
Software Architecture, Configuration Management, and Configurable
Distributed Systems: A Ménage a Trois

André van der Hoek, Dennis Heimbigner, and Alexander L. Wolf

Software Engineering Research Laboratory
Department of Computer Science

University of Colorado
Boulder, CO 80309 USA

{andre,dennis,alw}@cs.colorado.edu

University of Colorado
Department of Computer Science

Technical Report CU-CS-849-98 January 1998

c© 1998 André van der Hoek, Dennis Heimbigner, and Alexander L. Wolf

ABSTRACT

Software architecture, configuration management, and configurable distributed systems
are three areas of research that until now have evolved separately. Contributions in
each field have focused on their respective area of concern. However, as solutions in
the three fields tend to center around some notion of a system model, it is worthwhile
to investigate their relationship in detail. In particular, the large amount of overlap
among the system models developed in each area, combined with the complementary
nature of the differences among them, suggests that an approach based on a common
system model is viable. In this paper, we illustrate the benefits of using such a unified
system model, identify the commonalities and differences among the existing system
models, and present some of our initial experiments that we believe will lead to the
development of a single system model that is usable in all three fields.

This work was supported in part by the Air Force Material Command, Rome Laboratory, and the Advanced Research

Projects Agency under Contract Number F30602-94-C-0253. The content of the information does not necessarily

reflect the position or the policy of the Government and no official endorsement should be inferred.

1 Introduction

Design, implementation, and deployment are three activities that are normally carried out dur-
ing the lifetime of a software system. In support of these activities, three distinct software engineer-
ing disciplines have emerged: software architecture, configuration management, and configurable
distributed systems. Software architecture addresses the high-level design of a system. A system de-
sign is partitioned into its primary, coarse grain components. These components are then combined
into a complete system by explicitly modeled connections. Often, a software architecture descrip-
tion language that formally describes the components and connections is provided. Configuration
management supports the implementation phase of a software system. Typical solutions manage
multiple versions of the source files that implement a system, provide for a selection mechanism to
choose a consistent system configuration out of the version space, and subsequently construct the
software system out of the selected source files. Configurable distributed systems concentrate on
managing a system once it is “out in the field”. Work focuses on the ability to reconfigure a system
after it has been deployed. In particular, component updates need to be administered in such a
way that consistency of the deployed system is guaranteed, even in cases where it is required that a
system continues executing while the update takes place. Support for this capability is most often
provided by specialized programming constructs and system configuration managers.

Until now the three disciplines have largely evolved separately. However, evidence suggests that
they are intimately related. A first indication is that the disciplines share a certain amount of
terminology. For example, configurable distributed systems and configuration management share
the notion of a configuration that is composed from multiple parts, software architecture and
configurable distributed systems both consider components as the level of granularity, and all three
disciplines share the goal of maintaining a consistent system.

More evidence is provided when we examine some of the contributions in each field and realize
that they are crossing the implicit boundaries that have existed among the disciplines. For example,
C2 [40], an architecture description language, has recently begun to incorporate dynamism, which
until now was addressed exclusively by configurable distributed systems research. As another
example, UniCon [36], an architecture description language, includes a build facility similar to the
build utilities created by the configuration management discipline. Finally, Darwin, a language
to describe configurable distributed systems, has started to incorporate certain features commonly
found in ADLs, such as, for example, interface types.

In this paper we investigate the relationship among the three disciplines in detail. We conduct
this investigation in terms of a system model, which is an abstraction that describes the structure of
a system in terms of its components and the relationships among them. Individual system models
have been developed in each of the three disciplines, but here we take a more fundamental approach
that is based on the use of a common system model. We have three reasons to believe such a unified
system model is possible:

• Most, if not all, solutions in the three disciplines are based on an underlying system model.

• Among these solutions, there is a significant amount of overlap among the system models;

1

many concepts are shared across disciplines.

• Of the non-overlapping parts of the system models used in the various disciplines, most are
complementary in nature.

Although we do present some initial experiments that we believe will lead to the development of
a unified system model, these are not the main contribution of this paper. The first and foremost
goal of this paper is to illustrate the close relationship among software architecture, configuration
management, and configurable distributed systems. We present our initial experiments only to
illustrate our secondary goal, which is the identification of the unified system model as a promising
avenue to advance the state of the art in all three fields.

The rest of this paper is organized as follows. In Section 2 we explain why we believe an approach
based on a unified system model is desirable. Section 3 explores the system models proposed in
the three disciplines and highlights their commonalities and differences. Following that, Section 4
describes our initial experiments in combining some of the capabilities of existing system models.
We conclude with some thoughts on future work.

2 Benefits

Before we analyze existing system models and develop our unified system model, we have to
demonstrate that such a common system model is indeed desirable. Therefore we present in this
section what we believe are the main benefits of using a single system model across the disciplines
of software architecture, configuration management, and configurable distributed systems.

2.1 Reduced Modeling Effort

Typically, system models are constructed for each of the activities of design, implementation,
and deployment. Because of the existence of separate system modeling languages for each of these
activities, a completely new system model has to be constructed from scratch for each of these
activities. A significant amount of cost and modeling effort is therefore wasted because common
aspects of a system model have to be modeled repeatedly. A unified system model would leverage
modeling efforts from early activities when modeling other aspects of a system during later ones.
The common aspects of the system model have to be modeled only once, and the complete system
model is constructed in an incremental fashion, thereby reducing effort.

2.2 Reduced Architectural Erosion

One of the main problems identified in the software architecture literature is architectural ero-
sion: once the conceptual architecture of a system has been created, it becomes out of date with
respect to the actual architecture that is embedded in the implementation of the system [35].
Several corrective approaches have been proposed that rediscover an architecture from an imple-
mentation [13, 32], but these solutions provide only a snapshot in time of the mapping between a

2

software architecture and its implementation. If instead the software architecture and configuration
management disciplines share a system model, a continuous mapping can be maintained while a
system is being implemented and stored in a configuration management repository. In particular,
the architecture of a system can be updated with new connections and architectural refinements as
they are introduced, thus reducing architectural erosion.

Another kind of architectural erosion takes place once a system has been deployed. Changes
made to a system in the field are seldom propagated back to the development site, resulting in a
loss of knowledge and a duplication of effort. Especially when similar changes have to be made
at multiple field sites, this can account for serious costs to an organization. A system model that
is shared between the configuration management and configurable distributed systems disciplines
provides an infrastructure to establish communication between the development site and the field
sites. Through this communication channel, changes made in the field can be fed back into the
development environment. The loss of changes made to a deployed system can thus be avoided,
and architectural erosion is reduced.

2.3 Increased Level of Abstraction in Configuration Management

Until now, the system models used in the configuration management discipline have largely been
based on source files. Although it is possible to group source files into architectural components,
it is often a manual process for which little support is provided. Moreover, such a grouping is
often imprecise, since the separation of source files into components cannot be made cleanly. An
explicit, architectural system model enhances the configuration management discipline with several
important new capabilities. The most important advance is the ability for developers to manipulate
versions of architectural components as opposed to versions of individual source files. For example,
in a system that has a client-server architecture, developers should be able to “check out” a server
component as such or create a new version of a client component. This capability further enchances
the understanding of a system under development, as work is carried out at the conceptual level;
the level of abstraction is raised from source files to architectural components.

The configuration management discipline is not only concerned with versioning; change impact
analysis and system construction are two other areas of interest that could benefit from a rise in
abstraction level. In particular, applying architectural dependence analysis techniques [39] on a
shared system model enables change impact analysis at the component level as opposed to the
source-code level. In addition, better system construction tools can be developed that, in a similar
fashion, operate on architecture-level constructs as opposed to source-code directives.

2.4 Automated Support for the Selection of Versions of Components

Most systems are not developed just once, but evolve over time. Bug fixes, new features, and
preventive maintenance result in new versions of the components of a system. The disciplines of
software architecture and configurable distributed systems both need to be able to select a subset
of these components that, when put together, yields a consistent system. However, neither area

3

has a good way of representing versions of components and supporting the selection of valid con-
figurations out of the available version space. Instead, they rely on a user to select components
by hand. The configuration management discipline on the other hand has developed sophisticated
and automated techniques that support a user in the selection process. Therefore, the disciplines
of software architecture and configurable distributed systems would greatly benefit if these config-
uration management techniques are adopted. Their system models would then contain information
that would guide and automate the selection process, even if the version space is large and complex.

2.5 Improved Reuse of Components

Most current configuration management systems store only the source code of a system. Even
when the design of a system is versioned as well, little support is available for cross references
between the design and its implementation. Given a common system model, a configuration man-
agement system can store, version, and provide access to the implementation, design, and config-
uration information of the components of a software system. Moreover, because the configuration
management system understands the underlying system model, various relationships among these
artifacts can be established and manipulated. Improved reuse can then be achieved because a
design and its implementation are reused jointly, as opposed to the reuse of just a set of source
files. As techniques to uncover architectural mismatch mature [17], the compatibility of a reusable
component with a set of already selected components can be assessed at a higher level.

3 A Comparison of Existing System Models

The construction of a unified system model should build upon the lessons learned from the
system models that have been developed to date. This section therefore compares and contrasts the
strengths and weaknesses of the system models that have been developed in each of the disciplines
of software architecture, configuration management, and configurable distributed systems. Below,
we first introduce an example system that is used throughout the rest of this section to illustrate
the various modeling capabilities of each discipline. Following that, we present the system model
dimensions that we use for our comparison and highlight, per discipline, the system model support
for each of these comparison dimensions. We conclude this section by contrasting the system models
and summarizing the discussion.

3.1 Example

Figure 1 presents a simplified version of an existing system that is currently in use to carry out
research in the field of numerical analysis [5]. The purpose of the system is to globally optimize a
mathematical function, i.e., to find the point in the domain of the function that yields the absolute
lowest function value. The system consists of about 15,000 lines of Fortran and C code, and is
modularized into a set of components. In the figure, each solid box represents such a component
and each solid line indicates the existence of interaction between two components. For example,
each Optimizer component interacts with a single ComplexFunction component. The dashed

4

GlobalOptimization

Scheduler

Optimizer

ComplexFunction

Optimizer

ComplexFunction

Optimizer

ComplexFunction

......

Figure 1: Example System.

lines indicate a different kind of relationship among components: instantiation. As illustrated by
the dashed boxes, the Scheduler component instantiates new Optimizer and ComplexFunction

components in pairs.
In the system, the GlobalOptimization component manages the computation that takes place.

It uses the Scheduler to create new Optimizer and ComplexFunction components, and allocates a
particular interval of the domain to each Optimizer component. The Optimizer component carries
out an optimization algorithm on the interval it has been allocated, and uses its ComplexFunction
component to evaluate the function at the particular points that the algorithm requires. The net
effect is that the function is optimized by optimizing multiple intervals in parallel.

Throughout its lifetime, the system has been highly variable. Initially, the ComplexFunction

component consisted of about 3,000 lines of Fortran code that were created at the local site, but
it has since been replaced with a separate system that was created at an external site. Also,
alternative Optimization components exist that each exhibit unique characteristics with respect
to the encapsulated optimization algorithm; some are fast but produce less precise results, whereas
others are slow but very accurate. Finally, new versions of the GlobalOptimization component
are created on a regular basis as new approaches are being tried to find better results.

3.2 Comparison Dimensions

The dimensions along which we compare existing system models are all already present in one or
more system models. However, the isolation in which the system models of the various disciplines
were developed has until now prevented the combination of the dimensions into a single set of
requirements for a unified system model.

5

The dimensions that we have chosen are practical in nature; we focus on expressive capabilities
as opposed to more general requirements such as maintainability, reusability, and evolutionary
support. In fact, such abstract capabilities are often a direct result of the use of the more expressive
capabilities we selected. The following dimensions are used in our comparison.

• Composition. What modeling facilities are available to model a system as a set of inter-
connected components?

• Consistency. What modeling facilities are available to enforce consistency when components
are combined to form a system?

• Construction. What modeling facilities are available to support the construction of an exe-
cutable system out of its components?

• Versioning. What modeling facilities are available to model the existence of, and relationships
among, multiple versions of components?

• Selection. What modeling facilities are available to support the selection of components from
the set of available components?

• Dynamism. What modeling facilities are available to model the dynamic changes of a system
once it has been deployed?

Below we use these dimensions to compare system models in each of the fields of software archi-
tecture, configuration management, and configurable distributed systems. It should be noted that
we do not choose a single, representative system model of each discipline as the system model that
is compared, but instead match capabilities from multiple system models against the dimensions
listed above. Although it is therefore possible that no single system model supports all capabilities
listed in the discussion of a discipline, this choice results in a more accurate overview of the con-
tributions of a discipline. It should also be noted that some of the system models address issues
in more than one field. However, for the purpose of the discussion below we classify each system
model in the discipline it originated.

As a guideline to the rest of this section, Table 1 provides a summary of the discussion that
follows. The table ranks the relative support that is provided by the various system models of a
discipline for each of the comparison dimensions. The larger the number of bullets that is listed
in a category, the better the support that is provided by the system models of a discipline for
that particular capability. In the following subsections we substantiate the chosen rankings by
illustrating the system models that have been developed by each discipline, and evaluate their
support for each of the comparison dimensions.

3.3 Software Architecture

System models in software architecture are captured in architecture description languages
(ADLs). At the heart of all ADLs is the ability to model a system out of multiple components.

6

Software Configuration Configurable
Architecture Management Distributed Systems

Composition • • • • ••

Consistency •• • •

Construction • • • • •

Versioning • • • •

Selection ••

Dynamism • ••

Table 1: System Model Capability Comparison Matrix.

In particular, ADLs partition a system into individual components, describe the behavior of each
component, and model the interconnections among the components. Figure 2 illustrates this focus
of ADLs with an example architecture that is modeled in the Rapide [23] architecture description
language. Shown are two components of the example system discussed in Section 3.1, a component
that evaluates the function at a particular point in its domain, ComplexFunction, and a component
that performs an optimization algorithm, Optimizer. Each component is modeled with an interface
that specifies both the functionality that is provided by the component and the functionality that
is expected to be provided by the other components. In Rapide, these functionalities are specified
with events. For example, the ComplexFunction component is capable of receiving a Compute event
and producing a Result event.

At the architectural level, the components are connected by binding the provided functionality
of one component to the required functionality of another component. In our example, the required
Evaluate functionality of the Optimizer component is attached to the Compute functionality pro-
vided by the ComplexFunction component. This implies that when the Optimizer component
generates a Compute event, it is received as an Evaluate event by the ComplexFunction compo-
nent. Such explicit modeling of the interconnections among components is one of the distinguishing
characteristics of ADLs as compared to other system modeling languages.

Another unique aspect of ADLs is their ability to model the interaction behavior of a compo-
nent. In Rapide, this is done by specifying the relationship between the events that a component
receives and the events that it produces. The behavior of the ComplexFunction component, for
example, is one where each Compute event that is received results in a single Result event that is
produced. Understanding the interaction behavior of a component is an important capability for
ADLs. Combined with the architecture-level connections among components, the specification of
the interaction behavior of all components results in a completely specified system on which im-
portant analyses can be carried out. For example, the Rapide tool set contains tools that simulate
an architecture to uncover such architectural faults as deadlock [22].

We now turn our attention to the comparison dimensions we describe in Section 3.2 and the
rankings given to software architecture in Table 1. From the discussion of the Rapide example, it

7

type ComplexFunction is interface

action in Compute(Point: Float);

out Result(Value: Float);

behavior

NewValue : var Float;

begin

(?x in Float) Compute(?x) => Result($NewValue);;

end ComplexFunction;

type Optimizer is interface

action in FuncValue(Value: Float);

out Evaluate(Value: Float);

behavior

Minimum : var Float := 100000.0;

StartPoint : var Float := 0.0;

begin

Start => Evaluate($StartPoint);;

(?x in Float) FuncValue(?x) => ...

end Optimizer;

architecture GlobalOptimization() return root is

O : Optimizer;

F : ComplexFunction;

connect

(?x in Float) O.Evaluate(?x) => F.Compute(?x);

(?y in Float) F.Result(?y) => O.FuncValue(?y);

end GlobalOptimization;

Figure 2: Example of an Architectural System Model in Rapide.

should be clear that Rapide is focused on the composition dimension. This focus is shared by other
ADLs, which is illustrated by a recent survey of existing ADLs [28]. The survey uses several key
characteristics of components, connectors,1 and configurations as its comparison dimensions. The
characteristics chosen by the survey, such as interface, type, and constraint, are all directly
geared towards the composition of a system out of its components, and demonstrate the belief of
the architecture community that these characteristics are the important ones for system modeling.
Further proof of the importance of composition in ADLs is presented by ACME [14], an architecture
description language that has been proposed to unify existing ADLs. ACME is centered around the
notion of components, connectors, and configurations, which are all system modeling constructs
that are used to model the composition of a system.

Consistency is enforced by most ADLs through their strong support for composition. Because
components and connections are typed, type checking at system composition time ensures a certain

1A connector is a formalized notion of a connection that has its own language constructs in some ADLs.

8

level of consistency. A stronger, behavioral type of consistency is achieved by Wright [2] and
CHAM [17]. Both ADLs formally define architectures. Inconsistencies in an architecture are
uncovered by carrying out analyses on its formal definition. Architectural mismatches, such as
competing threads of control, have been uncovered this way [7].

The support for the other comparison dimensions besides composition and consistency is rather
limited in current ADLs. Versioning and selection are not addressed at all; version control and the
selection of components that constitute a configuration both have to be carried out by hand without
any guidance from an architectural system model. UniCon [36] seems to be an exception because its
system model supports variant implementations of components. However, UniCon does not allow
for versions of the actual compositional constructs, such as, for example, components, interfaces,
or types; versioning is only supported at the implementation level, not at the architectural level.

Construction has received some attention from the architecture community. One approach,
GenVoca [3], is generative in nature: based on an architectural description, a system implementation
is generated. Because this approach limits itself to domain-specific applications, it is very powerful.
Unfortunately, the underlying generic principles are at too low a level to be considered for inclusion
in a unified system model. The other approach, pioneered by UniCon, is based on the existence
of a mapping between an architecture and its implementation. Currently, the mapping is limited,
since a single component is assumed to be implemented by a single source file.

Our last comparison dimension, dynamism, exists in two forms: external and internal. External
dynamism is the ability to dynamically reconfigure a system through some external support envi-
ronment. Internal dynamism, on the other hand, is the ability to create and destroy components
from within the system model. Both external and internal dynamism are present in ADLs. Most no-
tably, C2 [40] supports external dynamism through its ArchShell [27] environment, whereas internal
dynamism is supported by Rapide [23] and CHAM [16]. In either case, though, support is limited
because the system model itself provides no constructs to support the architectural changes with
guidelines and constraints. It is not possible, for example, to specify in the system model what
particular topology needs to be maintained while an architecture is being modified. The graph
grammar approach developed by Le Métayer [29] addresses this problem and provides a means
for constraining the topology of a system. As an inherent part of a system architecture, a coor-
dination component is modeled. Through the use of graph-checking algorithms, this coordination
component controls the dynamic evolution of a system.

3.4 Configuration Management

In the past, a variety of system models have been devised in the configuration management
discipline. Some of these focus on the construction of a system out of a set of individual source
files [6, 12]. Others are concerned with the management of versions and configurations of source
files [20, 26]. Only recently, the two have been combined into unified system models that not only
address versioning and construction, but also raise the level of abstraction from source files to
system-level components [11, 21, 41].

To illustrate the strengths and weaknesses of a typical system model developed by the config-

9

uration management discipline, Figure 3 presents a revised version of our optimization example
that is modeled in the PCL system modeling language [41]. Compared to the previous version
in Figure 2, one additional component (or family in PCL terminology) has been introduced: the
FastOptimizer component carries out an optimization in less time than the regular Optimizer

component, but sacrifices precision to gain the time benefit. Modeling such variability and providing
mechanisms to select an appropriate subset out of the available components are the central foci of
system models in the configuration management discipline. In PCL, attributes are used to support
the versioning and selection process. Attributes specify key characteristics of a component, and can
be used in both a descriptive and a selective manner. In our example, the attributes precision

and complexity are used to precisely describe the difference between the FastOptimizer and
Optimizer components. These attributes have no further influence on the actual composition of
the system. The attribute fast, on the other hand, is used as a selection criterion between the
FastOptimizer and Optimizer components. Depending on its value, the parts that constitute
the GlobalOptimization component differ. Modeled here is the version fast-version of our sys-
tem, for which the attribute fast is selected to be true. Consequently, the FastOptimizer and
ComplexFunction components are selected by the GlobalOptimization component to be included
in the system.

Not only does Figure 3 illustrate the versioning and selection capabilities of PCL, it also demon-
strates the integrated support for the construction of an executable system. To this extent, a
mapping is maintained within a PCL system model between its components and their implemen-
tation. The FastOptimizer component, for example, is implemented by the files fast.c and
optimizer.h. The selection rules are used to determine the set of source files that is needed to
construct a particular system version, and the executable system is compiled from this set of source
files.2

To evaluate the capabilities of the system models that have been developed by the discipline of
configuration management, we now extend the discussion to include other system models besides
PCL. Typical in all these system models is the rather limited support for the first two comparison
dimensions, composition and consistency. Although the hierarchical composition of a component
out of multiple parts is supported by most system models, it is only one of the capabilities that
is needed. Two key concepts that are missing are explicitly modeled connections and behavioral
specifications.

Consistency is only guaranteed for frozen configurations, i.e., versions of systems that have
been deemed correct by a user and are permanently labeled as non-modifiable. However, when
arbitrary components are selected to be combined in a new configuration, potential inconsistencies
are not revealed by the information that is modeled. The typing mechanism of Adele [11] and
the interface specifications introduced by Perry [34] provide some improvement, but behavioral
consistency cannot be achieved since both are static in nature.

The next three comparison dimensions, construction, versioning, and selection, are at the heart

2PCL includes a set of standard, extensible derivation rules that are part of its system modeling capabilities. For

brevity, these rules are not presented here.

10

family ComplexFunction

...

end

family FastOptimizer

attributes

precision : string = ‘‘0.01’’;

complexity : string = ‘‘n squared’’;

end

physical

fastoptimizer => (‘‘fast.c’’, ‘‘optimizer.h’’);

end

end

family Optimizer

attributes

precision : string = ‘‘0.00001’’;

complexity : string = ‘‘n cubed’’;

end

physical

optimizer => (‘‘precise.c’’, ‘‘optimizer.h’’);

end

end

family GlobalOptimization

attributes

created-by : string = ‘‘Andre van der Hoek’’;

created : string = ‘‘97/11/06’’;

fast : boolean default false;

end

parts

O => if fast then FastOptimizer else Optimizer endif;

F => ComplexFunction;

end

physical

main => (‘‘main.c’’);

exe => ‘‘calc.exe’’ classifications status := standard.derived; end;

end

end

version fast-version of GlobalOptimization

attributes

fast := true;

end

end

Figure 3: Example of a Configuration Management System Model in PCL.

11

of configuration management. Advanced techniques and modeling capabilities have been developed
over the years [8, 10, 38] of which the example has highlighted the essential contributions. However,
two additional concepts deserve special mention.

• Variants and revisions. Our example contains two versions of an optimization algorithm:
the Optimizer component and the FastOptimizer component. Although different, these
components provide the same functionality and they are therefore termed variants. A different
relationship exists when a new version of a component represents a change over time. If, for
example, a new version of the FastOptimizer component is developed that fixes a problem in
the existing version, the new version would be called a revision of the existing one. Both the
variant and revision relationship are explicitly modeled; typically, the variants and revisions
of a component are organized in a version tree. We believe that these concepts need to be
carried over into a unified system model to fully incorporate the essence of configuration
management.

• Change sets. A rather different approach to modeling system configurations is the change-
set approach [37, 42]. As opposed to managing versions of components, change sets model
changes as first-class entities. Changes can be simple modifications to a single component,
but can also be complex modifications having a system-wide impact. Using change sets, a
particular system configuration is selected as a baseline and a set of desired changes. The
desired system is then constructed by applying the changes to the baseline. Although the
change-set approach is elegant and easily understood by its users, it has the problem that
it depends on merging [4], which makes it inherently inconsistent. However, its application
to software architecture and configurable distributed systems is appealing because the coarse
granularity of the objects of concern could lessen the merging problem considerably.

The last comparison dimension, dynamism, has not been addressed by the configuration man-
agement community as of yet. None of the system models are capable of modeling internal dy-
namism, nor do they provide support for external dynamism; the system models that have been
developed all are static in nature.

3.5 Configurable Distributed Systems

The discipline of configurable distributed systems is a relatively new research area. Although
a variety of tools and techniques have been developed [19, 25], few formally defined system models
exist at this time. Even the ones that do exist [1, 15, 24] do not yet address the full breadth of
problems that have been identified.

Perhaps the most advanced system model to emerge from the configurable distributed systems
area to date is Darwin [24]. We therefore use Darwin to model the configurable and distributed
aspects of our optimization example. Figure 4 illustrates the resulting specification. All four
components that are described in Section 3.1 are modeled, but central to this example is the
Scheduler component. The Scheduler component has a portal of type Factory. Types in
Darwin are specified using the keyword interface, and consist of a set of opaque members that

12

interface Point {
x : double;

}

interface Value {
y : double;

}

interface Factory {
NewPair;

IntervalMinimum : Value;

}

component ComplexFunction {
provide portal Compute : Point;

require portal Result : Value;

}

component Optimizer {
provide portal FuncValue : Value;

require portal Evaluate : Point;

require portal IntervalMinimum : Value;

}

component Scheduler {
export portal F : Factory @ host("trader");

bind

F.NewPair -- dyn Optimizer @ host("machine1");

F.NewPair -- dyn ComplexFunction @ host("machine2");

Optimizer.FuncValue -- ComplexFunction.Compute;

ComplexFunction.Result -- Optimizer.FuncValue;

Optimizer.IntervalMinimum -- F.IntervalMinimum;

}

component GlobalOptimization(int NumIntervals) {
provide portal IntervalMinimum;

require portal NewPair;

import portal F : Factory @ host("trader");

forall i = 0 to NumIntervals - 1 {
bind

NewPair -- F.NewPair;

F.IntervalMinimum -- IntervalMinimum;

}
}

Figure 4: Example of a Configurable Distributed Systems System Model in Darwin.

13

each in turn can potentially be typed. For example, the type Factory has two members, NewPair
and IntervalMinimum, of which only IntervalMinimum is typed. A portal is either a required or
a provided functionality of a component, that may or may not be typed. Required functionalities
are denoted by require portal and import portal. Provided functionalities are specified by
provide portal and extern portal. The difference between a provide portal and an extern

portal is that a provide portal is only available within a system, whereas an extern portal is
made publicly available and can be used by other systems. The portal F that is provided by the
Scheduler component is extern, and is made available at the host named trader. The Scheduler
component in our system can thus be used by other systems as long as they import, in a fashion
similar to the GlobalOptimization component, a portal of type Factory from the host trader.

The bodies of components use the statement bind to create one or more relationships between
portal pairs. For example, in the GlobalOptimization component, a binding is placed between
its required portal NewPair and the member NewPair of the import portal F. The aggregation
of all bindings specifies the topology of a system; the bindings in Figure 4 create the topology that
is illustrated in Figure 1.

The Scheduler component employs a special kind of binding: it dynamically binds a new
Optimizer component to the member NewPair of its export portal F. This use of the keyword
dyn specifies that each time the member NewPair of portal F is bound by another component, a
new Optimizer component is instantiated and this new instance is bound to the NewPair member.
The GlobalOptimization component makes use of this facility and dynamically creates, by binding
NumIntervals times to F.NewPair, a set of Optimizer components that it can use in parallel to
carry out the optimization. In the example, these components are allocated by the Scheduler

component to particular machines according to a simple, static algorithm: Optimizer components
are created at one machine, machine1, ComplexFunction components at another, machine2. In
more realistic situations, of course, this allocation algorithm could be more complex, since Darwin
allows the use of variable, not just constant, machine declarations.

It should be noted that the GlobalOptimization component uses the Scheduler compo-
nent in a straightforward manner; it simply creates NumIntervals pairs of Optimizer and
ComplexFunction components. The dynamism that is provided by Darwin is not fully exploited.
In more complex optimization algorithms, this could change and components could be created and
destroyed as needed throughout the whole computation.

Turning our attention to the capabilities described in Section 3.2, we now include in our dis-
cussion the other system models that have been developed in the configurable distributed systems
discipline. Central to all these system models is the support for composition and dynamism. Sim-
ilar to the discipline of software architecture, composition is supported through the modeling of
components, interfaces, connections, and configurations. Not modeled in any of the system models,
however, is the behavior of components and systems, which leads to rather weak support for con-
trolling the consistency of a system. This is especially troublesome in the presence of dynamism;
except for type checking, no control can be imposed on changes made to a deployed system. De-
spite this problem, support for dynamism in the configurable distributed systems discipline is well
established. Both internal dynamism, as illustrated in the example, and external dynamism are

14

supported. External dynamism is, for instance, supported by some of the support environments of
Darwin [9, 33]. These environments allow a user to dynamically reconfigure a system while it is
executing.

The other comparison dimensions are supported in a limited fashion. Only a few attempts to
support these dimensions have been made so far. A form of construction is supported by Darwin,
but it suffers from the same problem as UniCon: a component is assumed to be implemented by
a single source, and thus a single binary, file. Versioning is addressed by the Software Dock [15],
but it has only incorporated the concept of temporal revisions until now. Selection has not been
addressed at all.

It is important to note that system modeling in the configurable distributed systems discipline
is still in its infancy. A variety of techniques are currently being developed that simply have not
matured into system model capabilities as of yet. For example, advanced replication [18] and
internal reconfiguration [31] are in fact available as individual techniques, but none of the system
models incorporate primitives that capture these notions.

3.6 Comparison Summary

To summarize our comparison, we revisit Table 1. Looking at the support provided by each
discipline for the comparison dimensions, we see that each discipline has its own focus: software
architecture mostly manages composition and consistency, configuration management addresses
construction, versioning, and selection, and configurable distributed systems focuses on dynamism.
In addition, we observe that a non-trivial amount of overlap occurs. We believe that this overlap is
due to the fact that some systems have indeed started to cross the artificial boundaries that have
existed among the various disciplines. UniCon and the Software Dock are two prime examples;
both systems have incorporated aspects from system models outside of their native category. In
fact, Darwin and C2 are even stronger examples since both systems could have easily been placed
in two categories, software architecture and configurable distributed systems.

Although none of these approaches has been comprehensive in covering all the dimensions of
system modeling, they do provide convincing evidence that a unified system model is an achievable
goal. Their mere existence, combined with the complementary nature of the system modeling
strengths of the three disciplines, has led us to start developing such a unified system model.

4 Initial Approach

We believe that a unified system cannot be developed until the interactions among the various
system modeling dimensions can be fully understood. We are therefore carrying out a series of
experiments in which we examine the ramifications of combining certain system modeling capa-
bilities. In this section, we present two such experiments. We have examined how versioning and
selection capabilities could be added to Rapide [23]. Below, we illustrate how such an addition can
be achieved by integrating two different techniques with the language. We first illustrate how PCL
attributes can be used to model and select variants of components. We subsequently illustrate how

15

architectural changes can be modeled using change-set technology.

4.1 Architectural Versioning and Selection through Attributes

A straightforward way of adding versioning and selection to Rapide is to adopt the attribute
mechanism used by PCL [41]. In Figure 5 we have remodeled the optimization example of Figure 3
in Rapide while retaining the attributes of PCL. For each component, its required and provided
functionalities, its behavior, and a set of descriptive attributes are modeled. The functionalities and
behavior are modeled in the original Rapide language, and the attributes in the PCL extensions.

Because component attributes are descriptive, these attributes are independent of the other
concepts and the impact on the modeling of individual components is minimal. The impact of
attributes on the modeling of the overall architecture, however, is more intricate. At the architec-
tural level, attributes are used to select components, not to describe them. Consequently, we have
to introduce the parts construct together with the conditional that is based on the value of the
attribute fast. The conditional is used to differentiate between the instance of the system that
has a fast optimization component and the instance that has a slow optimization component.

In the case of the simple variability of the modeled system, the extension of Rapide with the
parts construct and conditionals is sufficient. However, if the behavior, the required functionality,
or provided functionality differs between two variant components, the connections of the architec-
ture have to change depending on the component selection that is made. Thus, the connections
made in the connect part of the system specification have to be based on conditionals as well,
which makes the specification more complex and less clear. Traditional configuration management
system models do not have this complexity problem because a system is specified only as a hierarchy
of components; other relationships among components are not modeled. Therefore, in configura-
tion management attributes have no impact on a system model other than selecting versions and
variants of components.

This example illustrates that, although it seems at first sight simple and straightforward to
adopt the attribute-based versioning and selection of PCL in Rapide, it is in reality more difficult.
Hidden issues arise to which close attention must be paid.

4.2 Architectural Versioning and Selection through Change Sets

Although there certainly exists a place for attribute-based versioning and selection in a unified
system model, a system specification that is solely based on attributes can become complex and
unwieldy. Especially in the presence of a large amount of variability, or when components are
replaced with architectures in their own right, additional techniques to manage the version space
are needed. Change set technology, as described in Section 3.4, provides such a complementary
technique.

Figure 6 illustrates the application of change sets to a Rapide architecture. Assuming the system
baseline is the architecture that is presented in Figure 2, Figure 6 depicts two change sets that are
constructed from it. The first one, NewEval, replaces the existing ComplexFunction component
with a NewComplexFunction component. The second, Fast, replaces the Optimizer component

16

type ComplexFunction is interface

...

end ComplexFunction;

type Optimizer is interface

action in FuncValue(Value: Float);

out Evaluate(Value: Float);

attributes

precision : string = ‘‘0.00001’’;

complexity : string = ‘‘n cubed’’;

behavior

...

end Optimizer;

type FastOptimizer is interface

action in FuncValue(Value: Float);

out Evaluate(Value: Float);

attributes

precision : string = ‘‘0.01’’;

complexity : string = ‘‘n squared’’;

behavior

...

end Optimizer;

architecture GlobalOptimization() return root is

attributes

created-by : string = ‘‘Andre van der Hoek’’;

created : string = ‘‘97/11/06’’;

fast : boolean default false;

parts

O => if fast then FastOptimizer else Optimizer endif;

F => ComplexFunction;

connect

(?x in Float) O.Evaluate(?x) => F.Compute(?x);

(?y in Float) F.Result(?y) => O.FuncValue(?y);

end GlobalOptimization;

version fast-version of GlobalOptimization

attributes

fast := true;

end

end

Figure 5: Versioning and Selection in Rapide through Attributes.

17

change set NewEval {
base

baseline

contents

replace 1 -- 8 {
type NewComplexFunction is interface

action in InitEval;

in Compute(Point: Float);

out Result(Value: Float);

behavior

NewValue : var Float;

begin

InitEval => $NewValue := 0.0;;

(?x in Float) Compute(?x) => Result($NewValue);;

end NewComplexFunction;

}
add 11 {

out InitEval;

}
add 16 {

Start => InitEval;

}
replace 23 -- 23 {

F : NewComplexFunction;

}
add 24 {

O.InitEval => F.InitEval;

}
}

change set Fast {
base

baseline

contents

replace 10 -- 19 {
type FastOptimizer is interface

...

end FastOptimizer;

}
replace 22 -- 22 {

O : FastOptimizer;

}
}

Figure 6: Versioning and Selection in Rapide through Change Sets.

18

with a FastOptimizer component. Both change sets represent logical changes to the system, but
these changes have to be physically captured. Although other approaches are possible that are
based on the structure of the language, the most common approach is to represent the changes as
additions, deletions, and substitutions of source lines. The change set Fast, for example, replaces
lines 10 through 19 and line 22 with new ones. Similarly, the change set NewEval adds new lines
and replaces existing ones. This mechanism allows for complicated changes to be represented as a
single entity. For example, the NewComplexFunction component requires an initialization, which is
easily incorporated in the change set as the addition of extra lines to the base architecture. Change
sets are thus capable of capturing coordinated changes to an architecture.

A particular version of a system is selected by specifying a baseline and the change sets that
should be applied to the baseline. For example,

system = baseline + NewEval + Fast;

incorporates both the change sets NewEval and Fast into the system, whereas

system = baseline + Fast;

incorporates only the change set Fast. The system that is selected is constructed by a merging
algorithm that combines all change sets with the baseline. It is possible that conflicts arise while
merging. For example, the addition of lines 11 and 16 in the NewEval change set is in conflict with
the replacement of lines 10 through 19 in the change set Fast. If both change sets are selected to
be part of a system, the conflict will need to be resolved. Although most merging algorithms are
capable of uncovering a conflict, they require manual assistance in resolving the conflict [4]. For
the management of source code by configuration management systems that are based on change-set
technology, this has not been a problem because conflicts arise only occasionally [37]. It remains
to be seen whether this also holds for unified system models or whether it turns out that conflicts
arise too often for change sets to be practical in this domain.

In the example of Figure 6, both change sets are based on the baseline of the system. As more
and more change sets are developed, it cannot be expected that each is developed from the baseline.
Therefore, change sets cannot be based solely on the baseline of a system, but also on arbitrary
combinations of the baseline and a collection of change sets. Techniques have been developed [30]
that keep track of the dependencies among change sets and are therefore capable of assuring the
inclusion of the correct change sets when a particular system is selected. Additionally, a new
baseline can be designated that consists of the old baseline combined with a collection of change
sets. New change sets can then be constructed that are based on this new baseline.

Two additional aspects of change sets need to be highlighted. First, change sets do not need to
be constructed by hand. Almost all configuration management systems incorporate tools that can
calculate the difference between a new and an old specification. This difference is in essence the
change set. Second, change sets are beneficial to the discipline of configurable distributed systems
as well; the ability to deploy incremental changes as opposed to complete new versions of systems
is obviously an attractive notion.

19

5 Conclusions

Until now, the disciplines of software architecture, configuration management, and configurable
distributed systems have largely existed in isolation. However, the complementary nature of these
disciplines leads to opportunities for cross fertilization. In this paper we have examined these
opportunities in more detail. In particular, we have investigated an approach that advocates the
joint evolution of the three disciplines: a single, unified system model that is shared by all three
fields. As argued, it is our belief that such a unified system model is a very appealing alternative to
advance the state of the art in all three fields. This belief is fueled by our detailed comparison, which
has identified the complementary strengths of each field. Furthermore, our initial experiments have
shown how one can actually combine some of these capabilities into a single model.

Besides reducing the modeling effort throughout the lifetime of a system, a unified system model
reduces architectural erosion, increases the level of abstraction in configuration management, facili-
tates automated selection of versions of components, and improves reuse of components. It is these
benefits that drive our efforts to develop a unified system model. To advance our research towards
this goal, we are planning on continuing to experiment with various combinations of capabilities
to further understand the detailed relationships among them. In particular, we believe it is nec-
essary to first understand the intricacies of the interactions among the dimensions of dynamism,
selection, and architectural behavior. Once we have a clear understanding of these, we believe that
the development of a complete unified system model can be pursued.

6 Acknowledgements

We thank Jacky Estublier for his contributions to initial discussions on the topic, Richard S.
Hall and Nenad Medvidovic for ongoing conversations on the subject, and Naranker Dulay for his
help in modeling the Darwin example.

20

REFERENCES

[1] B. Agnew, C. Hofmeister, and J. Purtilo. Planning for Change: A Reconfiguration Language for
Distributed Systems. In Proceedings of the Second International Workshop on Configurable Distributed
Systems, pages 15–22, Los Alamitos, California, March 1994. IEEE Computer Society Press.

[2] R. Allen and D. Garlan. A Formal Basis for Architectural Connection. ACM Transactions on Software
Engineering and Methodology, 6(3):213–249, July 1997.

[3] D. Batory and B.J. Geraci. Composition Validation and Subjectivity in GenVoca Generators. IEEE
Transactions on Software Engineering, 23(2):67–82, February 1997.

[4] J. Buffenbarger. Syntactic Software Merging. In Software Configuration Management: ICSE SCM-4
and SCM-5 Workshops Selected Papers, number 1005 in Lecture Notes in Computer Science, pages
153–172, New York, New York, 1995. Springer-Verlag.

[5] R.H. Byrd, E. Eskow, A. van der Hoek, R.B. Schnabel, and K.P.B. Oldenkamp. A Parallel Global Op-
timization Method for Solving Molecular Cluster and Polymer Conformation Problems. In Proceedings
of the Seventh SIAM Conference on Parallel Processing for Scientific Computing, pages 72–77. SIAM,
1995.

[6] G.M. Clemm. The Odin Specification Language. In Proceedings of the International Workshop on
Software Versioning and Configuration Control, pages 144–158, 1988.

[7] D. Compare, P. Inverardi, and A.L. Wolf. Uncovering Architectural Mismatch in Dynamic Behavior.
Science of Computer Programming, 1998. To appear.

[8] R. Conradi, editor. Proceedings of the Seventh International Workshop on Software Configuration
Management, number 1235 in Lecture Notes in Computer Science, New York, New York, May 1997.
Springer-Verlag.

[9] S. Crane and K. Twidle. Constructing Distributed Unix Utilities in Regis. In Proceedings of the Second
International Workshop on Configurable Distributed Systems, pages 183–189, Los Alamitos, California,
March 1994. IEEE Computer Society Press.

[10] J. Estublier, editor. Software Configuration Management: ICSE SCM-4 and SCM-5 Workshops Selected
Papers, number 1005 in Lecture Notes in Computer Science, New York, New York, 1995. Springer-
Verlag.

[11] J. Estublier and R. Casallas. The Adele Configuration Manager. In W. Tichy, editor, Configuration
Management, number 2 in Trends in Software, pages 99–134. Wiley, London, Great Britain, 1994.

[12] S.I. Feldman. MAKE — A Program for Maintaining Computer Programs. Software—Practice and
Experience, (9):252–265, April 1979.

[13] H. Gall, M. Jazayeri, R. Klösch, W. Lugmayr, and G. Trausmuth. Architecture Recovery in ARES. In
L. Vidal, A. Finkelstein, G. Spanoudakis, and A.L. Wolf, editors, Joint Proceedings of the SIGSOFT ’96
Workshops, pages 111–115, New York, New York, 1996. ACM Press.

[14] D. Garlan, R. Monroe, and D. Wile. ACME: An Architecture Description Interchange Language. In
Proceedings of CASCON ’97. IBM Center for Advanced Studies, November 1997.

[15] R.S. Hall, D.M. Heimbigner, A. van der Hoek, and A.L. Wolf. An Architecture for Post-Development
Configuration Management in a Wide-Area Network. In Proceedings of the 1997 International Confer-
ence on Distributed Computing Systems, pages 269–278. IEEE Computer Society, May 1997.

21

[16] P. Inverardi and A.L. Wolf. Formal Specification and Analysis of Software Architectures using the
Chemical Abstract Machine Model. IEEE Transactions on Software Engineering, 21(4):373–386, April
1995.

[17] P. Inverardi, A.L. Wolf, and D. Yankelevich. Checking Assumptions in Component Dynamics at the
Architectural Level. In Proceedings of the Second International Conference on Coordination Models and
Languages, number 1282 in Lecture Notes in Computer Science, pages 46–63, New York, New York,
September 1997. Springer-Verlag.

[18] C.T. Karamanolis and J.N. Magee. A Replication Protocol to Support Dynamically Configurable
Groups of Servers. In Proceedings of the Third International Conference on Configurable Distributed
Systems, pages 161–168, Los Alamitos, California, May 1996. IEEE Computer Society Press.

[19] J. Kramer and J. Purtilo, editors. Proceedings of the Second International Workshop on Configurable
Distributed Systems, Los Alamitos, California, March 1994. IEEE Computer Society Press.

[20] D.B. Leblang, R.P. Chase, Jr., and H. Spilke. Increasing Productivity with a Parallel Configuration
Manager. In Proceedings of the International Workshop on Software Versioning and Configuration
Control, pages 144–158, 1988.

[21] Y.-J. Lin and S.P. Reiss. Configuration Management with Logical Structures. In Proceedings of the 18th
International Conference on Software Engineering, pages 298–307. Association for Computer Machinery,
March 1996.

[22] D.C. Luckham, J.J. Kenney, L.M. Augustin, J. Vera, D. Bryan, and W. Mann. Specification and
Analysis of System Architecture Using Rapide. IEEE Transactions on Software Engineering, 21(4):336–
355, April 1995.

[23] D.C. Luckham and J. Vera. An Event-Based Architecture Definition Language. IEEE Transactions on
Software Engineering, 21(9):717–734, September 1995.

[24] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying Distributed Software Architectures. In
Proceedings of the Fifth European Software Engineering Conference, number 989 in Lecture Notes in
Computer Science, pages 137–153, New York, New York, September 1995. Springer-Verlag.

[25] J.N. Magee and K. Schwan, editors. Proceedings of the Third International Conference on Configurable
Distributed Systems, Los Alamitos, California, May 1996. IEEE Computer Society Press.

[26] K. Marzullo and D. Wiebe. A Software System Modelling Facility. In Proceedings of the ACM SIG-
SOFT/SIGPLAN Software Engineering Symposium on Practical Software Development Environments.
ACM SIGSOFT, April 1984.

[27] N. Medvidovic. ADLs and Dynamic Architecture Changes. In L. Vidal, A. Finkelstein, G. Spanoudakis,
and A.L. Wolf, editors, Joint Proceedings of the SIGSOFT ’96 Workshops, pages 24–27, New York,
New York, 1996. ACM Press.

[28] N. Medvidovic and R.N. Taylor. A Framework for Classifying and Comparing Architecture Description
Languages. In Proceedings of the Sixth European Software Engineering Conference, number 1301 in
Lecture Notes in Computer Science, pages 60–76, New York, New York, September 1997. Springer-
Verlag.

[29] D. Le Métayer. Software Architecture Styles as Graph Grammers. In Proceedings of the Fourth ACM
SIGSOFT Symposium on the Foundations of Software Engineering, SIGSOFT Software Engineering
Notes, pages 15–23. Association for Computer Machinery, November 1996.

22

[30] J. Micallef and G.M. Clemm. The Asgard System: Activity-Based Configuration Management. In
Proceedings of the Sixth International Workshop on Software Configuration Management, number 1167
in Lecture Notes in Computer Science, pages 175–186, New York, New York, 1996. Springer-Verlag.

[31] N.H. Minsky, V. Ungureanu, W. Wang, and J. Zhang. Building Reconfiguration Primitives into the
Law of a System. In Proceedings of the Third International Conference on Configurable Distributed
Systems, pages 89–97, Los Alamitos, California, May 1996. IEEE Computer Society Press.

[32] G.C. Murphy. Architecture for Evolution. In L. Vidal, A. Finkelstein, G. Spanoudakis, and A.L. Wolf,
editors, Joint Proceedings of the SIGSOFT ’96 Workshops, pages 83–86, New York, New York, 1996.
ACM Press.

[33] K. Ng, J. Kramer, and J. Magee. A CASE Tool for Software Architecture Design. Journal of Automated
Software Engineering, 3(3/4):261–284, August 1996.

[34] D.E. Perry. System Compositions and Shared Dependencies. In Proceedings of the Sixth International
Workshop on Software Configuration Management, number 1167 in Lecture Notes in Computer Science,
pages 139–153, New York, New York, 1996. Springer-Verlag.

[35] D.E. Perry and A.L. Wolf. Foundations for the Study of Software Architecture. SIGSOFT Software
Engineering Notes, 17(4):40–52, October 1992.

[36] M. Shaw, R. DeLine, D.V. Klein, T.L. Ross, D.M. Young, and G. Zelesnik. Abstractions for Software
Architecture and Tools to Support Them. IEEE Transactions on Software Engineering, 21(4):314–335,
April 1995.

[37] Software Maintenance & Development Systems, Inc, Concord, Massachusetts. Aide de Camp Product
Overview, September 1994.

[38] I. Sommerville, editor. Proceedings of the Sixth International Workshop on Software Configuration
Management, number 1167 in Lecture Notes in Computer Science, New York, New York, March 1996.
Springer-Verlag.

[39] J.A. Stafford, D.J. Richardson, and A.L. Wolf. Chaining: A Software Architecture Dependence Analysis
Technique. Technical Report CU–CS–845–97, Department of Computer Science, University of Colorado,
Boulder, Colorado, September 1997.

[40] R.N. Taylor, N. Medvidovic, K.M. Anderson, E.J. Whitehead, Jr., J.E. Robbins, K.A. Nies, P. Oreizy,
and D.L. Dubrow. A Component- and Message-Based Architectural Style for GUI Software. ACM
Transactions on Software Engineering and Methodology, 22(6):390–406, June 1996.

[41] E. Tryggeseth, B. Gulla, and R. Conradi. Modelling Systems with Variability using the PROTEUS
Configuration Language. In Software Configuration Management: ICSE SCM-4 and SCM-5 Work-
shops Selected Papers, number 1005 in Lecture Notes in Computer Science, pages 216–240, New York,
New York, 1995. Springer-Verlag.

[42] D. Wiborg Weber. Change Sets Versus Change Packages: Comparing Implementations of Change-Based
SCM. In Proceedings of the Seventh International Workshop on Software Configuration Management,
number 1235 in Lecture Notes in Computer Science, pages 25–35, New York, New York, 1997. Springer-
Verlag.

23

