
The TELLTALE Dynamic Hypertext Environment:

Approaches to Scalability

Claudia Pearce Ethan Miller

U.S. Department of Defense CSEE Department

9800 Savage Rd. University of Maryland Baltimore County

Fort Meade, MD 20755-6000 Baltimore, MD 21250

cepearc@afterlife.ncsc.mil elm@acm.org

March 28, 1997

Abstract

Methods and tools for �nding documents relevant to a user's needs in document

corpora can be found in the information retrieval, library science, and hypertext com-

munities. Typically, these systems provide retrieval capabilities for fairly static corpora,

their algorithms are dependent on the language for which they are written, e.g. En-

glish, and they don't perform well when presented with misspelled words or text that

has been degraded by OCR (optical character recognition) techniques. In this chapter,

we present the TELLTALE system. TELLTALE is a dynamic hypertext environment

that provides full-text search from a hypertext-style user interface for text corpora that

may be garbled by OCR or transmission errors, and that may contain languages other

than English by using several techniques based on n-grams (n character sequences of

text). In this chapter, we identify methods and techniques that we have applied to

the n-gram data structures. We also discuss algorithms that we used to enhance the

scalabilty of the TELLTALE Dynamic Hypertext System.

Keywords: n-gram, hypertext, information retrieval, full-text, similarity, OCR,

multilingual.

1 Introduction

Knowledge workers of many kinds, from scienti�c researchers, to reporters, o�ce workers,

and others, all need to process large growing collections of textual documents on a daily

basis. This environment is characterized by changing corpora that may contain text that

deviates considerably from standard English. O�ce workers must sift through a morass

of electronic information such as electronic mail, optically scanned documents, and other

machine-readable text. International business must also be capable of processing multiple

languages, sometimes within the same document. Text may be corrupted through faulty

transmission, translation, or optical character recognition. Unfortunately, traditional tools

for �nding information in text are geared primarily for one language (and often are restricted

to one domain within that language) and are not well suited to corrupted data.

1

Ethan L. Miller
Appeared as a chapter in Advances in Intelligent Hypertext, J. Mayfield and C. Nicholas, eds. Lecture Notes in Computer Science, Springer-Verlag, October 1997, pages 109–130.

2

Contemporary full text search tools fall into two major categories: traditional text re-

trieval and hypertext. Traditional text retrieval tools process and scan text corpora against

which users can pose queries [SM83]. Queries can range from highly-structured Boolean

queries to completely-unstructured natural-language queries. Query results in traditional

systems can consist of an unordered set of documents { as is the case in most commercial

systems { or a ranked list of documents presented in decreasing order of relevance. Hy-

pertext provides a somewhat di�erent method of accessing the underlying corpus [Nie90].

Access to related items of information is provided through a navigational-style interface in

which a user selects highlighted areas of text in a document which then causes related in-

formation to be presented to the user. Types of links (e.g. associations from one document

to another) can vary, but an underlying collection of linked segments of text is essential.

Each category of tool, traditional text retrieval and hypertext, has its strengths and

weaknesses. For example, traditional text retrieval tools often contain many language de-

pendent features such as stop word lists and stemming algorithms. In addition, these

traditional text retrieval tools often use the roots of all non-stop words as index terms.

The reader is referred to Croft [CT87] and Salton [SM83, 118-146] for descriptions of tra-

ditional systems. This process provides variability in the endings of words in a document

but not in the roots of the words. Hypertext tools are traditionally of the static-corpus,

hand-generated variety [EE68, Nel88] or, as in many newer versions, incorporate traditional

text retrieval tools [CT89, FC89, CCA89, ACR+90] and are subject to the same problems

as traditional text retrieval tools. Hypertext has the advantage of providing an intuitive

user interface that allows users to jump from one document to related documents that have

been selected solely on the basis of the text in the original document. This is in sharp

contrast to traditional full text retrieval which relies on complex query languages.

TELLTALE draws on the strengths and addresses the weaknesses of both technologies

to provide a dynamic hypertext environment using new variations on traditional full text

retrieval. With this marriage of technologies and the incorporation of unique techniques

to build in tolerance to garbles and to remove language dependencies, TELLTALE is a

versatile full-text retrieval and dynamic hypertext tool. The purpose of this chapter is to

provide an overview of the TELLTALE dynamic hypertext environment and its dynamic

linking methods, to describe how language independence and garble tolerance are achieved

in those linking methods, and to illustrate recent e�orts to enhance TELLTALE's scalability

for large document collections. Section 2 provides an overview of the TELLTALE Dynamic

Hypertext Environment. The design and development of a TELLTALE-like research plat-

form for testing a variety of scalability issues is covered in Sections 3. The chapter concludes

with a discussion of related e�orts and future work in Section 4.

2 TELLTALE { A Dynamic Hypertext Environment

TELLTALE provides dynamism in its approach to full text retrieval in three ways. First,

TELLTALE provides dynamism in selection of the anchor (selected area of text used as the

source of links to other related portions of text) which allows users complete
exibility in

their search for information. Second, the choice of link computation by the user at run-time

provides another area of dynamism. By giving users a choice of link computation, they

can select the choice most appropriate to their needs at the moment. Third, by actually

Pearce & Miller 3

calculating the link at run-time, the system can incorporate any new data that has been

added since starting the system. The actual links are computed dynamically, not manually

generated for a speci�c corpus. This combination of link type selection, anchor selection,

and link computation serves as the basis for relating and querying the full text of documents

in an underlying corpus. These dynamic mechanisms allow users to pose questions about

the underlying corpus using a passage of text, to investigate the relationships between

documents through navigation, and to browse a dynamic corpus.

The bases for the dynamic linking capabilities in TELLTALE are enhanced versions of

the traditional statistically-based information retrieval tools. To overcome any dependence

on a particular language, e.g. English, and to build in tolerance to spelling errors, we use

n-grams, n-character sequences of text, in our statistically-based tools to supply some of

the needed robustness. This use of n-grams, along with unique scoring techniques, provides

the required robustness for garble tolerance and language independence.

Since anchors provide explicit visual cues for users, specialized highlighting tools are

included in TELLTALE so that users can readily identify meaningful information in a

hypertext without explicit anchor points. So that the highlighting tools in TELLTALE

are also garble resistant and language independent, n-gram-based techniques are used in

these tools as well. Two types of highlighting tools are provided in TELLTALE. First,

topic highlighting is provided which highlights the n-grams contained in the anchor that

occur in a selected target document (a document that resulted from traversing a link). The

e�ect of the topic highlighting is to provide users with quick visual recognition of words and

phrases from the anchor that are present in a target document while allowing for variability

in spellings and endings. Second, a statistical highlighting technique, based on a technique

by Cohen [Coh95], is provided which highlights words and phrases that contain n-grams

that occur more frequently than statistically expected based on a large sample. The e�ect

of this statistical highlighting is to provide the gist of a selected target document.

In this section we discuss the mechanics of TELLTALE's linking mechanisms and the

features of its user interface. A more complete discussion of TELLTALE's highlighting

techniques can be found in Pearce's dissertation [Pea94]. In Section 2.1 we discuss the

n-gram approach used in TELLTALE as well as three dynamic linking mechanisms based

on this n-gram approach. In Section 2.2 we discuss the TELLTALE user interface.

2.1 Dynamic Link Types Using n-grams

Partial character sequences of length n extracted from documents, called n-grams, have

been used in several automatic document indexing schemes in several systems [DM85,

Wil79, ZPZ81, Dam95a]. Zamora [ZPZ81] uses trigram analysis for spelling error detec-

tion. Damashek [Dam95a] uses n-gram analysis for similarity scoring with multiple lan-

guages and robustness against misspellings. These n-gram approaches vary in the choice

of n, the process for extracting n-grams, and the statistics stored about n-grams. Some

n-gram approaches extract all unique n-grams in words, but ignore cross-word bound-

aries [ZPZ81, Sue79]. Other approaches keep statistics on n-grams at various start positions

within words [Sue79]. A further variation on n-gram generation is to include interword

spaces so that n-grams spanning words can be monitored [YGH82, Cav93]. Damashek's

method �nds all unique n-grams in a document including interword spaces. This can be

4

referred to as the sliding n-gram approach since a document can be easily scanned for all

its unique n-grams by sliding an n-byte window over the text. Language independence is

achieved by using all unique n-grams in a document and corpus when building document

representation vectors. This process replaces the keyword stemming commonly used in

traditional information retrieval systems [SM83] and eliminates other language-dependent

features such as stop word lists. Robustness to errors in spelling is gained because of the re-

dundancy introduced with the sliding n-gram approach, which identi�es all unique n-grams

in a document. Since not all characters in a word will typically be included in each n-gram

that contributes to a word, considerable
exibility is built into the approach. In addition

to the overlap provided by the sliding n-gram approach, Damashek's weighting scheme is

unique in that it removes commonality among documents by generating an \average" doc-

ument from the full corpus and then removing \average" n-gram weights from individual

n-gram weights in a document. This has the e�ect that n-grams covering stop words and

other common words are weighted less highly than n-grams covering other words. In con-

trast to the complete coverage of the sliding n-gram approach of Damashek, Mah [DM85]

collects high-frequency bigrams and trigrams to be maintained as indexes, then combines

these bigrams and trigrams to locate speci�c words and phrases. Low frequency bigrams

and trigrams are not used so that the size of the index remains small. As a result, Mah's

approach does not have the same level of coverage of characters and inherent robustness

as does Damashek's. Cavnar's method tracks interword boundaries by maintaining all bi-

grams and trigrams in each line of a document, but misses interline boundaries [Cav93].

Yannakoudakis' method [YGH82] collects n-grams containing spaces at word endings only.

Sliding n-gram analysis serves as the basis for the three dynamic linking methods in

TELLTALE: Similarity links, Lookup links, and Disambiguated Lookup links. The Sim-

ilarity link is a method of linking documents based on the closeness of two document's

respective vocabularies. Documents are represented by a vector of weights representing the

contributions of various n-grams. Similarity is calculated by computing the cosine of the

two vectors of n-gram frequencies. The Lookup link is a method of linking documents based

on the percentage of the unique n-grams contained in an anchor string that actually occur

in a document. The Lookup link can be thought of as a fuzzy string match. It is, as its name

implies, a lookup of certain n-grams. The Disambiguated Lookup link is a method of linking

documents based on a combination of the above two link types. Speci�cally, the Similarity

link is used to provide context and the Lookup link is used to �nd speci�c strings. This

e�ectively disambiguates the context in which the search string is used. In Sections 2.1.1,

2.1.2, and 2.1.3 the three methods of calculating dynamic links in TELLTALE are described.

A more complete discussion of the implementation details can be found in Pearce [Pea94].

2.1.1 Similarity Link

The weighting scheme in Damashek's method [Dam95a] { the basis for the Similarity link

{ uses counts of each unique n-gram in the corpus and in each document. To provide

these counts, a histogram is maintained for all unique n-grams in each document and in

the corpus as a whole. Consider, for example, the following passage of text. To reduce the

character set size, punctuation, special characters, and numerics have been removed (only

the 26 lower case letters of the alphabet and the space remain) for the purpose of n-gram

Pearce & Miller 5

detection and accumulation.

: : :expert systems can be used in many di�erent types of problem areas places

where expert systems make an important di�erence include : : :

Choosing n = 5, the �rst several 5-grams are \exper", \xpert", \pert ", \ert s", and \rt sy".

Notice that these same 5-grams occur again later in the passage, adding to their respective

histogram counts.

For fast access we internally store this histogram of n-grams as a hash table of n-grams,

using each n-gram as an access key. A hash table is a �le organization in which records

in the �le are divided into a collection of numbered buckets. Assignment of records to

buckets is determined by a function that transforms the value of a key in each record into

a bucket number. This transformation function is called a hash function. With proper

choice of hash function, storage of records is evenly distributed among the buckets. The

hash function used in TELLTALE is based on the ASCII values of the characters in each

n-gram. TELLTALE's hash function is described in Pearce [Pea94] and a full description

of hashing can be found in Knuth [Knu73]. A collision list of unique n-gram occurrences

is maintained in each bucket of the hash table. Tied to each unique n-gram is a list of

documents in which that n-gram occurs, along with a count of how often it occurs in each

document. For the English alphabet, there are 27n possible n-grams. However, for any

given document, relatively few of these will be represented. An upper bound on the number

of unique n-grams in a document of size m is m� n + 1. Through experimentation, it has

been found that 80,000 to 100,000 hash table buckets for 5-grams are su�cient to ensure

relatively short collision lists | fewer than �ve elements on average | for corpora over

forty megabytes in length.

In calculating the similarity of two documents, n-grams are used as index terms. The

weight of each term is the di�erence between the count of a given n-gram for a document,

normalized by the document's size, and the average normalized count over all documents for

that n-gram. This provides a weight for each n-gram in a document relative to the average

for the collection. For example, given the histogram count, ci;k, of n-gram k in document i,

the total n-gram count, mi, in document i, and the average normalized count, ak, of n-gram

k over all documents, a document is represented as a vector di = (di;1; di;2; � � �) where the

individual elements, di;k = ci;k=mi � ak, have been normalized and the n-gram's average

value removed. This is the same as dividing a document's vector by the document's total

n-gram count and subtracting the corpus' centroid | the vector composed of the average

weight for each n-gram in the corpus. The similarity between document vectors di and dj
is then calculated as the cosine of the two representation vectors,

SIMc(di; dj) =

Pt
k=1(di;k � dj;k)qPt

k=1 d
2

i;k

qPt
k=1 d

2

j;k

: (1)

The numerator in Equation 1 is the dot product of the vectors di and dj , representing

documents i and j respectively. The denominator in Equation 1, the product of the sum

of squares of each term in the respective vectors, is used to normalize the result. The

average n-gram vector can be calculated by maintaining a running total for each n-gram

and document size as documents are scanned. Scores computed using this approach range

from �1 to 1.

6

Similarity links provide a mechanism for linking similar documents. This result is

achieved because documents about the same subject tend to use the same vocabulary.

In TELLTALE, vocabulary consists of n-grams that make up the words, not the words

themselves. Queries are processed in the same manner as documents in the corpus. In

TELLTALE, complete documents be scored not only against queries, but against any se-

lected areas of text. The selected area of text becomes the anchor of the link and the anchor

is treated as a new \document" to be scored against all other documents. To make this

computation e�cient, TELLTALE's implementation reuses certain terms in the Similarity

link score [Pea94]. The e�ect of the Similarity link computation is that of an associative

table of contents. The user provides a sample of the \content" of interest and the hypertext

engine supplies a list of relevant documents by using the Similarity link computation. The

hypertext system then presents the user with a uniquely tailored selection of the corpus

based on her information need.

2.1.2 Lookup Link

The hash table construction for holding the histogram of n-grams and document references

discussed in Section 2.1.1 can be used as an inverted index into the document collection.

To compute a Lookup link, the n-grams from the selected query phrase are �rst parsed,

then each unique n-gram is hashed to �nd the documents in which it is contained. In other

words, we \look-up" every unique n-gram in the hash table to �nd documents in which

it occurs. If all of the n-grams of a query appear at least once in some document, then

that document has a high probability of containing that query phrase. Also of interest are

documents that contain lexically close matches of the word or phrase in the anchor. Thus,

instead of looking only for documents in which all of the n-grams from the query phrase are

present, those containing some percentage of the query n-grams, say 50 percent, are also

selected. With this approach, some documents that do not contain the speci�ed phrase will

be selected, resulting in false hits. Those documents were selected, however, because they

contained at least half (or some other percentage chosen by the user) of the unique n-grams

present in the query. Precision is sacri�ced for recall since with degraded text (text with

many spelling errors), relevant documents would be overlooked if the required percentage

was too high.

The Lookup link functionality can be expressed mathematically as the following asym-

metric binary similarity score:

SIMl(q; fi) =

Pt
k=1(qk � fi;k)Pt

k=1 qk
(2)

where q is the query or link anchor, fi is the ith document in the corpus, t is the total

number of unique n-grams in the corpus, and qk and fi;k are binary values, 0 or 1, rep-

resenting whether the query and document, respectively, contain n-gram k at least once.

The numerator is the dot product of query and document representation vectors in which

binary values are used in the weighting instead of the more precise weighting used in the

Similarity link. This score is asymmetric since one cannot reverse the order of the query, q,

and document, fi, without possibly getting a di�erent score. The score is geared speci�cally

toward the query since the denominator re
ects only n-grams from the query.

Pearce & Miller 7

The Lookup link associatively and robustly indexes documents. It is associative in the

sense that pointers or o�sets to speci�c locations in the text are not used in the hash

table as they are in other inverted �le indexing schemes. Instead, the lookup is based

purely on whether a document contains various n-grams and not on direct pointers to

exact locations where the speci�ed information resides. In contrast to the Similarity link

scoring, the Lookup link provides a method for �nding a word or phrase that may not

have su�cient weight to perform well as a query when using the Similarity link. As a side

e�ect, this technique will bring up documents on a variety of topics that happen to contain

a percentage of the requisite n-grams in the lookup query. Additionally, the Lookup link

provides users with a \browsing" tool. It lets the user examine the senses and contexts in

which a term is used while tolerating varied spellings.

2.1.3 Disambiguated Lookup Link

Disambiguated Lookup links provide a way to narrow the scope of either a Similarity link

or a Lookup link by combining the two methods. The Lookup link is designed to �nd doc-

uments that contain strings closely matching the anchor of the Lookup link. For example,

\dolphin" (or some close variation) can be used in di�erent contexts in di�erent documents.

One document might use \dophin" in the context of a football team, while another docu-

ment might use it in the context of large aquariums. In the Disambiguated Lookup link,

the current document is used to provide context for disambiguating the many senses of a

word or phrase such as \dolphin." Conversely, from a collection of documents that result

from a Similarity link, i.e. documents on a given topic of interest, Disambiguated Lookup

links can select documents within the set of interest that contain a speci�c word or phrase.

This re�nement procedure can be thought of as an AND operation. Mathematically, the

set of documents retrieved from a Disambiguated Lookup link can be thought of as the

intersection of the set of documents selected from the Similarity link and the Lookup link.

Given SETl = fdijSIMl(q; di) > thresholdlg and SETc = fdijSIMc(q; di) > thresholdcg
for a query q we represent the disambiguated set as:

SETd = SETc

\
SETl (3)

The threshold values, thresholdl and thresholdc, are left to the discretion of the user;

lowering thresholds improves recall at the expense of precision, while raising the threshold

has the reverse e�ect. Based on ad hoc experimentation, it has been found that a good

value for thresholdl is approximately :5, or 50 percent when translated from the range [0; 1]

to a percentage, and a good value for thresholdc is approximately :2, or 60 percent when

translated from the range [�1; 1] to a percentage.
It should be noted that all of the dynamic link methods described here produce a set

of documents instead of a single document. The set of documents selected is based on the

values of the score of a document versus the query (i.e. anchor). The documents that pass

the established threshold are then ranked in descending order of score.

2.1.4 Link Retrieval Performance

Pearce has shown TELLTALE to be an e�ective retrieval tool for both clean and degraded

data in [Pea94, Pea95]. The reader is refered to these works for a complete description of

8

retrieval performance analysis for TELLTALE's linking methods.

2.2 Hypertext Interface Overview

Figure 1 shows the basic blocked window design of TELLTALE. Figure 1 illustrates �ve

window areas. The area in the bottom left-hand corner is a writable area in which a user

can place any selection of text to be used as a query (link anchor) either by typing into the

area, by dropping in selected text from other windows, or by loading text from a selected

�le. This area is labeled \Topic Text" and it serves as a location from which the user can

pose an initial query. Such an initial query provides the user with a potentially relevant set

of documents and provides an entry point into the corpus. The user chooses the type of

dynamic query computation from either the \Lookup" or \Score" buttons located below

the Topic Text window. The \Browse List" button allows users to save lists of inter-

esting queries. Lookup computes a Lookup link and Score computes a Similarity link.

The choice selected for the calculation in the example pictured in Figure 1 was Lookup.

The Topic Text area can be used at any time, but is particularly e�ective when a user

starts the environment and loads new data. In this case, the Topic Text area serves as

an entry point into the system after data has been processed. The window on the lower

right, titled \Pearce Lookups," displays a ranked list of documents resulting from the

query. In the �gure, documents are ranked as a result of the Lookup link computation.

The Pearce Lookups window is also used to rank and list documents that are the result

of a Score (Similarity link) computed from the Topic Text area. A slider bar under-

neath this window allows the user to adjust the threshold of scores for documents retrieved.

The values on the slider bar range from zero to 100 percent where 100 percent indicates

complete similarity and zero indicates no similarity. The upper left-hand window, labeled

\Main Text," displays the selected document, in this case the contents of the document

whose identi�er is highlighted in the Pearce Lookups window. The document displayed

is an Associated Press document from the TIPSTER data corpus [Har93]. In the window

labeled \Damashek Documents" in the upper right-hand corner of the interface is a

list of documents similar to the document found in Main Text using the Similarity link.

This list is updated every time the document in the Main Text changes. The Damashek

Documents window is accompanied by a slider bar as in the Pearce Lookups window.

The slider controls the threshold of similarity. The middle window on the right-hand side

is used to display words of statistical signi�cance called Cohen Words. Statistical high-

lighting gives the user a quick survey of the contents of a document. When the statistical

highlighting is activated, words and phrases containing important n-grams are highlighted

within the document in the Main Text window, in addition to being listed in the window

labeled \Cohen Words." In Figure 1 the highlighting of the Cohen Words within the

text in theMain Text window has been turned o� to enable the anchor selection of \Bekaa

Valley." In the true spirit of hypertext, the user can select any phrase of any length from the

Main Text window to be used as the anchor of a dynamic link illustrated by the selection

of \Bekaa Valley." A popup menu, activated by anchor selection and mouse click, in the

middle of the Main Text window provides the selections of dynamic link computations,

Similarity, Lookup, and Disambiguated Lookup for the next link operation. This and other

features of the TELLTALE interface are covered at length in Pearce [Pea94].

Pearce & Miller 9

Figure 1: TELLTALE user interface with highlighted anchor and hypertext selection win-

dow.

2.3 Text Highlighting Techniques

As discussed earlier in this section, the dynamic hypertext environment provides two types

of highlighting techniques. Topic highlighting is activated in Figure 2. Topic highlighing

emphasizes any n-grams in the topic text that are present in the main text. By highlighting

n-grams, some variablitiy in spellings is accommodated. For example, in Figure 2, pro-

tions of \Israeli", \Israel's", and \Arab-Israeli" are highlighted in response to the topic text

\israel". Statistical highlighting (Cohen words) is activated in Figure 3. In this example,

words and phrases containing high scoring n-grams, based on Cohen's statistic, are high-

10

Figure 2: TELLTALE user interface with topic highlighting.

lighted. The e�ect of this highlighting is to provides the reader with a quick gist of the

document's content. With a quick glance, the user can determine whether or not the read a

doucment in more detail. The reader is refered to Cohen [Coh95] for a complete description

of statistical highlighting calculations and to Pearce [Pea94] for the variation on Cohen's

highlights used in the TELLTALE prototype.

2.4 Multilingual Text

Pearce & Miller 11

Figure 3: TELLTALE user interface with statistical highlighting of n-grams.

TELLTALE is multilingual in several senses. First, TELLTALE is multilingual because

the algorithms used in TELLTALE are independent of any speci�c language texts to be

analyzed or displayed. Second, TELLTALE is multilingual because it has the ability to

display a variety of fonts, thus allowing languages to be displayed in their native scripts.

Figure 4 shows the TELLTALE interface displaying Russian text extracted from an Internet

newsgroup. The Russian displayed in this example was encoded as 8-bit ASCII using a KOI

Cyrillic font encoding. By using the upper 128 values of the possible 256 available values

in the full 8-bit ASCII encoding, fonts such as the KOI Cyrillic allow both English (Roman

alphabet stored in the lower 128 bits of ASCII along with numbers and special characters)

12

Figure 4: Russian document from an Internet newsgroup displayed in KOI encoding of the

Cyrillic alphabet.

and Cyrillic (stored in the upper 128 values) to be displayed alongside of one another. Since

TELLTALE's linking and highlighting algorithms are based on n-grams and not on words,

the algorithms are not e�ected by the language used.

TELLTALE's original implementation did not contain the ability to display di�erent

language fonts. However, implementation of this new capability has proven to be very

simple. Only minor changes in the interface were required and virtually all of the scoring

and highlighting algorithms remained unchanged. In future implementations we hope to

Pearce & Miller 13

include a more comprehensive multilingual capability that incorporates 16-bit encoding

standards (e.g. UNICODE [Con92]) to enable the processing and display of languages that

require much larger coding schemes, such as Japanese.

Precision/recall analysis of the link types with multilingual data was not conducted due

to the lack of available test data and relevance judgments for multilingual data. Damashek,

however, has conducted a number of tests with the sliding n-gram approach (the basis for

our Similarity link) to demonstrate that languages can be sorted and identi�ed using this

approach [Dam95b].) Further experiments with multiple languages will be conducted as

appropriate data sets become available.

3 Scalability Research Platform

The original TELLTALE prototype, while favorably viewed by users for its interface style,

characteristics, and performance with several megabytes of data, was limited, however, in

the volume of data that it could load and score. Users of this prototype were limited by the

memory constraints of their workstation since TELLTALE precomputed (at startup) the

similarity of each document in the corpus to every other document. This process is both

lengthy and memory-intensive; starting up a copy of TELLTALE with 4,000 documents each

1 KB long could take several minutes, and the resulting data structures would consume over

32 MB of memory. We constructed a research prototype to explore methods that would

allow us to bypass these limitations, allowing TELLTALE to handle corpora containing 109

bytes in 106 documents.

3.1 Prototype Goals

We built the prototype system for several reasons. First, we could experiment with di�erent

algorithms in a non-production environment. Currently, TELLTALE is used by a sizable

community; separating the creation of new features from the maintenance of the current

version allowed us to \break" old features in the pursuit of desirable new features. Using

a prototype version also freed us from the need to implement a full user interface. As with

many projects, the user interface is a large part of the code. Eliminating much of this

code would make the system less suitable for production use, but it would not hamper the

evaluation of new algorithms for the retrieval engine.

Building a separate research prototype also allowed us to evaluate new data structures

and algorithms without necessarily including the baggage of previous versions. In some

cases, the new methods we used in the prototype proved superior to the original algo-

rithms. These improvements were merged into the next version of the production system.

Additionally, we were able to implement new algorithms and data structures that supported

scalability, as discussed in Section 3.2.

Our research prototype had one major feature not present in the production version |

it was built using a Tcl (Tool Command Language) interpreter [Wel95]. The Tcl interface

allowed us to quickly build a graphical interface using Tk [Wel95]. While this interface

lacked some functionality present in TELLTALE, it was su�cient for our purposes and was

implemented quickly. The Tcl interface has another major bene�t, though. Since Tcl is a

command language, the prototype could be controlled directly through scripts. This allowed

14

researchers to write batch scripts to test the prototype's performance without having to use

the graphical interface. Since the only interface to the indexing engine was through Tcl, we

were guaranteed that the scripts would have the same e�ects as the equivalent commands

selected through the graphical interface.

3.2 Data Structures

The research prototype includes three main data structures. Each keeps information about

a particular type of \object" within the system. The object types are n-grams, documents,

and �les. As with TELLTALE, each �le contains one or more documents, and each doc-

ument contains one or more n-grams. Rather than build our own data structures from

scratch, we used classes from the GNU libg++ class library. The data structures are built

using hash tables; libg++ hash table classes include automatic table resizing as well as

standard operations such as insertion, deletion, access, and traversal.

As Figure 5 shows, the three main data structures in the prototype are interconnected;

they may be used to �nd the documents that contain an n-gram or to locate the �le that

contains a document. Absent is a similarity matrix that provides the similarity for any two

documents in the corpus relative to the centroid. This matrix is absent for several reasons.

First, it occupied too much memory | space which could be better spent storing other data

structures. Second, it required a lot of time to precompute. Computing the similarity of all

documents against a single document is not too time consuming; however, it becomes very

expensive when done for each document. Scalability is the third reason for this change. The

prototype could not assume that all documents would be fully read in when the program

was started because doing so would require too much time just to convert �les into n-grams;

thus, it would be impossible to compute the matrix. Even if the matrix could be computed,

it would be far too large to reside in memory | the matrix would require 500 MB for just

50,000 documents.

The central data structure in the prototype is the n-gram hash table. This table contains

an entry for each unique n-gram in the corpus; this entry contains information such as total

count for the n-gram as well as data necessary for similarity calculations. In addition, each

n-gram may have a list of postings | one for each document that contains one or more

occurences of a particular n-gram. Our experiments using 5-grams showed that the 40 MB

Wall Street Journal corpus contained just over 250,000 unique n-grams. In the same corpus,

we found that a document with k n-grams had more than k=2 unique n-grams. As a result,

the n-gram table required fewer than 8 MB to store the per-n-gram information, but would

have required nearly 200 MB to store all of the n-gram postings. For large corpora, the

prototype's memory limitation arises largely from n-gram postings rather than the n-gram

hash table itself.

The document table contains one entry for each input document. It holds statistics

such as document size and location (via pointer to the �le table) for each document. It

also contains per-document information used to quickly compute document similarities; the

algorithm used is detailed in Section 3.3. This data structure uses fewer than 100 bytes per

document. While this presents little di�culty for corpora of fewer than 50,000 documents,

it may require some modi�cation to accomodate a corpus of one million documents.

The �le table serves as an interface between the document \world" of the TELLTALE

Pearce & Miller 15

n-gram hash table

posting

n-gram
info (the)

document info hash table document
info 24

file info hash table file
info 1

count
weighted frequency
posting list

posting

file
info 4

document
info 3

document
info 12

n-gram
info (were)

n-gram
info (tellt)

Figure 5: Data structures in the TELLTALE research prototype.

prototype and the �le \world" of the Unix �le system. Since each �le may contain hundreds

of documents, we decided to store per-�le information such as �le name separately; this

provided a large savings in memory usage by allowing document hash table entries to hold

a pointer to a \�le" rather than keep all the �le information themselves. While the table

uses about 100 bytes per �le, this cost is minimal even for a one gigabyte corpus containing

20,000 �les of 50 KB each.

As we discovered, the most space-intensive portion of the prototype was the postings

list. Thus, this is the data structure whose size must be reduced when the prototype is

scaled to larger corpora. Solutions to this problem are discussed in Sections 3.4 and 3.5.

3.3 Algorithms Used

The TELLTALE research prototype used the same basic algorithms for similarity used

in the production version, as detailed in Section 2.1.1. However, the calculation method

16

di�ered from that in the production version. TELLTALE precomputed all of the pairwise

document similarities at startup, placing the results into a large matrix. The prototype, on

the other hand, computes as little as possible when documents are read in. It postpones

most of the similarity computation until it is actually needed.

The prototype must maintain both per-n-gram and per-document information to allow

it to quickly compute the similarity between two documents. We can rewrite Equation 1 as

SIMc(di; dj) =

Pt
k=1(xi;kxj;k � xi;kak � xj;kak + a2k)qPt
k=1(xi;k � ak)2

qPt
k=1(xj;k � ak)2

(4)

where xi;k = ci;k=mi. The only part of this sum that must be recomputed for each query

document is the sum of xi;kxj;k . However, this product is zero unless both values are

non-zero, i.e., if both documents contain the n-gram in question. Similarity computations

can thus be done on the
y by taking a single trip through the hash table and keeping

a running total of this product for each document. This product is then combined with

precomputed values for
Pt

k=1 xi;kak computed for each document i,
qPt

k=1 x
2

i;k computed

for each document i, and
Pt

k=1 a
2
k . These values only change when new documents are

added to the centroid, and are not recomputed for every similarity computation. Instead,

they are �gured the �rst time a user requests a similarity computation after the centroid

has been modi�ed.

By separating the similarity calculations into two parts, the prototype provides the

user with better performance. Documents can be scanned in at the rate of approximately

100 KB/sec on a Sparc-10, allowing a 4 MB corpus to be \digested" in 40 seconds. The

precomputations previously mentioned require an additional 30 seconds, bringing the total

startup time for a 4 MB corpus to just over one minute. Then, additional similarity compu-

tations take around 5-10 seconds. To further enhance performance, we added a small cache

of similarity vectors; this permits users to get instant response when requesting a similarity

computation they had done recently.

3.4 Scaling Experiments

Exploring ways to scale TELLTALE was one of the main reasons for building the prototype.

We considered several mechanisms that would allow TELLTALE to handle multi-gigabyte

corpora. These algorithms included reduction of the metadata associated with the corpus,

and distribution of the corpus across several cooperating processors.

Our experiments to date have focused on the second method for scaling TELLTALE:

distributing the metadata and processing across several processors. As mentioned in Sec-

tion 3.2, the postings list occupied the largest fraction of memory in the TELLTALE pro-

totype, while the corpus centroid was considerably smaller. By not keeping a postings list

for each document, a single processor running the prototype could compute the centroid for

a far larger corpus than it could index. This centroid could then be distributed to several

CPUs, each of which maintains the postings list for a subset of the documents in the corpus.

We modi�ed the Tcl interface to the TELLTALE prototype using the dp package [dp],

which allows Tcl applications to communicate via Unix sockets. This package allowed Tcl-

controlled applications to act as servers that could receive commands, process them, and

Pearce & Miller 17

return responses in a way similar to Unix RPC. This process was entirely transparent to

the application; only the client sending commands knew that they were being sent over a

socket. This modi�cation allowed us to write clients that did not include the TELLTALE

prototype back end. Since their sole purpose was to send commands to TELLTALE servers,

the clients did not need any TELLTALE-speci�c code.

We used 40 MB of articles from the Wall Street Journal for our experiments. First, we

generated the corpus centroid (for 5-grams) on a single Sparc 10; this procedure processed

about 100 KB of data per second, requiring 400 seconds to digest the entire corpus. The

centroid was then written to disk. We then started prototypes on several di�erent machines,

and loaded the entire centroid into each one. Next, each machine read in a subset of the

documents from the corpus, generating the necessary postings lists. Since each instance of

the prototype was only responsible for a portion of the 40 MB corpus, they were able to �t

the postings list in memory. Because each server used the corpus-wide centroid, its reponse

to a similarity query against a piece of text was the same as if it had contained the postings

list for the entire corpus. Of course, this method only worked because the \base" document

had a postings list on each server { thus, each server generated such a list for the query

text as part of the query processing.

Using this structure, a client was able send similarity queries to each of the servers and

merge the responses. This method gave the same results as if the query were processed

by a single instance of the prototype with a very large corpus. Because of the parallelism,

though, the per-node memory requirement was reduced, as was the response time for the

query. Our preliminary experiments showed the reduction in response time to be linear

with the number of processors, though the reduction in memory usage was less than linear

because of the overhead of storing the centroid multiple times.

We have not yet run experiments on reducing the size of the postings list; possible

directions for this work are discussed in Section 3.5.

3.5 Future Prototype Experiments

The dp package allows TELLTALE to handle larger corpora by distributing them across

several workstations. However, it does not increase the capacity of a single computer. To

address this problem, we are pursuing three di�erent approaches, each of which would allow

a single workstation running TELLTALE to manage hundreds of megabytes of textual data.

Combining single-node scaling with dp will allow a TELLTALE system to perform similarity

computations over a corpus with a gigabyte or more of text.

The most obvious approach to indexing large amounts of text is to move the hash table

from memory to disk. While a workstation memory is usually smaller than 100 MB, multi-

gigabyte disks are both common and inexpensive. Storing the hash table on disk will allow

a single workstation to index 200 MB of text using approximately 1.5 GB of disk, at a

1996 cost of under $400. Since the basic data structures remain unchanged, this approach

will produce the same similarity results as TELLTALE would get using an in-memory hash

table. The only possible drawback is poor performance | computing similarity would

involve reading the entire hash table \bucket" for each n-gram in the query. While many

buckets will be small, others (for example, \ the ") may require reading several megabytes

of data. Retrieving the on-disk data and processing it will likely require several minutes;

18

however, this is the only one of the three methods that is guaranteed to generate the same

list of linked documents as the original TELLTALE system did.

The second method to improve TELLTALE's scalability is to build the in-memory hash

table using a subset of the n-grams from each document. Many of the n-grams in a document

do not help to distinguish it from other documents in a corpus, either because they are too

common or because they only occur a few times in the entire corpus. By eliminating the

postings for these n-grams, we can reduce the amount of memory used by the hash table.

In addition, n-grams that overlap might be removed because they convey little additional

information. Reducing the number of postings from 1000 to 50-100 per document will shrink

the hash table's memory usage by a factor of 10-20, increasing the number of documents

that can be indexed by the same factor. However, this reduced hash table cannot be used to

generate similarity scores because similarity depends on all of the n-grams in a document.

Thus, this method will use two passes. The �rst pass will use the reduced hash table to �nd

documents that are likely to be relevant. This pass will have high recall, but low precision.

The second pass will increase precision by scanning in all of the n-grams for each document

identi�ed in the �rst pass and computing their similarity to the query text. So long as the

centroid is that of the full corpus, the similarity values computed will be the same as if

the similarity had been computed over the entire corpus. However, the �rst pass may miss

some documents that should have been included near the top of the similarity list. This

approach should be faster than the �rst method, but it may be less accurate | �nding

good algorithms for choosing n-grams for the reduced hash table and selecting appropriate

documents in the �rst pass will be crucial to ensuring results similar to those of TELLTALE

with a full in-memory hash table.

Using signature vectors [WMB94] to characterize documents is the �nal method we will

be using. Each document will have a long (2 Kbit or more) bit vector associated with it.

Bits in this vector will be set by hashing n-grams to �nd an o�set. As with the reduced

hash table method, we must choose the n-grams that are appropriate for storing in this

vector. Since the vector will require a �xed space regardless of how many bits are set, more

n-grams can be in this list. With a 2 Kbit vector, the n-gram list might contain 20,000

entries. This allows more n-gram postings to be associated with each document at the cost

of reduced precision. As with the reduced hash-table approach, this method will make two

passes over the corpus. The low-precision �rst pass will identify documents \likely" to be

interesting, and the second pass will proceed as for the reduced hash table. Since the �rst

pass is not precise to begin with, the slight reduction in precision from signature vectors

should not cause too many problems, and the increase in recall from storing more n-grams

per document may reduce the number of documents that need to be identi�ed for the second

pass.

The three approaches will be compared in two areas: di�erence in results from in-

memory TELLTALE, and performance. Since the disk-based hash table will produce the

same results as the original TELLTALE implementation, it can be used as the benchmark

for the other two approaches. The result of these experiments will show the tradeo� between

speed and accuracy for the three approaches.

Pearce & Miller 19

4 Summary and Conclusions

TELLTALE is a hypertext tool that dynamically computes links between related items

of text using novel full text search techniques. TELLTALE's uses sliding n-gram based

indexing and scoring techniques to provide robustness to degraded text and to remove de-

pendencies on language. Linking mechanisms in TELLTALE tolerate high error rates (up

to 30 percent of the characters), outperforming existing systems in its tolerance to high

character error rates. TELLTALE is versatile and truly dynamic in the selection and calcu-

lation of links. A combination of three link types, Similarity, Lookup, and Disambiguated

Lookup, provide the user with a collection of methods from which he can choose based on

his immediate need. The dynamism in TELLTALE's link computation and link selection

methods is augmented by link anchor selection and novel highlighting techniques. These

dynamic linking and highlighting capabilities work together to give the TELLTALE dy-

namic hypertext environment its navigational and browsing capabilities. In addition to the

high resistance to garbles provided by TELLTALE's linking and highlighting mechanisms,

these mechanisms also provide TELLTALE with the necessary robustness to analyze and

display multiple languages. Further, TELLTALE's navigation and browsing tools provide

additional value and capability to that provided by traditional full text search and retrieval

techniques. Finally, the ability to tolerate degraded and multilingual text in TELLTALE

represent capabilities not shared by traditional full text retrieval tools.

5 Acknowledgments

Special thanks go to Marc Damashek for the invention of the sliding n-gram scoring tech-

nique which is so prominently featured in the TELLTALE dynamic hypertext system; to

Jonathan Cohen for his work on n-gram based highlights and his numerous insightful com-

ments during the course of this research; to Tom Nelson who slaved over the code for the

original TELLTALE prototype; and to Bill Rye for his many speedups and enhancements

to the production version of TELLTALE.

References

[ACR+90] M. Aboud, C. Chrisment, R. Razouk, F. Sedes, and C. Soule-Dupuy. Querying a

hypertext information retrieval system by the use of classi�cation. Information

Processing and Management, 29(3):387{396, 1990.

[Cav93] W. B. Cavnar. N-Gram-Based text �ltering for TREC-2. In Donna Harman,

editor, Proceedings of TREC-2: Text Retrieval Conference 2, Gaithersburg, MD,

1993. National Institute of Standards and Technology.

[CCA89] Donald B. Crouch, Carolyn J. Crouch, and Glenn Andreas. The use of cluster

hierarchies in hypertext information retrieval. In Hypertext '89 Proceedings,

pages 225{237. ACM Press, November 1989. Pittsburgh, PA, Nov 5-8.

[Coh95] Jonathan Cohen. Highlights: Language- and domain-independent automatic

indexing terms for abstracting. To appear in JASIS, 1995.

20

[Con92] The Unicode Consortium. The Unicode Standard: World Wide Character En-

coding. Addison-Wesley, Redwood City, CA, 1992.

[CT87] W. B. Croft and R. Thompson. I3R: A new approach to the design of document

retrieval systems. Journal of the American Society for Information Science,

38:389{404, 1987.

[CT89] W. B. Croft and H. Turtle. A retrieval model for incorporating hypertext links.

In Hypertext '89 Proceedings, pages 213{224. ACM Press, November 1989. Pitts-

burgh, PA, Nov 5-8.

[Dam95a] Marc Damashek, 1995. U. S. Patent Number 5,418,951.

[Dam95b] Marc Damashek. Gauging similarity with N-Grams: Language-independent cat-

egorization of text. Science, 267:843{848, 10 February 1995.

[DM85] R. D'Amore and C. Mah. One-time complete indexing of text: theory and

practice. In Proceedings 8th International ACM Conference on Research and

Development in Information Retrieval. ACM Press, 1985.

[dp] The dp package for Tcl/Tk. Available for ftp from

ftp://aud.alcatel.com/tcl/extensions/tcl-dp3.3b1.tar.gz.

[EE68] Douglas C. Engelbart and W. K. English. A research center for augmenting

human intellect. In Proceedings of the Fall Joint Computer Conference. AFIPS

Press, Montvale, NY, 1968.

[FC89] Mark E. Frisse and Steven B. Cousins. Information retrieval from hypertext:

Update on the dynamic medical handbook project. In Hypertext '89 Proceedings.

ACM Press, November 1989. Pittsburgh, PA, Nov 5-8.

[Har93] Donna Harmon, editor. TREC-2- Text REtrieval Conference-2. National Insti-

tute of Standards and Technology, August 1993.

[Knu73] Donald E. Knuth. Sorting and Searching, pages 561{562. Addison Wesley, 1973.

[Nel88] Theodor H. Nelson. Managing immense storage. BYTE, 13(1):225{238, January

1988.

[Nie90] Jakob Nielsen. Hypertext and Hypermedia. Academic Press, San Diego, CA,

1990.

[Pea94] Claudia E. Pearce. A Dynamic Hypertext Environment Through n-gram Analy-

sis. PhD thesis, University of Maryland Baltimore County, 1994.

[Pea95] Claudia E. Pearce. Dynamic hypertext links for highly degraded data in TELL-

TALE. In Fourth Annual Symposium on Document Analysis and Information

Retrieval, pages 89{106. Information Science Research Institute, University of

Nevada Las Vegas, University of Nevada, 4505 Maryland Parkway, Box 454021,

Las Vegas, Nevada 89154-4021, 1995.

Pearce & Miller 21

[SM83] Gerard Salton and Michael McGill. Introduction to Modern Information Re-

trieval. McGraw-Hill Book Company, 1983.

[Sue79] C. Y. Suen. n-gram statistics for natural language understanding and text

processing. IEEE Transactions on Pattern Analysis and Machine Intelligence,

PAMI-1(2):164{172, 1979.

[Wel95] Brent B. Welch. Practical Programming in Tcl and Tk. Prentice-Hall, Inc., 1995.

[Wil79] P. Willette. Document retrieval experiments using indexing vocabularies of vary-

ing size. II. hashing, truncation, diagram and trigram encoding of index terms.

Journal of Documentation, 35:296{305, December 1979.

[WMB94] Ian H. Witten, Alistair Mo�at, and Timothy C. Bell. Managing Gigabytes. Van

Nostrand Reinhold, 1994.

[YGH82] E. J. Yannakoudakis, P. Goyal, and J. A. Huggil. The generation and use of

text fragments for data compression. Information Processing and Management,

18(1):15{21, 1982.

[ZPZ81] E. M. Zamora, J. J. Pollock, and A. Zamora. The use of trigram analysis for

spelling error detection. Information Processing and Management, 17(6):305{

316, 1981.

