
Content-Based Addressing and Routing:
A General Model and its Application

Antonio Carzanigay, David S. Rosenblumz, and Alexander L. Wolfy

yDept. of Computer Science
University of Colorado

Boulder, CO 80309, USA
fcarzanig,alwg@cs.colorado.edu

zDept. of Information & Computer Science
University of California, Irvine

Irvine, CA 92697-3425, USA
dsr@ics.uci.edu

University of Colorado
Department of Computer Science

Technical Report CU-CS-902-00 January 2000

c 1999 Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf

ABSTRACT

The designers of communication networks are being challenged by the emergence of a new class of ad-
dressing and routing scheme referred to as content-based addressing and routing. This new approach
differs from traditional unicast and multicast schemes in that it performs routing based on the data being
transported in a message rather than on any specialized addressing and routing information attached to,
or otherwise associated with, the message. An example of an application for content-based addressing
and routing is an event notification service, which is a general-purpose facility for asynchronously and
implicitly conveying information from generators of events to any and all parties expressing interest in
those events. In order to implement content-based addressing and routing, we can adopt well-known and
successful network architectures and protocols, provided that we understand how to map the core concepts
and functionalities of content-based addressing and routing onto this established infrastructure. Toward
that end, we have formulated a general, yet powerful model of addressing and routing that allows us to
formalize the crucial aspects of content-based addressing and routing in a surprisingly simple manner.
Furthermore, it allows us to treat traditional unicast and multicast addressing and routing uniformly
as instances of this more general model. This paper presents our model and demonstrates its utility by
showing its application to the design of an existing event notification service.

1 Introduction

Traditional addressing and routing mechanisms in networks, both unicast and multicast, are based on the
use of explicit and specialized addressing and routing information attached to, or otherwise associated
with, messages. The actual data contained within messages, referred to as content (or sometimes payload),
are typically invisible to the transport mechanism and, therefore, are not considered when performing
addressing or routing operations.

A rather different approach is to expose the content to the network transport mechanism so that it can
influence the addressing and routing of messages. In the extreme, no information other than the content is
used; a network that takes this approach is said to use a content-based addressing and routing scheme. Under
such an approach, producers will generate messages, but with no particular destinations intended. The
destinations are determined by consumers expressing interest in the delivery of messages satisfying some
arbitrary predicates on the content, independent of the producers of the messages. Thus, addressing and
routing are rendered implicit in the combination of expressions of interest and the content of the messages
flowing through the network. Moreover, complete responsiblity for determining the eventual destinations
for messages is given over to the network infrastructure itself.

Table 1 presents a high-level comparison of unicast, multicast, and content-based addressing and rout-
ing mechanisms along three dimensions. First, producers of messages in unicast and multicast mechanisms
provide explicit information about intended destinations, while in a content-based mechanism this infor-
mation is implicit in the content itself. In fact, there may be no destination at all for a message if there is no
consumer that has expressed interest in receiving the data. Second, in a unicast mechanism, the attribute
of the consumer of a message is a pre-assigned, unique identity within the network. The primary contribu-
tion of the multicast mechanism is the concept of the group identity, which provides a level of indirection
between message producers and consumers. Producers address messages to the group, and the messages
then get routed to any and all consumers that have joined the group. A given consumer can join more than
one group, which in a sense gives it multiple identities. In a content-based mechanism, consumers declare
their interest in receiving messages having particular content, and it is this expression of interest that is
used to route messages through the network. Of course, a given consumer can express multiple kinds of
interest and therefore receive multiple kinds of messages. Third, the flow of information between a mes-
sage producer and a message consumer in unicast and multicast mechanisms can be seen as the result of
producers directing messages to selected consumers, given their use of explicit destination specifications
and explicit identity attributes. By contrast, the flow of information under a content-based addressing and
routing mechanism implicitly emerges from the circumstantial interplay between expressions of interest
and any messages that are generated.

One can easily conceive of applications that could take good advantage of content-based addressing
and routing. A prominent example is an event notification service, which is a general-purpose facility for
asynchronous distribution of information in a network. Examples of such systems include Elvin [10],
Gryphon [2], iBus [6], JEDI [4], Keryx [14], Siena [3], TIB/Rendezvous [13], as well as implementations
of specifications such as the CORBA Event Service [8], the CORBA Notification Service [9], and the Java
Distributed Event Specification [12]. Scalable versions of the service are typically implemented as a net-
work of servers that provides clients with access points offering a publish/subscribe interface. The clients
are of two kinds: objects of interest, which are the producers of notifications, and interested parties, which
are the consumers of notifications; of course, a client can act as both an object of interest and an interested
party. Clients use the access points of their local servers to advertise the information about notifications
that they generate and to publish the advertised notifications. Clients also use the access points to subscribe
for individual notifications or compound patterns of notifications of interest. In its most generic form, a
notification can be viewed as a set of attributes, where each attribute can have a name, a type, and a value.
The service is responsible for selecting the notifications whose content are of interest to clients and delivering
those notifications to the clients via the access points.

Event services peform notification selection using two kinds of content selection mechanisms: filters and
patterns. A filter selects event notifications by specifying a set of attributes and constraints on the values
of those attributes. For example, a client of the service might be interested in receiving notifications about
significant stock price changes for a particular company, and so issues a subscription that includes a filter

1

unicast multicast content-based
intended destination as

specified by producer explicit explicit implicit

attribute of consumer
used in routing

pre-assigned, unique
identity

group
identity

expression of
interest in content

information
flow

directed directed emergent

Table 1: A Comparison of Addressing and Routing Mechanisms.

specifying the company name and a price differential. While a filter is matched against a single notification
based on the notification’s attribute data, a pattern is matched against two or more notifications based on
both their attribute data and on the combination they form. At its most generic, a pattern might correlate
events according to any compound relation. For example, a client might be interested in receiving price
change notifications for the stock of one company only if the price of a related stock has changed by a
certain amount. Rich languages and logics exist that allow one to express event patterns [7].

There are three major variants of an event notification service. In a channel-based service (e.g., iBus,
the CORBA Event Service, and the Java Distributed Event Specification), notifications are fed into what
amounts to a discrete communications pipe. Subscriptions are made by simply identifying the pipe (i.e.,
channel) from which notifications are expected to flow. Filtering then reduces to channel selection, which
for purposes of routing can be treated as a simple equality test on a distinguished field of the content
that represents the channel identifier (analogous to a group identifier in multicast routing). In a subject-
based service (e.g., JEDI and TIB/Rendezvous), a distingushed field of the content, called the “subject”, is
also assumed to be present, but filtering is performed through more powerful predicates than the simple
equality test of channel-based services.1 The third variant is the content-based service (e.g., the CORBA
Notification Service, Elvin, Gryphon, Keryx, and Siena), so named because filtering can be performed across
the entire content of the notification.

Content-based addressing and routing, while eminently useful, pose significant challenges to the de-
signer of a communciations network.

� Destination addresses are no longer explicit, pre-assigned identifiers (e.g., IP addresses), but instead
are dynamically induced by predicates expressed over hypothetical message content.

� Routing tables are maps from predicates to destination addresses of neighbors in the network, rather
than from explicit recipient destination addresses to neighbor destination addresses.

� Routing involves applying the predicates found in routing tables to the content of incoming mes-
sages and then forwarding messages satisfying the predicates toward the appropriate neighbors in
the network.

� Subnet (or hierarchical) routing, which is intended to achieve autonomy and scalability in a com-
munications network, involves the computation of inclusion relationships among predicates. Yet the
subnets induced in this way may bear no relationship to the hierarchical structure of the underlying
transport network.

These complications require a new approach to the design of addressing and routing mechanisms. We
describe such an approach in this paper, which is based on the definition of a general, yet powerful model of
addressing and routing. The model allows us to formalize the crucial aspects of content-based addressing
and routing in a surprisingly simple manner. Furthermore, it allows us to treat traditional unicast and
multicast addressing and routing uniformly as instances of this more general model. A primary benefit of
the model is that it leads to a principled method for mapping the core concepts and functionalities of generic

1Note that although we treat both channel- and subject-based services as targeting distinguished fields within notifications (a chan-
nel identifier and a subject, respectively), in practice, the information they contain can be implemented independently of notifications,
but this does not affect our general characterization of them.

2

addressing and routing schemes onto the established infrastructure of successful network architectures and
protocols.

The next section of the paper presents our model. In order to make the presentation concrete, we de-
scribe the model in terms of a generic content-based event notification service. We then demonstrate the
utility of the model by studying its use in guiding the implementation of an existing content-based address-
ing and routing mechanism. Related work is discussed in Section 4, and Section 5 concludes the paper.

2 A Model for Content-Based Addressing and Routing

The notion of content-based addressing and routing is generally applicable to a wide range of applica-
tions. In this section we use event notification as a representative application domain. As described in
Section 1, an event notification service typically realizes a publish/subscribe protocol for its clients. In
particular, some clients publish notifications about events that have occurred, and other (but possibly the
same) clients subscribe for notifications of interest. In an event notification service then, a notification is
the elementary data packet, and it is implicitly addressed to all subscribers whose subscriptions match the
content of the notification. Because there may be multiple such subscribers, the event notification service is
thus a multicast service. Of course, its use of content-based addressing and routing makes it fundamentally
different from traditional multicast services.

In order to achieve scalability in a wide-area network, the event notification service by necessity must
be implemented as a distributed network of servers. It is the responsibility of the event notification ser-
vice to route each notification through the network of servers to all subscribers that registered matching
subscriptions, and to keep track of the identity of the subscriber that registered each subscription.

From this informal description of event notification, we can identify a number of important properties.
The fact that notifications are delivered based on their content rather than on an explicit destination address
adds a level of indirection that provides a great deal of flexibility and expressive power to clients of the ser-
vice, while also complicating the implementation of the service. Furthermore, the behavior of subscribers
is dynamic, since they add and remove subscriptions. Yet this dynamism is transparent to publishers of
notifications, since they simply generate content irrespective of its eventual recipients.

As discussed in Section 1, a subscription acts as a filter on notifications and is typically expressed as
predicates on notification content. But for the purposes of presenting our general model of content-based
addressing and routing, we may ignore the details of the notification data content (its type, its structure,
etc.), and we may ignore the details of the language used to subscribe for notifications (its expressive power,
its predicate set, its pattern operators, etc.). As we discuss in Section 3.7, the design and complexity of the
routing algorithms used to implement a particular data content and subscription language design depend
quite heavily on such details. But what is important at this point is defining abstractly how one notification
relates to another, how subscriptions match notifications, and how these relations influence content-based
addressing and routing.

2.1 Content-Based Addresses

Let N represent the set of all notifications, and let S represent the set of all subscriptions. Let n represent
a particular notification in N . A subscription s 2 S defines a set of matching notifications Ns, such that
Ns � N . We say that s matches or covers n (written s @N

S n) iff n 2 Ns. Note that the determination of
whether s matches n is dependent on the particular data model chosen for notifications and the particular
language used for registering subscriptions. The subscriber C who registers s is an implicit addressee of
n. If C unregisters s, then C is no longer an implicit addressee of n; in Section 2.4.3 we discuss other
implications of unregistering.

In addition to relating subscriptions to notifications, we can extend the notion of covering to relate
subscriptions to each other. In particular, we say that a subscription s1 covers a subscription s2 (written
s1 @

S
S s2) iff Ns1 � Ns2 . As shown below, covering relationships between subscriptions can be exploited

for purposes of content-based routing.
Because a subscription s is associated with the identity of the eventual recipient of each notification n

that s matches, s is a content-based address of n. More abstractly, we can treat any set of notifications (i.e., any

3

subset ofN) as a content-based address, and in general there are multiple content-based addresses induced
by a particular notification n—they are simply all the notification sets (i.e., subsets of N) that contain n.
A subscription then is one particular representation of a content-based address; we discuss other possible
representations in Section 2.4. For this more abstract treatment of content-based addresses, we can use
the notation x @ n to indicate that a content-based address x covers a notification n. Additionally, in the
remainder of this section we drop the superscript and subscript from the operators for the more specific
covering relations since they should be clear from the context.

2.2 Routing Tables for Content-Based Routing

A routing table is a map x 7! H (read x maps to H) that maps an address x to a set H of next-hop addresses
(with the cardinality of H being one when routing within a unicast service). A next-hop address is the
address of the next server on the path toward the address being mapped. More formally, a routing table R�

for a server � can be defined as follows:

R�
def
= fx 7! H j x 2 Addresses and H � I�g

where Addresses is the universe of routable addresses and I� is the set of identities of neighboring servers
and local clients of �. Note that I� is a subset of some universe of explicit destination addresses Dest-
Addresses, and that in traditional routing typically Addresses � Dest-Addresses. Below we drop the server
identity � to simplify the notation.

In the context of content-based addressing, a routing table has exactly the same function. In its simplest
form it maps content-based addresses (such as subscriptions) into a set of explicit addresses of neighbor
servers and explicit identities of local subscribers. Using the routing table to route a notification n at a
server becomes a two-step process. First, the map is searched to find all mapped subscriptions s that cover
n. Second, n is routed to all next-hop addresses mapped by all such s. More formally, let Xn be the set of
all addresses in the domain of R that cover n:

Xn
def
= fx j x 2 dom(R) and x @ ng

Then n is routed to all servers in Hn, where

Hn
def
=

[

x7!H and x2Xn

H

2.3 Subnets Induced by Content-Based Routing

Routing tables are central to any routing algorithm, and hence they must have compact representations and
must support fast lookup and update operations. The cardinality of the map in a routing table equals the
cardinality of the address space, but it is not necessary to materialize every single mapping in the routing
table. Instead, the size of the table can be significantly reduced by combining addresses into equivalence
classes based on their mapped values.

In practice, if

1. two addresses x1 and x2 map to the same next-hop set H , and

2. there exists an address x that represents both x1 and x2,

then the routing table need only store the mapping x 7! H instead of the two mappings x1 7! H and
x2 7! H . This simple principle is the generalization of the well-known method of subnet routing employed
as a basis for scaling traditional routing tables to networks of millions of nodes, and in this case x is the
subnet address. In the case of IP (unicast) routing, the first condition frequently holds because addresses
have a hierarchical distribution that maps onto a semi-hierarchical topology of the network. The second
condition is realized by the use of a subnet address plus a subnet mask.

In an event notification service, two content-based addresses may partially or even completely overlap
in the sense that there is a non-empty intersection between the sets of notifications they define. Therefore,

4

the idea of subnet routing can be adapted to content-based routing. Using subscriptions for purposes of
illustration, in the special case in which

1. two content-based addresses s1 and s2 map into the same next-hop set H , and

2. s1 @ s2,

the routing table need only store the mapping s1 7! H instead of the two mappings s1 7! H and s2 7! H .
In general, if s1 7! H1, s2 7! H2, s1 @ s2, and H1 � H2, then the routing table need only store s1 7! H1.
We specifically refer to this form of subnet induced by the covering relation between subscriptions as a
content-based subnet.

2.4 Additional Considerations for Event Notification Services

There are a number of embellishments to the basic publish/subscribe protocol that can be found in event
notification services. These include the capability for clients to subscribe for patterns of multiple notifica-
tions; the capability for clients to advertise the notifications they intend to publish; and the capability for
clients to cancel previous subscriptions and advertisements. We discuss how these embellishments impact
the model of content-based addressing and routing described above.

2.4.1 Subscriptions for Patterns of Multiple Notifications

A subscription for a pattern of multiple notifications comprises a set of simple subscriptions (each of which
matches a set of notifications as before) formed into a compound expression through the use of composition
operators. Such a compound subscription itself defines a set of matching notifications, and hence a compound
subscription is another possible representation for a content-based address in an event notification service.
Furthermore, compound subscriptions would populate the same routing tables as simple subscriptions.
The decision of which operators to make available for construction of patterns is one of the many decisions
to be made in designing a subscription language, but the increasing ubiquity of pattern operators in event
notification services, and their potential impact on content-based routing, merits giving them a closer look.

Each composition operator for a compound subscription induces a corresponding set-theoretic con-
struction over the sets of notifications defined by the subscriptions the operator composes. For instance,
the subscription “s1 or s2” is typically interpreted as matching any single notification n such that either
s1 @ n or s2 @ n. In other words, the subscription matches any single n such that n 2 Ns1 [Ns2 .

Other kinds of operators may require generalizing the definition of the universe N of notifications to a
multiset, or to a time-ordered set. Let nt represent the generation of a notification n at time t. We can, for
instance, refer to nt1 and nt2 as occurrences of the same notification content n being generated at times t1
and t2, and we can then refer to relationships between the time values t1 and t2. This allows the definition
of a sequence operator as in “s1 then s2”, which is typically interpreted as matching any pair of notifications
nt11 and nt22 such that s1 @ n1, s2 @ n2, and t1 < t2.

The temporal element allows some flexibility in the definition of the operators as well. For instance, the
subscription “s1 and s2” is typically interpreted as matching any pair of notifications nt11 and nt22 such that
s1 @ n1 and s2 @ n2. Since there may be a non-empty intersection between Ns1 and Ns2 , it may be possible
for s1 and s2 to match the same notification. Under one interpretation, it may be allowed that n1 = n2
and t1 = t2—that is, both sides of the compound subscription are matched by the same exact notification.
Under another interpretation, it maybe required that if n1 = n2, then t1 6= t2—that is, even if the content is
the same, then two different, temporally-separated occurrences of that content must be matched.

Given this definition of compound subscription, the routing of notifications to their matching com-
pound subscriptions can be treated in a variety of ways. For instance, the compound subscription can be
treated simply as representing a content-based address whose set of notifications is the union of all the no-
tification sets defined by the constituent simple subscriptions, irrespective of the operator used to compose
the simple subscriptions. In this case, final matching of the specified pattern must be performed locally
by the subscriber. Alternatively, the compound subscription could be factored, with routing table entries
defined in such a way that the individual notifications are matched as close as possible to their publishers
and then opportunistically aggregated with other matching notifications as soon as possible along the path

5

to the subscriber. We discuss this further in Section 3 in the context of a particular realization of an event
notification service.

2.4.2 Advertisements

An advertisement a can be used to advertise a capability or intent to publish a particular class of notifica-
tions. The notifications that are eventually published belong to the set of notifications Na defined by the
advertisement. Hence, an advertisement is another representation of a content-based address in an event
notification service. Just as subscriptions define content-based addresses of notifications, advertisements
define content-based addresses of subscriptions, in the sense that a subscription need be routed only along
paths toward advertisements that cover the subscription. The notifications that are eventually published
are then routed in reverse back to the subscriber.

Because they serve a different purpose from subscriptions, advertisements would be routed with their
own routing tables separate from the routing tables for subscriptions. There are a number of possible
choices for the definition of the covering relation between advertisements and subscriptions, and we de-
scribe one particular definition in detail in Section 3.

2.4.3 Unsubscriptions and Unadvertisements

Unsubscriptions and unadvertisements serve to cancel previous subscriptions and advertisements, respec-
tively. As is the case with a subscription (advertisement), an unsubscription (unadvertisement) defines an
associated set of notifications, it can be related with other subscriptions (advertisements) according to a
covering relation, and hence it is another possible representation for a content-based address in an event
notification service. However, note that the effect of unsubscriptions (unadvertisements) is to remove en-
tries from the routing tables for subscriptions (advertisements) rather than to populate those tables.

There are a number of possible choices for the definitions of such covering relations, all of which have
the interpretation that an unsubscription (unadvertisement) cancels all subscriptions (advertisements) that
it covers. We describe particular definitions of the covering relations in detail in Section 3.

3 An Example Realization of Content-Based Addressing and Routing

In this section we apply the general model discussed in Section 2 to the particular realization of a content-
based addressing and routing infrastructure found in the Siena event notification service [3].

3.1 Notifications and Filters

A notification is set of attributes, where each attribute has a name a type, and a value. Attribute names are
simply character strings. The attribute types belong to a predefined set of primitive types commonly found
in programming languages and database query languages, and for which a fixed set of operators is defined.

An event filter, or simply a filter, selects event notifications by specifying a set of attributes and constraints
on the values of those attributes. Each attribute constraint is a tuple specifying a type, a name, a binary
predicate operator, and a value for an attribute. The operators provided by Siena include all the common
equality and ordering relations (=, 6=, <, >, etc.) for each of its types, substring (�), prefix (>�), and suffix
(�<) operators for strings, and an operator any that matches any value.

An attribute � = (type�; name�; value�) matches an attribute constraint � =
(type�; name�; operator�; value�) iff type� = type� ^ name� = name� ^ operator�(value�; value�). We say
an attribute � satisfies or matches an attribute constraint � with the notation � @nf �. When � matches �, we
also say that � covers �. Figure 1 shows a filter that matches price decreases for stock DIS on stock exchange
NYSE.

When a filter is used in a subscription, multiple constraints for the same attribute are interpreted as a
conjunction—all such constraints must be matched. Thus, we say that a notification n matches a filter f , or

6

string class >�finance/exchanges/
string exchange = NYSE
string symbol = DIS
float change < 0

Figure 1: Example of an Event Filter.

equivalently that f covers n (f @N
S n for short):

f @N
S n, 8� 2 f : 9� 2 n : � @n

f �

Notice that the notification may contain other attributes that have no correspondents in the filter. Table 2
gives some examples that illustrate the semantics of @NS . The second example is not a match because the

subscription notification

string what = alarm @
N
S

string what = alarm
time date = 02:40:03

string what = alarm
integer level > 3 6@N

S

string what = alarm
time date = 02:40:03

string what = alarm
integer level > 3
integer level < 7

6@N
S

string what = alarm
integer level = 10

string what = alarm
integer level > 3
integer level < 7

@
N
S

string what = alarm
integer level = 5

Table 2: Examples of @N
S .

notification is missing a value for attribute level. The third example is not a match because the constraints
specified for attribute level in the subscription are not matched by the value for level in the notification.

3.2 Advertisements

We have shown how the covering relation @NS defines the semantics of filters in subscriptions. We now de-
fine the semantics of advertisements with a similar relation @NA . Recall that the motivation for introducing
advertisements in an event notification service is to identify the potential sources of notifications so that the
service can employ an efficient strategy in setting up routing paths for those notifications.

The relation @N
A defines the set of notifications covered by an advertisement as follows:

a @N
A n, 8�n 2 n : 9�a 2 a : �a @

n
f �n

This expression says that an advertisement covers a notification if and only if it covers each individual
attribute in the notification. Note that this is the dual of subscriptions, which define the minimal set of
attributes that a notification must contain. In contrast to subscriptions, when a filter is used as an adver-
tisement, then multiple constraints for the same attribute are interpreted as a disjunction rather than as a
conjunction; only one of the constraints need be satisfied. Table 3 shows some examples of the relation
@
N
A . The second example is not a match because the attribute date of the notification is not defined in the

advertisement. The fourth example is not a match because the value of attribute what in the notification
does not match any of the constraints defined for what in the advertisement.

7

advertisement notification
string what = alarm
string what = login
string user any

@
N
A string what = alarm

string what = alarm
string what = login
string user any

6@N
A

string what = alarm
time date= 02:40:03

string what = alarm
string what = login
string user any

@
N
A

string what = login
string user= ingmar

string what = alarm
string what = login
string user any

6@N
A

string what = logout
string user= ingmar

Table 3: Examples of @N
A .

3.3 Subnet Covering Relation

So far we have defined the covering relations that define content-based addresses in Siena, in particular,
@
N
S (semantics of subscriptions) defines destination addresses, whereas @N

A (semantics of advertisements)
defines source addresses. From these, following the definitions of Section 2, we derive the covering relations
that define Siena’s content-based subnet addresses:

� f1 @
S
S f2: subscription filter f1 covers subscription filter f2. Formally,

f1 @
S
S f2 , 8n : f2 @

N
S n) f1 @

N
S n

which means that f2 defines a subnet destination address of f2.

� a1 @
A
A a2: advertisement filter a1 covers advertisement filter a2 (where a1 and a2 are interpreted as

advertisements). Formally:
a1 @

A
A a2 , 8n : a2 @

N
A n) a1 @

N
A n

which means that a2 defines a subnet source of a1.

3.4 Routing Tables: The Filters Poset

The representation of a content-based routing table in Siena is a partially ordered set of filters (a filters poset)
The partial order is defined by the covering relations @S

S for subscription filters, and @A
A for advertisement

filters. Let PS be a poset defined by @S
S , and PA a poset defined by @A

A. Figure 2 shows an example of a
poset of subscriptions.

Note that @S
S and @A

A are transitive relations; however the diagram and its representation in memory
store immediate relations only. In a poset PS , ordered according to @S

S , a filter g is an immediate successor of
another filter f and f is an immediate predecessor of g iff f @S

S g and there is no other filter x in PS such that
f @S

S x @
S
S g. Filters that have no immediate predecessors are called root filters.

As shown below, only root filters cause network traffic, due to the propagation of subscriptions (or ad-
vertisements). Thus the “shape” of a poset roughly indicates the effectiveness of the routing strategies used.
In particular, a poset that extends vertically indicates that content-based addresses are very much interde-
pendent and that there are just a few subscriptions summarizing all the other ones. Conversely, a poset that
extends horizontally indicates that there are a few overlapping addresses. Note that the degenerate case of
a flat poset corresponds to the case of systems like IP multicast in which subscriptions (IP group addresses)
define completely disjoint sets.

8

airline=UA
orig=ARN

airline=UA
price<800

airline=UA
price<600

orig=ARN

orig=ARN

dest=IAD

x=any

x=3 x>5

x>0x<8

price<800

price<700

orig=ARN

Figure 2: Example of a Poset of Simple Subscriptions. Arrows Represent the immediate Relation @S
S .

3.5 Routing Algorithm

In discussing the main principles underlying the content-based routing information protocol, we limit the
discussion the propagation of subscriptions; advertisements are treated symmetrically with respect to sub-
scriptions, so the same concepts apply to advertisements as well.

In order to keep track of the propagation of subscriptions, every router augments the basic routing table
by associating with each subscription s a set of subscribers subscribers(s) and a set of neighbors routers to
which s has been forwarded forwards(s).

When a router receives a subscription subscribe(U; f), from a client or a neighbor server (U), it looks in
its subscriptions poset for either

1. a subscription f 0 that covers f and has U among its subscribers: f 0 @S
S f ^ U 2 subscribers(f 0). In this

case, the procedure that handles the subscription returns with no effect; or

2. a subscription f 0 that is equal to f and does not contain U in its subscribers: f0 @S
S f ^ f @S

S f 0. Here
the server adds U to subscribers(f 0); or

3. two possibly empty sets f and f , representing the immediate predecessors and the immediate suc-
cessors of f respectively. Here the server inserts f as a new subscription between f and f , and adds
U to subscribers(f).

In cases 2 and 3, the server also removes U from all the subscriptions covered by f , and then removes those
subscriptions that have no other subscribers.

Then, the router forwards the subscription to some of its neighbors. Formally, given a subscription f in
PS , let forwards(f) be defined as follows:

forwards(f) = neighbors�NST(f)�
[

f 02PS^f 0@
S

S
f

forwards(f 0) (1)

In other words, f is forwarded to all neighbors except those not on any spanning tree rooted at an original
subscriber of f (NST(f)), and those to which subscriptions f 0 covering f have been forwarded already by
this server (the last term in the formula).

The last term in the formula represents the optimization that the server can make in the situation where
more generic subscriptions have been propagated already to some neighbors. In terms of our general
model, this means exploiting the fact that the new address represents a subnet of a previously defined
address.

Figure 3 shows a fragment of an event service. In this example, server 1 is connected to servers 2,
3, and 4. Server 1 also has a local client a. Server 3 sends a subscription [airline=any] to server 1. The
subscription poset shown on the right side of the figure represents the routing table of server 1. As shown
in the figure, the new subscription is inserted as a root subscription in and then forwarded to servers 2 and

9

anyairline=

2

1anyairline= anyairline=

a

SP of server 1

airline=any

subscribersforwards

new

3 4

32,4

Figure 3: Example of How a Router Processes a Subscription (Step 1).

4 but not to server 3, which is in the NST set of the subscription. In this figure and the following ones, for
each subscription in PS , subscribers are denoted with an outgoing arrow while forwards are denoted with an
incoming arrow. Intuitively, arrows indicate the direction of notifications.

2

1

a

SP of server 1

airline=any

3

server 3 is in NST

3 4

fwd sub

fwd sub
3 2

2,4

airline=UA

airline=UA

airline=UA
dest=ARN

dest=ARN

dest=ARN

Figure 4: Example of How a Peer-to-Peer Server Processes a Subscription (Step 2).

Figure 4 shows the effect of a second subscription [airline=UA, dest=ARN] sent to server 1 by server 2.
This subscription is inserted as an immediate successor of the previous (root) subscription and is for-
warded to server 3, which is the only neighbor that is not in the forwards set for the previous subscription
[airline=any].

2

1

a

SP of server 1

airline=any

airline=any
airline=any

3 4

fwd sub

fwd sub
3 2

3,a2,3,4

airline=UA
dest=ARN

Figure 5: Example of How a Peer-to-Peer Server Processes a Subscription (Step 3).

In Figure 5 client a subscribes for [airline=any]. In this case, the subscription is found in PS and a is

10

simply added to its subscribers set. As the NST set for that subscription is now empty, so the subscription is
then forwarded to server 3. Every time the server forwards a subscription f to a neighbor server Y , it adds
Y to the forwards set of f and consequently removes Y from the forwards sets of all the subscriptions covered
by f . In the example, the server removes 3 from the forwards sets of subscription [airline=UA, dest=ARN].

3.6 Matching Patterns

Siena provides support for the matching of patterns of notifications. This functionality is implemented with
distributed monitoring in such a way that patterns are assembled as close as possible to the sources of their
elementary pieces. In practice, servers assemble sequences of notifications from smaller sub-sequences or
from single notifications according to the paths along which notifications will be provided. Such paths are
determined by advertisements, which is why this technique requires publishers to advertise their notifica-
tions. The providers of sub-sequences of notifications are other monitors that the server has already set up
for previous compound subscriptions. We will use the term pattern factoring to refer to the process by which
the server breaks a compound subscription into smaller compound and simple subscriptions. After a sub-
scription has been factored into its elementary components, the server attempts to group those factors into
compound subscriptions to forward to some of its neighbors. We will call this process pattern delegation.

Every server has a table of advertisements TA, maintained by means of the algorithm of Section 3.5.
This table stores available classes of notifications and sub-patterns. Each element p has an associated set
providers(p) listing the peer servers from which p has been advertised.

When a server X receives a compound subscription subscribe(U; p) where p = f1 � f2 � : : : � fk, it scans p
trying to match each fi with a pattern ai, or trying to match a sequence fi �fi+1 � : : : �fi+ki with a compound
pattern ai:::i+ki using its available patterns.

Once a compound subscription is divided into available parts, the server must

� send out the necessary subscriptions in order to collect the required sub-patterns; and

� set up a monitor that will receive all the notifications matching the sub-patterns and will observe and
notify the occurrence of the whole pattern

In deciding which subscriptions to send out, the server tries to re-assemble the elementary factors in
groups that can be delegated to other servers, thereby pushing the recognition of patterns as close as possi-
ble to its sources. The selection of sub-patterns that are eligible for delegation follows some intuitive criteria.
For example, only contiguous sub-patterns available from a single source can be grouped and delegated to
that source.

Space limitations prevent us from presenting a detailed illustration of these concepts.

3.7 Complexity of the Routing Operations

The main operations that the router executes are (1) evaluations of covering relations and (2) maintainance
of filter posets, which in turns requires the evaluation of series of covering relations.

Computing@NS and@N
A is relatively easy. @N

S and@N
A are respectively a conjunction and a disjunction of

elementary constraints, each one evaluated on the corresponding attribute value in the notification. With a
complexity O(1) for each individual comparison,2 the evaluation of both@NS and@N

A has a total complexity
of O(m + n), where n is the number of constraints in the filter and m is the number of attributes in the
notification.

The complexities of computing @SS , @A
A, and @S

A are instead O(nm), where n and m represent the num-
ber of attribute constraints appearing in the respective subscription and/or advertisement filters. This
complexity represents a comparison between each attribute constraint in one filter and any corresponding
attribute constraints in the other filter. Note that checking a covering relation between filters amounts to
a universal quantification. But given the particular types and operators in Siena, comparing a pair of at-
tribute constraints can be reduced to evaluating an appropriate predicate on the two constant values of the

2This is true for all the predefined types of Siena except for the string type.

11

constraints, with a complexity O(1). For example, to see if [x > k1] covers [x > k2], it suffices simply to
verify that k2 � k1.

A server typically executes two classes of operations on a filter poset (for example on a subscriptions
poset): in the first case, when processing a notification, it looks for the set of all the addresses of that
notification. In practice, it looks for every subscription that covers (@NS) n. The second case is when a new
address f , say a new subscription, is inserted. To do that, the router must find f , the set of immediate
predecessors of f , and f , the set of immediate successors of f . In the worst case (a flat poset), both kinds of
operations involve a sequential scan of the routing table, so their complexity would be O(R(n+m)) (when
applying a covering relation between a filter and a notification) or O(Rnm) (for a covering relation between
two filters), where R is the cardinality of the routing table. This complexity can be reduced in the presence
of subnets relations in the routing table: Because of the definition of @SS and its relation to @NS , elements in
the poset are arranged in such a way that for every element s, all its immediate successors define subsets
of the set of subscriptions defined by s. Thus, if a notification n is not covered by s, the evaluation of every
subscription s0 covered by s can be safely skipped.

4 Related Work

We have been unable to find any systematic treatment in the literature of content-based addressing and
routing for communication networks. And we have also been unable to find any papers that uniformly
relate content-based addressing and routing with traditional unicast and multicast addressing and routing.

The term “content-based routing” is used in a number of research areas with varying connotations.
Some of these areas use a completely different meaning for the term, and hence they bear virtually no
real relationship to the work described in this paper. Other areas are relevant because they contribute
motivating applications rather than a generic solution for content-based addressing and routing. Finally,
there are some research efforts that share some of the goals and the overall approach of this work.

One example of the first area is the mechanism used in clusters of Web servers for mapping HTTP
requests to individual servers within a cluster [15]. The mechanism is called content-based routing because
each HTTP request is directed by a gateway of some kind (e.g., a master server, a scheduler, a switch) to a
particular server based on its content. Another example is that of multimedia information systems, in which
the term content-based routing describes the processing, querying, and navigation of various documents
based on the nature of their content [5]. In both cases the “routing” is not being performed to establish a
communication path, but simply to demultiplex an incoming stream of content for specialized processing.
And in both cases it is something other than the network infrastructure that implements the particular
notion of content-based routing.

Among the research areas of that provide suitable application domains, we find systems that realize or
make use of some sort of event service. For example, in agent-based systems, agents exchange information
by means of “message boards” or “facilitators” that pass information based on subscriptions just like an
event notification service [11]. Similarly, in virtual reality environments, the interaction between a pair of
objects (such as two objects in the same virtual room) are modeled as events, and some form of event service
is used to connect objects [14]. Obviously, those systems that provide an event notification service as their
main purpose are good candidates for exploiting the general model and the techniques described in this
paper. Some well-known technologies of this kind include the CORBA Notification Service [9] and the Java
Distributed Event Specification [12].

Of the many event service technologies, some are indeed implemented as distributed network ser-
vices [2, 3, 4, 6, 14]. Of those, some also offer an expressive data model and subscription language, not
limited to channel-based or subject-based filters [2, 3]. Such systems implement a content-based addressing
and routing service. The Siena system described in Section 3 is clearly one of those. Recently, Yu et al. [16]
proposed a system whose model of notifications and subscriptions resemble those of Siena.

Another representative system is IBM’s Gryphon. The focus of Gryphon is on the techniques used by
event routers to store and match subscriptions [1]. In particular, subscriptions are modeled as conjunctions
of basic predicates defined over specific attributes (much like in Siena and other related systems), and
routing tables are represented by a forest of trees in which each tree node represents an attribute name
and each outgoing arc from the node represents a predicate on the attribute value. The forest is populated

12

through left-to-right scans of subscription expressions, and the forest is then used by each router to compute
the set of next-hops for a notification. Two subscriptions that share a common prefix of conjuncts can be
represented by the same tree in the forest. The advantage of this approach is that (1) it provides a way
of reducing the size of the routing tables, and (2) a common prefix of conjunctions is evaluated only once
for all subscriptions sharing that prefix. But the main disadvantage of Gryphon’s routing strategy with
respect to the model of Section 2 is that Gryphon does not attempt to exploit semantic similarities between
conjuncts. In particular, Gryphon’s routing strategy exploits only identical prefixes of conjuncts, rather
than covering relationships between different conjuncts. Therefore, Gryphon cannot apply the subnetting
technique described in Section 2 to combine entries for related subscriptions. As a consequence, every
router must store every subscription in its routing table.

5 Conclusion

In this paper we have described a general model of content-based addressing and routing, and we have
described a realization of the model in an event notification service.

The main advantage of content-based addressing over traditional, explicit addressing is that the former
allows information producers to send information over a network without regard to or knowledge of the
eventual recipients of that information or the location of those recipients. And it allows potential recipi-
ents to express interest in information of interest in order to receive that information, without regard to or
knowledge of the senders of that information or the location of those senders. In this respect, content-based
addressing transforms the concept of an “address” from one of location to one of message content.

The general model of content-based addressing and routing presented in this paper has several notewor-
thy characteristics. First, while we have formulated the model in terms of event notification services, the
model is applicable to other applications requiring content-based addressing and routing such as delivery
of streaming content.

Second, the model is defined independently of the particular data model and language used to form
and request, respectively, the routed content. Thus, even within the domain of event notification services,
the model can be used to characterize and compare a range of different services that have been studied, and
to compare a range of design choices for a single service.

Finally, the model characterizes in a uniform way three different forms of addressing and routing—
traditional unicast addressing and routing, traditional multicast addressing and routing, and content-based
addressing routing. This allows us to exploit well-understood algorithms and processing strategies em-
ployed in traditional routing and to tailor them for use with content-based routing. This also allows for the
possibility of hybrid forms of addressing and routing, a subject we intend to explore in our future work.

13

References

[1] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D. Chandra. Matching events in a content-
based subscription system. In Eighteenth ACM Symposium on Principles of Distributed Computing (PODC
’99), Atlanta GA, USA, May 4–6 1999.

[2] G. Banavar, T. D. Chandra, B. Mukherjee, J. Nagarajarao, R. E. Strom, and D. C. Sturman. An effi-
cient multicast protocol for content-based publish-subscribe systems. In The 19th IEEE International
Conference on Distributed Computing Systems (ICDCS ’99), Austin, TX USA, May 1999.

[3] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Interfaces and algorithms for a wide-area event no-
tification service. Technical Report CU-CS-888-99, Department of Computer Science, University of
Colorado, Oct. 1999.

[4] G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI event-based infrastructure and its application to the
development of the OPSS WFMS. IEEE Transactions on Software Engineering, To appear.

[5] IEEE. 1999 IEEE Workshop on Content-Based Access of Image and Video Libraries (CBAIVL ’99), June 1999.

[6] S. Maffeis. iBus: The Java Intranet Software Bus. Technical report, SoftWired AG, Zurich, Switzerland,
Feb. 1997.

[7] M. Mansouri-Samani and M. Sloman. GEM: A generalized event monitoring language for distributed
systems. IEE/IOP/BCS Distributed Systems Engineering Journal, 4(2):96–108, June 1997.

[8] Object Management Group. CORBAservices: Common object service specification. Technical report,
Object Management Group, July 1998.

[9] Object Management Group. Notification service. Technical report, Object Management Group, Nov.
1998.

[10] B. Segall and D. Arnold. Elvin has left the building: A publish/subscribe notification service with
quenching. In Proceedings of AUUG97, Brisbane, Queensland, Australia, Sept. 3–5 1997.

[11] N. Skarmeas and K. L. Clark. Content-based routing as the basis for intra-agent communication. Lec-
ture Notes in Computer Science, 1555:345–362, 1999.

[12] Sun Microsystems, Inc., Mountain View CA, U.S.A. Java Distributed Event Specification, 1998.

[13] TIBCO Inc. Rendezvous information bus.
http://www.rv.tibco.com/rvwhitepaper.html, 1996.

[14] M. Wray and R. Hawkes. Distributed virtual environments and VRML: an event-based architecture.
In Proceedings of the Seventh International WWW Conference (WWW7), Brisbane, Australia, 1998.

[15] C.-S. Yang and M.-Y. Luo. Efficient support for content-based routing in web server clusters. In Second
USENIX Symposium on Internet Technologies & Systems, Boulder, CO, USA., Oct. 1999.

[16] H. Yu, D. Estrin, and R. Govindan. A hierarchical proxy architecture for Internet-scale event services.
In Proceedings of WETICE ’99, Stanford, CA, June 1999.

14

