
A conceptual basis for feature engineering

C. Reid Turner a,1, Alfonso Fuggetta b,*, Luigi Lavazza b,2, Alexander L. Wolf a,3

a Department of Computer Science, University of Colorado, Boulder, CO 80309, USA
b Dipartimento di Elettronica e Informazione, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy

Received 13 April 1998; received in revised form 10 August 1998; accepted 4 December 1998

Abstract

The gulf between the user and the developer perspectives lead to di�culties in producing successful software systems. Users are

focused on the problem domain, where the system's features are the primary concern. Developers are focused on the solution

domain, where the system's life-cycle artifacts are key. Presently, there is little understanding of how to narrow this gulf.

This paper argues for establishing an organizing viewpoint that we term feature engineering. Feature engineering promotes

features as ®rst-class objects throughout the software life cycle and across the problem and solution domains. The goal of the paper

is not to propose a speci®c new technique or technology. Rather, it aims at laying out some basic concepts and terminology that can

be used as a foundation for developing a sound and complete framework for feature engineering. The paper discusses the impact

that features have on di�erent phases of the life cycle, provides some ideas on how these phases can be improved by fully exploiting

the concept of feature, and suggests topics for a research agenda in feature engineering. Ó 1999 Elsevier Science Inc. All rights

reserved.

1. Introduction

A major source of di�culty in developing and deliv-
ering successful software is the gulf that exists between
the user and the developer perspectives on a system. The
user perspective is centered in the problem domain.
Users interact with the system and are directly con-
cerned with its functionality. The developer perspective,
on the other hand, is centered in the solution domain.
Developers are concerned with the creation and main-
tenance of life-cycle artifacts, which do not necessarily
have a particular meaning in the problem domain.
Jackson notes that developers are often quick to focus
on the solution domain at the expense of a proper
analysis of the problem domain (Jackson, 1995). This
bias is understandable, since developers work primarily
with solution-domain artifacts. Yet the majority of their

tasks are motivated by demands emanating from the
problem domain.

Looking a bit more closely at this gulf in perspectives,
we see that users think of systems in terms of the features
provided by the system. Intuitively, a feature is a co-
herent and identi®able bundle of system functionality
that helps characterize the system from the user per-
spective. Users report defects or request new function-
ality in terms of features. Developers are expected to
reinterpret such feature-oriented reports and requests
into actions to be applied to life-cycle artifacts, such as
modifying the appropriate set of implementation ®les.
The easier the interpretation process can be made, the
greater the likelihood of a successful software system.
The key, then, is to gain a better understanding of the
notion of feature and how that notion can be carried
forward from the problem domain into the solution
domain.

As an illustration of the central importance of fea-
tures, consider the software in a large, long-lived system
such as a telephone switch. This kind of system is
composed of millions of lines of code, and includes
many di�erent types of components, such as real-time
controllers, databases and user interfaces. The software
must provide a vast number of complex features to its
users, ranging from terminal services, such as ISDN, call
forwarding and call waiting, to network services, such as

The Journal of Systems and Software 49 (1999) 3±15
www.elsevier.com/locate/jss

* Corresponding author. Tel.: +39-02-2399-3540; fax: +39-02-2399-

3411; e-mail: alfonso.fuggetta@polimi.it
1 E-mail: reid@cs.colorado.edu
2 E-mail: lavazza@elet.polimi.it
3 E-mail: alw@cs.colorado.edu

0164-1212/99/$ - see front matter Ó 1999 Elsevier Science Inc. All rights reserved.

PII: S 0 1 6 4 - 1 2 1 2 (9 9) 0 0 0 6 2 - X

call routing, load monitoring and billing. 4 Somehow,
the software that actually implements the switch must be
made to exhibit these features, as well as to tolerate
changes to the features in a cost-e�ective manner. Bell
Laboratories, for example, developed a design in the
solution domain for its 5ESSÒ switch software by fol-
lowing a layered architectural style (Carney et al., 1985).
This was supposed to result in a clean separation of
concerns, permitting features to be more easily added
and modi®ed.

Despite the continuing interest in the notion of fea-
ture, to date there has been little work speci®cally ad-
dressing its support throughout the life cycle.
Nevertheless, one does ®nd the notion used in several
relevant, if limited, ways.
· In domain analysis and modeling, the activity of

feature analysis has been de®ned to capture a custom-
er's or an end user's understanding of the general
capabilities of systems in an application domain
(Kang et al., 1990; Krut, 1993). Domain analysis uses
the notion of features to distinguish basic, core
functionality from variant, optional functionality
(Gomaa et al., 1994). Although features are an explic-
it element of domain models, their connection to oth-
er life-cycle artifacts is e�ectively non-existent.

· There has been work on so-called requirements clus-
tering techniques (Hsia and Gupta, 1992; Palmer
and Liang, 1992), which would appear to lend itself
to the identi®cation of features within requirements
speci®cations. But they do not address the question
of how those features would be re¯ected in life-cycle
artifacts other than requirements speci®cations and
in a restricted form of design prototypes.

· Cusumano and Selby (1995) describe the strong ori-
entation of software development at Microsoft Cor-
poration toward the use of feature teams and
feature-driven architectures. That orientation, how-
ever, has more to do with project management than
with product life-cycle artifacts and activities. Cusu-
mano and Selby o�er no evidence that the notion of
feature has been driven throughout the development
process, although doing so would seem natural in
such a context.

· Several researchers have studied the feature interac-
tion problem, which is concerned with how to identify,
prevent and resolve con¯icts among a set of features
(Aho and Gri�eth, 1995; Cameron and Velthuijsen,
1993; Gri�eth and Lin, 1993; Lin and Jazayeri,
1998; Zave, 1993). The approaches identi®ed in this
literature do not provide insight into the role of fea-
tures across the full range of life-cycle activities and

the ability of features to span the problem and solu-
tion domains.

· Automatic software generation is based on an analysis
of a domain to uncover reusable components (Batory
and O'Malley, 1992; Sitaraman, 1992). The compo-
nents are grouped into subsets having the same
functional interface; a complete system is created by
choosing an appropriate element from each subset.
The choice is based on the ``features'' exhibited by
the elements. Here, the term feature is essentially
restricted to extra-functional characteristics of a
component, such as performance and reliability.
Functionally equivalent systems having di�erent
extra-functional characteristics can then be automat-
ically generated by specifying the desired features ±
that is, the extra-functional characteristics. Al-
though this work represents an important element
in support of features, it needs to be extended to
encompass the generation of functionally dissimilar
systems through selection of functional characteris-
tics.

Thus, there is a growing recognition that features act as
an important organizing concept within the problem
domain and as a communication mechanism between
users and developers. There has also been some limited
use of the concept to aid system con®guration in the
solution domain. There is not, however, a common
understanding of the notion of feature nor a full treat-
ment of its use throughout the life cycle.

We have set out to develop a solid foundation for the
notion of feature and, more importantly, for carrying a
feature orientation from the problem domain into the
solution domain. We term this area of study feature
engineering. The major goal behind feature engineering
is to promote features as ``®rst-class objects'' within the
software process, and thus have features supported in a
broad range of life-cycle activities. These activities
include identifying features in requirements speci®ca-
tions, evaluating designs based on their ability to
incorporate new and modi®ed features, understanding
the relationship between a software architecture and
feature implementation mechanisms, uncovering fea-
ture constraints and interactions, and con®guring
systems based on desired feature sets. Features are thus
an organizational mechanism that can structure impor-
tant relationships across life-cycle artifacts and activi-
ties.

This paper proposes some basic concepts for feature
engineering and evaluates the potential impact of this
discipline on software life-cycle activities. It is based on
our experience in applying feature concepts to the
modeling of several software systems, including the
software of an Italtel telephone switch, and in evaluating
the support for a feature orientation o�ered by the
leading commercial con®guration management systems.
This paper does not, however, attempt to report on

4 Note that from the perspective of a switch builder, network services

are not simply internal implementation functions, but are truly system

features, since they must be made available to external organizations,

such as telecommunications providers.

4 C. Reid Turner et al. / The Journal of Systems and Software 49 (1999) 3±15

particular solutions to problems in software engineering,
but rather to articulate a framework within which so-
lutions might be developed and assessed. Therefore, this
paper should be considered a ®rst step toward the
complete and detailed de®nition of feature engineering
and of its relationship with other domains of software
engineering.

In Section 2 we discuss a typical entity-relationship
model of life-cycle artifacts and show how features can
be incorporated into that model. We then describe the
application of feature engineering to a variety of life
cycle activities. In Section 4 we present a study of the
Italtel telephone switch software that serves as an initial
validation of some of the principal ideas developed in
this paper. We conclude with our plans for future
research in feature engineering.

2. The role of features within the process

The term ``feature'' has been in common use for
many years. In 1982, for instance, Davis identi®ed fea-
tures as an important organizational mechanism for
requirements speci®cations.

`` for systems with a large number of internal states,
it is easier, and more natural, to modularize the
speci®cation by means of features perceived by
the customer.'' (Davis, 1982)

In a recent survey on feature and service interaction in
telecommunication systems, Keck and Kuehn mention a
similar de®nition developed by Bellcore.

``The term feature is de®ned as a `unit of one or
more telecommunication or telecommunication
management based capabilities a network provides
to a user'. . .'' (Keck and Kuehn, 1998)

Unfortunately, despite these attempts to precisely de®ne
the notion of feature, the term is often interpreted
in di�erent and somewhat con¯icting ways. Here,
we present and evaluate three candidate de®nitions
that are intended to capture the range of interpretat-
ions commonly used in the software engineering
community. The ®rst de®nition refers to the interpr-
etation of the term feature as o�ered by most of the
scienti®c literature on the subject, including the two
examples above. The other two de®nitions represent
other interpretations of the term feature, as used espe-
cially by practitioners. Our intent here is to emphasize
the di�erences among these interpretations, to indicate
how they are interrelated, and therefore, how they can
be eventually reconciled.

2.1. An informal de®nition

At the most abstract level, a feature represents a co-
hesive set of system functionality. Each of the three
candidate de®nitions identi®es this set in a di�erent way.
1. Subset of system requirements. Ideally, the require-

ments speci®cation captures all the important behav-
ioral characteristics of a system. A feature is a
grouping or modularization of individual require-
ments within that speci®cation. This de®nition em-
phasizes the origin of a feature in the problem
domain.

2. Subset of system implementation. The code modules
that together implement a system exhibit the func-
tionality contributing to features. A feature is a sub-
set of these modules associated with the particular
functionality. This de®nition emphasizes the realiza-
tion of a feature in the solution domain.

3. Aggregate view across life-cycle artifacts. A feature is
a ®lter that highlights the life-cycle artifacts related to
a speci®c functionality by explicitly aggregating the
relevant artifacts, from requirements fragments to
code modules, test cases and documentation. This
de®nition emphasizes connections among di�erent ar-
tifacts.

It is not altogether clear which de®nition is ``best'', al-
though there are several good arguments in favor of the
®rst one. In particular, since features originate in the
problem domain and not in the solution domain, the
®rst de®nition appears to be more useful than the second
one. Furthermore, the groupings of artifacts made ex-
plicit in the third de®nition can be inferred by using the
®rst de®nition together with an appropriate model of the
relationships among life-cycle artifacts.

Thus, for the purposes of this paper, we employ the
®rst de®nition. We use this de®nition as a core concept
to develop a model of the artifacts that are created
during software engineering activities. This model is not
intended to be de®nitive of all life-cycle artifacts.
Rather, it is intended to be suggestive of their relation-
ships. Particular development environments may de®ne
the artifacts and relationships somewhat di�erently in
detail, but they will nonetheless be compatible with them
in spirit. The model allows us to reason about the re-
lationship of features to other life-cycle artifacts, and to
articulate and illustrate the bene®ts derived from mak-
ing features ®rst class.

2.2. Features and software life-cycle artifacts

Fig. 1 shows a simple entity-relationship diagram
that models the role of features within a software pro-
cess. The model derives from the concepts typically used
in software engineering practice and commonly pre-
sented (often informally) in the literature. The entities,
depicted as rectangles, correspond to life-cycle artifacts.

C. Reid Turner et al. / The Journal of Systems and Software 49 (1999) 3±15 5

The relationships, depicted as diamonds, are directional
and have cardinality. Despite being directional, the re-
lationships are invertible. Again, we point out that this
is just one possible model, and it is just meant to be il-
lustrative of the concepts we are exploring. It is not
meant to be a complete model or to constitute the novel
contribution of the paper. We have derived it by
studying available literature on the subject (e.g., PMDB,
Penedo and Stuckle (1985)) and by analyzing our own
experiences on several industrial projects, one of which
is discussed in Section 4.

The model de®nes some of the key aspects and
properties that are relevant to our understanding of the
role of features in the life cycle, and are further explored
in this paper.
1. Features as life-cycle entities are meant to bridge the

problem and solution domains.
2. Features are a means to logically modularize the re-

quirements.
3. The documentation of a feature is a user-oriented

description of the realization of that feature within
the solution domain. This contrasts with, and
complements, the user-oriented description of a
feature as a set of requirements within the problem
domain.

4. The distinction between the problem and solution
domains helps illuminate the fundamentally di�erent
orientations among the various testing activities in

the life cycle. For example, system tests are focused
on user-visible properties and are therefore conceived
of, and evaluated, within the problem domain.

5. The connection between requirements and architec-
tural design is di�cult, if not impossible, to formalize
beyond the notion that designs re¯ect the require-
ments that drive them. However, if those drivers are
features, then there is hope for a better tie between
the problem and solution domains.

Two less immediate, but no less important, points can
also be seen in the model. First, while design artifacts are
directly related to features, the relationships between
features and the deeper implementation artifacts are
implicit. For example, a developer might want to obtain
all modules associated with a particular feature to make
a change in the implementation of that feature. Satis-
fying such a request would require some form of
reasoning applied to the relevant artifacts and relation-
ships. In general, this reasoning would occur at the
instance level, as illustrated in Fig. 2 and explained
below. Second, there are two distinct levels at which
features interact. In the problem domain, features in-
teract by sharing requirements or by simply depending
on each other for particular services. Similarly, features
can interact in the solution domain through shared
subsystems and modules or through use dependencies.
Although similar in nature, they are quite di�erent in
their rami®cations. The absence of an interaction in the
problem domain does not imply the absence of an in-
teraction in the solution domain, which gives rise to the
implementation-based feature interaction problems
(Gri�eth and Lin, 1993). The reverse is also true, but less
obvious, since it arises from the duplicate-then-modify
style of code update. Such a style results in a prolifera-
tion of similar code fragments that are falsely indepen-
dent (so-called self-similar code Church and Helfman,
1993).

Fig. 2. Instances of entities and relationships.

Fig. 1. Common Life-cycle entities and relationships.

6 C. Reid Turner et al. / The Journal of Systems and Software 49 (1999) 3±15

2.3. The instance level

If we populate the model of Fig. 1 and examine it at
the instance level, additional insights into features are
revealed. Fig. 2 depicts this level for the instances of
entities and relationships of a hypothetical system. The
®gure is simpli®ed somewhat by only considering a
subset of the entities. The shaded dots represent indi-
vidual instances of the entity types named in the
columns. The unlabeled ovals within a column represent
instances of aggregate entity types, which are de®ned
through the Composes relationship in Fig. 1. In partic-
ular, the ovals represent, from left to right, test sets,
features, design speci®cations and subsystems. For
example, there are ten requirements fragments and four
features depicted in the ®gure. Notice that aggre-
gate artifacts are not necessarily disjoint. So, for
example, the top two features share the fourth require-
ment fragment. The semantics of the arrows are given by
the relationships de®ned in Fig. 1. Recall that they are
invertible.

An instance diagram forms the basis for reasoning
about relationships across the life cycle. There has been
a signi®cant amount of work in developing, maintain-
ing, and even discovering the data for such representa-
tions, but none has involved the use of features as a
central element. We advocate a representation that al-
lows one to ask questions that include the following.
· Which features were a�ected by this change to a re-

quirement?
· Which modules should a developer check out to

make a change to this feature?
· Which features were a�ected by this change to a mod-

ule?
· Which test cases will exercise this feature?
· Which modules are needed to con®gure the system

for these two features?
For instance, it is clear that di�erent features are able to
share requirements speci®cations. A shared requirement
from the switch example could be both the call-for-
warding and call-screening features signaling comple-
tion with an aural tone. These relationships lead to a
deeper set of questions regarding the role of features in a
particular system. Answering the questions that are
posed here implies the existence of a number of many-
to-many relationships. Researchers have investigated
some those relationships (Davis and Vick, 1977; Ro-
binson and Pawlowski, 1998) and proposed solutions
that would answer some of the questions. Since features
are a natural stucturing of the requirements speci®ca-
tion, organizing the relationships around features holds
promise for making such e�orts more valuable across
life-cycle activities.

The instance diagram also provides useful informa-
tion for evaluating the structure of the system. For ex-
ample, we can see that the two features represented by

the two topmost ovals in the second column share a
requirement, which means that a change to that re-
quirement may potentially impact both features. Fur-
ther, we can see that despite this shared requirement, the
feature represented by the topmost oval is re¯ected in a
single design fragment, which is in turn implemented in
a single module. This implies a signi®cant separation of
concerns that might make it easier to modify the feature.
We can also see that the features represented by the two
bottom most ovals do not interact at the requirements
level, but do in fact interact at the subsystem level. Fi-
nally, we can see that there are two subsystems forming
part of the system whose designs are not related to any
particular feature. This last observation deserves further
discussion.

2.4. The system core

If a system's functionality is viewed, as we advocate,
as a set of features then it is natural to ask the following
question: ``Is a system completely composed of the set of
features it provides?'' It is clear that systems include
underlying componentry to support their features. This
underlying componentry, which we call the core, arises
solely in the solution domain to aid development of
features. Users are generally not concerned with the
core, and therefore it is not directly re¯ected in the re-
quirements. A rather obvious core is evident in the ex-
ample instance diagram of Fig. 2. At the module level,
the core is composed of the bottom two subsystems,
which have no tie back to any feature at the require-
ments level, other than in their use by subsystems that
do have such a tie.

Chen et al. (1994) make a similar observation about
the existence of feature components and core compo-
nents, but their de®nition is based on test coverage. In
particular, core components are those that are exercised
by all test cases, whereas feature components are those
exercised by only a subset of the test cases.

In a sense, then, the concept of feature is helping us to
de®ne the concept of core ± the core is what remains of
the system in the absence of any particular feature.
Given that we would like maximum ¯exibility in both
modifying features and in selecting the set of features in
any speci®c con®guration of a system, then this de®ni-
tion identi®es something quite signi®cant. In fact, what
it provides is the conceptual foundation for the role of
software architecture in software system development.
An architecture provides the core functionality of the
system within the solution domain that supports the
functionality of the system desired in the problem do-
main. Of course, an architecture must embody as-
sumptions about the features it is intended to support,
and the degree to which it correctly anticipates the needs
of those features will determine the quality of that
architecture.

C. Reid Turner et al. / The Journal of Systems and Software 49 (1999) 3±15 7

3. Features and life-cycle activities

The artifacts and relationships discussed in the pre-
vious section are created and maintained through vari-
ous life-cycle activities. In this section we present a brief
and high-level survey of what we see as the impact that
feature engineering can have on several of those many
activities. Our intention is to suggest some of the broad
rami®cations of feature engineering, rather than to at-
tempt a complete coverage of the topic.

3.1. Requirements engineering

Requirements engineering includes activities related
to

``. . . identi®cation and documentation of customer
and user needs, creation of a document that de-
scribes the external behavior and associated con-
straints that will satisfy those needs, analysis and
validation of the requirements document to ensure
consistency, completeness and feasibility, and evo-
lution of needs.'' (Hsia et al., 1993)

Research in requirements engineering is primarily fo-
cused on formulating improved notations and analyses,
and on developing methods and mechanisms for elici-
tation, rationale capture and traceability. Requirements
engineering is the starting point for feature engineering,
since it is concerned with the creation and maintenance
of the raw material from which features are composed.
Requirement analysis must include the identi®cation of
the set of requirement fragments that comprise each
feature, as well as the various dependencies that might
exist among the features. Indeed, several requirement
methods have been proposed that are potentially useful
in the development of feature identi®cation techniques.

Domain analysis is a method for understanding re-
quirements in a particular problem domain. The prod-
uct of domain analysis is a domain model, which
captures the essential entities in a domain and the rela-
tionships among those entities. Research in the area of
domain analysis is focussed on the development of
better methods for eliciting and representing domain
models. In addition, for stable domains, automated
software generation techniques are being sought that
can exploit the domain models. These techniques would
provide reuse of components that implement the entities
de®ned in the domain model.

Several domain analysis methods, including FODA
(Kang et al., 1990; Krut, 1993), use the term feature to
refer to the capabilities of systems in a domain. They
typically seek to distinguish the features that represent
basic, core functionality from those that represent
variant, optional functionality. A good example of this
approach is the domain modeling method and envi-

ronment of Gomaa et al. (1994). The environment is
used to generate object speci®cations for target systems
based on a domain model. The object speci®cations are
therefore artifacts in the solution domain. Clearly, be-
cause the object speci®cations are generated, their rela-
tionship to features can be easily maintained, although
this notion of feature is not well developed.

Domain analysis plays a role in the software gener-
ation work of Batory and O'Malley (1992) and of Si-
taraman (1992), where they analyze a domain to
uncover reusable components. The components are
grouped into subsets (realms, in the terminology of
Batory and O'Malley) having the same functional in-
terface; a complete system is created by choosing an
appropriate element from each set. The choice is based
on the ``features'' exhibited by the elements. Here, the
term feature is essentially restricted to extra-functional
characteristics of a component, such as performance and
reliability. A system can then be automatically generated
by specifying the desired extra-functional characteris-
tics. Although this work represents an important step
toward feature engineering, it requires a fuller treatment
of the concept of feature. In particular, if feature spec-
i®cations also represented functional di�erences, then
the generation process would allow for the creation of
functionally di�erent systems.

In addition to domain analysis techniques, there are
also a number of other requirements methods that have
been developed to represent and structure requirements.
Representation and structuring of requirements are key
elements of a feature orientation, but the methods dis-
cussed below would need to be enhanced in order to be
appropriate for feature engineering.

Use cases (Fowler, 1997; Jacobson et al., 1997) are a
method for representing requirements that has become
quite popular within the object-oriented analysis and
design community. Use cases are similar to features to
the extent that they represent requirements and some
relationships among those requirements, such as ``uses''
and ``extends''. However, features support additional
relationships, such as ``con¯icts'', ``competes'' and
``constrains'', not currently represented by use cases.
Moreover, features capture non-functional requirements
also not currently expressable through use cases.

Quality Function Deployment (QFD) (Day, 1993) is
a requirements and design process aimed at identifying
customer desires and related technical requirements.
QFD exploits some notion of feature, but does not o�er
any speci®c aid to support the representation and
management of features during the requirement engi-
neering phase nor throughout the software development
process.

Hsia and Gupta (1992) have proposed an automated
technique for grouping requirements speci®cations.
Their purpose is to support incremental delivery of
system functionality through progressive prototypes.

8 C. Reid Turner et al. / The Journal of Systems and Software 49 (1999) 3±15

The cohesive structures that Hsia and Gupta seek to
identify are abstract data types (ADTs) for objects in the
problem domain. However, their goal of delivering
ADT-based prototypes transcends requirements analy-
sis and forces what amount to design choices.

Palmer and Liang (1992) have described a somewhat
di�erent requirements clustering technique. They de®ne
the problem as an e�ort to ``aggregate a set of N re-
quirements into a set of M requirement(s) clusters where
M�N''. This is a precise statement of the goal of iden-
tifying features. Their motivation, however, is to detect
errors and inconsistencies within requirements clusters,
and therefore the organizing principle behind their
clusters is similarity of the requirements within a cluster.
In other words, they seek to ®nd sets of redundant re-
quirements in order to analyze the elements of the set for
consistency. For feature engineering purposes, we in-
stead advocate that the organizing principle of a cluster
should be relevance of the constituent requirements to
the desired properties of the feature; the issue of redun-
dancy and consistency is orthogonal, and so a clustering
for that purpose, while important, is also orthogonal.

To conclude this discussion of requirements engi-
neering, let us return to the feature interaction problem
in telecommunications applications mentioned in Sec-
tion 1. In telephone switch software, features such as
call waiting and call forwarding both relate to the
treatment of incoming calls to a busy subscriber line
(AT&T Network Systems, 1991), and thus exhibit
overlapping requirements fragments. The identi®cation
of such feature interactions at the requirements phase
can help eliminate unanticipated interaction problems
during later phases in the software life cycle. The most
common research approach to this problem is the ap-
plication of formal veri®cation techniques to system
speci®cations, with the goal of detecting all undesired
feature interactions. The critical part of this activity is
the system speci®cation ± that is, the de®nition and
application of a speci®cation technique that actually
captures the relevant properties of the system. Jackson
and Zave propose DFC (Jackson and Zave, 1998), a
virtual architecture for representing features that can be
dynamically composed to form a con®guration suitable
to provide a speci®c service. From our point of view,
features can be represented and handled in several dif-
ferent ways. In particular, features in DFC are treated as
®rst class, and expected to drive the subsequent model
checking activities and the design of the concrete system
architecture. This clearly conforms to our idea of a
feature-centric development process.

In general, the fundamental di�culty with require-
ments engineering in practice today is identi®ed by Hsia
et al.

``For the most part, the state of the practice is that
requirements engineering produces one large docu-

ment, written in a natural language, that few people
bother to read.'' (Hsia et al., 1993)

Feature engineering holds the promise to make the re-
quirements e�ort more useful by carrying the results of
this e�ort forward to the other life-cycle activities in a
disciplined way.

3.2. Software architecture and high-level design

Ideally, a requirements speci®cation is a precise
statement of a problem to be solved; it should structure
the problem domain as features to be exhibited by an
implementation. The software architecture, on the other
hand, is the blueprint for a solution to a problem,
structuring the solution domain as components and
their connectors. Researchers in software architecture
are focusing attention on languages for architectural
design, analysis techniques at the architecture level, and
commonly useful styles or paradigms for software ar-
chitectures.

Feature engineering has signi®cant implications for
software architecture. One is in relating the problem-
domain structure of features to the solution-domain
structure of components and connectors. Rarely is this
mapping trivial. Another implication is that, from the
perspective of the user, features are the elements of
system con®guration and modi®cation. A high-level
design that seeks to highlight and isolate features is
likely to better accommodate user con®guration and
modi®cation requests. Within this context, then, we see
at least two mutually supportive approaches: feature
tracing and feature-oriented design methods.

The tracing of requirements to designs has been an
area of investigation for many years. The basic problem
is that it is essentially a manual task whose results are
di�cult to keep up-to-date and are prone to errors. One
way to mitigate this problem is to raise tracing's level of
granularity from individual requirements fragments to
sensible groupings of such fragments ± features. We
conjecture that tracing at the feature level is more
tractable and, in the end, more useful than traditional
methods.

A somewhat di�erent approach to high-level design
than traditional functional decomposition or object-
oriented design methods arises from a focus on features.
The starting point for a feature-oriented design method
is an analysis of the intended feature set to gain an
understanding of the features, both individually and in
combination. Of particular importance is understanding
the requirements-derived dependencies among the fea-
tures. If one takes feature prominence as a design goal,
then the top-level decomposition of the architecture
should match the decomposition of the requirements
speci®cation into features. At each successive level of
architectural decomposition, the goal should continue to

C. Reid Turner et al. / The Journal of Systems and Software 49 (1999) 3±15 9

be feature isolation. Points of interaction among fea-
tures naturally arise from shared requirements, as well
as from the need to satisfy extra-functional require-
ments, such as performance. The criteria for creating
new components should be to capture explicitly some
shared functionality among some subset of features. In
this way, the feature interactions are caused to distill out
into identi®able components.

In the telephone switch, for example, the call for-
warding, abbreviated dialing, and direct connection
features all require the association of directory numbers
with a subscriber line (AT&T Network Systems, 1991).
Each so-called Switching Module in the architecture
(i.e., the module responsible for routing calls) includes a
special database to store such information. Thus, the
database, as a design element, is driven by a speci®c and
identi®able set of features. Maintaining this relationship
is critical to understanding how to properly evolve this
element without violating some constraint imposed by a
feature.

Combining tracing at the feature level with a design
method that leads to modules representing features and
feature interactions should help to illuminate the tradi-
tionally obscure relationship between speci®c features
and the design elements supporting them. Moreover,
when a request for a feature change is presented to a
developer, that feature can be traced immediately to a
design element associated with the feature. Any poten-
tially problematic interactions with other features be-
come visible through their capture in shared modules
representing that interaction.

3.3. Low-level design and implementation

Low-level design and implementation are the activi-
ties that realize the modules and subsystems identi®ed in
architectural design. While we could postulate a need for
feature-oriented implementation languages, our experi-
ence with feature engineering has not lead to the dis-
covery of any compelling arguments in their favor. The
e�ect that feature engineering has on these activities is
more likely felt indirectly through the e�ects on the high-
level design and testing activities and through the con-
tribution of a tool set that makes the relationships
across artifacts visible to the developer.

Nevertheless, a feature orientation frequently exists
during implementation. Cusumano and Selby (1995)
report that development e�orts for many Microsoft
product groups are organized by the features of their
product. Small teams of developers are assigned
responsibility for one or more of those features. Espe-
cially complicated features are assigned to stronger
teams that include developers with more experience.
This organizational structure built around features
extends to teams assigned responsibility for testing
particular features.

Ossher and Harrison (1992) discuss a method of ex-
tending existing class hierarchies by applying ``extension
hierarchies'', which would appear to bear some relation
to feature engineering at the implementation level.
Goals for this work include reducing modi®cation of
existing code and separating di�erent extensions. Much
like change sets in con®guration management (see Sec-
tion 5), these extensions can be used as a conceptual
mechanism to add functionality to existing object-ori-
ented systems. Unfortunately, this research describes
extensions only at the granularity of object methods,
which seems inappropriate for dealing with complex
features such as the call-forwarding feature of a tele-
phone switch. In addition, the semantic compatibility of
combined extensions are not well understood in this
technique, which is a critical need for feature engineer-
ing.

A primary bene®t to be gained from concentrating on
features as a bridge from the problem domain to the
solution domain is a reduction of the intellectual burden
placed on developers when interacting with the imple-
mentation of a system's features. Developers will be able
to work with a feature implementation without having
to recreate the mapping from problem-domain artifacts
to solution-domain artifacts and vice versa.

3.4. Testing

Testing is an approach to software veri®cation that
involves experimenting with a system's behavior to de-
termine if it meets expectations. In practice, there are
three levels of testing. Unit testing is used to test the
behavior of each module in isolation. Integration testing
is used to detect defects in the interactions among
modules at their interfaces. System testing is focused on
testing the complete system as a whole for compliance
with the requirements set out by the users, including the
system's intended functionality and performance. Sys-
tem testing is oriented toward the problem domain,
while unit and integration testing are oriented toward
the solution domain (see Fig. 1).

Feature engineering can have an impact on testing
activities by suggesting a somewhat di�erent organiza-
tion of test sets than is traditionally encountered. In
particular, test sets would be organized around the
feature or features they are intended to test. The tele-
phone switch software, for example, supports a vast
number of features that need to be tested for every re-
lease. Having requirements for each feature provides a
basis for testing each feature in isolation. Taking all the
feature tests together, we get the equivalent of a system
test set.

Where a feature implementation is con®ned to a
single module, tests for that feature amount to unit tests
for the module. Of course, feature implementations
frequently involve more than one module. In this case,

10 C. Reid Turner et al. / The Journal of Systems and Software 49 (1999) 3±15

feature tests are a mechanism for evaluating module
integration. The connections between features that are
highlighted by instance diagrams, such as Fig. 2, point
out sets of features that should be tested in combination.
This would be useful, for example, in guiding the testing
of modi®cations to the database component of the
telephone switch's Switching Module, which is shared
by several features (AT&T Network Systems, 1991).
Such feature-combination tests might detect unwanted
feature interactions.

The feature-oriented organization of test sets can also
help to minimize regression testing. This harks back to
the theme of users posing requests in terms of features.
If a developer can make a change to the system with
respect to some particular feature, then only the tests
related to that feature (and, possibly, any other features
that depend upon that feature) need to be run.

3.5. Con®guration management

Con®guration management is the discipline of coor-
dinating and managing evolution during the lifetime of a
software system. Traditionally, con®guration manage-
ment is concerned with maintaining versions of artifacts,
creating derived objects, coordinating parallel develop-
ment e�orts, and constructing system con®gurations.

The vocabulary of existing con®guration manage-
ment systems is oriented toward solution-domain arti-
facts, such as ®les, modules and subsystems. Many of
the accepted con®guration management techniques,
such as version management and derived-object cre-
ation, should be directly applied at the feature level. For
example, the developers of the telephone switch software
should be able to populate a workspace through a re-
quest for a speci®c version of all the artifacts associated
with a particular feature, such as call waiting, by simply
identifying the feature, not each of the individual rele-
vant artifacts. It should also be possible to issue a re-
quest to construct a system where that request can be
parameterized by a given set of features. For example, it
might be useful to construct a ``compact'' release of the
telephone switch software that has basic call processing
features but no call waiting or call forwarding features.
Another useful capability would be the delineation of
parallel workspaces based on features. For features to
become ®rst class, they will have to exist in the models of
the systems that are built. This has the potential for
raising the level of abstraction at which developers work
from ®les to features.

Realizing this expanded role for con®guration man-
agement will require feature implementations to be
separately encapsulated and versioned. Bare ®les do not
appear to be the right abstraction for this purpose.
Change sets (Feiler, 1991; Software Maintenance &
Development Systems, 1994), on the other hand, show
promise as a potentially useful storage base. In addition,

information about feature dependencies at both the
speci®cation and implementation levels will be needed
for assembling consistent con®gurations.

3.6. Reverse engineering

Reverse engineering is the process of discovering the
structure and organization of an existing system from
any available artifacts. Typically, such artifacts are
limited to those associated with the implementation,
such as source ®les. The activities in reverse engineering
center on the application of various analyses techniques
to the artifacts in order to reveal internal structure, as
well as to reveal static and dynamic dependencies.

The primary in¯uence of feature engineering on re-
verse engineering is to focus the analyses toward dis-
covering connections to features. In essence, this means
recreating the (lost) relationships in Fig. 2. For example,
reverse engineering could be used to discover the inter-
actions between call waiting and call forwarding, or to
discover the features that are dependent on the database
component of the Switching Module.

One possible technique would be to broaden the
scope of program slicing, following Sloane and Holds-
worth (1996), to create a feature slice through the im-
plementation artifacts. A feature slice would include all
of the fragments that contribute to a feature's imple-
mentation. Working in the other direction, if a feature
test set existed, then observations of test case executions
could reveal the portions of the implementation that
were involved in implementing the feature.

4. Case study: Feature engineering in an industrial phone

switch software

We recently performed a study of Italtel's telephone
switch software in order to validate some of the ideas
presented in this paper against a large and complex
software system. Our intent was to identify features in
the system and to evaluate the support that the devel-
opment process provides for managing features during
the system's evolution.

The software implementing the switch consists of
millions of lines of code and thousands of ®les. Each
release of the switch incorporates added functionality,
while the basic software architecture remains stable;
only small changes are relatively frequent. This is con-
sistent with our view of software architecture as de®ning
the system core (see Section 4).

Fig. 3 gives a UML (Rumbaugh et al., 1998; Rum-
baugh et al., 1998a) model of the software and docu-
mentation artifacts of the system. We developed the
model by examining project documents and interviewing
project personnel. Space does not permit us to explain

C. Reid Turner et al. / The Journal of Systems and Software 49 (1999) 3±15 11

the entire model in detail. Instead, we highlight some
relevant portions of the model.

Requirements for releases are separated into User
requirements and Release requirements; the latter dictate
concerns related to project management of the release
process, such as the schedule and the assignment of
organizational responsibilities. User-visible services are
referred to as services. Services are assigned to project
managers who oversee their design, implementation,
documentation and testing.

Each service is in a one-to-one correspondence to a
service requirements document. Service requirements
modularize the functional and project management re-
quirements, documenting the user-visible service to be
added or modi®ed in the release. Thus, the concept of
service neatly corresponds to our notion of a feature,
incorporating both the solution-domain orientation and
requirements clustering aspects of our de®nition (see
Section 2.1).

Having con®rmed the central role that features play
in structuring evolutionary changes to the software and
the assignment of work activities to perform those
changes, we next sought to understand the extent to
which the development process exploits the feature-ori-

ented nature of the software product. It turned out that
the development process is organized in a traditional
way, focusing on the artifacts that are produced in every
phase of a waterfall-like life cycle. Requirements docu-
ments are written by means of simple word processors
and are stored in directories whose structure reproduces
the hierarchical structure of the contents. Relationships
can be traced in a top-down fashion by navigating ex-
plicit references to the names of the lower-level docu-
ments. Only in a limited number of cases are references
represented bidirectionally. As a consequence, it is very
hard to determine to which performances a given func-
tion or component contributes.

The tools employed in the project are traditional and
general purpose, having no particular tie to the feature
context in which they are employed. We thus set about
to investigate how one such tool, the con®guration
management system, could be better integrated into the
context. We ®rst de®ned a set of requirements for con-
®guration management support of a feature-oriented
development process. These requirements address four
basic goals of con®guration management.
· Identi®cation: Identify and classify the system arti-

facts and the relationships among them.

Fig. 3. Model of Italtel's telephone switch software artifacts.

12 C. Reid Turner et al. / The Journal of Systems and Software 49 (1999) 3±15

· Control/Process: Control access to system artifacts
and ensure that all changes adhere to a desired soft-
ware process.

· Construction: Determine and build valid product con-
®gurations.

· Status: Record signi®cant events within a develop-
ment process and provide information to track the
system's evolution.

For example, the con®guration management system
must identify the set of features currently available, the
set of versions for each feature, the set of modules that
implement each feature, and the set of test cases asso-
ciated with each feature. The developer must be able to
retrieve all the artifacts associated with each feature and
to guarantee some consistency constraints when changes
are made to those artifacts.

We next developed an evaluation framework that
could be used to indicate the e�ort involved in realizing
a feature orientation within a given con®guration man-
agement system. In particular, for each activity and
structure identi®ed in a requirement, we characterized
the support provided by the con®guration management
system as follows.
· Native: Feature semantics are built into the system.
· Direct: Feature semantics can be supported by con®g-

uration or interpretation of an existing system facility
or facilities.

· Indirect: Feature semantics can be supported by
scripts or programs that use the facilities within the
system and that can guarantee the preservation of
system constraints.

· Inadequate: Feature semantics must be supported by
scripts or programs that cannot be prevented from vi-
olating system constraints or that require duplicating
managed information outside of the system.

We evaluated six commercial systems and found that
while none of them provided native support for any of
the required capabilities, a few did provide direct sup-
port for several of the required capabilities. Those sys-
tems therefore allowed, with some moderate tailoring, a
higher degree of integration of feature orientation with
the current Italtel development process than the system
currently used by the development organization. The
full results of this study are reported elsewhere (Turner
et al., 1998).

5. Conclusion

In current practice, the notion of feature is an ill-
de®ned, yet widely used, concept. It becomes meaningful
when seen as a way to modularize system requirements
and when related to the range of life-cycle artifacts and
activities. We argue that there is a growing need for
feature engineering methods and techniques able to
support a disciplined projection of features from the

problem domain into the solution domain. Doing so will
bridge the gulf between the user and developer per-
spectives of a system. In addition, the notion of feature
engineering has the potential to improve system under-
standing by raising the level of abstraction consistently
across the life cycle.

This paper is a ®rst step towards the development of
feature engineering. We have presented a provisional
model for features in terms of their relationships to
other artifacts. Moreover, we have explored how feature
engineering a�ects life-cycle activities, including require-
ments engineering, testing, con®guration management
and reverse engineering. This has been accomplished by
analysing the state of the art in the ®eld and by evalu-
ating our own experiences in real industrial projects. In
particular, we have brie¯y discussed the results of a
study we carried out to assess the maturity and e�ec-
tiveness of a large software house developing telecom-
munication software. As a conclusion, we argue that the
concepts involved in feature engineering cut across the
entire software life cycle, and that research e�orts in a
number of software engineering disciplines are relevant
to feature engineering. These e�orts should be leveraged
to help bring features to the fore.

Notice that even if the notion of feature and our own
experience originate from concepts and techniques de-
®ned within the context of telecommunication software,
the validity of the observations presented in this paper
are not limited to that domain. Indeed, the advent of
component-based software development makes the no-
tion of feature engineering of paramount importance in
all the application domains where software is used.
Component-based development means development by
integration of di�erent chunks of functionality. Thus,
feature engineering is de facto a crucial methodological
constituent of any component-based development
method.

Certainly, this paper does not provide ®nal solutions.
It aims at laying the foundations to address the problem
e�ectively. In this respect, the framework presented in
this paper can be further improved. For instance, fea-
tures are treated as undi�erentiated from each other. In
complex software systems, features will exist within hi-
erarchies organized by properties such as dependence,
importance and complexity. Understanding such hier-
archies, and particularly the nature of feature depen-
dencies, should produce additional insights and bene®ts
to software development.

In addition to re®ning basic concepts of feature engi-
neering, there is a need for the development of tools to
support the integration of features into the solution do-
main. Using a feature orientation to make explicit the
relationships among development artifacts should in-
crease a developer's ability to comprehend complex sys-
tems. This will only come about, however, if tools exist to
capture, organize, and present the structure that features

C. Reid Turner et al. / The Journal of Systems and Software 49 (1999) 3±15 13

o�er. These tools would, for instance, provide primitives
for controlling access to artifacts in terms of features, as
well as support the con®guration of systems based on
feature sets. We are carrying out some experimentation
on this topic, as part of our ongoing work to explore and
address the issues and problems of feature engineering.

Acknowledgements

A. Fuggetta and L. Lavazza are also with CEFRIEL
(http://www.cefriel.it). The work of A. Fuggetta was
supported in part by CNR. The work of A.L. Wolf was
supported in part by the Air Force Materiel Command,
Rome Laboratory, and the Defense Advanced Research
Projects Agency under Contract Numbers F30602-94-C-
0253 and F30602-98-2-0163. The content of the infor-
mation does not necessarily re¯ect the position or the
policy of the U.S. Government and no o�cial en-
dorsement should be inferred. This work bene®ted from
discussions with David Rosenblum of the University of
California at Irvine. The information concerning Ital-
tel's software process and products was kindly provided
by Giorgio Comparin.

References

Aho, A.V., Gri�eth, N., 1995. Feature interaction in the global

information infrastructure. In: Proceedings of the Third ACM

SIGSOFT Symposium on the Foundations of Software Engi-

neering, ACM SIGSOFT, pp. 2±5.

AT&T Network Systems, 1991. IESS Switch Global Technical

Description, Issue 3.

Batory, D., O'Malley, S., 1992. The design and implementation of

hierarchical software systems with reusable components. ACM

Trans. Software Engrg. Meth. 1 (4), 355±398.

Cameron, E.J., Velthuijsen, H., 1993. Feature Interactions in Tele-

communications Systems. IEEE Communications Magazine 31,

18±23.

Carney, D.L., Cochrane, J.I., Gitten, L.J., Prell, E.M., Staehler, R.,

1985. Architectural Overview. AT&T Technical J. 64 (6), 1339±

1356.

Chen, Y.-F., Rosenblum, D.S., Vo, K.-P., 1994. Testtube: A system for

selective regression testing. In: Proceedings of the 16th Interna-

tional conference on Software Engineering. IEEE Computer

Society, pp. 211±220.

Church, Helfman, J.I., 1993. Dotplot: A program for exploring self-

similarity in millions of lines for text and code. J. Comput.

Graphical Statistics 2 (2), 153±174.

Cusumano, M.A., Selby, R.W., 1995. Microsoft Secrets. The Free

Press, New York.

Davis, A.M., 1982. The design of a family of application-oriented

requirements languages. Computer 15 (5), 21±28.

Davis, C.G., Vick, C.R., 1977. The sofware development system. IEEE

Transactions on Software Engineering SE-3 (1), 69±84.

Day, R.G., 1993. Quality Function Deployment. ASQC Quality Press,

Milwaukee, Wisconsin.

Feiler, P.H., 1991. Con®guration management models in commercial

environments. Technical Report SEI-91-TR-07, Software Engi-

neering Institute, Pittsburgh, April.

Fowler, M., 1997. UML Distilled. Addison-Wesley, Reading.

Gomaa, H.V., Sugumaran, H.V., Bosch, C., Tavakoli, I, 1994. A

prototype domain modeling environment for reusable software

architectures. In: Proceedings of the Third International Confer-

ence on the Software Reuse. IEEE Computer Society, pp. 74±83.

Gri�eth, N.D., Lin, Y., 1993. Extending telecommunications systems:

the feature-interaction problem. Computer 26 (8), 14±18.

Hsia, P., Davis, A.M., Kung, D.C., 1993. Status report: requirements

engineering. IEEE Software 10 (6), 75±79.

Hsia, P., Gupta, A., 1992. Incremental delivery using abstract data

types and requirements clustering. In: Proceedings of the Second

International Conference on Systems Integration. IEEE Com-

puter Society, pp. 137±150.

Jackson, M., 1995. Software Requirements and Speci®cations: A

Lexicon of Practice, Principles and Prejudices. Addison-Wesley,

Reading.

Jackson, M., Zave, P., 1998. Distributed feature composition: a virtual

architecture for telecommunications services. IEEE Trans. Soft-

ware Engrg. 24 (10), 831±847.

Jacobson, I., Christerson, M., Jonsson, P., Overgaard, G., 1997.

Object-Oriented Sofware Engineering: A Use Case Driven

Approach. Addison-Wesley, Reading.

Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.,

1990. Feature-oriented domain analysis (FODA) feasibility

study. Technical Report CMU/SEI-90-TR-21, Software Engi-

neering Institute, Pittsburgh.

Keck, D.O., Kuehn, P.J., 1998. The feature and service interaction

problem in telecommunications software systems: a survey. IEEE

Trans. Software Engrg. 24 (10), 779±796.

Krut Jr., R.W., 1993. Integrating 001 tool support into the feature-

oriented domain analysis methodology. Technical Report CMU/

SEI-93-TR-01, Software Engineering Institute, Pittsburgh, Penn-

sylvania, July.

Lin, Y.-J., Jazayeri, M., 1998. Guest editoral: introduction to the

special section on managing feature interactions in telecommu-

nications software systems. IEEE Trans. Software Engrg. 24 (10),

777±778.

Ossher, H., Harrison, W., 1992. Combination of inheritance hierar-

chies. In: Proceedings of the Conference on Object-oriented

Programming Systems, Languages and Applications. Association

for Computer Machinery, pp. 25±40.

Palmer, J.D., Liang, Y., 1992. Indexing and clustering of software

requirements speci®cations. Info. Decision Technol. 18 (4), 283±

299.

Penedo, M.H., Stuckle, E.D., 1985. PMDB ± A project master

database for software engineering environments. In: Proceedings

of the Eigth International Conference on Software Engineering.

IEEE Computer Society, pp. 150±157.

Robinson, W.N., Pawlowski, S., 1998. Surfacing root requirements

interactions from inquiry cycle requirements documents. In:

Third International Conference on Requirements Engineering.

IEEE Computer Society, pp. 82±89.

Rumbaugh, J., Jacobson, I., Booch, G., 1998a. Uni®ed Modeling

Language Reference Manual. Addison-Wesley, Reading.

Rumbaugh, J., Jacobson, I., Booch, G., 1998b. Uni®ed Modeling

Language User Guide. Addison-Wesley, Reading.

Sitaraman, M., 1992. Performance parameterized reusable software

components. Internat. J. Software Engrg. Knowledge Engrg. 2

(4), 567±587.

Sloane, A.M., Holdsworth, J., 1996. Beyond traditional program

slicing. In: Proceedings of the International Symposium on

Software Testing and Analysis (ISSTA'96). ACM SIGSOFT, pp.

180±186.

Software Maintenance and Development Systems, 1994. Concord,

Massachusetts. Aide de Camp Product Overview, September.

Turner, C.R., Fuggetta, A., Lavazza, L., Wolf, A.L., 1998. Evaluating

support for feature-based development in con®guration manage-

14 C. Reid Turner et al. / The Journal of Systems and Software 49 (1999) 3±15

ment systems. Technical Report CU-CS-875-98, Department of

Computer Science, University of Colorado, Boulder, Colorado,

November.

Zave, P., 1993. Feature interactions and formal speci®cations in

telecommunications. Computer 26 (8), 20±29.

Reid Turner received MS (1995) and PhD (1999) degrees in Computer
Science from the University of Colorado in Boulder. He is currently
working at US West Advanced Technologies in Boulder, Colorado.

Alfonso Fuggetta is an associate professor of software engineering at
Politecnico di Milano and senior researcher at CEFRIEL, a research
and education institution created in Milano in 1988 by IT industries
and public administrations. His research interests are in process tech-
nology, process improvement, requirement engineering, distributed
and mobile systems.

Luigi Lavazza received his Dr. Eng. degree in Electrical Engineering
from Politecnico di Milano in 1984. From 1984 to 1990 he worked in

industry, where he was involved in software development, in research
projects, and in the de®nition of quality manuals. In 1990 he joined the
Software Engineering research group at CEFRIEL. He is currently an
assistant professor at Politecnico di Milano. He is co-author of over 30
scienti®c papers. His research interests include advanced software en-
gineering environments, software process modeling, assessment, im-
provement and measurement, databases for software engineering and
requirements engineering.

Alexander Wolf is a faculty member in the Department of Computer
Science, University of Colorado at Boulder. Previously he was at
AT&T Bell Laboratories. Wolf's research interests are in the discovery
of principles and development of technologies to support the engi-
neering of large, complex software systems. He has published papers
on software engineering environments and tools, software process,
software architecture, and con®guration management. He is currently
serving as Vice Chair of the ACM Special Interest Group in Software
Engineering and is on the editorial board of the ACM journal
Transactions on Software Engineering and Methodology.

C. Reid Turner et al. / The Journal of Systems and Software 49 (1999) 3±15 15

