
From the Proc. of the 8th Inter. Symp. on System Configuration Management, LNCS 1439, Springer-Verlag, Berlin, 1998

System Modeling Resurrected?

André van der Hoek, Dennis Heimbigner, and Alexander L. Wolf

Software Engineering Research Laboratory
Department of Computer Science

University of Colorado
Boulder, CO 80309 USA

{andre,dennis,alw}@cs.colorado.edu

Abstract. Over the past few years, research into system modeling has
dwindled in favor of other interests in the field of configuration manage-
ment. Outside influence, in the form of the emergence of the discipline
of software architecture, demands that renewed attention is paid to sys-
tem modeling because it places new requirements on, and offers new
opportunities to, system modeling. In this paper we investigate these
requirements and opportunities in more detail.

1 Introduction

Version models, system construction, and system modeling have historically been
the main issues for configuration management. A large amount of research has
been carried out in these areas [1, 3, 5, 8, 10], of which a significant portion has
made the transition into commercial configuration management systems. The
focus of research has now shifted towards other interests. The introduction of
software process support in configuration management systems [4, 7], the devel-
opment of distributed configuration management systems [6, 14], and the cre-
ation of unified version models [2, 17] are currently among the more prominent
concerns.

Despite the change in focus, research to develop new version models and pro-
vide better system construction tools certainly has continued [15, 16]. However,
the lost issue in this transition seems to be system modeling. System modeling
is the activity of describing the structure of a system in terms of its compo-
nents and the relationships among them. Virtually no attention has been paid
to system modeling since the development of DCDL [11] and PCL [13].

The goal of this paper is to resurrect system modeling. We advocate that it
should, once again, be one of the primary research areas in configuration man-
agement. This resurrection is warranted by the recent emergence of a new re-
search discipline, software architecture. In particular, the discipline of software
? This work was supported in part by the Air Force Material Command, Rome Labora-

tory, and the Defense Advanced Research Projects Agency under Contract Number
F30602-94-C-0253. The content of the information does not necessarily reflect the
position or the policy of the Government and no official endorsement should be
inferred.

System Modeling Resurrected 141

architecture has been developing advanced, high-level architecture description
languages that could be used by configuration management systems to advance
their system modeling capabilities. These languages provide new opportunities
and requirements for system modeling that were previously unrecognized, but
which should now be addressed by the configuration management community.
The experience base that has accumulated can be leveraged towards the devel-
opment of new, integrated system models.

2 Software Architecture

System models in software architecture are often encapsulated in an architecture
description language (ADL). In a typical ADL, a system is modeled as a set of
primary, course grain components. These components are then combined into a
complete system by explicitly modeled connections. To illustrate this mechanism,
Figure 1 presents a simple client-server system that is modeled in Rapide [9], an
ADL that is fairly representative of the other ADLs that have been developed
to date. Shown are two components, a Client and a Server component. Each
component is modeled with an interface that specifies both the functionality that
is provided by the component and the functionality that the component expects
to be provided by other components. In Rapide, these functionalities are spec-
ified using events. The Server component, for example, is capable of receiving
and processing two events: Initialize and Compute. In turn, it produces one
other event, Result. These events are used at the architectural level to connect
components. In our client-server system, the Calculate functionality that is re-
quired by the Client component is attached to the functionality Compute that
is provided by the Server component. This implies that whenever the Client
component generates a Calculate event it is received by the Server component
as a Compute event.

Most ADLs not only model components and connections, but they also ex-
plicitly model the interaction behavior of a component. In Rapide, this is done
by specifying the relationship between the events that a component receives and
the events that it produces. The behavior of the Server component, for exam-
ple, is such that it produces a single event, Result, for each Compute event that
it receives. Also, from the specification it should be clear that the Initialize
event is simply consumed by the Server component; no events are produced by
the Server component as a direct result of receiving an Initialize event.

The last aspect to be discussed about components is that they can contain
constraints. These constraints specify the order in which a component can pro-
cess events. The Server component, for example, requires that it receives a
single Initialize event before it can process any number of Compute events.
Such constraints can be used by analyzers to verify the consistency of a system
by determining whether any of the constraints are violated.

It is now time to consider what type of contributions ADLs can make to
system modeling as it has been known in configuration management. We do

142 André van der Hoek et al.

type Server is interface
action in Initialize();

in Compute(Value: Float);

out Result(Value: Float);

constraint
match Start -> Initialize’Call -> (Compute’Call *);

behavior
NewValue : var Float;

begin
(?x in Float) Compute(?x) => Result($NewValue);;

end Server;

type Client is interface
action in Result(Value: Float);

out Initialize();

out Calculate(Value: Float);

behavior
InitialValue : var Float := 0.0;

begin
Start => Initialize;

Calculate($InitialValue);;

end Client;

architecture ClientServer() return root is
C : Client;

S : Server;

connect
(?x in Float) C.Calculate(?x) => S.Compute(?x);

(?y in Float) S.Result(?y) => C.Result(?y);

end ClientServer;

Fig. 1. Example of an Architectural System Model in Rapide.

so by investigating the applicability of the individual parts of ADLs to system
modeling.

Components Traditional system models have equated components to the phys-
ical parts of a system. In PCL [13], for example, components are the result of a
hierarchical breakdown of a system into its constituent subsystems. Typical us-
age of a configuration management system implies that a breakdown into logical
components is desired, even though it is not directly supported. For example,
in a compiler logical components such as “lexer” and “parser” are typically the
entities that developers manipulate. These are not necessarily the physical com-
ponents that are present in the system model; those correspond to such entities
as “abstract syntax tree” and “file i/o”.

System Modeling Resurrected 143

ADLs model the logical components of a system. The inclusion in system
models of architectural component modeling techniques therefore improves sys-
tem modeling, because developers are able to manipulate a system from the
desired, logical viewpoint.

Connectors Connectors advance the state of the art of system modeling in more
than one way. First, the combination of components and connectors presents an
accurate architectural view of a system. Traditional system models only modeled
a hierarchical decomposition of a system without modeling the relationships
among the resulting components. This omission causes many problems, such as
the inadvertent removal of existing relationships or the erroneous introduction
of new ones. Currently, it is hard to discover or avoid such mistakes. Since
connectors model the relationships among components, they provide users with
explicit information to guide them in the development process, thereby avoiding
some of the mistakes that would have been made otherwise.

A second advantage of connectors is the simplification of change impact anal-
ysis. The impact of changes does not have to be deduced solely by analyzing
source code, but can instead be derived from the system model using architec-
tural dependence analysis techniques [12]. This in turn simplifies build manage-
ment, as less recompilation can be achieved as well. As an example, consider
a connector that is implemented as a global variable. This variable is declared
in a header file that is included by many source files. Normally, all source files
that depend on the header file are recompiled if the global variable is changed.
If the system model instead indicates that the global variable is a connector
between just two components, only the source files of those components need to
be recompiled.

Behavior The inclusion of behavior has an important affect on system model-
ing. In the past the consistency of a system could only be verified by compiling,
executing, and testing the system. Behavior modeling allows for verification that
is based on the system model. As a particular version of a system is selected, it
can be verified by analyzers for behavioral consistency. Of course, such verifica-
tion does not guarantee correctness of the eventual system, but it does avoid a
certain number of mistakes in the selection process, especially when change set
technology is used or if a large version space exists. As an example, consider two
change sets that can be applied to our client-server system of Figure 1. The first
change set removes the Initialize event from the Server component as the
component now initializes itself; the second change set removes the Initialize
event from the Client component. This is modeled as two change sets since
other variants of the Server component exist that still require to be initialized.
If we only apply the first change set to the architecture, a system model ana-
lyzer can detect that the Client component still produces an Initialize event
that should be consumed by the Server component; both change sets should be
included. Such types of selection mistakes can thus be avoided even before the
system is compiled and executed.

144 André van der Hoek et al.

Constraints Constraints serve a similar role in system modeling as behavior;
they assist in the verification of a system in much the same way. After a particular
selection of a system version has been made, analyzers can verify whether any
constraints are violated, and therefore guarantee correctness of a system at the
system model level. For example, suppose the architecture of our client-server
system incorporates two Client components as opposed to just one. A system
model analyzer can detect that the Initialize event is received twice by the
Server component because it is generated by both Client components. The
constraint set by the Server component is therefore violated and the system is
incorrect. These types of problems are normally only discovered when a system
is tested.

3 Conclusions

The research that is presented in this paper is part of a larger effort that we are
undertaking to advance the state of the art in system modeling. It is our belief
that a common system model can be developed that combines the strengths of
the models in both the areas of software architecture and configuration manage-
ment. Moreover, we believe that it is best to take a configuration management
centric view in this unification process. Because system models have been in
existence in this discipline for many years, a significant experience base has been
accumulated that can be leveraged. More importantly, existing configuration
management systems provide an operating environment that already contains
system modeling techniques to which new capabilities can be attached. There-
fore, we argue that system modeling should be resurrected to once again as a
primary research area in configuration management.

References

1. V. Ambriola and L. Bendix. Object-oriented Configuration Control. In Proceedings
of the Second International Workshop on Software Configuration Management,
pages 133–136. ACM SIGSOFT, 1989.

2. R. Conradi and B. Westfechtel. Towards a Uniform Version Model for Software
Configuration Management. In Proceedings of the Seventh International Work-
shop on Software Configuration Management, number 1235 in Lecture Notes in
Computer Science, pages 1–17, New York, New York, 1997. Springer-Verlag.

3. J. Estublier and R. Casallas. The Adele Configuration Manager. In W. Tichy,
editor, Configuration Management, number 2 in Trends in Software, pages 99–134.
Wiley, London, Great Britain, 1994.

4. J. Estublier, S. Dami, and M. Amiour. High Level Process Modeling for SCM
Systems. In Proceedings of the Seventh International Workshop on Software Con-
figuration Management, number 1235 in Lecture Notes in Computer Science, pages
81–97, New York, New York, 1997. Springer-Verlag.

5. S.I. Feldman. MAKE — A Program for Maintaining Computer Programs.
Software—Practice and Experience, (9):252–265, April 1979.

System Modeling Resurrected 145

6. J.J. Hunt, F. Lamers, J. Reuter, and W.F. Tichy. Distributed Configuration Man-
agement via Java and the World Wide Web. In Proceedings of the Seventh In-
ternational Workshop on Software Configuration Management, number 1235 in
Lecture Notes in Computer Science, pages 161–174, New York, New York, 1997.
Springer-Verlag.

7. D.B. Leblang. Managing the Software Development Process with ClearGuide.
In Proceedings of the Seventh International Workshop on Software Configuration
Management, number 1235 in Lecture Notes in Computer Science, pages 66–80,
New York, New York, 1997. Springer-Verlag.

8. D.B. Leblang, R.P. Chase, Jr., and H. Spilke. Increasing Productivity with a
Parallel Configuration Manager. In Proceedings of the International Workshop on
Software Versioning and Configuration Control, pages 144–158, 1988.

9. D.C. Luckham and J. Vera. An Event-Based Architecture Definition Language.
IEEE Transactions on Software Engineering, 21(9):717–734, September 1995.

10. K. Marzullo and D. Wiebe. A Software System Modelling Facility. In Proceedings
of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments. ACM SIGSOFT, April 1984.

11. B.R. Schmerl and C.D. Marlin. Versioning and Consistency for Dynamically Com-
posed Configurations. In Proceedings of the Seventh International Workshop on
Software Configuration Management, number 1235 in Lecture Notes in Computer
Science, pages 49–65, New York, New York, 1997. Springer-Verlag.

12. J.A. Stafford, D.J. Richardson, and A.L. Wolf. Chaining: A Software Architecture
Dependence Analysis Technique. Technical Report CU–CS–845–97, Department
of Computer Science, University of Colorado, Boulder, Colorado, September 1997.

13. E. Tryggeseth, B. Gulla, and R. Conradi. Modelling Systems with Variability using
the PROTEUS Configuration Language. In Software Configuration Management:
ICSE SCM-4 and SCM-5 Workshops Selected Papers, number 1005 in Lecture
Notes in Computer Science, pages 216–240, New York, New York, 1995. Springer-
Verlag.

14. A. van der Hoek, D.M. Heimbigner, and A.L. Wolf. A Generic, Peer-to-Peer Repos-
itory for Distributed Configuration Management. In Proceedings of the 18th In-
ternational Conference on Software Engineering, pages 308–317. Association for
Computer Machinery, March 1996.

15. D. Wiborg Weber. Change Sets Versus Change Packages: Comparing Implementa-
tions of Change-Based SCM. In Proceedings of the Seventh International Workshop
on Software Configuration Management, number 1235 in Lecture Notes in Com-
puter Science, pages 25–35, New York, New York, 1997. Springer-Verlag.

16. L. Wingerd and C. Seiwald. Constructing a Large Product with Jam. In Proceed-
ings of the Seventh International Workshop on Software Configuration Manage-
ment, number 1235 in Lecture Notes in Computer Science, pages 36–48, New York,
New York, 1997. Springer-Verlag.

17. A. Zeller and G. Snelting. Unified Versioning through Feature Logic. ACM Trans-
actions on Software Engineering and Methodology, 6(4):398–441, October 1997.

