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Hall, Cyrus P. (M.S., Computer Science)
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Thesis directed by Prof. Alexander L. Wolf

An ideal sensor network would minimize communication by routing information
only to those nodes requiring the information. This thesis explores the use of a content-
based network for this purpose, where messages containing sensor readings and asso-
ciated metadata are relayed from source nodes to destination nodes based solely on
the fact that the destination nodes have expressed interest in specific message content.
Routing uses a distance vector protocol augmented to construct both primary and al-
ternate routes. Forwarding uses content-based matching together with a special process
called dynamic receiver partitioning. The protocol, called DV /DRP, is specifically
designed for wireless sensor networks or other similarly constrained network configura-
tions. We present simulations showing that the protocol scales to large networks while
minimizing the resource consumption of individual nodes. It is also shown that the
protocol is robust with respect to both transient and permanent node and communica-
tion failures. Finally, a preliminary implementation of the protocol on the MOS/Mica2

platform is presented.
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Chapter 1

Introduction

A sensor network is typically composed of a set of resource limited computers,
known as nodes, that are capable of measuring various types of phenomena. For
example, in environmental monitoring the nodes measure physical characteristics, such
as temperature, air pressure, and chemical or gas concentrations. The measurements
produced by sensor nodes may be transmitted and used either as punctual readings, or
they may be used with measurements from other sensors in such a way that the whole
network can be utilized as if it were a single “macrosensor”[21].

The kinds of data, as well as the rates at which those data can be usefully con-
sumed, are characteristics of the applications built on top of a sensor network. Sensor
nodes themselves are increasingly seen as general-purpose, commodity items that sim-
ply produce generic data. Therefore, as others have argued [15], the message traffic
in a sensor network should be driven by the dynamic “interests” of the application,
rather than by the particular static capabilities or configurations of the sensors. The
application might, for example, be interested in only receiving temperature readings
from a particular region that exceed a certain threshold or, because of its knowledge of
how the data are to be used, it might be interested only in receiving periodic messages
containing a temperature reading.

Sensor networks are an ideal application of the content-based networking

model of communication [8]. In this model, a message is transmitted from a sender



to one or more receivers without the sender having to address the message to any
specific receiver. Receivers express interest in the kinds of messages they would like to
receive, and the network delivers to the receivers any and only messages matching those
interests. Interests are expressed by receivers through predicate advertisements. In
this receiver-driven style of communication, the network is responsible for efficiently
applying predicates to the content of messages so as to minimize the computational and
communication costs of the network.

This thesis proposes a protocol that implements the content-based networking
model specifically for wireless sensor networks and other similarly resource constrained

configurations. Its design is based on the following assumptions:

e A primitive communication infrastructure: Nodes in a sensor network
have direct access only to their immediate neighbors and communicate with
them through a point-to-point or local-broadcast link-layer communication ser-
vice. There is no multi-hop network service such as unicast, multicast, anycast,

or flooding (broadcast) available.

e Resource-constrained nodes: Nodes are severely limited in the amount of
state they can maintain, in the number of messages they can send and receive,

and in the amount of energy they can consume.

e Many producers and few consumers: Most of the nodes will act as infor-
mation producers, while only a few, resource-rich nodes will act as information
consumers. The producers (i.e., message senders) are the sensor nodes. The
consumers (i.e., message receivers) are commonly referred to as base stations,
providing functions such as data correlation and gateways to higher-level appli-

cations and protocols.

In addition,the protocol currently assumes that the nodes are stationary. Depending



upon the velocity of a given set of mobile nodes, a network could still use the protocol
presented herein, however we have not studied the resulting behavior in simulation.

In order to illustrate the kind of sensor network that is consistent with the as-
sumptions listed above, consider one established by dropping wireless nodes from an
airplane in a remote geographical region to monitor seismic activity. Because the nodes
will need to be inexpensive and expendable, they are limited in both memory and com-
putational power. Similarly, no energy source can be relied upon except that which the
nodes bring with them. Some small percentage of the nodes, limited by cost and deploy-
ment constraints, will be base stations capable of performing correlation and gateway
functions. Once the nodes are on the ground, and after link-layer communication is es-
tablished, a content-based network will be formed and application-level communication
begun. Notice that in this scenario sensor nodes are both entry points for the messages
they produce, as well as relay nodes for the messages produced by other sensor nodes;
they must be capable of exhibiting both functionalities.

The key features that together distinguish the protocol presented in this thesis

from other content-based protocols proposed for sensor networks are as follows:

e An energy-efficient distance-vector routing protocol that can tolerate
both transient and permanent network failures. For each receiving node
r that advertises predicate p,, the routing protocol creates the forwarding state
corresponding to a shortest-paths spanning tree rooted at r. In addition to
the best next-hop n,, the protocol maintains a configurable length array of
alternate routes nl.,n!, ... that are used in case the best route fails. Receivers
are informed whenever alternate routes are used, so that they can reactively
repair broken routes. This allows the rate at which predicates are periodically

readvertised to be reduced or eliminated.

e A forwarding scheme that efficiently evaluates message content against



receiver predicates. Predicates are applied to a message once, at the node
where the message enters the network. Using a compact bit vector, the mes-
sage is annotated with an indication of the intended receivers, where each bit

represents a different receiver.!

Relay nodes need only evaluate the bit vector,
rather than the full predicate. Since we assume relatively few receivers, the bit

vector can be kept small.

e A routing scheme that avoids loops and redundant paths without
requiring the storage and maintenance of message caches or additional
routing state. When a node replicates a message so as to send it down two or
more paths (i.e., acting as a path splitter within the topology of the network),
each replica is annotated with a partition of the intended receiver space. This
simple and local mechanism prevents loops and redundant paths without the

need for a costly reverse-path flooding scheme, such as the one used in CBCB [7].

e A mechanism to limit the rate at which messages are delivered, rather
than to limit the rate at which messages are produced. Following the
principle that application interests should drive message traffic, the protocol
allows receivers (i.e., base stations) to specify delivery rates as part of predicate
advertisements. The protocol spreads and integrates the rate information just
as it does the predicates. This allows the network to optimize traffic flow under
the given rate limitations by adaptively integrating production rates across the
many sensors located around the network. At the same time, rate limitation
also serves to limit message congestion close to receivers, which in some cases

can save battery life.

We refer to the protocol as distance vector / dynamic receiver partitioning

(DV/DRP).

! Others have proposed annotating messages with receiver information [16], but they record the full
address using multiple bytes of information rather than a single bit per receiver.



This thesis presents the design of DV/DRP and gives results of a quantitative
evaluation conducted over a number of simulated scenarios. The simulations show that:
(1) the service is functional, stable with respect to growing networks, and robust in
the face of transient and permanent network failures and (2) the service holds resource
consumption to a minimum. For example, a network of 500 sensors with 10 base stations,
in the presence of intermittent link failures for 10% of the nodes at any given time, the
average level of control traffic remains under 60 packets per second throughout the
entire network (0.12 messages a node per second). In terms of power consumption, we
estimate that this amounts to only 1.5nA (5400nAh/s) over the entire network (using
power figures from [20].

We also present an implementation of the protocol on the MOS/Mica2 platform.
The results from the implementation show that: (1) memory resource consumption is
acceptable, and (2) the protocol performs as expected in empirical topology studies.
Due to constraints in the current implementation of the MOS/Mica2 platform, we were
not able to implement DV/DRP’s route reliability and recovery code. This remains
ongoing work.

In the next chapter, Chapter 2, the details of the DV/DRP protocol are given;
in particular, both the routing and forwarding algorithms are discussed. Chapter 3
presents the results of our evaluation studies and Chapter 4 presents an implementation
of the scheme on real hardware. Next, Chapter 5 discusses related work, contrasting
it to DV/DRP, and we then conclude in Chapter 6 with a discussion of future direc-
tions in which the protocol can be taken. Appendix A lists source code for an actual

implementation of DV/DRP on the MOS/Mica2 architecture.



Chapter 2

Routing and Forwarding

Before presenting our content-based networking scheme for sensor networks, we
provide more details on the envisioned communication service and usage models of the
network. At the end of the section we present a case for why sensor networks present a

good environment and opportunity for content-based networking.

2.1 Models

Sensor networks typically contain hundreds or thousands of randomly deployed
sensor nodes. KEach node commonly carries only limited computing resources. For
example, the MANTIS Nymph [1] and the Berkeley Mica2 Mote [25] both use the
Atmel Atmega 128(L) microcontroller, which can be clocked at a maximum of 16 MHz,
but in practice is run at approximately 4 MHz. Memory is an issue as well, with many
sensor node designs carrying no more than 128 kilobytes of EEPROM and even less
RAM, usually no more than 4 kilobytes.

The key factor limiting the computational resources of sensor nodes is the lack
of long-lived power supplies. Many sensor networks cannot be connected to a constant
and reliable source of energy and, therefore, must carry their own power in the form
of batteries. The amount of battery power found on a sensor node can vary from two
small AA batteries to large power packs [20].

Although RAM refreshes and CPU usage provide an obvious source of drain on



the constrained energy budget of a sensor node, the radio of a wireless sensor node
overwhelmingly dominates them in terms of total energy consumption. For example,
the MANTIS Nymph can draw up to 73 mA while transmitting and 40 mA while
receiving, making either operation far more expensive than a fully tasked CPU, which
draws only 14 mA. Somewhat counter-intuitively, receiving data often requires more
total power than transmitting, as nodes must listen for a period of time looking for the
beginning of packets. This listening time can be an order of magnitude longer than the
time needed to transmit. Given that a primary task of a sensor network is to move data
measuring phenomena from sensor nodes to base stations, the challenge is do so with
the minimum amount of communication overhead [2, 13].

Efficient transportation of data is further hampered by the fact that network-
level services are usually not available upon deployment. Often the topology of a sensor
network is not defined until the sensor nodes are turned on. After the network is
powered up, nodes must find valid paths back to the base stations [11]. A given sensor
network topology may never stabilize, due to radio interference, node failure, mobility,
or malicious interactions from outside. Such instability forces network-level services to
perform route recovery and/or maintenance.

The content-based networking model [8] offers a promising approach to structur-
ing energy-efficient, network-level communication services in resource-constrained sen-
sor networks. Instead of using explicitly configured and addressed end points to form
communication paths, routes are formed by receivers advertising a message selection
predicate to the network. A message containing data that match one or more selection
predicates is forwarded toward the receivers advertising those predicates.

Consider a base station in a sensor network monitoring wildland fire conditions.
The base station may want to be notified (on behalf of some higher-level application)
if the temperature or wind speed have reached critical values. The base station might

advertise the selection predicate shown in Figure 2.1 so that it is notified whenever



int wind_speed >= 30
int wind_dir > 0

int wind_dir < 160
int temperature > 150
int humidity <=5

Figure 2.1: Example Predicate

conditions reach a critical point. Following the simple model of Carzaniga and Wolf [9],
a predicate is a disjunction of filters, which in turn are made up of conjunctions of
constraints. In the example above, the predicate is formed from two filters, indicated
by the horizontal line separating them. Each constraint has a type (from a collection

[43

of primitive types), a name, an operator, and a value. Names, such as “wind_speed”,

need not be strings; the actual implementation of DV/DRP uses enumerated integers.

int wind_speed = 45
int wind_dir = 78
int node = 13

int wind_speed = 47
int wind_dir = 180

Figure 2.2: Example Messages

The sensor nodes in the wild-land fire scenario might produce messages such as
the ones represented in Figure 2.2. Again, following the simple model of Carzaniga
and Wolf [9], each message is a list of attributes. Much like constraints, attributes
consist of a type, a name, and a value, but the operator is always equality. Messages are
routed through the network toward receivers that have advertised predicates matching
the given messages. This form of network-level service model is akin to the application-
level communication model known as publish/subscribe.

In the context of a multi-hop network protocol, forwarding information is derived,
in part, from the selection predicates. Predicates are combined and simplified, and
then used in the construction of forwarding tables residing at individual nodes in the
network. The forwarding algorithm performs a match against these refined predicates.

If a message matches the constraints associated with one or more outbound interfaces,



then the message is forwarded to the next node(s) along the path(s) to the intended
receiver(s). In the example above (Figures 2.2 and 2.1), the first message would match
the predicate, while the second one would not.

In a resource constrained environment such as a sensor network we must ensure
that the routing and forwarding information is small enough to fit within the limited
memory available. Moreover, because the network protocol directly influences the total
network energy expenditure, we must ensure that paths are optimal and that extrane-
ous communication is minimized. Our hypothesis, substantiated in this work, is that
the semantics of content-based networking offer a platform for effectively and efficiently
solving many of the problems inherent in sensor-networks, while offering an appropriate
interface for applications. Content-based networking allows us to push filtering func-
tionality deep within the network layer, resulting an less energy consumption, while still
providing a service that can be made robust and fault-tolerant.

In order to implement the content-based networking service for a sensor net-
work, we have developed specialized routing and forwarding functions in DV /DRP. The
routing function is a form of distance-vector routing. The forwarding function uses
content-based matching and a special process called dynamic receiver partitioning.

Table 2.1 shows the formats of the message and predicate advertisement packets

receiver (16 bits)
next hop (16 bits)
distance (8 bits)
sequence num (8 bits)
bit-vector pos. (5 bits)
min delay (27 bits)
predicate
(variable size)

receiver set (32 bits)
route-failure (1 bits)

message id (31 bits)

message content
(variable size)

(a) (b)
Table 2.1: Predicate Advertisement (a) and Message (b) Packet Formats
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used in DV/DRP. The various fields, and why each is needed for the operation of routing

and forwarding, are now described in the next two sections.

2.2 Routing

DV/DRP uses a straightforward distance-vector routing protocol augmented to
maintain an array of alternate next hops. When a receiver node r advertises a predicate
pr, the routing protocol propagates p, to every node in the network, thereby forming a
content-based forwarding tree rooted at r. This can be thought of as the equivalent of a
route advertisement. The content-based forwarding tree “attracts” messages matching
p, toward r.

The routing protocol uses a table to represent a distance vector. For convenience,
the same table also stores receiver predicates and, therefore, serves as a forwarding table.
For each receiver r in the network, the table stores path information as well as path-
independent information. The path-independent information consists of the receiver
predicate p,, a sequence number s,, a bit-vector position b,, the minimum inter-arrival
interval A, and the time of the last matching message #,.

Path information consists of an array of distance-vector entries (n;,l,), (nl.,I.),
(n?,17), ... The length of this array is a static parameter of the protocol. The first
entry in the array represents the usual distance-vector information. In particular, n,
is the next-hop node on the shortest path toward r, and [, is the length of that path.
The other entries represent the local second-best path, the local third-best path,
and so on, which are used as alternate paths in case of path failure. We define the
local n'’-best path as the n"-best path computed by a traditional distance-vector
protocol. In practice, an alternate path goes one hop away from the current node (along
a sub-optimal path), and then follows a primary (or, if necessary, alternate) path from

there. This definition is exemplified by the graph of Figure 2.3.

Figure 2.4 shows examples of routing/forwarding tables at two points in time. The
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destination primary

. ~— primary
" 3rd - alternate

Figure 2.3: Primary and Alternate Paths

id pred. ...primary 2nd ...
1] p1 .. .|a1=221=3].. |

- - ~—— pathtonode 1

~

e <— — path to node 2

p2 .,
(2)
id pred. ...primary 2nd ...
' 1| pt [...|41=221=3]. ..
(4) (5)

2 p2 |...|21=1|31=2|. ..

Figure 2.4: Routing/Forwarding Tables
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figure shows a network of five nodes, two of which (nodes 1 and 2) become receiver nodes.
Initially, node 1 advertises predicate p;. The predicate propagates through the network,
generating a content-based forwarding tree rooted at node 1, represented by the solid
arrows in Figure 2.4a. Later, node 2 advertises predicate py. This predicate propagates
throughout the network, creating the forwarding tree represented in Figure 2.4b with
dashed arrows. Also shown are the states of the routing/forwarding table of node 5.
The propagation of predicates follows a simple variation of a traditional distance-
vector protocol. A predicate is new when it refers to a new receiver, or when it carries a
sequence number greater than the sequence number stored in the table for that receiver.
This allows the receiver to change its interests dynamically. In the first case, a new entry
is added to the table. In the second case, the existing entry is updated with the new
predicate, its primary path is updated, and all the alternate paths are cleared (and
then rebuilt). In both cases, the predicate is broadcast to all the neighboring nodes.
A predicate is obsolete, and therefore immediately dropped, if its sequence number is
lower than the one already stored in the table. If a predicate comes in with the current
sequence number for its receiver, it is inserted in the path array according to its distance,
and propagated if it is inserted as the primary path. A zero sequence number in the

predicate is used to reset the sequence counter in the routing/forwarding table.

2.2.1 Withdrawing Receiver Predicates

A receiver node may also decide to stop receiving messages altogether, effectively
withdrawing its advertised predicate. We assume, as with advertisement, that with-
drawal is a relatively rare event.

A node withdraws a predicate by issuing a receiver cancellation packet. Receiver
cancellations do not need to follow the usual distance-vector protocol used to build up
routing/forwarding tables. Therefore, they are simply broadcast to every other node in

the network. Upon receiving a cancellation for receiver r, a node simply deletes r from
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its routing/forwarding table.

Cancellations are transported on top of a generic broadcast service. This service
is implemented by a simple flooding protocol controlled by a per-node packet cache.
The route-repair recovery process described below also uses the same broadcast service

as a transport layer.

2.2.2 Recovery

Sensor networks are subject to failures that can be modeled as both transient and
permanent node failures. For example, wireless links exhibit fading, non-isotropic path
propagation, and other types of intermittent interference, which appear as node failures
or asymmetric links to neighbors[27]. Also, nodes may be permanently damaged by
environmental agents, or they may simply run out of power, causing permanent failures.

DV/DRP deals with failures by detecting errors in data transmissions and by
reacting to those errors. At first, DV/DRP tries to route messages around the failed
node. If the failure persists, DV/DRP tries to repair the broken paths by reissuing
predicate advertisements. In particular, the forwarding algorithm of DV /DRP starts
by sending a message to the next-hop node on the primary path to the given receiver.
If communication to that node fails, DV/DRP (1) sets a route-failure flag in the
message, (2) sets the message id field to a random message identifier, (3) inserts that
message identifier into a local message cache, (4) tries to send the message along one of
the alternate routes, and (5) if all available paths fail, it sends the message as a flood
packet. This last stage should be seen as a request to resubscribe by receivers with
matching predicates. When a node receives a message that has the route-failure flag
set, the node must first check if that message identifier is not in its cache. If the node
finds the message identifier in its cache, then it concludes that the packet got trapped
in a loop by following one or more alternate routes. In this case, the node falls back to

step (5), sending the message as a flood packet. In essence, DV/DRP tries to route a
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message around failed nodes by first trying alternate routes, and resorting to flooding
only as a last option.

In our simulation topologies, we have observed that usually less than 5% of all
route deviations result in loops. We have also studied the prevalence of loops in random
topologies of various size. In over 50 500-node topologies studied, we observed loops
in at most 15% of all sender/receiver combinations. More details are presented in
Section 3.3.6.

If and when the message gets to its final destination, the set route-failure flag will
inform the receiver node that one or more branches of its forwarding tree have failed.
After seeing a certain number of failures, the receiver node may attempt to repair broken
routes by reissuing a predicate advertisement. The policy that controls this reactive re-
advertisement process is a configurable parameter of the protocol. In addition to this
reactive recovery method, DV/DRP implements a proactive method based on heart-
beat re-advertisements. In our experience, reactive recovery is quite effective, so that in
many situations the rate of proactive re-advertisements can be reduced to a minimum
or completely turned off.

To avoid congestion and to limit the power consumption due to flood packets
caused by failed routes, DV/DRP can limit the maximum rate at which nodes are
allowed to issue messages as flood packets. Upon initially sending or forwarding a request
to resubscribe packet, a node should create a time-stamp entry for each node that has
been requested to resubscribe. If another request is made before t,.s,, the minimal
time between re-subscriptions, the new request should be dropped to conserve power.
This does not affect the fault tolerance of the network unless the rate is greater than

the period between failures. The maximum rate is a configurable protocol parameter.
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2.3 Data Rate Limitation

By default, predicate advertisements do not impose a limit on the rate at which
messages are delivered. This behavior, however, can be undesirable and even destructive,
especially in large networks of sensors producing many messages matching the predi-
cates. In these cases, a receiver and its surrounding relay nodes can be overwhelmed by
the message flow.

In order to adapt the content-based service to the needs and capabilities of appli-
cations, DV/DRP allows receivers to specify a limit on the message delivery rate. This
specification is given as an integral part of a predicate advertisement. A receiver r can
advertise a predicate p, and a minimum inter-arrival interval A, (A, = 0 means no
rate limitation). Minimum inter-arrival intervals are then propagated together with the
advertisement, and recorded in the routing/forwarding tables. In addition to A,, each
entry in the routing/forwarding table records the most recent time ¢, that a message
has been forwarded to receiver r. This information is used by the forwarding algorithm
to filter out messages that would exceed the set delivery rate (see Figure 2.6).

The semantics of this rate limitation service is not intended to uphold fairness
across sources. In some circumstances sources may continually overshadow others, which
can lead to a non-representative view of the network at the receiver. This problem is
not easily solved, and reversing the semantics to instead control the rate of publications
per node only shifts the problem to bandwidth and power. A partial solution to the
problems of publication-rate semantics would be to track the number of publications
from downstream nodes at every node in a given shortest-path tree, balancing between
nodes. This in turn creates problems for nodes publishing at differential rates, but may
be preferable to doing nothing at all. A better solution may be to introduce a smart
aggregation layer, condensing multiple messages into single packets that summarize or

transform the data. We feel this is important future work and hope to add some form
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of such smart aggregation into the protocol at a latter date.

2.4 Forwarding

The forwarding state produced by the DV/DRP routing protocol is intended to
“attract” matching messages toward receiver nodes. A node should proceed to for-
ward an incoming message by matching the message against all the predicates in the
routing/forwarding table. The basic idea is that a message m matching predicates
P1, P2, - .., p; is forwarded to all the next-hop nodes ny,no,...,n;. This matching pro-

cess is also called content-based forwarding [9].

2.4.1 Short-Circuiting Predicate Evaluation

Every node has complete knowledge of all the (small number of) receivers in
the network. Therefore, the forwarding algorithm can apply predicate evaluation for a
message m, once and for all, at the node where m first enters the network. The results
of the evaluation are stored in a header field of the message, called the receiver set. At
every subsequent hop in the path, the predicate evaluation can be avoided. Instead, all
that is necessary is an evaluation of the receiver set against the forwarding information
in the routing/forwarding table.

One way to represent a receiver set is as an array of receiver identifiers. This
approach is very simple, and can be used directly with existing statically assigned node
identifiers, such as MAC addresses. The problem, however, is that it introduces a pro-
hibitive communication overhead, due to the potentially large size of the array. Another
approach would be to use Bloom filters [4] to obtain a compact representation of a set of
receiver addresses. Unfortunately, Bloom filters offer only a probabilistic membership
test and the space needed to increase the precentage change of correctly routing packets
is too great for sensor networks.

Our solution is to use a simple fixed-size bit vector, where each receiver is repre-
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sented by a dynamically assigned bit position. The obvious advantage of this solution is
that it offers a compact representation that incurs no collisions. In principle, the fixed
size of the bit vector could be a serious disadvantage, as it imposes an upper bound
on the number of active receivers in a network. In practice, such a limitation does not
affect most applications in sensor networking, where the vast majority of the nodes are
senders (i.e., sensors), and only a few nodes act as receivers (i.e., base stations).

The disadvantage of the bit-vector solution is that it requires nodes to somehow
negotiate their bit-vector position. Although static assignment of the position could
be performed before deployment, a better approach is to support dynamic assignment.
Fortunately, this can be done with a minor extension to the routing protocol, and with
a simple local conflict-resolution protocol. Specifically, predicate advertisements are
extended to carry the bit position of the receiver. When a node r advertises a predicate
py for the first time, r randomly chooses its own bit-vector position, b,, among the ones
that are not already in use by other receivers. The node then sends out the predicate
advertisement, following the usual distance-vector protocol, with the receiver identifier
r, the predicate p,, and the bit position b,.

Because it takes some time for predicate advertisements to propagate through the
network, it is possible that two or more nodes will pick the same bit-vector position.
This rare event is detected by the conflicting nodes as soon as they receive each other’s
respective advertisements. When a conflict is detected, the node with the lowest node
identifier is given priority and, therefore, keeps its chosen bit-vector position. All the
other nodes in conflict are forced to choose a different bit-vector position, and resend
their advertisements.

This protocol is stable and converges to a conflict-free assignment of bit-vector
positions. Other unique values besides the highest node identifier could be used to ar-
bitrate when conflicts in position are found, or explicit meanings could be given when

assigning node identifiers. For example, if one base station served as a primary, and an-
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other the backup, the primary could take a lower node identifier, assuring itself priority

during conflict resolution and, therefore, the best message delivery ratio.

2.4.2 Dynamic Receiver Partitioning

It it easy to see that content-based forwarding delivers messages to interested
receivers. However, content-based forwarding alone will also exhibit duplicate deliveries
and route loops. As an example, consider the scenario of Figure 2.4b. Assume a message
m matching both p; and p> is sent by node 5. Following both the content-based paths
of py (dashed) and py (solid), the message gets to nodes 2 and 4. Then, the copy that
went to node 2 is sent again to node 4, and vice versa, thereby creating duplicates.
Loops also occur between nodes 2 and 4, and between nodes 1 and 4. The loops can be
avoided by a forwarding algorithm that does not send a message back to the node where
it came from. However, it is easy to construct examples with loops of three or more
nodes, where that simplistic control would not be effective. To avoid duplications and
loops, we have designed a forwarding protocol that augments the basic content-based

forwarding with a process called dynamic receiver partitioning.
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Figure 2.5: Dynamic Receiver Partitioning

We observe that duplicate paths to a receiver r occur when two copies of a message
m cross two distinct branches of the content-based spanning tree of r. Figure 2.5a shows
a scenario that would cause such a duplication. The figure represents a fragment of a
larger network. For generality, we consider content-based paths rather than direct links,

as symbolized by broken arrows. The solid and dashed lines represent the content-based
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tree of predicates p and ¢, respectively. Predicate p is advertised by node r, while
predicate ¢ is advertised by nodes s and . The example shows a message m, sent by
node a, matching both p and q.

Figure 2.5b illustrates the basic idea of dynamic receiver partitioning. Node a
first computes the set of receivers D = {r,s,t} interested in m. Then a partitions D
according to the next-hop node on the path to each receiver. The result consists of two
partitions Dy = {r} and Dy = {s,t}, which a attaches to the copies of m going toward
r and b, respectively. The idea is that the receiver set attached to a message limits the
scope of the forwarding for downstream nodes. In the example, node b receives a packet

containing m and Dy = {s,t}, which limits the propagation of m to s and t.

2.4.3 Forwarding Algorithm

Figure 2.6 sketches the content-based forwarding algorithm used in DV/DRP.
The algorithm makes use of one of two procedures, depending on where within the
network the forwarding is to take place. The first procedure, cb_drp_init_forward, takes
a message as a parameter, and is executed at the node where the message enters the
network. The second procedure, drp_forward, takes a message and a receiver set as
parameters, and is executed at each subsequent hop in the routes to the receivers. The
procedures are similar in structure, differing only in that the first procedure performs
the full predicate evaluation, while the second instead performs only the receiver-set
membership test. For a C implementation of this code on the Mantis Operating System
(MOS), refer to dvdrp.c in Appendix A.2.

The first loop iterates through the entries in the routing/forwarding table. For
each entry, the first procedure tests whether the message matches the predicate and
whether it does cause the rate limitation for that receiver to be exceeded. For each
entry passing the test, it builds a map P that associates receiver sets to next-hop nodes,

which is used to represent the receiver partition. An entry that does not pass is said to
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be excluded.

The second loop is where the message is actually forwarded to next-hop nodes.
For each next-hop node n that has downstream interested (i.e., non-excluded) receivers,
the algorithm forwards a copy of m and the partition P, to n.

Rather than performing the content-based match test in nodes downstream from
the entry node, the forwarding algorithm executed at such a node uses the second
procedure to simply test whether the receiver is in the receiver set attached to the
message. If so, it builds the map P and forwards a copy of m and the partition P,, as
in the first procedure.

Note that a node in a sensor network will at the same time act as an entry node for
the messages it produces and as relay node for the messages produced elsewhere in the
network. Therefore, each node must be capable of executing either function depending

on the situation.



proc cb_drp_init_forward(message m) {
map<node, set<node>> P := ()
foreach r in fwd_table {
if time() — t, > A, and match(m,p,) {
P[n,] :==Pn,JUr
t, = time()

}

foreach n in P { //for each next-hop node
send(m,P[n],n)
}

proc drp_forward(message m, set<node> D) {
map<node, set<node>> P := ()
foreach r in fwd_table {
if time() —t, > A, and r € D {
P[n,] :==Pn,JUr
t, := time()
}
}

foreach n in P { //for each next-hop node
send(m,P[n],n)
}

}

Figure 2.6: Sketch of the Forwarding Algorithm
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Chapter 3

Evaluation

We evaluated the DV/DRP protocol by implementing it in simulation and then
analyzing its behavior under several scenarios. The primary goals of our analysis were
to: (1) assess the ability of DV/DRP to implement the content-based delivery model,
(2) profile the costs incurred by DV/DRP, and thereby evaluate its applicability to
networks of resource-constrained nodes; and (3) make sure that the protocol is stable

and responds gracefully to application demands, as well as to network failures.

3.1 Simulation Framework

Four main Python[24] scripts and the DV/DRP simulator’s code make up the
bulk of the simulation framework, as shown in Figure 3.1. create_topology.py is the
first of these, and it creates a number of topologies of a given number of nodes o, forcing
each topology created to be fully connected. To keep each topologies average fan-out
equivalent, it uses two parameters, y, (the mean radio distance) and o, (the standard
deviation from p,), to calculate the appropriate height and width for the given o. This
is important, as fan-out has a direct effect on the performance of the protocol, and
to directly compare different topologies with different fan-outs would produce useless
results.

After topologies are created, gen_workloads.py reads workload descriptions and

generates n workloads given each set of parameters and m topologies. In this way, each
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workload type, defined by the set of parameters, is generated for every size topology,
giving a total of nm workloads.

Next, strip_bs_extras.py (where bs stand for “base station”) strips node_fail,
node_recover and send message events for each base station in all workload files. We
assume that base stations are stable, with enough power to survive infinite length sim-
ulations and that they do not publish sensor data. See below for a longer description of
the event types.

Finally, two programs are run on the workloads to generate the final statistics.
calc_loopmetrics.py runs a heuristic algorithm, detailed in Section 3.3.6, to deter-
mine the relative likelihood of a packet encountering a route loop if it is forced to
take a secondary path. dvdrp_sim generates the main trace files used to calculate false
negatives, power consumption, etc.... It rests on top of several content-based simula-
tion libraries that provide basic data structure and workload management functionality.
Workloads are loaded and driven by cbnsim. Upon initialization, dvdrp_sim registers
callbacks with cbnsim, each one corresponding to an event type in the workload files.
Workloads have four event types: (1) set_predicate sets a receivers subscription predi-
cate, (2) send message injects a new content-message into the network to be handled by
the forwarding function, and (3) node_fail and (4) node_recover, which respectively
switch nodes into and out of a failed state. Events (3) and (4) are used to simulate
transient radio interference.

The experimental setup is diagrammed in Figure 3.1.

3.2 Experimental Setup

Our experiments were conducted on random network topologies of 10, 25, 50,
100, 250, and 500 nodes. Topologies were generated by placing nodes randomly within
a square target area, and by connecting to each node the other nodes within a given

range. For all topologies, we maintained a constant density of nodes so as to obtain a
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constant average fan out (edge connectivity) of between five and six neighbors. Finally,
we discarded all partitioned topologies. These topology parameters conform to those

used in similar simulation studies [22].

Figure 3.2: 25-Node Topology

As an example, Figure 3.2 shows the 25-node topology that we use in our exper-
iments.

On top of each network topology, we have defined several application scenarios. A
scenario is a complete definition of the behavior of each node. In particular, a scenario
defines: (1) when nodes send messages; (2) when nodes advertise predicates; and (3) how
often nodes are subject to communication failures, and for how long.

The messages and predicates we used are similar to those shown in Figures 2.1
and 2.2. The rate at which senders inject messages is modeled as a Poisson process.
Receivers exhibit two types of behavior: some advertise a predicate at the beginning of
the simulation, never changing that advertisement, while others change their predicate
advertisement periodically throughout the simulation. The parameters that control

node failures are the mean time between failures and the durations of those failures,
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both modeling a Poisson distribution.

For our simulations, we assumed a CSMA MAC that reports failures to the net-
work protocol. However, DV/DRP can also run on top of “send-and-forget” MACs by
using network-level acknowledgments with timeouts. Such “ACKs” incur an extra cost,
however, and their use is costly in terms of memory and network usage, leading to extra

power usage.

3.3 Experimental Results

3.3.1 Content-Based Delivery

The first experiment we conducted was designed to assess the main functionality
of the content-based service implemented by DV/DRP. The scenario that defines this
experiment is characterized by a network of 100 nodes, in which each node generates
messages at a mean rate of one every 10 seconds. The network contains five receivers
that change their predicates every 30 minutes. The scenario has no failures.

The results of this first experiment, plotted in Figure 3.3, are quantified by the
percentage of false negatives and false positives over the total number of messages

sent.
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Figure 3.3: Functionality: False Negatives and False Positives

We record a false negative whenever a message does not reach one of its intended
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receivers. The false negatives that are observed at the beginning are due to the natural
latency of the network as it propagates the initial receiver predicates. During the rest
of the simulation, we observe minor occurrences of false negatives due to latencies in
propagating changes to receiver predicates.

False positives occur when a message is dropped at one of its final destinations
because it does not match the predicate currently advertised by that destination. In
practice, false positives are also caused by the latency of the propagation of advertise-
ments.

The primary conclusion we draw from this experiment is that DV/DRP is effective
in implementing the content-based service, showing levels of inaccuracy that remain well
below 1% of the overall message traffic. The false positives and false negatives that occur

are largely unavoidable, due to the natural latency of network communication.

3.3.2 Control Traffic

The experiment above assessed the main functionality of DV/DRP, which is to
deliver to receivers all and only the messages matching their predicates. The following
experiment analyzed the amount of control traffic incurred by DV /DRP in accomplish-
ing this goal.

Figure 3.4 shows the data and control traffic for the same scenario as Figure 3.3.
The values on the Y-axis represent the number of packets of each kind going through
the network at any given time. The first curve represents the message (i.e., “data”)
traffic. The fluctuations are due to basic application behavior: the changing predicates
and the variation in message content produced by the sensors.

The second two curves represent the control traffic when using, respectively, the
proactive and reactive route recovery methods (see Section 2.2.2). Notice that the two
curves are identical in form. This is due to the fact that the scenario contains no

failures and the fluctuations in control traffic are caused solely by receivers advertising
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Figure 3.4: Data and Control Traffic

new predicates. However, the proactive method incurs a fixed higher cost than the
reactive method due to its use of periodic re-advertisements whose rate is determined

by a (fixed) configuration parameter.

3.3.3 Scalability

The purpose of our scalability experiments was to assess the protocol as both the
size of the network and the number of receivers increases. We also wanted to verify
that DV/DRP remains scalable in the presence of transient failures. Figures 3.5 and 3.6
show experiments conducted over such scenarios. Each node generates messages at a
mean rate of one every 12 seconds and each receiver changes its predicate at a mean
rate of once every 10 minutes. In practice, receiver predicates are likely to be much
more stable, so the experimental rate serves to heavily stress the protocol.

Figure 3.5 shows, in the absence of failures, that the amount of control traffic
in the entire network at any given time grows essentially linearly or less with growth
in the size of the network. Figure 3.6 shows what happens when 10% of the nodes
experience failures at any given time and the network uses the reactive recovery method.
Even in the case of a 500-node network with 20 base stations, each node processes

only one control packet approximately every five seconds caused by the combination
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of application-level predicate changes and reactive re-advertisements issued to repair

broken paths.

3.3.4 Transient Failures

In this set of experiments we assessed how well DV/DRP recovers from transient
failures in the network. The mean time between failure for each node in the network
is given as the value d, the failures resolve after a mean time of 60 seconds, and we
assume that base stations do not fail. In a real network, failures would be likely to
cluster in the same region of the network. However, our simulation does not yet model
that scenario. Nevertheless, the parameters we used are realistic enough to get a feel
for how DV/DRP performs.

We ran the experiments on the 100-node topology used in sections 3.3.1 and 3.3.2.
A mean rate of one message every 30 seconds is generated by sensor nodes, and receiver
predicates do not change. Figure 3.7 shows the percentage of false negatives over time,
where each curve represents a different mean failure rate. The reactive recovery method
was used in all cases. For d = 300, where nodes are down approximately 20% of the
time, recovery is still quite good, remaining under 40% false negatives for most of the
run. In the case of d > 300, DV/DRP is able to keep the false negatives below 15% on
average.

Figure 3.8 compares the reactive and proactive recovery methods for d = 600. The
time between re-advertisements for proactive recovery was set so as to create the same
average amount of control traffic as reactive recovery. As expected, reactive recovery
results in significantly fewer false negatives. This means that reactive recovery is using

approximately the same amount of energy to produce a much better result.
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3.3.5 Permanent Failures

Protocols such as DV/DRP can exacerbate the problem of power-constrained
sensor-network nodes by directing a majority of total network traffic toward a small
set of nodes, usually clustered around the base stations. In our next experiments, we
assessed the tolerance of DV/DRP during periods when nodes are failing permanently
due to power exhaustion. Using a given set of power metrics [1, 20], we calculated the
amount of battery charge expended each time a message is sent or received, and each
time a sensor value is read. We also accounted for current leakage [20]. Figures 3.9
and 3.10 shows our results.

Each node was given the same, very limited amount of initial charge (100000
nAh), except for base stations, which were given unlimited power. Figure 3.9 shows
the percentage of total remaining power in the network for topologies of different sizes.
Once the network reaches a critical point, the linear power drain changes slope as the
network begins to drain power at a faster rate.

We have traced this critical point to when nodes around the base stations begin
to fail. Recall that it is through these neighbor nodes that messages are forwarded
to a base station. When a neighbor node fails, another neighbor will be selected (see
Section 2.2). However, by the time one node fails, other neighbors of the base station
will likely be low on power reserves themselves. There are two reasons for this. First,
we assume that the MAC layer is active for all messages, not just those bound for a
given node. Second, nodes around the base station have a high likelihood of being the
next-hop for a large percentage of traffic in the network and so experience a high level
of usage. After the first node fails, a remaining node is chosen, and over time paths
become longer, and more power is used, both to deliver messages and maintain routes.

A well-behaved protocol should minimize the rate of undelivered messages until

a base station has no neighbors left and has been completely partitioned from the
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network. Figure 3.10 shows both the power remaining and false negatives for the 100-
node topology. DV/DRP handles the degrading state of the network well, with less than
20% false negatives until the base station is completely isolated after 200 hours. The
remainder of the graph is dominated by noise: false negatives fluctuating from 0% to
100% caused by time periods where no messages matching the base station’s predicate
are generated. If the graph were to continue, this effect would eventually end and false

negatives would reach zero after all nodes had expired.

3.3.6 Prevalence of Route Loops in Alternate Routes

DV/DRP uses secondary paths as a first attempt to route messages around failed
nodes. Unfortunately, this may lead to route loops, as discussed in Section 2.2.2. Packets
that transverse such loops are controlled by DV/DRP using local packet caches. Never-
theless, such loops are undesirable because they cause unnecessary waste of power, and
because they may prevent packets from finding an available alternate route to their final
destination. Therefore, with the intent to study the effectiveness of DV/DRP in circum-
venting faults, we have measured the prevalence of route loops in a series of randomly
generated topologies. Notice that the existence of these loops is an intrinsic topological
property of a network. However, depending on the given scenario, only a small fraction

of the existing loops will trap actual packets.
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Figure 3.11: Prevalence of Route Loops

Our results are shown in Figure 3.11. The figure shows distribution histograms
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for networks of 10, 25, 50, 100, 250, and 500 nodes (50 topologies for each size). These
histograms are based on the count of all potential 2-hop loops. In particular, for a
receiver node r and a failing node z, we count the number of nodes that would route a
message into a loop when trying to avoid z on the way to r. Then we compute the total
over all pairs (r,z). The histograms show on the Y-axis the percentage of topologies
that exhibit loops for each fraction of the total number of receiver/failed node pairs (X-
axis). For example, the lower-right histogram says that, over 50 500-node topologies,
we observed loops in at most 15% of all the (receiver/failed) node pairs. Notice that the
loops we counted in our study are only potential traps for messages. In our experiments,
we observed that usually less than 5% of all route deviations result in loops.

Notice that the loops we counted in our study are only potential traps for mes-
sages. In fact, the existence of these loops is an intrinsic topological property of a
network. However, the fact that a message is trapped in a loop depends on the position
of the sender, the position of the receivers, and the existence and position of a failed
node at the time the message is transmitted. In our experiments, we observed that

usually less than 5% of all route deviations result in loops.



Chapter 4

Implementation

In order to test the functionality of DV/DRP on real hardware, a basic version
of the protocol was implemented on the Mantis OS/Mica2 platform. The primary goals
of the implementation where to: (1) confirm that DV/DRP works on real hardware;
(2) profile the resources needed on real hardware. Unfortunately, more rigorous tests,
such as those performed in Chapter 3, were not possible due to a lack of hardware and
software support. Power usage tests could not be performed due to several sleep mode
bugs in MOS, creating needless power drain, even when all threads and devices are
inactive. The recovery features of DV/DRP were also not implemented due to Mantis

OS data structure sharing issues that will be resolved in the future.

4.1 Mantis OS

The Mantis OS (MOS) was designed at the University of Colorado by the Mantis
Research Group[l]. It offers a POSIX like API to access kernel functionality, and pro-
vides a fully multi-threading/multitasking environment. Unlike other sensor network
operating systems, MOS allows users to write applications and kernel code in familiar
languages such as C and C++, using standard tools such as GCC. After looking at
both MOS and TinyOS[14], we decided that MOS would both be easier and faster to
implement on.

Due to ease of which they were acquirable, the Mica2 sensor board from Crossbow
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was used. MOS runs on a variety of platforms, including the Mica2. The Mica2 has
4k /bytes RAM, 128k /bytes code space, 128k /bytes flash memory, a CC1000 19.2 kHz

radio, and a stackable sensor board interface.

4.1.1 Net Layer

As shown in Figure 4.1, MOS offers a simple net layer on which one can easily
build new network level protocols. The net layer is split into two sections: sending and
receiving. The sending side is called from user threads and uses their context to create,
modify and send out messages. This has stack space implications, which are discussed
below (see Section 4.3). Packets are received in a dedicated thread, independent from

other user and kernel threads.
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Figure 4.1: DV/DRP place in the MOS network stack

Protocols that sit on top of the net layer are required to implement three functions:
(1) proto_recv(...) which is called by the net_thread whenever a message with the
proper protocol ID is received, (2) proto_send(...) which is called by net_send(...)

whenever a user thread wants to send a message, and lastly (3) proto_ioctl(...)
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which is called by net_ioctl(...) whenever a user thread wants to set a protocol
specific option. Most protocols will also implement proto_init for initialization of

internal data structures, although this is not required.

4.2 Implementation Design

There are two main sections of code in the DV/DRP implementation: (1) the
protocol implementation, and (2) test applications. The protocol implementation is

further broken down into two parts: the protocol stack and the user interface.

4.2.1 Protocol Implementation

The protocol stack interface with the net layer is dvdrp recv(...), which is
called from the net layer whenever a new DV/DRP packet arrives. It proceeds to
check the packet type (predicate advertisement, message, repair request) and then call
the appropriate handler. The handlers are divided into to main sections of code: the
forwarding functions and the route maintenance functions. The forwarding functions
are controlled by dvdrp mesg_send(...), which performs forwarding on a passed in
packet.

Route maintenance is coordinated by dvdrp_route_update(...). It performs the
work of maintaining the distance vectors in the routing/forwarding table, following the
rules set out in Chapter 2.

The user interface to DV/DRP consists of two functions: dvdrp_ioctl(...)
(called via net_ioctl(...)) and dvdrp_send(...) (called via net_send(...)). Ap-
plications call dvdrp_ioct1(...)) to set new predicates, or to force a sequence number
update, to set failure limits, and to tune other protocols parameters, mostly related to
base station functionality. Predicates are built using the protocol memory pools so that
the protocol can free passed predicates, if it becomes necessary, without application in-

tervention. This significantly simplifies the memory management model. Applications
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call dvdrp_send(...) to send new messages containing attributes.

4.2.2 Test Applications

Two test applications were implemented: base_st_thread and generate_thread.
The first sets a given static predicate and then, based on the test scenario, forces
sequence number updates. This causes any other nodes in the network to update their
route tables and is a temporary solution until recovery can be implemented.

generate_thread generates messages at a configurable rate. The attribute names
in the messages match those in the predicate set by the base station, however the data
values are incremented linearly. This means that as the data values wrap around (they
are 8-bit numbers), that messages will start and stop matching the predicates. This is

appropriate behavior to test the forwarding code in the protocol stack.

4.3 Stack Concerns

Due to the limited memory constraints on the Mica2, the implementation of
DV/DRP had to be carefully planned. Each thread in MOS is allocated its own stack.
The stack is statically sized after initialization, forcing the user to carefully watch the
number of function calls made, the number of parameters to each call, and the number
of local variables. Global variables are stored on the heap, which grows the opposite
direction of the stacks. All memory use fits in just 4 k/bytes.

The implementation of DV/DRP was plagued with stack overflows for much of
the development period. As new functionality was exposed for the first time, it was
often difficult to figure out if a stack overflow or an actual bug was causing misbehavior.
As a solution, an OS stack monitor was written to periodically check for overflows.
This speed up the development cycle dramatically, as it removed a large portion of the
guessing process during initial debugging.

The stack monitor also revealed that the stack sizes that were being used had been
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woefully inadequate. Each of the net_thread, base_st_thread, and generate_thread
threads were overflowing when certain types/lengths of messages were received. In-
creasing the stack size solved the problem, but this solution is not optimal due to the
new combined size of the stacks, 416 bytes. Normally such a small chunk of memory
wouldn’t be worth worrying about, but on the Mica2 it is a little over 10% of space
available.

There are several possible avenues of opportunity to trim the stack space usage.
First, the number of parameters passed, and their size, directly effects stack space usage.
One quick way to save space would be to pass 8-bit integer offsets of route table entries
instead of pointers. Use of in-line functions could also decrease stack usage, however,

only at the cost of function size.

4.4 Implementation Results

Several basic tests were run to confirm that the basic functions of DV/DRP work.
Due to the limited number of nodes available, the topologies are simplistic, often with
the originating sender of a packet in the same physical broadcast domain as the final
receiver. This should not effect the results, as the forwarding code (Appendix A.2) does
not differentiate between single-hop and multi-hop final destinations.

All of the test of DV/DRP on actual hardware first call com_ioct1(IFACE_RADIO,
CC1000_TX_POWER, 1) to limit the CC1000’s output power. This allowed us to build
multi-node topologies in an area the size of a small desk, greatly simplifying the task
of topology setup. Topologies where checked by looking at packet’s HTL counter and
previous hop ids (in the case of receiver advertisements) at each hop, making sure the
values were correct. Only a sparse sampling of message was performed. The Mantis OS
CSMA MAC was used in all tests. This MAC does not contain ACK functionality, so
DV /DRP operated in best-effort mode.

The first several tests ran were designed to confirm the most basic functionality
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of the code. Two nodes were used, one a base station, the other a producer. This
test was designed to confirm several basic things: (1) the predicate would be correctly
received by the producer, (2) the forwarding functions would then match a produced
message against the predicate, forwarding the message to the base station, (3) the base
station correct identifies the message as matching a local predicate and delivers it,

and (4) delivers the message to the user application (in this case, base_st_thread).

Figure 4.2: Multiple hop topology

After the basic test confirmed the basic functionality of the code and the algo-
rithms implemented therein, multiple hops were tested. This makes sure that the DRP
code works correctly in the single receiver case. Figure 4.2 shows the setup used. Base
station nodes in the topology graphs are denoted as boxes with solid borders, while
message generator nodes have dashed borders. Large, filled, amorphous blobs represent
local broadcast domains. The base station subscribed to a simple predicate, asking
for all messages generated by the three producers. Message were successfully delivered
over multiple hops to node A. The use of a CSMA MAC without ACKs caused some
messages to be dropped, and we found the senders to cycle in and out of phase. When
in phase, more messages would be dropped due to radio interference, and when out of
phase all messages would get through. However, this is a property of the MAC layer,

not DV/DRP.
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Figure 4.3: Multiple base station topology

The multiple base station receiver test topology is shown in Figure 4.3. Each
base-station subscribed to a different predicate, while the generators sent incrementing
values. Messages were successfully forwarded across multiple hops to the proper base

station(s) by the implementation.

4.4.1 Resource Usage

On average, use of the current DV/DRP implementation on MOS in an appli-
cation will result in the additional use of 944 bytes of RAM. This includes both heap
and stack use and is 23% of all available RAM on the Mica2. This number will go up
slightly after the implementation of recovery, but the additional memory buffers needed
are already included. Table 4.1 gives the size of each component in the implementation.

The final code size is quite reasonable, taking up only 3% of the code space
available. The code size should not grow more than one or two kilobytes with the

addition of recovery.



| Component | Size (bytes) |

net_thread stack 192
base_st_thread stack 224
generate_thread stack 224
dvdrp.o heap size 028
dvdrp.o code size 3954
Average RAM use 944

Table 4.1: Size of various DV/DRP components.



Chapter 5

Related Work

The work described in this paper builds upon previous work in sensor, ad-hoc,
multicast, and content-based networking. In this chapter we present a brief review of

those protocols that are most closely related to DV/DRP.

5.1 Directed Diffusion

The sensor-networking community has studied a wide variety of network proto-
cols. A large portion of this work involves techniques for optimizing various aspects
of link-layer communications. For example, network data aggregation [17, 18], node
clustering techniques [13] for minimizing radio listening time, and energy efficient MAC
protocols [23, 26] have all been explored. Many of these techniques can be applied to a
network running DV/DRP to further improve its performance.

At a higher level of communication, directed diffusion [15] shares many of our
goals. Directed diffusion is a data-driven network service that provides a similar interface
to that of DV/DRP. The general routing strategy underlying directed diffusion is based
on three processes, not all neccesarily used together: (1) receiver interests are “diffused”
throughout a sensor field to establish so-called “gradients”; (2) sensor data are sent
toward receivers either in a flooding fashion or by following gradients; and (3) gradients
are dynamically modified by applications through reinforcement of paths.

Although originally conceived as a particular routing protocol, directed diffusion
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is now presented as a general conceptual framework for a family of protocols [12]. Many
fundamental protocol decisions are not defined, but instead delegated to the application
(e.g., gradient establishment and reinforcement), giving great flexibility to the protocol
designer.

DV/DRP is rather different from directed diffusion in this respect. DV/DRP is a
fully specified protocol with an application interface that clearly isolates the application
from routing decisions (see Section 2). This architecture was choosen for two main
reasons. First, our target is a network of extremely simple and resource-constrained
nodes. In such networks, deploying and executing application-specific logic on each
node may be either infeasible or undesirable. Second, and perhaps more importantly,
we see potential problems in delegating routing decisions to the application developer.
In particular, doing so offers little or no guarantees in terms of interoperability, global
optimality, or even stability.

In recent work, the general directed diffusion framework has been instantiated
as three classes of protocols [22]. Two of these protocol classes, “push” and “two-
phase pull” diffusion, are based on a common scheme in which sensor data are flooded
throughout the network, and receivers establish preferred routes through positive rein-
forcement. The primary benefit of this scheme is that by keeping multiple paths alive
(i.e., by replicating messages) the network is probabilistically more reliable. There has
also been work done on using multipath routing in directed diffusion [10]. However,
that solution still replicates messages when there are no failures in the primary path.

DV/DRP adopts a rather different approach to route recovery. In particular,
DV/DRP deals with transient failures using local alternate routes and permanent
route failures using a reactive repair mechanism. While a a detailed analysis has not
yet been performed, we hypothesize that the overhead involved in continuously inflating
traffic on a per-message basis, as done in push and two-phase pull diffusion, is greater

than the cost of maintaining local alternate routes and repairing broken paths on a
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per-receiver basis.

DV/DRP is most similar to the third directed diffusion protocol class, “one-phase
pull”. One-phase pull is purely a publish/subscribe scheme, where interests (subscrip-
tions) are flooded to all nodes, and where data (publications) follow backwards the
paths established by subscriptions. Algorithms for such a scheme have been extensively
studied in the publish/subscribe literature [3, 6] and in the area of content-based net-
working [5, 7, 9]. While forming the theoretical foundation of DV /DRP, the algorithms
in the work described here are substantial adaptations for use in the resource-constrained

and primitive environment of a wireless sensor network.

5.2 Multicast Networking

DV/DRP also takes insperation from AODV in both initial route discovery tech-
niques and use of sequence numbers to control forward tables.

The Ad-hoc On Demand Distance Vector (AODV) protocol [19] first performs a
route-discovery phase, where queries are sent out looking for specific destinations. As
the query packet is flooded, each hop is marked in the packet so that a complete route
back to the sender is recorded. Once the packet reaches the destination or another node
that already has a route to the destination, it is returned to the sender with the full
path list included.

To reduce overhead during the route-discovery phase, packets are dropped at
nodes that already have a valid route to the destination with a greater or equal desti-
nation sequence number. Paths are cached by nodes, so the route-discovery phase can
become quite efficient if there is no mobility in the network. Link failure is reported to
senders, which then initiate a new receiver query to find a new route.

The overhead of the on-demand nature of AODV is inappropriate for resource-
constrained environments, where battery life is at a premium. The constant network

traffic associated with route recovery and continuous global setup is too costly for a
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sensor network.

DV/DRP implements what amounts to a multicast delivery, because a message
may match the predicates advertised by more than one receiver. Differential destination
multicast (DDM) [16] is a protocol used to support multicast groups in mobile ad-hoc
networks. In DDM, the destinations for a packet are encoded in a packet header. This
is similar to the bit-vector representation in DV/DRP. However, DDM records full
addresses, whereas DV /DRP uses only a single bit per receiver. Beyond the common
use of a packet header to record information about receivers, the protocols are quite
different. For example, DDM is built on top of a unicast service, and nodes keep soft

state to facilitate faster communication between mobile multicast group members.

5.3 Content-Based Networking

The CBCB routing protocol for content-based networking [7] utilizes a two-tiered
architecture that consists of a content-based forwarding algorithm residing on top of
a broadcast networking layer. The forwarding protocol manages a table of predicates
that are used to determine whether a message should be retransmitted. The broadcast
layer is responsible for actually moving packets across the network in a loop-free manner.
Although CBCB exhibits the behavior desired for a content-based network, the overhead
involved with setting up the broadcast layer and the storage space necessary to hold the

tables of predicates precludes it from being an appropriate solution for sensor networks.



Chapter 6

Conclusion

Work remains to improve and further assess DV/DRP. We have not addressed
in-network aggregation or mobility, both of which can be critical capabilities of a sensor
network. In particular, aggregation techniques could offer a way to offset switching to
a sender based rate limitation scheme, and could add a level of fairness to the current
rate-of-delivery scheme. This seems to be an extremely important area to explore if
DV/DRP is going to continue to mature.

We also need to explore improved local recovery mechanisms. Others have sug-
gested the use of braided route techniques to create secondary paths. Such paths
could offer loop-free secondary paths, possibly eliminating the need for packet caches in
DV/DRP. Another option that needs evaluation is the use of dual- or tri-path routes,
each route unique and independent except for the end-points. However, such a scheme
could force the introduction of an end-to-end reliability scheme, instead of maintaining
reliability on a hop-to-hop basis.

To conclude, this work has presented a content-based networking protocol that
effectively and efficiently solves many of the problems inherent in sensor-network com-
munication. DV/DRP maximizes proper message delivery and minimizes power con-
sumption through techniques that maintain shortest paths, yet avoid the flooding and
loops found in other protocols. Moreover, the techniques are designed to tolerate both

transient and permanent network failures. Extensive simulation studies substantiate
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our claims.
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Appendix A

Source Code

Note that this code is available in its most current form at:
http://serl.cs.colorado.edu/~hallcp/dvdrp/

The base station and generator code used for the implementation tests can be found

at the same location under examples/. Stable (but less up-to-date) code can also be

found in the Mantis OS repository at:

svn co svn://mantis.cs.colorado.edu/mantis-src/mantis

A.l dvdrp.h

/*

This file is part of DV/DRP.

See http://serl.

cs.colorado.edu/

Copyright (C) 2004 University of Colorado, Boulder

This program is
modify it under
as published by
of the License,

This program is
but WITHOUT ANY
MERCHANTABILITY
the GNU General

You should have
License

(See http://www.

along with this

Foundation, Inc.

1307,

free software; you can redistribute it and/or
the terms of the GNU General Public License
the Free Software Foundation; either version 2
or (at your option) any later version.

distributed in the hope that it will be useful,
WARRANTY; without even the implied warranty of
or FITNESS FOR A PARTICULAR PURPOSE. See
Public License for more details.

received a copy of the GNU General Public
gnu.org/copyleft/gpl.html)

program; if not, write to the Free Software
, 59 Temple Place, Suite 330, Boston, MA 02111-
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USA, or send email to mantis-users@cs.colorado.edu.

/

/** @file dvdrp.h

@brief content-based routing layer

Q@author Cyrus Hall : hallcp@colorado.edu
@date 07/20/2004

An implimentation of DV/DRP, a content-based routing and
forwarding protocol for sensor networks.

* ¥ X ¥ * *x

*/

#ifndef _DVDRP_H_
#define _DVDRP_ H_

#include <stdio.h>
#include <stdarg.h>

#include "mos.h"
#include '"net.h"
#include "com.h"

static const uint8_t DVDRP_PROTO_ID = 12;

[ITTTTTTTTT777777777777777777777777777777777777777777777777777
// Base types needed for packets, route, and forwarding tables.
/177

typedef uint32_t bv_set_t;

typedef uintl6_t node_id_t;

typedef struct dvdrp_attribute_t

uintl6_t name;
uintl6_t value;
} dvdrp_attrib; //4 bytes

typedef uint8_t dvdrp_comp_t;
#define DVDRP_COMPARE LT 1
#define DVDRP_COMPARE GT 2
#define DVDRP_COMPARE_EQ 3
#define DVDRP_COMPARE.NE 4

typedef struct dvdrp_constraint_t

uintl6_t name;

uintl6_t value;

dvdrp_comp_t compare_type;
} dvdrp_constraint; //5 bytes

typedef struct dvdrp_filter t {
uint8_t num_constraints;
dvdrp_constraint constraints[0];



} dvdrp_filter;
typedef struct dvdrp_predicate_t

uint8_t num_filters;
dvdrp_filter filters[O0];
dvdrp_predicate;
P-p

[IT1177777777777777777777777777777777777777771777777777777717777
// DVDRP packet types. Every packet contains a dvdrp_pkt up top.

/177
typedef struct dvdrp_pkt_t

uint8._t pkt_type;
uint8_t htl;
} dvdrp_pkt; //2 bytes

static const uint8_t DVDRP_MAX_MESG_ATTRIBS = 10;
typedef struct dvdrp.mesg_pkt_t

dvdrp_pkt header; //2 byte
bv_set_t split_bv; //4 bytes (6)
node_id_t immed dest; //2 bytes (8)
uint8.t is_secondary; //1 byte (9)
uint8.t num attribs; //1 byte (10)

dvdrp_attrib attributes[0]; //varaible
} __attribute__((packed)) dvdrp mesg pkt;

static const uint8_t DVDRP_MAX ADVERT_CONSTRAINTS = 8;
static const uint8_t DVDRP_MAX_ADVERT FILTERS = 4;
typedef struct dvdrp_advertisement pkt_t

dvdrp_pkt header; //2 byte
node_id_t receiver_id; //2 bytes (4)
node_id t prev_hop; //2 bytes (6)
uint8.t Seq.num; //1 byte (7)
uint8.t bv_pos; //1 byte (8)
uint32.t min delay; //4 bytes (12)
dvdrp_predicate pred; //variable

} __attribute__((packed)) dvdrp_advert pkt;
typedef struct dvdrp_req.repair_pkt_t
dvdrp_pkt header; //2 bytes

node_id_t receiver_id; //2 bytes (4)
} dvdrp_req._repair pkt;

static const uint8_t DVDRP_MESG_PKT = 0x1;
static const uint8_t DVDRP_ADVERT_PKT = 0x2;
static const uint8_t DVDRP_REPAIR PKT = 0x3;

[1117117771777177777777177/777771777/7777777/7
// Other DVDRP constants



/177
#define DVDRP_RT_MAX PREDICATES 5
#define DVDRP_RT_MAX PATHS 2

//#define DVDRP_MAX RECEIVERS 32
#define DVDRP_MAX HTL 20

#define DVDRP_INVALID NODE_ID 255
#define DVDRP_INVALID BV_ID 32

//ioctl types

enum dvdrp_ioctl t {
DVDRP_IOCTL_SETPRED = 1,
DVDRP_IOCTL_SETFAILURE_LIMIT, //not impl
DVDRP_IOCTL_RESET_PROTO //not impl

+s
/111111777777 7777777/77//7/7//7///7////7///7//777

// Memory pools for route tables
/117
typedef struct mem pool_t {
uint8_t num_elems;
uint8_t type_size;
uint32_t free_vec;
void *pool;
} mem pool;

typedef struct dvdrp_constraint ptr.t {

uint16_t name;
uint16_t value;
dvdrp_comp_t compare_type;

struct dvdrp_constraint ptr_t *next;
} dvdrp_constraint_list;

typedef struct dvdrp_filter ptr_t {
dvdrp_constraint_list *constraints;
struct dvdrp_filter ptr_t *next;

} dvdrp_filter_ list;

#define DVDRP_MEM_CONSTRAINTS 20
#define DVDRP_MEM_FILTERS 10
#define DVDRP_MEM_COMBUFS 4
extern mem pool constraint_pool;
extern mem_pool filter_pool;
extern mem_pool combuf_pool;

void dvdrp_init mem pools();
void *pool malloc(mem pool *pool);
void pool_free(mem pool *pool, void *mem) ;

[11177777777777777777777777777177777717717777777
// Public function prototypes

/117
void dvdrp_init();



int8_t dvdrp_send(comBuf *pkt, va_list args);
bool dvdrp_recv(comBuf *pkt, uint8_t **footer);
int8_t dvdrp_ioctl(uint8_t request, va_list args);

[11177777777777777777177777777177

// Some basic bit operations.

////
#define mask set(X, Y) (X |= ((uint32_t)0x0001 << (uint32_t)Y))
#define mask unset(X, Y) (X &= ~((uint32_t)0x0001 << (uint32_t)Y)

)
#define mask _query(X, Y) (1 == (((uint32_t)X >>

(uint32._t)Y) & (uint32_t)0x0001))

#define mask_clear(X) (X = 0)
#tendif
A.2 dvdrp.c
/*

/
/*

This file is part of DV/DRP.

See http://serl.

cs.colorado.edu/

Copyright (C) 2004 University of Colorado, Boulder

This program is
modify it under
as published by
of the License,

This program is
but WITHOUT ANY
MERCHANTABILITY
the GNU General

You should have
License

(See http://www.

along with this

Foundation, Inc.

free software; you can redistribute it and/or
the terms of the GNU General Public License
the Free Software Foundation; either version 2
or (at your option) any later version.

distributed in the hope that it will be useful,
WARRANTY; without even the implied warranty of
or FITNESS FOR A PARTICULAR PURPOSE. See
Public License for more details.

received a copy of the GNU General Public
gnu.org/copyleft/gpl.html)

program; if not, write to the Free Software
, 59 Temple Place, Suite 330, Boston,

MA 02111-1307, USA, or send email to

mantis-users@cs.

* @file dvdrp.c

colorado.edu.

* @brief A DV/DRP implementation for the mos net layer.
* Qauthor Cyrus Hall

* Q@date 07/20/2004

*/



#include <stdlib.h>
#include <string.h>

#include "led.h"
#include '"node_id.h"

#include "dvdrp.h"

[ITTT107777777777777777777777771777777777
// Cache realted defines and globals
/117

#define CACHE_SIZE 10

static uint16_t cache_ptr[CACHE SIZE];
static uint8_t cache_curpos;

int8_t cache_check(dvdrp_pkt *pkt);

[I11777777777777777777777777771777777177777717717
// Forward and routing table related variables
/117
typedef struct dvdrp_path.t {

node_id_t next_hop;

uint8_t distance;

uint8_t fail_cnt;
} dvdrp_path;

typedef struct dvdrp._route_t {
//main route/forwading information
dvdrp_filter_list *pred;

node_id_t receiver_id;
uint8._t bv_pos;
dvdrp_path paths [DVDRP_RT_MAX_PATHS] ;

//extra routing information
uint8_t seq;

//forwarding timing

uint32_t last_pkt;

uint32_t min_delay;
} dvdrp_route;

//the main route table - this, along with the memory pools it
//uses, is the most hefty piece of memory usage in the code.
//1f you’re running low on memory (easy to do with only 4/8k),
//try trimming the pool sizes below to the minimum you need
//and then reducing DVDRP_RT_MAX _PREDICATES (see dvdrp.h)
static dvdrp_route route_tbl[DVDRP RT MAX PREDICATES];

//forwarding functions
static void dvdrp._get_splitbv(dvdrpmesg pkt *pkt, uint32_t *bv);
static uint8._t dvdrp_mesg_send(dvdrp mesg pkt *dvdrp.ptr,
comBuf *cbuf);
static uint8_t dvdrp.match(dvdrp mesg pkt *, dvdrp._route *);

o8
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static uint8.t dvdrp_attr match(dvdrp.attrib *attr,
dvdrp_constraint_list *constraint);

//route update/maintance
static uint8.t dvdrp_get free bv(uint8_t additional_bv);
static uint8_t dvdrp_send route_advert(dvdrp_route *route,
uint8_t htl);
static uint8_t dvdrp_route_ update (dvdrp route *route,
dvdrp_advert_pkt *pkt);
static void dvdrp._route_init(dvdrp route *route,
dvdrp_advert_pkt *pkt);
static uint8_t dvdrp_route_local_update(dvdrp_route *route,
dvdrp_filter_list *pred);
static uint8_t dvdrp_route resolve bv_conflicts(dvdrp advert pkt
*pkt) ;

static dvdrp-_route *dvdrp_route_find(node_id_t receiver_id);
static dvdrp_route *dvdrp_route_find unused();

static void dvdrp_route_copy_pkt _pred(dvdrp_route *route,
dvdrp_advert_pkt #*pkt);

static void dvdrp.-route free pred(dvdrp filter_list *pred);

static void dvdrp_path_copy(dvdrp_path *dest, dvdrp_path *src);

[1I11771717777111111711711777
// Memory pools

/177

dvdrp_constraint_list constraint_mem[DVDRP_MEM_CONSTRAINTS] ;
mem_pool constraint_pool;

dvdrp filter_list filter mem[DVDRP MEM FILTERS] ;
mem_pool filter_pool;

comBuf combuf _mem[DVDRP_MEM_COMBUFS] ;
mem_pool combuf_pool;

[1117177777777171777777777777771777771777

// Private DV/DRP variables

/117

static uint8.t node_seq_num;

static uint8_.t mnode_bv; //stored as a decimal offset
static node_id_t node_id;

static uint32_t mnode_delay;

//for protocol packets to use
static comBuf local_pkt;

II11777777777777777777777777171177777777
// Public DV/DRP interface
/1177
/* Setup the DV/DRP protocol and register with the net layer.x*/
void dvdrp_init() {
uint8_t 1i;

dvdrp_init_mem pools();



for(i = 0; i < DVDRP_RT_MAX_PREDICATES; ++i) {
route _tbl[i] .receiver_id = DVDRP_INVALID NODE_ID;
}

memset (cache ptr, 0, sizeof(uintl16_t) * CACHE_SIZE);
cache_curpos = 0;

node_seq.num = 0;

node_id = mos node_id get();
node_bv = DVDRP_INVALID BV_ID;
node_delay = 0;

srand(node_id) ;

net_proto_register (DVDRP_PROTO_ID, dvdrp._send, dvdrp_recv,
dvdrp_ioctl);

}

int8_t dvdrp_send(comBuf *pkt, va list args) {
uint8_t i, orig_size;
uint8_t num attribs = va_arg(args, int);
dvdrp.mesg pkt *dvdrp_ptr = (dvdrp.mesg pktx*)
& (pkt->data[pkt->sizel);
dvdrp_attrib *attribs = va_arg(args, dvdrp.attrib *);

orig_size = pkt->size;

if(pkt->size + sizeof(dvdrpmesg pkt) + (num_attribs << 2)
> COM_DATA_SIZE)

{

}

dvdrp_ptr->header.pkt_type = DVDRP_MESG_PKT;
dvdrp_ptr->header.htl = DVDRP_MAX_HTL;
dvdrp_ptr->is_secondary = FALSE;
dvdrp_ptr->num_attribs = num_attribs;

return NET_BUF_FULL;

pkt->size += 10;

for(i = 0; i < num attribs; ++i) {
dvdrp_ptr->attributes[i] .name = attribs[i] .name;
dvdrp_ptr->attributes[i] .value = attribs[i].value;
pkt->size += sizeof(dvdrp_attrib);

}
pkt->data[pkt->size++] = pkt->size - orig_size;

dvdrp_get_splitbv(dvdrp_ptr, &dvdrp_ptr->split. bv);
if(dvdrp_ptr->split.bv != 0) {

dvdrp_mesg_send (dvdrp_ptr, pkt);

1 = pkt->size;
} else {
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}
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//no valid destinations, drop packet, don’t do work
i=0;

}

return i;

bool dvdrp_recv(comBuf *pkt, uint8 t **footer) {

}

uint8_t hdr_size = pkt->datal[pkt->size-1];

uint8_t matches_local = FALSE;

dvdrp_pkt *hdr = (dvdrp_pkt*)&
pkt->data[pkt->size - hdr_size - 1];

hdr->htl--;
if(hdr->pkt_type == DVDRP_ADVERT PKT) {
dvdrp_route_update (
dvdrp_route _find(((dvdrp_advert_pkt *)hdr)->receiver_id),
(dvdrp_advert_pkt *)hdr);
} else if(hdr->pkt_type == DVDRP_MESG PKT) {
if(((dvdrpmesg pkt *)hdr)->immed dest == node_id) {
matches_local = dvdrp.mesg_send((dvdrpmesg pkt *)hdr, pkt);
}

}

// Pull our header off.
pkt->size -= hdr_size + 1;

//Set the footer if we need to deliver info to the
//application
xfooter = (uint8_t *)hdr;
if(matches_local) {
return TRUE;
}

return FALSE;

int8_t dvdrp-ioctl(uint8.t request, va_list args) {

uint8_t ret = TRUE;
dvdrp_route *route;
dvdrp_filter_list *pred;

switch(request) {

case DVDRP_IOCTL_SETPRED: // Change subscription predicate
pred = va_arg(args, dvdrp_filter_list *);
node_delay = va._arg(args, uint32.t);

route = dvdrp_route_find(node_id);
if('route) {

ret = dvdrp_route_local_update(NULL, pred);
} else {

ret = dvdrp_route_local update(route, pred);



}

}

break;
case DVDRP_IOCTL_SETFAILURE_LIMIT:
case DVDRP_IOCTL_RESET_PROTO:
default:

break;
}

return ret;

static uint8_t dvdrp_send route_advert(dvdrp_route *route,

{

uint8_t htl)

dvdrp_advert_pkt *advert_pkt = (dvdrp-advert_pktx*)
&(local pkt.datal0]);

dvdrp_filter_list *f_list;

dvdrp_filter *cur_f;

dvdrp_constraint_list *c_list;

uint8_t numc, numf, constraint_size, orig _size;

orig_size = local pkt.size = 0;

advert_pkt->header.pkt_type = DVDRP_ADVERT_PKT;
advert_pkt->header.htl = htl;
advert_pkt->receiver_id = route->receiver_id;
advert_pkt->prev_hop = node_id;
advert_pkt->seqnum = route->seq;
advert_pkt->bv_pos = route->bv_pos;
advert_pkt->min_delay = route->min _delay;

local pkt.size = 13; //bytes up to this point

f list = route->pred;
num f = 0;
cur_f = &advert_pkt->pred.filters[0];
while(f_1ist) {
c_list = f_list->constraints;
constraint_size = num.c = 0;
while(c_1ist) {
cur_f->constraints[num c] .name = c_list->name;
cur_f->constraints[num.c].value = c_list->value;
cur_f->constraints [num c++] .compare_type = c_list->
compare_type;
c_list = c_list->next;
constraint_size += sizeof(dvdrp_constraint);
}
cur_f->num_constraints = num_c;
constraint_size += sizeof(uint8_t);

cur_f += constraint_size;
local pkt.size += constraint_size;
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f list = f_list->next;
num_f++;

}

advert_pkt->pred.num filters = num f;

local pkt.datal[local pkt.size++] = local pkt.size -
orig_size;

// Add the proto ID to the end of the packet.

local pkt.data[local pkt.size++] = DVDRP_PROT0_ID;

com_send (IFACE RADIO, &local_pkt);

return local pkt.size;

}

/** Functions private to this file. *x/
[I1177777771777777771771777777177777717

// Foward/Route table maintance.

/177

//forwarding funcs

static void dvdrp._get_splitbv(dvdrp.mesg pkt *pkt, uint32_t *bv)

{

uint8_t 1i;

*bv = 0;
for(i = 0; i < DVDRP_RT_MAX_PREDICATES; ++1i) {
if(dvdrp_-match(pkt, &route_tbl[i])) {
mask_set (xbv, route_tbl[i].bv_pos);
}

}

static uint8.t dvdrp mesg_send(dvdrp.mesg pkt *dvdrp ptr,
comBuf *pkt)
{

node_id t cur next hop = 0; //to make build clean
uint32_t global, local_bv;
uint8_t i, ret;

// Add the proto ID to the end of the packet.
pkt->data[pkt->size++] = DVDRP_PROT0_ID;

// This is a rather rough function to write without

// dynamicly sized DSs, so here it is unoptimized:

// 1) create a global bit vector marked with matching routes
// 2) take the first marked route and record it’s next_hop
// 3) unmark that route from the global bv

// 4) mark in the local bv

// 5) iterate through the rest of the marked routes

// a) if next hop is the same, repeat 3 & 4 for route

// 6) local bv is packets bvs; assign and send out

// T7) goto 2
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//

// This strategy, while slow, saves on the need for larger
// arrays or other memory hungary data structures. We can
// pay for smaller memory size with a little bit of energy.

/7D
global = 0;
ret = FALSE;

for(i = 0; i < DVDRP_RT_MAX PREDICATES; ++i) {
if (mask_query (dvdrp_ptr->split_bv, route_tbl[i].bv_pos)) {
mask_set (global, i);
}

}

/7 2)
while(1) {
for(i = 0; i < DVDRP_RT_MAX_PREDICATES; ++i) {
if(mask_query(global, i)) {
cur next hop = route_tbl[i].paths[0] .next hop;

// 3)
mask_unset(global, i);
// 4)
mask_set(local bv, route_tbl[i].bv_pos);
break;
}
}
if (i == DVDRP_RT_MAX_PREDICATES)
break;
// 5)
local bv = 0;
for(i = 0; i < DVDRP_RT_MAX_PREDICATES; ++i) {
// 5a)
if(mask_query(global, i) &&
cur next hop == route_tbl[i] .paths[0] .next hop)
{
// 5a - 3)
mask unset(global, i);
// ba - 4)
mask _set(local bv, route_tbl[i].bv_pos);
}
}

//check for local delivery

if(cur_ next hop == node_id) {
ret = TRUE;

} else {
dvdrp_ptr->immed _dest = cur_next_hop;
com_send (IFACE RADIO, pkt);
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return ret;

}

static uint8._t dvdrp.match(dvdrp mesg pkt *dvdrp_ptr,
dvdrp_route* r)
{

dvdrp_filter_list *f_list;
dvdrp_constraint_list *c_list;
uint8_t counter, filter_size, 1i;

//for each filter in the predicate
for(f_1list = r->pred; f_list; f_list = f_list->next) {
//for each constraint in the filter
counter = filter_size = 0; //reset size of filter
for(c_list = f_list->constraints; c_list; c_list = c_list->next)
{
filter_size++;
//for each attribute in the message
for(i = 0; i < dvdrp_ptr->num attribs; ++i) {
//check to see if attribute is covered by the constraint
if(dvdrp_attr match(&dvdrp_ptr->attributes[i], c_list))

{
}

counter++;

}

//if all contraints are covered, packet needs to filtered down
//interface
if(counter == filter_size) {
//if this filter matches, skip the rest of the predicate
return TRUE;

}

return FALSE;

}

static uint8._t dvdrp_attr match(dvdrp.attrib *attr,
dvdrp_constraint_list *constraint)

uint8_t ret = FALSE;

if(attr->name == constraint->name) {

switch (constraint->compare_type) {

case DVDRP_COMPARE_EQ:
ret = (attr->value == constraint->value);
break;

case DVDRP_COMPARE GT:
ret = (attr->value > constraint->value);
break;

case DVDRP_COMPARE_LT:
ret = (attr->value < constraint->value);



break;

case DVDRP_COMPARE_NE:
ret = (attr->value != constraint->value);
break;

}

return ret;

}

[111111111777171117177/77
//Route table funcs
//

//get free bv id for a new route
//returns 32 (DVDRP_INVALID BV_ID) if no free bv
static uint8._t dvdrp_get_free bv(uint8_t additional) {
uint32_t bv = 0;
uint8.t i, j;

//first marked all used bits

if(additional != DVDRP_INVALID_BV_ID) {
mask_set (bv, additional);

}

for(i = 0; i < DVDRP_RT_MAX_PREDICATES; ++i) {
if(route_tbl[i] .pred) {
mask_set (bv, route_tbl[i].bv_pos);

}
}
//now find free bv
j=0;

if(bv == OxFFFF) { //we’re full, so sorry
i = DVDRP_INVALID BV_ID;

} else {
i = rand() % 32;

for( ; j < 32; ++j) {
if('mask_set(bv, (i + j) % 32)) {
break;
}

}

return (i + j) % 32;

}

//pass NULL for local init

static void dvdrp_route_init(dvdrp_route *route,
dvdrp_advert_pkt *pkt)

{

uint8_t 1i;
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if('route)
return;

if(pkt) {
route->receiver_id = pkt->receiver_id;
route->bv_pos = pkt->bv_pos;
route->paths[0] .next hop = pkt->prev_hop;
route->paths[0] .distance = DVDRP MAX HTL - pkt->header.htl;
route->seq = pkt->seq_num;
route->min delay = pkt->min_delay;

} else {
route->receiver_id = node_id;
route->bv_pos = node_bv;
route->paths[0] .next hop = node_id;
route->paths[0] .distance = 0;
route->seq = node_seq_num;
route->min delay = node_delay;

}

route->paths[0] .fail cnt = 0;

route->last _pkt = 0;

for(i = 1; i < DVDRP.RT_MAX PATHS; ++i) {
route->paths[i] .next hop = DVDRP_INVALID NODE_ID;
route->paths[i] .distance = DVDRP_MAX_HTL;
route->paths[i] .fail_cnt = 0;

}

static uint8_t dvdrp_route_local update(dvdrp route *route,
dvdrp_filter_list *pred)

if('route) {
//the local node has not yet set a route, lets do so
route = dvdrp_route find unused();
node bv = dvdrp_get_free bv(DVDRP_INVALID BV_ID);

if(1route || node bv == DVDRP_INVALID BV_ID) {
//no unused routes
return FALSE;

}

dvdrp_route_init (route, NULL);

}

//predicate is localy allocated by the application - use
//their version of the pred to save space and force
//ioctl for updates

route->pred = pred;

route->seq = ++node_seq-num;

return dvdrp_send route_advert (route, DVDRP _MAX HTL);
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static uint8_t dvdrp_route_update(dvdrp._route *route,
dvdrp_advert_pkt *pkt)
{

uint8_t pkt_dist;
uint8_t i, j;
uint8_t ret = FALSE;

pkt_dist = DVDRP_MAX HTL - pkt->header.htl;
if('route) {
//first we need to check for and resolve any BV conflicts
//also, make sure there is an available route
if('dvdrp_route_resolve bv_conflicts(pkt) || //bv conflicts?
! (route = dvdrp_route find unused())) //free route?
{

}

dvdrp_route_init (route, pkt);

return FALSE;

dvdrp_route_copy_pkt_pred(route, pkt);
dvdrp_send_route_advert (route, pkt->header.htl);

return TRUE;

}

for(i = 0; i < DVDRP_RT MAX PATHS; ++i) {
if(pkt_dist < route->paths[i].distance ||
pkt->seqmnum > route->seq)
{

j = DVDRP_RT_MAX PATHS - 1;

while(j > i) {
dvdrp_path_copy (&route->paths[j], &route->paths[j-1]1);
-=Js

}

route->paths[i] .next hop = pkt->prev_hop;
route->paths[i] .distance = pkt_dist;

if(pkt->seqnum > route->seq) { //note: i will always be 0
for(j = 1; j < DVDRP_RT_MAX_PATHS; ++j) {
route->paths[j].next hop = DVDRP_INVALID_NODE_ID;
route->paths[j].distance = DVDRP_MAX HTL;

}

if(pkt->pred.num filters == 0) {
//we need to kill this route
route—->receiver_id = DVDRP_INVALID NODE_ID;
dvdrp_route free pred(route->pred); //free old pred
route_tbl[i] .pred = NULL;

} else {
dvdrp_route free pred(route->pred);
dvdrp_route_copy_pkt_pred(route, pkt);



}

69

route->seq = pkt->seq_num;
route->min_delay = pkt->min_delay;

//there are timing situations in bv arbitration
//that force this to be updated here
route->bv_pos = pkt->bv_pos;

}

//we only want to propigate the subscription if we update
//the PRIMARY - a second broadcast only adds noise to an
//already received route.
if(1 = 0) {

dvdrp_send route_advert (route, pkt->header.htl);
}

ret = TRUE;
break;

}

//protect against a next_hop being listed twice

if(route->paths[i] .next hop == pkt->prev_hop) {
break;

}

}

//make sure that there arn’t multiple paths using the same
node
for(j = i+1; j < DVDRP_RT_MAX_PATHS; ++j) {
if(route->paths[j].next hop == route->paths[i].next hop) {
route->paths[j] .next hop = DVDRP_INVALID NODE_ID;
route->paths[j].distance = DVDRP_MAX HTL;

}

return ret;

static uint8_t dvdrp_route resolve bv_conflicts(dvdrp advert pkt

{

*pkt)
uint8.t i, ret = TRUE;

// Here’s the layout:

// 1) Check for any other route with the same bv
// a) if found, check receiver id;

// b)) if newmesg.recv_id < old bv

// i) check if *we* were the loser - readvertise with
// new bv
// ii) else kill the old route - they need to readvertise

// c¢) else return FALSE, as this new advert is the loser
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for(i = 0; i < DVDRP_RT_MAX_PREDICATES; ++i) {
if(route_tbl[i] .bv_pos == pkt->bv_pos) {
if(pkt->receiver_id < route_tbl[i].receiver_id) {
if(route_tbl[i] .receiver_id == node_id) {
//get a new node_bv
node_bv = dvdrp_get_free bv(pkt->bv_pos);
route_tbl[i] .bv_pos = node_ bv;

//send replacement advertisement

dvdrp_send_route_advert (&route_tbl[i], DVDRP_MAX HTL);
} else {

//kill old route

route_tbl[i] .receiver_id = DVDRP_INVALID NODE_ID;

dvdrp_route free pred(route_tbl[i].pred);

route_tbl[i] .pred = NULL;

}

break;

} else {
ret = FALSE;
break;

}

return ret;

}

static dvdrp._route *dvdrp_route find(node_id-t receiver_id) {
uint8_t 1i;

for(i = 0; i < DVDRP_RT MAX PREDICATES; ++i) {
if(route_tbl[i] .receiver_id == receiver.id) {
return &route_tbl[i];
}

}

return NULL;

}

static dvdrp_route *dvdrp_route find unused() {
uint8_t 1i;

for(i = 0; i < DVDRP_RT_MAX_PREDICATES; ++1i) {
if(route_tbl[i] .receiver_id == DVDRP_INVALID_NODE_ID) {
return &route_tbl[i];
}

}

return NULL;

}

static void dvdrp_route_copy_pkt _pred(dvdrp_route *route,



dvdrp_advert_pkt #*pkt)

dvdrp_filter_list **xf_1ist;
dvdrp_filter xcur_filter;
dvdrp_constraint_list **c_list;
uint8_t i, j, size;

f list = &route->pred;

cur filter = &(pkt->pred.filters[0]);

for(i = 0; i < pkt->pred.num filters; ++i) {
*f_list = poolmalloc(&filter_pool);
size = sizeof(uint8_t);
c_list = &((xf_list)->constraints);

for(j = 0; j < cur_filter->num constraints; ++j) {
xc_list = pool malloc(&constraint pool);
(*c_list)->name = cur_filter->constraints[j].name;
(*c_list)->value = cur_filter->constraints[j].value;

(*c_list)->compare type = cur_filter->constraints[j].

compare_type;

clist = &((*c_list)->next);
size += sizeof(dvdrp_constraint);

}

*c_list = NULL;
cur_filter += size;
f_list = &(*f_list)->next;

}

*f_1list = NULL;

}

static void dvdrp_route free pred(dvdrp filter_list *pred) {
dvdrp_filter_list *f_list;
dvdrp_constraint_list *c_list;
void *temp_mem;

f list = pred;
while(f_1ist) {
c_list = f_list->constraints;
while(c_1ist) {
temp_mem = c_list;
c_list = c_list->next;
pool_free(&constraint pool, temp_mem) ;
}
tempmem = f_list;
f list = f_list->next;
pool free(&filter_pool, temp_mem);

}

static void dvdrp_path_copy(dvdrp_path *dest, dvdrp_path *src) {
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}

dest->next_hop = src->next_hop;
dest->distance = src->distance;
dest->fail_cnt = src->fail_cnt;

[11177777777777777777777777777777777777

// Pool maintance functions.

/117

void dvdrp_init mem pools() {

}

uint8_t 1i;

constraint_pool.num_elems = DVDRP_MEM_CONSTRAINTS;
constraint_pool.type_size = sizeof(dvdrp_constraint_list);
for(i = 0; i < DVDRP_MEM_CONSTRAINTS; ++i) {

memset (&constraint pool.free vec, OxFF, sizeof(uint32 t));
}

constraint_pool.pool = &constraint mem[0];

filter_pool.num elems = DVDRP_MEM FILTERS;
filter pool.type_size = sizeof(dvdrp filter_ list);
for(i = 0; i < DVDRP_MEM FILTERS; ++i) {
memset (&filter pool.free vec, OxFF, sizeof(uint32.t));
}

filter pool.pool = &filter mem[O0];

combuf_pool.num elems = DVDRP_MEM_COMBUFS;
combuf_pool.type_size = sizeof(comBuf) ;
for(i = 0; i < DVDRP_MEM_COMBUFS; ++i) {

memset (&combuf pool.free vec, 0xFF, sizeof(uint32.t));
¥

combuf _pool.pool = &combuf mem[0] ;

void *pool_malloc (mem pool *pool) {

}

uint8_t 1i;

for(i = 0; i < pool->numelems; ++i) {
if(mask_query (pool->free vec, i)) {
mask unset (pool->free vec, i);

return (pool->pool + (i * pool->type_size));

}

return NULL;

void pool_free(mem pool *pool, void *mem) {

uint8_t bit;

bit = (mem - pool->pool) / pool->type._size;
mask _set (pool->free vec, bit);
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