimagram is

possible in any document in a given language...). In essence, the first few documents define the
“vocabulary,” but later documents add few new n-grams to it. However, the number of postings
grows linearly in the number of documents, and consumes far more space than document infor-
mation or file information, both of which also grow linearly.

Because the postings list was clearly the largest impediment to scaling TELLTALE to handle
gigabytes, we spent most of our effort optimizing its usage. The following sections describe our
efforts.
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Figure 4. Space consumed by different data structures.

3.2.2 On-disk data structures

The on-disk version of TELLTALE was developed to cope with the limitations of memory space
by moving the postings list from memory to disk. Only the main data structures — n-gram hash
table, document table, file table — are kept in memory. To accomplish this, TELLTALE generates
an on-disk file to record all the information, including a posting list from the files scanned in.

We made several modifications to the original in-memory data structures to handle the on-disk
data structures. First, we added variables to each n-gram’s entry in the n-gram table to indicate
where a postings list is stored in the on-disk file and how long it is. This is only a minor change,
yet it increases the memory requirements by over 6 MB for a 1 GB corpus. However, it also
allows TELLTALE to rapidly access postings lists on disk with the penalty of just a single disk
seek.

The other change we made was to convert pointers in the in-memory data structures into integers,
adding a table to translate from the integers into actual entries for files or documents. This change
is necessary to allow the data structures to be stored to disk and retrieved, possibly with different
memory addresses. We considered using the document ID, which was generated by hashing the
document text, for this purpose. However, this ID requires 16 bytes of memory, which is too long
to include in every on-disk posting. Instead, we used the serial number assigned to each docu-
ment. While this number is not unique across corpora, it is unique within a single on-disk file.
While its use makes merging corpora together somewhat more complex, it saves a great deal of
space; thus, we chose this option. A similar tactic was used to identify entries for particular files.
The resulting structures are identical to those shown earlier in Figure 3, except that integers rather
than pointers are used to link the tables together and the postings lists are stored on disk.
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We chose to allow TELLTALE to operate in one of three monesnory, update orondisk .

The memory mode of this version is basically identical to the original version of TELLTALE,
except that it can load a corpus into memory and subsequently conduct similarity searches on it.
Update mode allows the system to create or update on-disk files. In this mode, TELLTALE can
record information about documents that have been scanned in. However, it does not allow que-
ries inupdate mode.

The ondisk mode only allows the user to use the files generated in advanceupoleés

mode. Under this mode the system loads the document hashtable, file table and n-gram hashtable
header into memory. However, the posting list is kept on disk only, so each bucket must be loaded
into memory before it is used. The format of the on-disk file is shown in Figure 5.

l¢—— Header

File Table

Document Info Table

N-gram Hash Table

N-gram Postings Lists

Figure 5. Format for an on-disk corpus index file.

Because of memory limitations, we can only build an index for 10 MB of raw text data in mem-
ory. We then dump this corpus index file to disk and clear the memory. Now, the system can scan
in another 10 MB of text data, and generate another on-disk file. Thus, we can use a Tcl script to
generate a set of on-disk files. TELLTALE implements a function calkrdecorpus to merge

this set of on-disk files into one big on-disk file. Using this method, we can generate a 1 GB on-
disk file containing all the information for about 300 MB of raw text data. After the big on-disk

file is generated, thesecorpus command can load the file table, document table, and n-gram
hashtable header into memory. We can then issue queries against this large corpus without having
the memory space to read it into memory in its entirety.

The file header records the general information for this file. It includes the number of corpus files,
documents and n-grams in this text data set. It also contains the start offset for the other parts of
the corpus index — file information, document information, n-gram index and n-gram postings
lists. Additionally, several per-corpus summary values are stored here. The remaining sections of
the on-disk file contain copies of the data stored in memory. However, the on-disk version must
use integers rather than pointers for internal references such as a “pointer” from a document’s
information to the structure describing the file that contains it. This conversion requires temporary
tables on reading and writing the data, but does not require permanent data structures.
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The n-gram hash table is split into two pieces in the on-disk file, one that contains the “header” for
each n-gram bucket and the other listing all of the postings for the n-gram. This split is done so
that the headers can be easily loaded in by a sequential read while the postings buckets are read
off disk on demand. At 32 bytes per header, even a 1 GB text corpus indexed by 5-grams requires
only 32 MB for the n-gram header hash table. This contrasts with the several gigabytes required
for the postings list.

3.2.3 Performance

Using this naive strategy without compression, the on-disk file consumes 4.5-7 times the size of
the raw text data. When the size of raw text data is small, this rate is even larger because the table
of unique n-grams dominates the size of the on-disk index. As the corpus grows, however, the
number of unique n-grams grows much more slowly, allowing the postings lists to dominate the
space used for medium and large corpora.

We generated a 177 MB on-disk file representing the information from 40 MB of text data from
theWall Street JournalAlthough the index requires a good amount of disk space, it increases the
capability of TELLTALE from 10 MB to 40 MB of text data with the same memory in the work-
station. The performance of similarity is also acceptable, though somewhat slow. However, we
had to reduce the size of the on-disk index if we were to be able to perform retrieval on gigabyte
corpora. The following section describes our compression techniques.

3.3 Compression

A large on-disk file not only takes up disk space, but also slows down the speed of calculating
similarity due to the time it takes to read posting lists from disk. Since 1/O is very slow compared
to CPU instructions, compressing the posting list results in two benefits: lower disk storage utili-
zation and faster similarity computations due to reductions in the time needed to read a bucket.

3.3.1 Strategy

The original on-disk file contained postings lists composed a pair of numbers for each document
in which the n-gram occurred: an integer identifying the document containing the n-gram and the
normalized frequency for the n-gram in the document. This strategy required 8 bytes for each
posting, 4 bytes each for the document number and a floating point number for the frequency.

First, we converted all of the n-gram frequencies into integers by storing the actual count of n-
grams in a document rather than the normalized frequency. Since we already store the number of
n-grams in a document, it is a simple calculation to regenerate normalized frequency from the n-
gram count and size of the document. This shift allows us to use standard integer compression
algorithms on our postings lists.

Second, we noted that, if we sorted the postings in a list by document number, we could store the
difference between an individual posting’s document number and that of the previous posting.
These gaps are smaller in magnitude than the document numbers themselves, and have the addi-
tional desirable property that they are smallest for large postings lists with many entries.

These two strategies can be used to greatly reduce the size of an on-disk index for n-gram based
information retrieval. Moreover, compression can be more effective for n-grams than for words
because the distribution of term frequencies is more skewed for n-grams than for words. For
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example, Figure 6 shows the distribution of term frequencies for 5-grams in the combined 1 GB
corpus alongside the distribution of integers describing the “gap” between document numbers in
postings.

100% 100%
80% [ 80%

60%

60%

40%

40%

20%

20%

Cumulative percentage of all gaps

Cumulative percentage of all postings
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1x107 1x10" 1x10° 1x1076x10 1x10%1x10" 1x10? 1x10° 1x10* 1x10° 1x10°
5-gram count in document Gap between successive postings of a 5-gram

Figure 6. Distribution of 5-gram frequencies and document number gaps. There are a total of
4.62x10° postings in this corpus, which contains close to 1 GB of text.

The data in Figure 6 show that posting counts have the greatest potential for compression, though
there is also some opportunity for compression of document number gaps as well. The default

representation of integers in TELLTALE is 4 bytes long, allowing values uﬁztm.z-mwever,

the count of a particular n-gram in a single document is usually a very small number; few n-grams
have high frequency within a document. In the corpus we studied, 97.77% of all postings had
counts of 5 or less, while over 77% had a count of exactly 1. Based on this finding, we knew that
the vast majority of counts could be stored in far less than the standard 4 bytes of an integer.

We also looked at the distribution of document serial number gaps, also shown in Figure 6. This

graph shows that most serial number gaps are also relatively small. However, the curve falls off
far more slowly than that for posting counts. Half of the gaps were 8 or smaller, and 92.6% were

255 or less. This distribution means that over 92% of all gap values could each be stored in a sin-
gle byte rather than the 4 bytes required by the default representation.

Based on these findings, we implemented two different compression schemes in TELLTALE. The
first was simple to implement and provided reasonable compression for both n-gram counts and
document serial number gaps. However, it was considerably below optimgtjheutility was

able to compress the indices by a factor of two. We then switched to gamma compression, yield-
ing files that were approximately the same size as the result ofgspgon the original files

that used the first compression scheme.

Page 15 of 24



Miller, Shen, et. al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System

3.3.2 Simple compression algorithm
Based on the statistics discussed in Section 3.3.1, we first considered a simple compression algo-
rithm that saves space for small numbers. We used a single byte to represent numbers from 0 to

27-1, two bytes for numbers’20 2141, and four bytes for numbers in the rangé » 23-1.
These numbers were stored in the format shown in Figure 7.

0] XXXXXXX| 1 byte (8 bits) represents 0 — 127

10 | XXXXXX  XXXXXXXX | 2 bytes (16 bits) represent 128 — 16383

4 bytes (32 bits) represent
11 XXXXXX XXXXXXXX XXXXXXXX XXXXXXXN 16384 — 1 billion

Figure 7. Number formats for the simple compression scheme.

We got good compression results from this scheme. We generated a large on-disk file containing
all of the documents in the ZIFF1, ZIFF2, AP1, and AP2 corpora using this compression. The
combined corpus has 960 MB of raw text, including 294,440 documents and 889,125 unique n-
grams, resulting in an on-disk file requiring 1.085 GB of storage. This provides better than a fac-
tor of four compression relative to the uncompressed on-disk file. Additionally, query perfor-
mance improves greatly. After the system loads the in-memory tables for the large corpus, it can
compute, sort, and display the similarity at the rate of 5.5 minutes per 1000 characters in the
query.

This simple compression algorithm showed that we can process n-gram queries against 1 GB of
text data quite well. However, we did not achieve as much compression as we could. We noticed
that gzip was able to compress our on-disk files by a factor of 2, suggesting that we could devise a
compression scheme that approached, or even surpassed, this level of compression. Doing so
would reduce the size of on-disk indices and improve performance by reducing the amount of data
that must be read for each query. Balanced against this is the increased CPU time necessary to
encode and decode a more complex compression scheme.

3.3.3 Gamma compression

Our initial experiments showed that compression was very effective at reducing resource require-
ments, but that we could achieve additional gains with more efficient compression schemes. We
primarily considered several standard schemes for our corpus: unary code, gamma compression,
and delta compression. All of these compression methods are relatively straightforward to imple-
ment and could provide significant improvement over our initial scheme.

The first such code we considered was the unary code [7]. In this code, anxrelger is coded

asx—1 one bits followed by a zero bit. For example, the unary code for 4 is 1110. This represents
small integers such as n-gram counts within a document well, but is very inefficient at represent-
ing larger integers such as document serial number gaps.

We next examined gamma compression, which represents an xegero parts: a unary code
for an integem followed by ak-bit binary valuey. The value fok is determined by taking theth
element of a vector of integers that is constant across all compressed values (i.e., constant for a
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particular compression scheme). For a vediky, kq, ..., k] , the value of a represemigation

-1
k] . : :
can be calculated asz 20+y+1 . Table 2 shows examples of representations using two dif-
H= U

ferent vectors for values &f Note that the largest number representable in each scheme is limited
by the largest integer in thevector. For this reason, gamma compression implementations often
contain a large terminal value to handle the occasional integers larger than the range in which
most values fall.

(0, 1, 2, 3 20 1,35 7 15]
Prefix
k | Maximum value || k | Maximum value

0 (0) 0 | 20=1 1 |ol=»n
1(10) 1 11+22=3 3 | 2+23=10
2 (110) 2 |3+2=7 5 |10+2=42
3(1110) | 3 | 7+28=15 7 | 42+27 =160
4 (11110)| 20| 15 + 20 151 160 + 2°

Table 2. Sample gamma compression representations.

If this table is constructed in memory, both compression and decompression are relatively simple.
For compression, the algorithm first subtracts 1 from the value being encoded. It then need only
search through the table and find the smallest entry greater than the number being compressed.
The unary prefix may be read directly from the table, and the binary portion is obtained by sub-
tracting the previous maximum value entry from the value to be compressed. This value is
expressed in the number of bits found in the table entry. For example, compressing the value 18
using the scheme on the right would be done by first subtracting 1, yielding the value 17. Looking
in the table, this requires a unary prefix of 2 (110) and a binary portion of 17-10 = 7 expressed in
5 bits (00111). Thus, the final representation is 11000111.

The decoding process is also relatively simple. The unary prefix is extracted and used as an index
into the table. The maximum value from the previous entry is then addedkdithealue that

follows the unary prefix using thefound in the table, and the result is added to 1. For example,
decoding the compressed value 10110 using the scheme on the right is done by looking up 2 (10)
in the table, and finding that k=3 and the “base value” is 2. The uncompressed number is thus 2 +
1+6(110)=09.

The delta code is a derivative of the gamma code that uses the gamma code, rather than unary, to
encode the prefix. However, the delta code is more complex, and not as efficient for very small
numbers such as those found in n-gram frequency counts. There are other, more advanced com-
pression techniques, but these two are the most commonly used algorithms. Since integers in this
system are not big and the gamma code is easy to implement, we picked gamma coding to com-
press the posting list.
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Even after selecting gamma compression, however, we had to choose the best vector to use to
compress our integers. To do this, we ran several experiments against the data shown in Figure 6
to compute the amount of space that would be required using several different vectors. The results
of some of our experiments are shown in Table 3. As this table shows, optimal compression for n-
gram counts and document gaps were achieved with different vectors. To simplify implementa-
tion, we chose the first vector in Table 3 as our compression scheme, though future versions of
TELLTALE may use different vectors to compress different value sets. Even with our choice of a
single vector, however, we were within 5.5% of the space required by the optimal two-vector
compression scheme.

Vector N-gram counts (MB) | Document gap (MB)| Total (MB)
<0,1,2,3,4,5,6,7,8,9,10,11,12,14,16,18,20,28> 87.7 409.1 496.8
<0,1,2,3,4,6,8,10,12,14,16,18,28> 87.7 409.2 496.9
<0,0,1,2,3,4,5,6,7,8,10,12,14,16,18,28> 83.2 435.0 518.2
<0,0,0,1,2,3,4,5,6,7,8,10,12,14,16,18,28> 82.3 460.2 542.5
<0,0,0,0,1,2,3,4,5,6,7,8,10,12,14,16,18,28> 82.1 484.7 566.8
<0,0,2,4,6,8,10,12,14,16,18,28> 86.4 412.0 498.4
<0,2,4,6,8,10,12,14,16,18,28> 96.6 388.1 484.7
<0,3,6,9,12,15,18,21,28> 106.9 395.2 502.1
<0,2,3,6,9,12,15,18,21,28> 96.0 398.5 494.5
<0,1,2,4,6,9,12,15,18,21,28> 88.2 408.2 496.4

Table 3. Index sizes for various gamma compression vectors.

Using our gamma compression scheme with the vector in the first line of Table 3, we generated a
large on-disk index file covering ZIFF1, ZIFF2, AP1, and AP2. The raw text from these files was
960 MB, but the on-disk index consumed only 647 MB. While the table entry suggests that under
500 MB would be necessary, the table does not include additional data structures necessary to
store document info and the n-gram headers; these structures make up the additional 150 MB.
Since they are only read in at startup, however, we decided not to attempt to compress them as
well. Our experiment gave a compression ration of 0.67, which is nearly as ggop as

Gamma compression also improves query performance by reducing the amount of data that must
be read for a single query. After loading the in-memory information for the 960 MB of text,
TELLTALE can compute and sort about 300,000 documents’ similarity result at the rate of 50
seconds per thousand characters in the query. This is considerably faster than our original com-
pression scheme, as can be seen in Figure 8.

3.4 Handling gamma compressed postings lists in memory

The dropping price of memory has made it possible to purchase large amounts of memory at a
reasonable price. With the help of gamma compression, the compressed postings list is small
enough to be loaded into main memory if allocation is handled intelligently (i.e., not by malloc...).
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Figure 8. Retrieval time for different query sizes and compression methods.

Since about 1 GB of raw text data can be indexed in under 700 MB, we can handle 1 GB of text
data in less than 750 MB of main memory, allowing for a small amount of overhead. Doing so
will improve the performance a great deal by eliminating disk I/O during a query.

The major difficulty with handling the compressed postings lists in memory is coping with the
many bucket capacities necessary — some postings lists will be only a few bytes long, while oth-
ers may require many thousands of bytes. Additionally, these buckets must grow dynamically as
new documents are scanned in. These requirements are best met using lists built from fixed size
“chunks” of space connected in a linked list. The overhead for this scheme is relatively small —
fixed size chunks that can hold 32 bytes require only 4 bytes of pointer overhead for an overhead
of 12.5%. In addition, fixed size chunks waste some space because part of the last chunk is
unused. On average, this will waste half of a chunk per n-gram, 16 bytes in our system. Thus, total
overhead for a system that scanned in the 1 GB AP-ZIFF corpus would be 14 MB for unused
chunk space and about 62.5 MB for pointers. In future versions of TELLTALE, we will attempt to
reduce this overhead by allowing 2-3 different chunk sizes for maximum efficiency.

Operation using in-memory compressed postings lists is similar to that using uncompressed post-
ings lists, but with the additional step that postings lists must be compressed before they are per-
manently stored. Additionally, postings lists must be uncompressed before they are used in
similarity calculations. While this technique uses less memory than uncompressed postings lists,
it is somewhat slower because of the time needed to uncompress a postings list. A 200 MHz Pen-
tium laptop is capable of decompressing two million integers a second; while this seems an
impressive number, most similarity calculations must process ten million postings or more. Thus,
decompression time contributes significantly to similarity calculation time.

By using in-memory gamma compression rather than uncompressed postings lists, TELLTALE
can reduce its memory usage by a factor of four or more, as Figure 9 shows. Both versions of
TELLTALE keep the entire postings list as well as the other data structures, including the docu-
ment information table and n-gram information table, in memory. The only difference between
the two is that the gamma compressed version uses a great deal less memory for larger amounts of
text. Note, however, that the original TELLTALE uses slightly less memory for small corpora; this
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occurs because the overhead for the gamma compression version of TELLTALE is slightly higher.
However, this higher overhead is more than recovered as the amount of indexed text increases.
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Figure 9. Memory usage for original and in-memory gamma compressed TELLTALE.

The in-memory gamma compressed version also provides increased speed relative to the on-disk
version. Comparisons with the original, uncompressed in-memory version are less relevant
because the original version can only handle very small corpora. Thus, we focused our attention
on the relative performance of the gamma compressed postings lists on disk and in memory. We
ran queries against a collection containing the 257 MB of text in ZIFF1, which comprise 75,029
documents, 562,492 unique n-grams, and a total of 185,159,683 postings. We were limited to this
size because the machine on which the queries were run, a two processor SGI Origin 200, had
only 256 MB of memory. When the entire ZIFF1 corpus was loaded into memory, it used 210 MB
of memory, leaving the rest for operating system use. As can be seen in Figure 10, in-memory
gamma compression is twice as fast as on-disk gamma compression, though the difference is not
as large as we had expected.
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Figure 10. Performance comparison of in-memory and on-disk version with gamma compression.
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As the preceding experiments have shown, gamma compression performs well for n-gram-based
IR just as it does for word-based schemes. However, we had to adjust the gamma compression
vectors to best compress the postings lists generated for n-grams because document gaps and, par-
ticularly, occurrence count distributions are differ between words and n-grams. Using these tech-
niques, we expanded TELLTALE's capability from around 10 MB to over 1 GB while
maintaining good query performance.

4 Exploring different similarity mechanisms

Because this is the first n-gram-based information retrieval system capable of handling a gigabyte
of text, we were able to perform several experiments on using different document similarity
schemes that were previously done only on relatively small corpora [19]. While our experiments
were not extensive, they showed the effects of eliminating common n-grams from queries and the
resulting performance gains. We also conducted some basic experiments on the effectiveness of
TF/IDF similarity using n-grams rather than words.

4.1 Incremental similarity calculations

Incremental similarity is based on the idea that a n-gram which occurs in most documents is not
important for retrieving a similar documents. If every document contains this n-gram, it must be a
common term and not a key term to distinguish those documents. At the same time, these n-grams
have a long posting list, requiring TELLTALE to spend a relatively long time reading and uncom-
pressing the posting list for them. To test the effectiveness of ignoring common n-grams, we mod-
ified TELLTALE to include a threshold (O<t<1) above which an n-gram is ignored for
similarity computations. TELLTALE then ignores all n-grams that occur in more than

t x numDocsdocuments, wheneumDocss the total number of documents in the corpus.

Because the n-grams that occur in a high percentage of all documents are not likely to be impor-
tant, they should not affect the accuracy of a query. A TELLTALE user can set the threshold with

a larger value resulting in better accuracy at the expense of longer similarity computation time. On
the other hand, reducing the threshold speeds up similarity computation but reduces accuracy. The
speedup from reducing the threshold is illustrated in Figure 11. As expected, lower thresholds
require less computation time, but the improvement is not dramatic. Even for a threshold of 50%,
the maximum improvement time is from 33 seconds to 28 seconds, or 85% of the original time.
Because there are many more unique n-grams than words, there are fewer n-grams that occur in
most of the documents. Thus, omitting the most common ones does not result in very large perfor-
mance gains.

We next produced a simple precision-recall graph for reduced n-gram frequency thresholds. Since
we did not have “official” relevance judgments for queries on our corpus, however, we used
approximate judgments. Nonetheless, the graph in Figure 12 shows that, as expected, lower
thresholds result in lower precision and recall. Given the relatively small improvement in perfor-
mance, we believe that eliminating common terms from similarity computations may not be as
effective for n-grams as it is for words.
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Figure 11. Performance for incremental similarity with different thresholds.

100 R L e . UL 3

80
S
e w40 Threshold = 1 R S
iz ]
o 40 «++-+ Threshold = 0.7
o N

20 —a— Threshold = 0.5

0 . T T T T I T T T T I T T T T I T T T T I T T T T I
0 20 40 60 80 100

Recall (%)
Figure 12. Recall-precision curve for different thresholds.

4.2 TF/IDF similarity

Another standard weighting system used in word-based systems is TF/IDF (Term Frequency/
Inverse Document Frequency) [19]. It uses the term frequency within a document times the log of
the total number of documents over the number of documents containing the term. TELLTALE
includes support for TF/IDF weighting, but we found it very difficult to test precision and recall
for a different weighting system without a corpus with scored queries. However, our experiments
showed that TF/IDF similarity can be calculated at about the same speed as the original TELL-
TALE similarity. Thus, if future work shows that TF/IDF yields more accurate similarity mea-
sures when using n-grams, as suggested by [19], TELLTALE will be able to support it with little
loss in performance

5 Conclusions and future work

Though we greatly expanded TELLTALE’s capacity and improved its performance, we did not
affect its ability to handle multilingual or slightly garbled documents. It is these advantages, com-
bined with an ability to perform retrieval using full documents rather than relatively short queries,
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that make TELLTALE a useful tool. However, there is still much work to be done with it. We hope

to perform a more complete study of the tradeoffs between different similarity measures using n-
grams rather than words. Because TELLTALE is the first system using n-grams that can handle a
gigabyte of text, we hope to be able to show that n-grams are equal to or better than words as
indexing terms. We are also currently performing experiments in using TELLTALE to index col-
lections in non-English languages ranging from European languages such as French and Spanish
to ideogram-based languages such as Chinese. Our preliminary results are promising, but more
investigation needs to be done.

We have demonstrated that it is possible to build a text information retrieval engine using n-grams
rather than words as terms that can handle gigabyte-sized corpora. The TELLTALE IR engine
adapts techniques that have been used for word-based systems to n-gram-based information
retrieval, making adjustments as necessary to account for the different term distributions exhibited
by n-grams. Because there are many more unique n-grams than words in a document, TELLTALE
must cope with 1-2 orders of magnitude more unique terms and at least an order of magnitude
more postings to allow indexing of a text corpus. By modifying standard techniques, we demon-
strated a system that provides good performance on the large corpora that computers will be
called upon to index. These techniques can also be used on other systems where performance and
scalability are critical to better use of system resources and larger scale and faster processing.
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