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ABSTRACT 

The PIC environment is designed to provide support for 
interface control that facilitates incremental development of a 
software system. Interface control, the description and analysis 
of relationships among system components, is important from 
the earliest stages of the software development process right 
through to the implementation and maintenance stages. In- 
cremental development, wherein a software system is produced 
through a sequence of relatively small steps and progress may 
be rigorously and thoroughly assessed after each step, must be 
accommodated by any realistic model of the software develop- 
ment process. This paper focuses on the analysis component of 
the PIC environment and demonstrates how it contributes to 
precise interface control capabilities while supporting an incre- 
mental software development process. 

1. Introduction 

The ability to accurately describe and analyze the relation- 
ships among components of a software system plays a key role 
throughout the software development process. For example, de- 
scribing the major modules and their interactions is the primary 
concern of architectural or high-level design, while maintaining 
correct and consistent interfaces is an overriding concern during 
the implementation and maintenance of a software system (1). 

Despite the importance of these activities, most languages 
and development environments do not provide adequate sup- 
port for them. Existing languages typically permit the relation- 
ships among a software system’s components to be described 
with only limited accuracy and environments seldom provide 
tools capable of performing a thorough analysis of those rela- 
tionships. Moreover, existing approaches require either that the 
analysis of the relationships be delayed until the entire system 
is completed or that the system be developed and analyzed in 
a restricted fashion (e.g., strictly bottom-up). 

To address these shortcomings, we are developing the PIC 
(Precise Interface Control) environment. The PIC environment 
will consist of language feature8 for precisely specifying interface 
relationships 1121 and an extensive set of tools for aualyeing and 
managing interface control information. It is being tailored 
to support an incremental approach to the interface control 
aspects of the software development process. This paper focuses 
on the PIC environment’s tools for analysis of interface control 
information and its support for incremental development. 
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Interface Control. Interface control is concerned with de- 
scribing and limiting the interactions that can occur between 
the entities in different modules of a software system. Entities 
are named language elements such as objects, types, and sub- 
programs. A module is either a simple subprogram unit, such as 
a subroutine, function, or tasL, or an encapsulation unit, such 
as an Ada@ package or MODULA-2 module. An encapsulation 
serves to group together objects, types, and subprograms The 
interface control mechanism of a language is used to specify 
what (and sometimes how) entities within one module can be 
used by another module. 

There have been a number of different interface control 
mechanisms proposed throughout the years. FORTFUN pri- 
marily used labelled and blank common. ALCOLGO introduced 
nested declarations. More recent languages, such as Ada, CLU, 
MODULA- 2, and Mesa, have predominantly used different vari- 
ations of import/export lists, sometimes combined with the use 
of nested declarations; the various module interconnection lan- 
guages, such as MIL75 [3], C/Mesa [S], or INTERCOL 181, have 
relied on essentially these same concepts. We have demon- 
strated that these interface control mechanisms do not ade- 
quately describe all the interface relationships that need to be 
expressed [2,II] and have observed that, partially for this rea- 

son, they do not permit thorough interface control analysis. 
The PIC language features improve upon the precision 

found in current mechanisms and allow complementary, albeit 
redundant, descriptions of the interface control relationships 
between modules. The analysis tools exploit this redundancy 
and precision by offering more detailed and revealing assess- 
ments of a system’s interface relationships than has previously 
been possible, as we demonstrate later in this paper. These 
tools improve the software development process by providing 
information that can lead to the early detection and correction 
of errors, thereby reducing development costs and improving 
system reliability. 

Incremental Development. Our work on PIC has been 
strongly influenced by our belief that software development en- 
vironments must support incremental development. That is, 
environments should provide both languages and tools that fa- 
cilitate the step-by-step manner in which large, complex soft- 
ware systems are most effectively developed. Such environ- 
ments would allow developers to successively focus on particular 
aspects of the system, record their decisions about each aspect 
in the appropriate pre-implementation or implementation Ian- 
guage, and then assess that step using suitable analysis tools. 
We have found that, at least with respect to interface control, 
support for incremental development implies support for: 
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l Consistent abstractions. The languages used throughout 
development should be based upon a consistent set of ab- 
stractions [lo]. Although the syntax may vary greatly 
(e.g., from graphical icons to text) the basic underlying 
model should remain the same, thereby facilitating move- 
ment from one level of description to another and permit- 
ting the same or similar tools to be applicable. 

l Incremental analysis. Developers should be able to per- 
form meaningful analysis as they create the system. In the 
PIC context, this means that as soon as interface control 
aspects of a module are specified, it should be possible to 
analyze whether that module is internally consistent as 
well as whether it is consistent with the already existing 
modules in that system. 

l Order-independent development. Developers should be 
able to create modules and enter them into the system 
for analysis in any desired order. In particular, the lan- 
guages and tools in a software development environment 
should support top-down development, since this is gen- 
erally recognized as a desirable development model. Ap- 
proaches other than top-down should not be excluded, 
however, and thus it is important that the environment 
adequately handle an arbitrary submission order. 

Both incremental analysis and order-independent develop- 
ment, in turn, depend heavily upon support for: 

l Incompleteness. The interface control mechanism must 
make explicit provision for incomplete descriptions and 
the analysis tools should be capable of generating as much 
feedback as possible based on the provided information. 
These capabilities are essential for permitting analysis to 
be done as soon as developers start to formulate a descrip- 
tion of the system, since at early stages in development 
many of the modules will not be specified and many of 
the specified modules will be incomplete. 

The PIC environment has been specifically designed to fa- 
cilitate incremental development. The language features to de- 
scribe interface relationships have been based on the consis- 
tent abstractions, termed requisition and provision of access, 
described in Section 2. Support for incomplete descriptions 
of modules is provided in two ways. First, the PIC language 
features include a construct for explicitly indicating within a 
module’s description that additional information is to be pro- 
vided later. Second, the language features provide constructs 
for describing the pertinent interface control aspects of miss- 
ing modules. These characteristics of the language features are 
complemented by a toolset design that permits Bexible compo- 
sition of analyses. Together, therefore, the PIG language fea- 
tures and analyses strongly support incremental analysis and 
order-independent development. 

The remainder of this paper describes the PIC environment 
and demonstrates how it supports incremental development. 
The next section brielIy describes the language features and 
their use in a language based on Ada. Section 3 outlines the 
analyses that can be performed on systems described using the 
language features. Section 4 presents an example that illus- 
trates how the PIC approach to interface control supports in- 
cremental development. The conclusion discusses the current 
status of the PIC environment. 

2. Overview of the PIC Language Features 

The conceptual foundation for the PIC language features 
is provided by a general view of interface control that is richer 
than views based solely on traditional visibility concepts of dec- 
laration, scope and binding. This view distinguishes two aspects 
of visibility: requisition of access and provision of access. Ac- 
cesa to an entity is the right to make reference to, or use of, that 
entity in declarations or statements. Requisition of access oc- 
curs when an entity (implicitly or explicitly) requests the right 
to refer to some set of entities. Provision of access occurs when 
an entity (implicitly or explicitly) offers, to some set of entities, 
the right to refer to that entity.’ Given this view, an interface 
control mechanism is simply a means for specifying requisition 
and provision. 

The PIC language features provide support for the explicit 
specification of both requisition and provision, and thus consti- 
tute a precise interface control mechanism. In addition, they 
provide a system structure that imposes a strict separation of 
interface control information from the algorithmic details (if 
any) of how that information is used locally by a module. This 
separation facilitates information hiding and managerial con- 
trol. It also supports incremental ar$ysis by allowing interface 
control information to be created, modified, and (re)analyzed 
independently of a system’s (detailed) algorithm development. 

The capabilities provided by the language features are rel- 
evant throughout the lifetime of a software system, and ap- 
propriate dialects of the language features can be developed to 
make them compatible with a variety of languages, such as de- 
sign or programming languages. In the sequel, our examples 
are given in terms of an Ada-flavored dialect, which we refer to 
as PIG/Ada, suitable for use in conjunction with an Ada-based 
PDL or the Ada language itself. Here, we describe only those 
aspects of PIG/Ada applicable to one kind of module, namely 
Ada’s encapsulation unit, the package. A more detailed treat- 
ment of this Ada dialect of the PIC language features can be 
found in [12]. 

To realize the separation of interface control information 
from algorithmic detail, a module consists of two physically 
distinct parts: a specification submodule and a body submod- 
ule. A package’s specification submodule describes the entities 
encapsulated by the package. It also completely describes the 
package’s requisition, through one or more request clauses, and 
provision, through one or more provide clauses. The body sub- 
module for a package contains the actual code sections realizing 
the module. During the pre-implementation phases, the body 
might take the form of a PDL description, while in later phases 
it would consist of standard implementation-language code. 

Figure 1 presents an example illustrating several aspects of 
the language features. The example shows the specification and 
body submodules of a package AutomaticTeller, which is one 
module in a hypothetical automatic bank-teller system. The 
subprograms in this package realize several customer-oriented 
and maintenance-oriented operations, including depositing and 
withdrawing funds and reporting on the cash available for with- 
drawal from the machine. Other modules in this system in- 
clude Customerlnterface, ATMaintenancelntetface, and Officerln- 
terface, which use subprograms provided by AutomaticTeller in 
realizing three classes of user-interface capabilities. Also part 

‘1m the nmtider of thii paper, when the inteaded rnear~in~ in clear, 
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package AutomaticTeller Is 
procedure BeginSession ( . . . ) 

provide to Customerlnterface 
request PINManager.( PINType, Verify ), 

AccountManager.( AccountType, Verify ); 
procedure Deposit ( . . ) 

provide to CustomerInterface 
request AccountManager.Credit: 

procedure Withdraw ( . . . ) 
provide to Customerlnterface; 
request AccountManager...; 

. . . . 
function RemainingCash ( . . . ) return . . . 

provide to ATMaintenancelnterface, OfficerInterface; 
function DepositsMade ( . . . ) return . . . 

provide to ATMaintenancelnterface, . . . . 
. . . . 

end AutomaticTeller; 

package body AutomaticTeller Is 
procedure B&Session ( . . . ) Is . . . end BeginSession; 
procedure Deposit ( . . . ) Is . . . end Deposit; 
procedure Withdraw ( . . . ) Is . . . end Withdraw; 
. . . . 
function RemainingCash ( . . . ) return . . . Is . . . end RemainingCash; 
function DepositsMade ( . . . ) return . . . Is . . . end DepositsMade; 
. . . . 

end AutomaticTeller; 

Figure 1: Speclflcation and Body Submodules of Package 
AutomaticTeller. 

of the hypothetical system are the modules AccountManager, 
which provides facilities for manipulating customer accounts, 
and PINManager, which provides facilities for manipulating the 
“personal identification numbers” that serve as passwords for 
customer accounts. 

A specification submodule in this PIG/Ada notation is es- 
sentially an Ada unit specification together with a small num- 
ber of additional, and powerful, features for enhancing interface 
control. The request clause is used to specify exactly the enti- 
ties that a given module, or packaged entity, wishes to have the 
right to access.? In Figure 1, procedure BeginSession requests 
access, through a request clause, to two entities in PINManager 
as well as access to two entities in AccountManager. The provide 
&use may be appended to any of a package’s visible entities 
in order to selectively limit their provision to external modules. 
The provide clause appended to procedure BeginSession indi- 
cates that it is only provided to Customerlnterface, whereas the 
provide clause appended to function RemainingCash indicates 
that it, is only provided to ATMaintenancelnterface and Officer- 
Interface. 

The request clause is more flexible than its counterparts in 
most other languages, including Ada’s with clause, in at least 
two ways. First, it does not necessarily import all the provided 
entities of a package but can import subsets of those entities. 
Second, a request clause can be attached to an individual pack- 
aged entity, as well sa to the package itself, so that requisition 
by the entities within a package can be differentiated. The 
provide clause is similarly more flexible than provision facili- 

‘As s notational shorthand in PIG/Ada, an actual reference to a non. 
local entity that occom within a specific&m mbmodale, such m the 
declaration of an object whose type is not IocalIy defined, impJici:Jy 
catlses the requisition of that entity. The nqneet cl~ose is prim+ 
used, therefore, to request entities that are to be referred to in the body 
sobmodule. 

ties of other languages, including Ada’s mechanism, which is 
based on COWtNCh that textually separate a package’s visible 
(i.e., provided) entities from its hidden entities. Under the Ada 
mechanism, provision is controlled on an all-or-nothing basis; 
either access to an entity is provided to every module (in a 
given scope), or it is provided to no module, and so the entity 

is hidden. The PIC provide clause, however, supports selective 
provision. 

Another aspect of the PIG language features is their applica- 
bility to high-level, incomplete descriptions of a system’s com- 
ponents and their interaction. The incompleteness construct, 
denoted by au ellipsis in PIG/Ada and appearing, for example, 
in the parameter lists of the subprograms in Figure 1, is use- 
ful for explicitly indicating where details that will be supplied 
later have been omitted from a description. It complements 
other constructs, not illustrated here, that facilitate the for- 
mulation of abstract, pre-implementation descriptions, such as 
notations to formally specify a module’s external behavior or to 
describe intended algorithms. When used in conjunction with 
such constructs, the language features are well suited for ex- 
pressing modularication and interface properties during early 
stages of a system’s development and hence supportive of in- 
cremental development. 

In addition to specification and body submodules, the PIC 
language features include a third kind of submodule referred to 
as a specification stub. This kind of submodule is supplied in 
response to the fact that interacting modules of large software 
systems are often developed independently-perhaps even at 
different times. If, at some point before development is com- 
plete, a group of modules requires access to entities from a 

module for which no specification submodule is yet available, 
a specification stub submodule can be constructed. A apecifi- 
cation stub usually only contains some of the information that 
would eventually be described in the specification submodule. 
In particular, the speeificdion stub need not contain any in- 
formation about the module’s requisitions but only needs to 
describe what is being provided by that module to the mod- 
ules in the requesting group. h a result of separate develop- 
ment activities, several different specification stub submodules 
of a module may exist to accommodate various intended uses 
of that module. The specification stub mechanism provides a 
means for the various groups of clients of a module to document 
these views of the module before the module is available. As 
shown in Section 4, these views can be exploited by the analysis 
tools to provide early feedback about the system. 

Two examples of specification stub submodules of module 
PINManager are shown in Figures 2 and 3. The two submodules 
partially describe the two, slightly different, views of PINMan- 
ager that have been de6ned by the developers of AutomaticTeller 
and the developers of OfficerInterface, respectively. The used- 
by clause appearing in a specification stub submodule indicates 
the intended clients of that stub. A provide clause in a specifi- 
cation stub submodule that includes the keyword onIy indicates 
that the associated entity is provided excIusively to the listed 
modules; this special feature records the intention that no other 
specification stub of that module should provide the entity and 
that the specification submodule should provide the entity only 
to the listed modules. 

3. Analysee 

The precision and redundancy of the language features out- 
lined above is of limited value without the ability to obtain feed- 



package stub PINManager Is 
used by AutomaticTeller 
provide to AutomaticTeller; 

type PINType; 
function Verify ( PIN : PINType; . . . ) return Boolean; 
. . . . 

end PINManager; 

Figure 2: Specification Stub Submodule of Package 
PINManager Used by AutomatlcTeller. 

package stub PINManager Is 
used by Officerlnterface; 

type PINType 
provlde to Oflicerlnlerface; 

procedure Issue ( . . . . PIN : out PINType ) 
provlde onty to Ofticerlnterface; 

MasterPIN : constant PINType 
provide ordy to Officerlnterface; 

. . . . 
end PINManager; 

Flgun Sr Speclflcatlon Stub Submodule of Package 
PINManager Used by OffIcerInterface. 

back about the consistency of the interface relationships speci- 
fied using those features. This capability is provided in PIC as 
an integrated collection of analyses, each of which concentrates 
on some particular aspect of interface control. By distilling out 
analysis from the compilation mechanism, which is where it has 
been historically conlined, the PIC environment makes feed- 
back available throughout the development and maintenance 
process. Moreover, by fashioning analyses from individual tool 
fragments [7], the environment allows particular analyses, or 
combinations of analyses, to be flexibly applied as desired. 

The analyses can be classified into three major kids: basic 
interface analyses, stub analyses, and update analyses. This 
section elaborates on each of the analysis classes in turn and 
then briefly discusses how they can be provided as actual tools 
in the environment. A discussion of how the analyses handle 
incompleteness appears in 1121. 

3.1 Basic Interlace Analyses 

The six basic interface analyses provide information on in- 
terface consistency within and among modules. They are distin- 
guished by the kid of submodules upon which they operate, ~EJ 
depicted in Figure 4. While the majority of the basic interface 
analyses involve pair-wise comparisons of submodules, there are 
two analyses that can provide meaningful information by simply 
examining a single submodule in isolation. This is important, 
since, in general, the submodules of an incrementally developed 
system come into existence one at a time. Hence, PIC can 
provide support for incremental interface analysis even when 
submodules are developed before the submodules they interact 
with are developed. Note that we are accounting here for the 
possibility that even specification stub submodules may not be 
available. Indeed, one (secondary) result of analysis can be a 
template for such a submodule. 

The basic interface analyses seek to uncover errors and 
anomalies in interface relationships. Anomalies are so named 
because their detection does not, in and of itself, indicate a 
definite error, but rather a possible problem that may deserve 
further attention. One would anticipate that numerous anoma- 

Module A Module B 

Spec/Spec-Stub (‘I Spec/Spec-Stub 

(2) Gody _ _ _ _ _ _ _ _ _ _ Body 
(6) 

Figure 4: Basic Interface Analyrer. 

lies would be found when incomplete modules are analyzed, 
whereas anomalies discovered in completed modules might in- 
dicate an unacceptable programming style. The decision to 
classify an interface relationship as erroneous or anomalous, at 
least in some cases, can depend upon such factors as the de- 
velopment method in use or the managerial discipline in force. 
Ideally, tools performing the analyses should be Bexible in what 
they report to the developer as an error or as an anomaly in 
such cases. 

The two kinds of information that a basic interface analysis 
makes use of are the available type and requisition/provision 
information found in the submodule under examination. 
PIG/Ada, because it is based on Ada, has some rather sophis- 
ticated features that complicate analysis of type information. 
For example, declarations can be initialized by expressions, 
which can include function-subprogram invocations. Subpro- 
grams can be overloaded; that is, twoor more subprograms with 
the same name can coexist as long as their parameter/return 
profiles differ. Analysis of type information is further compli- 
cated by the fact that the declaration of an entity may not be 
available during analysis of the use of that entity. For exam- 
ple, a body submodule may make reference to an entity defined 
in some other module whose specification is not yet available. 
As long as there are at least two such references, however, a 
comparison can be performed that determines the consistency 
of those references. This is done by inferring the type of the 
entity using techniques similar to the one described in [S]. In 
some cases, an inconsistency will indicate the presence of a def- 
inite error, although which reference (if my) is the correct one 
cannot be determined without the declaration. In other cases, 
the analysis can only reveal au anomaly. This is particuarly 
true when comparing subprogram calls, since a perceived in- 
consistency in the parameterization of those calls may simply 
be due to overloading. For the sake of brevity, and because the 
type analysis in PIC is what is generally found in a support- 
ive compiler, analysis of type information is not discussed here 
further. 

The requisition/provision information analyzed by the ba- 
sic interface analyses is contained in specifications of requisi- 
tion, specifications of provision, and actual references to non- 
local entities; requisition/provision errors and anomalies arise 
from incongruities among these three aspects of module interac- 
tion. Table 1 summarizes the detectable errors and anomalies. 
There are three things to notice about the entries in that table. 
First, the entries are concerned only with problems associated 
with module interactions; not listed in the table are errors or 
anomalies that are exclusively local concerns of a module, such 
as references to non-provided, local entities whose declarations 
are missing. Of course, a complete analysis tool would seek 
to detect those problems as well. Second, the precision and 
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ERRORS 

El. entity requested in a module, but not provided to that 
module 

E3. (non-local) entity referred to in a module, but not provided 
to that module 

E3. (non-local) entity referred to in a module, but not re- 
quested in that module 

El. subprogram provided by a package, but subprogram’s 
body not detlned ia that package’s body submodule 

E5. subprogram or object provided to a module, but subpre 
gram’s parameter/return type or object’s type (if de&red 
m the same spec or spec-stub) not provided to that module 

E8. (non-local) packaged subprogram referred to in a module, 
but subprogram’s body not detlned in the package’s body 
submodule 

ANOMALIES 

Al. entity provided to a module, but not requested in that 
module 

A2. entity requested in a module, but not referred to ~II that 
module 

A3. entity defined in a module, but not provided nor referred 
to by that module 

Table 1: F&quirltlon/Provlrlon Errors and Anomalies 
Detected by B&e interface Analysea. 

redundancy available in PIG/Ada can result in the detection 
of a more revealing set of errors and anomalies than is possi- 
ble when other languages are used. Finally, while the entries 
at E2-E6 would be considered errors under any circumstance, 
the error/anomaly classification of the entries at El and Al- 
A3 is completely flexible. The given classification reflects just 
one possible choice; that choice is specifically intended to keep 
PIG/Ada within the spirit of Ada. For example, Ada is de- 
signed with the expectation that many systems will be built 
from libraries of general-purpose modules, some of whose ele- 
ments may or may not get used. Therefore, situations where 
entities are provided but not requested might be common, and 
so the entry at Al is considered an anomaly rather than an 
error. (Control over whether such an anomaly would even be 
reported by an analysis tool is discussed in Section 3.4.) As 
another example, consider the entry at El. Tradition dictates 
that requisition of an entity that is not provided be considered 
an error, irrespective of whether there is an actual reference to 
the entity. Conceivably, such an interface relationship could in- 
stead be considered an anomaly until it is determined that an 
erroneous reference does or does not exist (cf., E3). 

The correspondence between the six basic interface analyses 
and the requisition/provision errors and anomalies is given in 
Table 2. (Although not indicated in that table, the analyses 
also involve the other sorts of checks that would be possible on 
the submodules-specifically, the analysis of type information 
and analysis of concerns local to a module, which are mentioned 
above.) The table is arranged so that those erron, and anoma- 
lies that can be uncovered by examining a smgle submodule 
are listed with analyses 1 and 2 and by examining a pair of 
submodules are listed with analyses 3 through 6. Thus, while 
any analysis involving a specification or specification stub sub- 
module could detect E5, that error is only listed with the &st 
analysis. 

The first two analyses examine single submodules. The fact 
that analysis of a body in isolation cannot reveal any requisi- 

SUEtMODULE INVOLVED ERRORS D 
Spec or 

I I 
Spec or 

I I 
ANOMALIES 

Spec-Stub Body Spec-Stub Body 

In PIG/Ada, reference to non4ocal entity in spec or apec+tub im- 
plicitly causer request for that entity. 

Table 2r Correspondence Between Bnalc Interface Analyses 
and Requlritton/Provlrlon Errors and Anomalies. 

tion/provision errors or anomalies (although it may reveal type 
errors or anomalies) is consistent with the fact that bodies are 
not involved in interface control per se. The third analysis is 
an inter-module analysis that compares the specification (stub) 
submodule of a module B to the specification (stub) submod- 
ule of another module A, checking the entities requested by 
A against the entities provided by B. The fourth analysis is 
an intra-module analysis that checks the entities requested in 
the specification (stub) submodule against the entities actually 
referred to in the corresponding body submodule. In addition, 
this analysis checks that a subprogram provided in the specifica- 
tion (stub) submodule has a body defined in the body submod- 
ule. The 6fth basic interface analysis is an inter-module analysis 
that checks the entities provided by a module, through a speci- 
fication (stub) submodule, against the entities referred to in the 
body submodule of a second module. This analysis also checks 
the subprogram references in the specification (stub) submod- 
ule against the subprogram bodies defined in the body submod- 
ule. Finally, the sixth analysis is an inter-module analysis that 
checks the subprogram bodies defined in the body submodule 
of a module B against the references in the body submodule of 
a module A. This last analysis could be disregarded (hence the 
dashed line in Figure 4) if the reasonable assumption is made 
that a body submodule would not be analyzed with respect 
to any other module until that body’s corresponding specifi- 
cation (stub) submodule is present and intra-module analysis 
number 4 performed. If this assumption is made, then no new 
information about the interface consistency of the modules is 
gained by the sixth analysis, since an error in the interface re- 
lationship would always be -revealed as one or both of E3 or 
E4. 

3.2 Stub Analyses 

As described in Section 2, a specification stub submodule 
represents the view some set of modules has of a given module. 
The two stub analyses provide information on the consistency 
of such a view, seeking to uncover interface problems, as do 
the basic interface analyses, by examining the available type 
and requisition/provision information. Thus, while a number 
of specification stub submodules of a module may be indepen- 
dently constructed, their development, and the development of 
the modules using them, can be monitored using the informa- 
tion supplied by the two stub analyses. 

The first stub analysis is used to check the consistency of 
one view of a module with respect to another view of that same 
module. The two primary functions of this analysis are: (1) to 
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Al. entity provided to a module by spec&ation, but not pro- 
vided to that module by speciecation stub 

A2. entity provided to a module by speciecation stub, but not 
provided to that module by speciacation 

A3. entity provided exclusively to a module by specitlcation 
stub, but not provided exclusively to that module by spec- 
ification 

Al. entity requested la specltlcation stub, but not requested ia 
specillcation 

AS. entity requested in specikatios, but not requested in spec- 
i5cation stub 

Table 2: Requi3ltlon/Provlrlon AnomaI1er Detectea by 
Spec/Stub Stub Analysis. 

identify the entities occurring in one specification stub submod- 
ule and not the other (i.e., a Vifference” analysis); and (2) to 
identify the entities occurring in both specification stubs, such 
as common declaration3 or common references, and checking 
the consistency of those common occurrences. For the Erst 
function, when an entity occurs in only one of the views, the 
situation is not considered an inconsistency, since it is the ex- 
press purpose of specification stubs to accommodate differences 
during development. For the second function, the checking of 
common occurrence3 mostly involve3 analysis of type informa- 
tion. In fact, the only requisition/provision problem that can 
be detected is when two specification stubs provide the same 
entity, but one of the specification stubs attempts to provide 
the entity exclusively to some module (see Section 2). 

The second stub analysis is used to check the consistency 
of each view of a module with respect to the “official” speciE- 
cation submodule of that module. The information contained 
in a specification stub submodule must be some subset of the 
information contained in the specification submodule and that 
subset must be type and requisition/provision consistent. Ta- 
ble 3 summarizes the requisition/provision problems that can 
be detected by this analysis. (Again, type errors are not dis- 
cussed here.) III PIG/Ada, the entries in the table are con- 
sidered anomalies, since they do not necessarily indicate the 
existence of an error. For example, consider entry A2. If the 
entity is not actually requested by the module using the specifi- 
cation stub, then the fact that the entity is not provided to the 
module by the specification leaves the relationship consistent. 

3.3 Update Analyses 

Change is an intrinsic characteristic of any software devel- 
opment process. Particularly in the development of a large 
system, it is important to know not only what has changed but 
what e5ect a change has on the system, since those effects can 
be far reaching and perhaps unanticipated. 

The PIC environment provide3 three update analyses, which 
correspond to each of the three Lids of submodules. To provide 
information on changes to interface relationships, each analysis 
involves a comparison between two versions of the same sub- 
module and looks for changes in declarations, requisition and 
provision specifications, or references to non-local entities. The 
greater precision with which a developer can specify interface 
relationships using the PIC language features allows the a&y- 
ses to supply more reveahng and meaningful information about 
changes. For example, if the developer of a module has speci- 
fied exactly which other modules an entity is provided to, then 

a change to that provision, such as no longer providing that 
entity to one of the modules, is detectable. This is in contrast 
to the situation in Ada, where changes of this sort are masked 
by the imprecision of the visible part of library units. 

While the update analyses do not directly assess interface 
consistency, which is the primary purpose of the other two 
classes of analyses, they are important to interface consistency 
analysis in that they reveal the relationships that must be sub- 
jected to reanalysis as a result of a change. Moreover, knowl- 
edge of exactly what is, and what is not, affected by a change 
can help reduce the sheer amount of that reanalysis.3 

3.4 From Analysee to Analyeis Toole 

The auaIyses described above represent the primitive feed- 
back capabilities made possible by the precision, redundancy, 
and explicit treatment of incompleteness in the PIC language 
features. Although it is conceivable to think of these analyses 
as separate tools in the environment, they are probably best 
thought of M composed of tool fragments. For example, the de- 
tection of an anomaly by a basic-interface or stub analysis often 
implies the need to perform further checking to determine if an 
error WuaIly exists. An update analysis that reports a change 
in provision or requisition is an example of where one analysis 
can lead to or “triggers the application of other analyses. The 
way in which the analyses are presented as tools to the user of 
the environment, therefore, depend3 upon whether, and how, 
the designer3 of that environment wish to enforce combinations 
and/or sequences of analyses. 

The combinations and sequences of analyses in different de- 
velopment processes could be enforced by developer discipline. 
This would allow flexibility (e.g., combinations of different soft- 
ware processes, or even discovery of new ones) at the expense 
of a lack of managerial control. Such a lack of control could 
be costly when, for example, rechecking of interface relation- 
ships that should follow update analysis is forgotten by the 
developer. At the other extreme, the environment could rigidly 
enforce predefmed combinations and sequences of analyses. A 
better alternative is to make the combinations and sequences 
of analyses a %rogrammable” aspect of the environment. This 
compromise would allow Bexibility at the same time that it al- 
lows managerial control. 

Another concern is deciding what information the developer 
is actually given as a result of a particular application of an 
analysis. As pointed out above, reports of numerous anomalies 
would be anticipated when analyzing incomplete modules; the 
developer could easily be overwhelmed by all the “revealing and 
meaningful information” produced! Thus, developer3 should be 
able to turn on and off particular types of reports generated by 
the analyses. 

4. Incremental Development in PIC 

It is commonly held that languages such 89 Ada, Mesa, and 
MODULA-2 can, through their facilities for separate compi- 
lation, support the incremental development of large software 
systems. Unfortunately, that belief is not wholly justified, since 
these languages can in fact onIy support a restricted form of in- 
cremental development. Stated in the terminology of PIC, that 
form is governed by the following ruIe for submitting submod- 
ules for analysis (i.e., compilation). 

*Tichy and Baker 191 discuss this ia the restricted context of recompilation 
swiugs. 
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A module’s specification submodule must be ana- 
lyzed and “accepted” before its body submodule is 
submitted and before a body or specification sub- 
module (of some other module) that uses it may be 
submitted. 

On the one hand, this rule means that body submodules can be 
developed in any order, as long as the appropriate specification 
submodules have already been analyzed and “accepted”. On 
the other hand, it means that specification submodules must be 
developed in a very particular order, namely one that is strictly 
bottom up.’ This restriction has some rather severe method- 
ological implications. In particular, it forces the programming 
of the lowest-level modules to begin before any analysis can be 
done at higher levels. Moreover, if one considers specification 
submodules to represent design decisions concerning the mod- 
ularization and interface relationships of a system, then those 
decisions-if they are to be subject to incremental analysis- 
can only be made from the bottom up. 

The restriction these languages impose on the development 
of specification submodules stems from a desire to perform code 
generation at the same time as incremental interface analysis. 
In Ada, for example, the representation of an abstract (i.e., 
“private”) type must appear in the specification part of a pack- 
age even though that representation is logically hidden from 
the users of that abstraction; its presence in the specification is 
solely to provide code-generation information. The only way to 
perform both code generation and incremental analysis at once 
in languages such as Ada, Mesa, and MODULA-2 is to insist 
on a bottom-up development process for specification submod- 
ules. When such programming languages serve as models for 
specification and design languages, then this restriction is car- 
ried into pre-implementation phases, where it causes even worse 
problems. This is the case for many Ada-&e design languages, 
which because of this restriction impede hierarchical system de- 
velopment. 

While substantial information is indeed necessary to per- 
form code generation (and, especially, code optimization), 
meaningful interface analyses can be performed with much less 
information. We would argue, therefore, that the concerns 
of code generation, while extremely important, should be ad- 
dressed separately from those of incremental analysis. Such a 
separation would, for instance, facilitate the top-down devel- 
opment of specification submodules by allowing those of high- 
level modules to be analyzed early in development. Actual code 
generation would occur, as before, once sufficient information 
were present, yet subsequent to the analyses. Thus, to support 
incremental development, the standard view of compilation be- 
comes inadequate. Syntactic analysis, semantic analysis, and 
code generation, for example, are now all analysis components 
that may be invoked at very different times in the development 
process. 

The primary characteristics of PIC that permit it to fully 
support incremental development arc (1) the formulation of 
analyses as specialized tools in the environment that are dis- 
tinct from other activities (such as code generation), and (2) the 

‘The Ada snbanit facility that allows the body of a unit to be compiled 

separately from its nested declaration VM specifically devised to suppofi 
top-down program development (141, p. 10-S). In fact, it only supports 

top-down development of the bodies of nested modules. The apeci6cr 

tions of those nested modules ue still unavoidably limited to bottom-up 

development. 

availability of the incompleteness construct and the specifica- 
tion stub submodule for explicitly deferring design decisions 
by representing, in an analyzable form, incomplete information 
about a module’s interface. The power of these two capabilities 
is illustrated in the example below, which is an elaboration on 
the automatic bank-teller example given in Section 2. In that 
section, a package AutomaticTeller is described, which is at au 
intermediate level in the hierarchical structure of the system; 
the package’s position in the hierarchy is evident from the fact 
that it both provides and requests entities. Here we show sev- 
eral steps in the top-down development of that portion of the 
automatic bank-teller system rooted at AutomaticTeller. 

As discussed in Section 2, AutomaticTeller contains requests 
for entities from two packages: AccountManager and PINMan- 
ager. If this system were being developed in pure Ada, then the 
specification submodules of both those packages would have to 
be created, analyzed, and ‘accepted’ before any analysis on 
the submodules of AutomaticTeller could be performed. Fur- 
thermore, if either of those specification submodules contained 
a reference to another, lower-level module (which, as shown be- 
low, they in fact do), then the specification of that lower-level 
module would also have to be created, aualyzed, and “accepted” 
before any analysis involving the submodules of AccountMan- 
ager, PINManager, or AutomaticTeller could be performed, and 
so on. The result, therefore, would be a bottom-up develop- 
ment of the specification submodules in the automatic bauk- 
teller system. 

With just the specification and body submodules of Auto- 
maticTeller available, an analysis (number 4 of Figure 4) can be 
performed in PIC that provides, among other information, feed- 
back about whether there are references in the body submod- 
ule that exceed the requests in the specification submodule. To 
begin inter-module analysis, nothing more needs to be done in 
the way of development than to supply a specification stub sub- 
module of either AccountManager or PiNManager to be used by 
AutomaticTeller. Figure 2 shows such a submodule of PINMan- 
ager. This submodule indicates that PINManager is expected to 
provide AutomaticTeller with a type PINType, whose represen- 
tation is not available, and a function Verify, whose parameters 
have not been completely determined. Two additional analyses 
can now be performed, one checking requests in the specifica- 
tion submodule of Automaticfeller (number 3 of Figure 4) and 
the other checking references in the body submodule of Auto- 
maticTeller (number 5 of Figure 4). 

At this point the question arises as to why a specification 
stub submodule is used and not simply a specification submod- 
ule with strategically placed incompleteness constructs. The 
answer is that while only one specification submodule of a mod- 
ule is permitted to exist (discounting multiple versions), several 
specification stub submodules of that module can populate a de- 
veloping system to account for the activities of several different 
development groups. More generally, we feel that a common 
situation arises in large software projects in which the client 
modules of a shared module are developed separately-both 
from each other and from the shared module. The role of spec- 
ification stub submodules, then, is to represent the (possibly) 
different views of the shared module held by the various clients. 
The role of the specification submodule, on the other hand, is to 
represent, and in fact distinguish, the one, “official” specifica- 
tion of the shared module. The consistency of the various views, 
as well as their compliance with the “official” specification, can 
be determined by analyses described in Section 3. In terms 
of the automatic bank-teller example, there are at least two 



package PINManager Is 
request ESManager; 

type PINType Is prfvate; 
function Verify ( PIN : PINType; . . . ) return Boolean 

provldc to AutomaticTeller; 
procedure Issue ( . . . ) 

provlde to Oflicerlnterfact; 
MasterPIN : constant PINType 

provlde to Officerlnterface; 
. . . . 

private 
type PINType Is new ESManager.EncryptedStringType; 
MasterPIN : constant PINType := . . . . 

end PINManager; 

Figure 6: Speeillcatlon Submodule of Package 
PINManager. 

modules that share PINManager: AutomaticTeller, whose view 
is shown in Figure 2, and a module that embodies the interface 
to bank officers, OfficerInterface, whose view of PINManager is 
shown in Figure 3. The consistency of these two specification 
stub submodules can be established using the stub/stub anal- 
ysis. 

Eventually, the ‘official” specification submodule of PIN- 
Manager is made available (Figure 5). Once again, if the sys- 

tern were being developed in pure Ada, then the specification 
submodule of the lower-level module ESManager, which is re- 
ferred to in PINManager, would have to be developed before 
any analysis involving PiNManager could be performed. In- 
stead, an analysis can already be performed in PIC that checks 
the consistency between AutomaticTeller and PINManager. This 
analysis would involve the specification stub submodule of PIN- 
Manager used by AutomaticTeller (spec/atub analysis of Table 3) 
or, alternatively, the specification and body submodules of AU- 
tomaticTeller directly (analysis numbers 3 and 5 of Figure 4). 
The choice depends mainly upon whether the specification stub 
submodule sufficiently represents the use of PINManager by Au- 
tomaticTeller. Although not discussed here, there are a num- 
ber of ways to automatically determine the best choice, based 
on previous analyrs, and to limit the amount of unnecessary 
(re)auaIysis. 

The automatic bank-teller system is now at a similar point 
in its top-down development aa when AutomaticTeller was about 
to undergo inter-module analysis; a specification stub submod- 
ule of a lower-level module (ESManager) needs to be supplied 
for a higher-level module (PINManager). Thus, development 
would proceed from here in a manner similar to that discussed 
above. The major advantage of the PIG approach to incremen- 
tal development is that developem can be confident that, even 
though the system is incomplete, the current description of the 
system is consistent. 

5. Concluding Remarkr 

The PIG environment is an experimental investigation of 
interface control and incremental development and their role in 
the software development process. Although our current ver- 
sion of these capabilities is oriented toward Ada and a some- 
what traditional view of the software development process, we 
believe that interface control and incremental development are 
important no matter what particular model of that process one 
might adopt. 

we are currently constructing a prototype version of the 

Ada-based version of the PIC environment. The environ- 
ment’s analysis capabilities are being implemented as small, 
self-contained analysis tools, so as to permit incremental analp 
sie and order-independent development. The Odin component 
of the Toolpack system [7j provides a starting point for inte- 
grating these tool fragments to achieve higher-level analyses, 
such as those described in Section 3. 

Implementation of the prototype PIC environment is itself 
being carried out incrementally, using the PIC language fea- 
tures and analysis capabilities to facilitate a top-down incre- 
mental development. Based on this preliminary use of the ap- 
proach, we are encouraged about the contributions that the 
completed environment will make to improving the software 
development process. 
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