
INTERFACE CONTROL AND INCREMENTAL DEVELOPMENT
IN THE PIC ENVIRONMENT

Alexander L. Wolf, Lori A. Clarke, Jack C. Wileden

Software Development Laboratory
Computer and Information Science Department

University of Massachusetts
Amherst, Massachusetts 01663

ABSTRACT

The PIC environment is designed to provide support for
interface control that facilitates incremental development of a
software system. Interface control, the description and analysis
of relationships among system components, is important from
the earliest stages of the software development process right
through to the implementation and maintenance stages. In-
cremental development, wherein a software system is produced
through a sequence of relatively small steps and progress may
be rigorously and thoroughly assessed after each step, must be
accommodated by any realistic model of the software develop-
ment process. This paper focuses on the analysis component of
the PIC environment and demonstrates how it contributes to
precise interface control capabilities while supporting an incre-
mental software development process.

1. Introduction

The ability to accurately describe and analyze the relation-
ships among components of a software system plays a key role
throughout the software development process. For example, de-
scribing the major modules and their interactions is the primary
concern of architectural or high-level design, while maintaining
correct and consistent interfaces is an overriding concern during
the implementation and maintenance of a software system (1).

Despite the importance of these activities, most languages
and development environments do not provide adequate sup-
port for them. Existing languages typically permit the relation-
ships among a software system’s components to be described
with only limited accuracy and environments seldom provide
tools capable of performing a thorough analysis of those rela-
tionships. Moreover, existing approaches require either that the
analysis of the relationships be delayed until the entire system
is completed or that the system be developed and analyzed in
a restricted fashion (e.g., strictly bottom-up).

To address these shortcomings, we are developing the PIC
(Precise Interface Control) environment. The PIC environment
will consist of language feature8 for precisely specifying interface
relationships 1121 and an extensive set of tools for aualyeing and
managing interface control information. It is being tailored
to support an incremental approach to the interface control
aspects of the software development process. This paper focuses
on the PIC environment’s tools for analysis of interface control
information and its support for incremental development.

Thin work supported in pm by the NSF under grant DCR-s&041&

Interface Control. Interface control is concerned with de-
scribing and limiting the interactions that can occur between
the entities in different modules of a software system. Entities
are named language elements such as objects, types, and sub-
programs. A module is either a simple subprogram unit, such as
a subroutine, function, or tasL, or an encapsulation unit, such
as an Ada@ package or MODULA-2 module. An encapsulation
serves to group together objects, types, and subprograms The
interface control mechanism of a language is used to specify
what (and sometimes how) entities within one module can be
used by another module.

There have been a number of different interface control
mechanisms proposed throughout the years. FORTFUN pri-
marily used labelled and blank common. ALCOLGO introduced
nested declarations. More recent languages, such as Ada, CLU,
MODULA- 2, and Mesa, have predominantly used different vari-
ations of import/export lists, sometimes combined with the use
of nested declarations; the various module interconnection lan-
guages, such as MIL75 [3], C/Mesa [S], or INTERCOL 181, have
relied on essentially these same concepts. We have demon-
strated that these interface control mechanisms do not ade-
quately describe all the interface relationships that need to be
expressed [2,II] and have observed that, partially for this rea-

son, they do not permit thorough interface control analysis.
The PIC language features improve upon the precision

found in current mechanisms and allow complementary, albeit
redundant, descriptions of the interface control relationships
between modules. The analysis tools exploit this redundancy
and precision by offering more detailed and revealing assess-
ments of a system’s interface relationships than has previously
been possible, as we demonstrate later in this paper. These
tools improve the software development process by providing
information that can lead to the early detection and correction
of errors, thereby reducing development costs and improving
system reliability.

Incremental Development. Our work on PIC has been
strongly influenced by our belief that software development en-
vironments must support incremental development. That is,
environments should provide both languages and tools that fa-
cilitate the step-by-step manner in which large, complex soft-
ware systems are most effectively developed. Such environ-
ments would allow developers to successively focus on particular
aspects of the system, record their decisions about each aspect
in the appropriate pre-implementation or implementation Ian-
guage, and then assess that step using suitable analysis tools.
We have found that, at least with respect to interface control,
support for incremental development implies support for:

@Ada ia a registered trademark of the U.S. Government (Ada Joint
Program 05ce).

CH2 139-4/85/0000/0075 0 IEEE 1985

* ;

l Consistent abstractions. The languages used throughout
development should be based upon a consistent set of ab-
stractions [lo]. Although the syntax may vary greatly
(e.g., from graphical icons to text) the basic underlying
model should remain the same, thereby facilitating move-
ment from one level of description to another and permit-
ting the same or similar tools to be applicable.

l Incremental analysis. Developers should be able to per-
form meaningful analysis as they create the system. In the
PIC context, this means that as soon as interface control
aspects of a module are specified, it should be possible to
analyze whether that module is internally consistent as
well as whether it is consistent with the already existing
modules in that system.

l Order-independent development. Developers should be
able to create modules and enter them into the system
for analysis in any desired order. In particular, the lan-
guages and tools in a software development environment
should support top-down development, since this is gen-
erally recognized as a desirable development model. Ap-
proaches other than top-down should not be excluded,
however, and thus it is important that the environment
adequately handle an arbitrary submission order.

Both incremental analysis and order-independent develop-
ment, in turn, depend heavily upon support for:

l Incompleteness. The interface control mechanism must
make explicit provision for incomplete descriptions and
the analysis tools should be capable of generating as much
feedback as possible based on the provided information.
These capabilities are essential for permitting analysis to
be done as soon as developers start to formulate a descrip-
tion of the system, since at early stages in development
many of the modules will not be specified and many of
the specified modules will be incomplete.

The PIC environment has been specifically designed to fa-
cilitate incremental development. The language features to de-
scribe interface relationships have been based on the consis-
tent abstractions, termed requisition and provision of access,
described in Section 2. Support for incomplete descriptions
of modules is provided in two ways. First, the PIC language
features include a construct for explicitly indicating within a
module’s description that additional information is to be pro-
vided later. Second, the language features provide constructs
for describing the pertinent interface control aspects of miss-
ing modules. These characteristics of the language features are
complemented by a toolset design that permits Bexible compo-
sition of analyses. Together, therefore, the PIG language fea-
tures and analyses strongly support incremental analysis and
order-independent development.

The remainder of this paper describes the PIC environment
and demonstrates how it supports incremental development.
The next section brielIy describes the language features and
their use in a language based on Ada. Section 3 outlines the
analyses that can be performed on systems described using the
language features. Section 4 presents an example that illus-
trates how the PIC approach to interface control supports in-
cremental development. The conclusion discusses the current
status of the PIC environment.

2. Overview of the PIC Language Features

The conceptual foundation for the PIC language features
is provided by a general view of interface control that is richer
than views based solely on traditional visibility concepts of dec-
laration, scope and binding. This view distinguishes two aspects
of visibility: requisition of access and provision of access. Ac-
cesa to an entity is the right to make reference to, or use of, that
entity in declarations or statements. Requisition of access oc-
curs when an entity (implicitly or explicitly) requests the right
to refer to some set of entities. Provision of access occurs when
an entity (implicitly or explicitly) offers, to some set of entities,
the right to refer to that entity.’ Given this view, an interface
control mechanism is simply a means for specifying requisition
and provision.

The PIC language features provide support for the explicit
specification of both requisition and provision, and thus consti-
tute a precise interface control mechanism. In addition, they
provide a system structure that imposes a strict separation of
interface control information from the algorithmic details (if
any) of how that information is used locally by a module. This
separation facilitates information hiding and managerial con-
trol. It also supports incremental ar$ysis by allowing interface
control information to be created, modified, and (re)analyzed
independently of a system’s (detailed) algorithm development.

The capabilities provided by the language features are rel-
evant throughout the lifetime of a software system, and ap-
propriate dialects of the language features can be developed to
make them compatible with a variety of languages, such as de-
sign or programming languages. In the sequel, our examples
are given in terms of an Ada-flavored dialect, which we refer to
as PIG/Ada, suitable for use in conjunction with an Ada-based
PDL or the Ada language itself. Here, we describe only those
aspects of PIG/Ada applicable to one kind of module, namely
Ada’s encapsulation unit, the package. A more detailed treat-
ment of this Ada dialect of the PIC language features can be
found in [12].

To realize the separation of interface control information
from algorithmic detail, a module consists of two physically
distinct parts: a specification submodule and a body submod-
ule. A package’s specification submodule describes the entities
encapsulated by the package. It also completely describes the
package’s requisition, through one or more request clauses, and
provision, through one or more provide clauses. The body sub-
module for a package contains the actual code sections realizing
the module. During the pre-implementation phases, the body
might take the form of a PDL description, while in later phases
it would consist of standard implementation-language code.

Figure 1 presents an example illustrating several aspects of
the language features. The example shows the specification and
body submodules of a package AutomaticTeller, which is one
module in a hypothetical automatic bank-teller system. The
subprograms in this package realize several customer-oriented
and maintenance-oriented operations, including depositing and
withdrawing funds and reporting on the cash available for with-
drawal from the machine. Other modules in this system in-
clude Customerlnterface, ATMaintenancelntetface, and Officerln-
terface, which use subprograms provided by AutomaticTeller in
realizing three classes of user-interface capabilities. Also part

‘1m the nmtider of thii paper, when the inteaded rnear~in~ in clear,
the word Yuceu* in dropped from cerbia phrases invohring the terms
Lreq&itioa” and Lprovision”.

package AutomaticTeller Is
procedure BeginSession (. . .)

provide to Customerlnterface
request PINManager.(PINType, Verify),

AccountManager.(AccountType, Verify);
procedure Deposit (. .)

provide to CustomerInterface
request AccountManager.Credit:

procedure Withdraw (. . .)
provide to Customerlnterface;
request AccountManager...;

. . . .
function RemainingCash (. . .) return . . .

provide to ATMaintenancelnterface, OfficerInterface;
function DepositsMade (. . .) return . . .

provide to ATMaintenancelnterface,
. . . .

end AutomaticTeller;

package body AutomaticTeller Is
procedure B&Session (. . .) Is . . . end BeginSession;
procedure Deposit (. . .) Is . . . end Deposit;
procedure Withdraw (. . .) Is . . . end Withdraw;
. . . .
function RemainingCash (. . .) return . . . Is . . . end RemainingCash;
function DepositsMade (. . .) return . . . Is . . . end DepositsMade;
. . . .

end AutomaticTeller;

Figure 1: Speclflcation and Body Submodules of Package
AutomaticTeller.

of the hypothetical system are the modules AccountManager,
which provides facilities for manipulating customer accounts,
and PINManager, which provides facilities for manipulating the
“personal identification numbers” that serve as passwords for
customer accounts.

A specification submodule in this PIG/Ada notation is es-
sentially an Ada unit specification together with a small num-
ber of additional, and powerful, features for enhancing interface
control. The request clause is used to specify exactly the enti-
ties that a given module, or packaged entity, wishes to have the
right to access.? In Figure 1, procedure BeginSession requests
access, through a request clause, to two entities in PINManager
as well as access to two entities in AccountManager. The provide
&use may be appended to any of a package’s visible entities
in order to selectively limit their provision to external modules.
The provide clause appended to procedure BeginSession indi-
cates that it is only provided to Customerlnterface, whereas the
provide clause appended to function RemainingCash indicates
that it, is only provided to ATMaintenancelnterface and Officer-
Interface.

The request clause is more flexible than its counterparts in
most other languages, including Ada’s with clause, in at least
two ways. First, it does not necessarily import all the provided
entities of a package but can import subsets of those entities.
Second, a request clause can be attached to an individual pack-
aged entity, as well sa to the package itself, so that requisition
by the entities within a package can be differentiated. The
provide clause is similarly more flexible than provision facili-

‘As s notational shorthand in PIG/Ada, an actual reference to a non.
local entity that occom within a specific&m mbmodale, such m the
declaration of an object whose type is not IocalIy defined, impJici:Jy
catlses the requisition of that entity. The nqneet cl~ose is prim+
used, therefore, to request entities that are to be referred to in the body
sobmodule.

ties of other languages, including Ada’s mechanism, which is
based on COWtNCh that textually separate a package’s visible
(i.e., provided) entities from its hidden entities. Under the Ada
mechanism, provision is controlled on an all-or-nothing basis;
either access to an entity is provided to every module (in a
given scope), or it is provided to no module, and so the entity

is hidden. The PIC provide clause, however, supports selective
provision.

Another aspect of the PIG language features is their applica-
bility to high-level, incomplete descriptions of a system’s com-
ponents and their interaction. The incompleteness construct,
denoted by au ellipsis in PIG/Ada and appearing, for example,
in the parameter lists of the subprograms in Figure 1, is use-
ful for explicitly indicating where details that will be supplied
later have been omitted from a description. It complements
other constructs, not illustrated here, that facilitate the for-
mulation of abstract, pre-implementation descriptions, such as
notations to formally specify a module’s external behavior or to
describe intended algorithms. When used in conjunction with
such constructs, the language features are well suited for ex-
pressing modularication and interface properties during early
stages of a system’s development and hence supportive of in-
cremental development.

In addition to specification and body submodules, the PIC
language features include a third kind of submodule referred to
as a specification stub. This kind of submodule is supplied in
response to the fact that interacting modules of large software
systems are often developed independently-perhaps even at
different times. If, at some point before development is com-
plete, a group of modules requires access to entities from a

module for which no specification submodule is yet available,
a specification stub submodule can be constructed. A apecifi-
cation stub usually only contains some of the information that
would eventually be described in the specification submodule.
In particular, the speeificdion stub need not contain any in-
formation about the module’s requisitions but only needs to
describe what is being provided by that module to the mod-
ules in the requesting group. h a result of separate develop-
ment activities, several different specification stub submodules
of a module may exist to accommodate various intended uses
of that module. The specification stub mechanism provides a
means for the various groups of clients of a module to document
these views of the module before the module is available. As
shown in Section 4, these views can be exploited by the analysis
tools to provide early feedback about the system.

Two examples of specification stub submodules of module
PINManager are shown in Figures 2 and 3. The two submodules
partially describe the two, slightly different, views of PINMan-
ager that have been de6ned by the developers of AutomaticTeller
and the developers of OfficerInterface, respectively. The used-
by clause appearing in a specification stub submodule indicates
the intended clients of that stub. A provide clause in a specifi-
cation stub submodule that includes the keyword onIy indicates
that the associated entity is provided excIusively to the listed
modules; this special feature records the intention that no other
specification stub of that module should provide the entity and
that the specification submodule should provide the entity only
to the listed modules.

3. Analysee

The precision and redundancy of the language features out-
lined above is of limited value without the ability to obtain feed-

package stub PINManager Is
used by AutomaticTeller
provide to AutomaticTeller;

type PINType;
function Verify (PIN : PINType; . . .) return Boolean;
. . . .

end PINManager;

Figure 2: Specification Stub Submodule of Package
PINManager Used by AutomatlcTeller.

package stub PINManager Is
used by Officerlnterface;

type PINType
provlde to Oflicerlnlerface;

procedure Issue (. . . . PIN : out PINType)
provlde onty to Ofticerlnterface;

MasterPIN : constant PINType
provide ordy to Officerlnterface;

. . . .
end PINManager;

Flgun Sr Speclflcatlon Stub Submodule of Package
PINManager Used by OffIcerInterface.

back about the consistency of the interface relationships speci-
fied using those features. This capability is provided in PIC as
an integrated collection of analyses, each of which concentrates
on some particular aspect of interface control. By distilling out
analysis from the compilation mechanism, which is where it has
been historically conlined, the PIC environment makes feed-
back available throughout the development and maintenance
process. Moreover, by fashioning analyses from individual tool
fragments [7], the environment allows particular analyses, or
combinations of analyses, to be flexibly applied as desired.

The analyses can be classified into three major kids: basic
interface analyses, stub analyses, and update analyses. This
section elaborates on each of the analysis classes in turn and
then briefly discusses how they can be provided as actual tools
in the environment. A discussion of how the analyses handle
incompleteness appears in 1121.

3.1 Basic Interlace Analyses

The six basic interface analyses provide information on in-
terface consistency within and among modules. They are distin-
guished by the kid of submodules upon which they operate, ~EJ
depicted in Figure 4. While the majority of the basic interface
analyses involve pair-wise comparisons of submodules, there are
two analyses that can provide meaningful information by simply
examining a single submodule in isolation. This is important,
since, in general, the submodules of an incrementally developed
system come into existence one at a time. Hence, PIC can
provide support for incremental interface analysis even when
submodules are developed before the submodules they interact
with are developed. Note that we are accounting here for the
possibility that even specification stub submodules may not be
available. Indeed, one (secondary) result of analysis can be a
template for such a submodule.

The basic interface analyses seek to uncover errors and
anomalies in interface relationships. Anomalies are so named
because their detection does not, in and of itself, indicate a
definite error, but rather a possible problem that may deserve
further attention. One would anticipate that numerous anoma-

Module A Module B

Spec/Spec-Stub (‘I Spec/Spec-Stub

(2) Gody _ _ _ _ _ _ _ _ _ _ Body
(6)

Figure 4: Basic Interface Analyrer.

lies would be found when incomplete modules are analyzed,
whereas anomalies discovered in completed modules might in-
dicate an unacceptable programming style. The decision to
classify an interface relationship as erroneous or anomalous, at
least in some cases, can depend upon such factors as the de-
velopment method in use or the managerial discipline in force.
Ideally, tools performing the analyses should be Bexible in what
they report to the developer as an error or as an anomaly in
such cases.

The two kinds of information that a basic interface analysis
makes use of are the available type and requisition/provision
information found in the submodule under examination.
PIG/Ada, because it is based on Ada, has some rather sophis-
ticated features that complicate analysis of type information.
For example, declarations can be initialized by expressions,
which can include function-subprogram invocations. Subpro-
grams can be overloaded; that is, twoor more subprograms with
the same name can coexist as long as their parameter/return
profiles differ. Analysis of type information is further compli-
cated by the fact that the declaration of an entity may not be
available during analysis of the use of that entity. For exam-
ple, a body submodule may make reference to an entity defined
in some other module whose specification is not yet available.
As long as there are at least two such references, however, a
comparison can be performed that determines the consistency
of those references. This is done by inferring the type of the
entity using techniques similar to the one described in [S]. In
some cases, an inconsistency will indicate the presence of a def-
inite error, although which reference (if my) is the correct one
cannot be determined without the declaration. In other cases,
the analysis can only reveal au anomaly. This is particuarly
true when comparing subprogram calls, since a perceived in-
consistency in the parameterization of those calls may simply
be due to overloading. For the sake of brevity, and because the
type analysis in PIC is what is generally found in a support-
ive compiler, analysis of type information is not discussed here
further.

The requisition/provision information analyzed by the ba-
sic interface analyses is contained in specifications of requisi-
tion, specifications of provision, and actual references to non-
local entities; requisition/provision errors and anomalies arise
from incongruities among these three aspects of module interac-
tion. Table 1 summarizes the detectable errors and anomalies.
There are three things to notice about the entries in that table.
First, the entries are concerned only with problems associated
with module interactions; not listed in the table are errors or
anomalies that are exclusively local concerns of a module, such
as references to non-provided, local entities whose declarations
are missing. Of course, a complete analysis tool would seek
to detect those problems as well. Second, the precision and

78

ERRORS

El. entity requested in a module, but not provided to that
module

E3. (non-local) entity referred to in a module, but not provided
to that module

E3. (non-local) entity referred to in a module, but not re-
quested in that module

El. subprogram provided by a package, but subprogram’s
body not detlned ia that package’s body submodule

E5. subprogram or object provided to a module, but subpre
gram’s parameter/return type or object’s type (if de&red
m the same spec or spec-stub) not provided to that module

E8. (non-local) packaged subprogram referred to in a module,
but subprogram’s body not detlned in the package’s body
submodule

ANOMALIES

Al. entity provided to a module, but not requested in that
module

A2. entity requested in a module, but not referred to ~II that
module

A3. entity defined in a module, but not provided nor referred
to by that module

Table 1: F&quirltlon/Provlrlon Errors and Anomalies
Detected by B&e interface Analysea.

redundancy available in PIG/Ada can result in the detection
of a more revealing set of errors and anomalies than is possi-
ble when other languages are used. Finally, while the entries
at E2-E6 would be considered errors under any circumstance,
the error/anomaly classification of the entries at El and Al-
A3 is completely flexible. The given classification reflects just
one possible choice; that choice is specifically intended to keep
PIG/Ada within the spirit of Ada. For example, Ada is de-
signed with the expectation that many systems will be built
from libraries of general-purpose modules, some of whose ele-
ments may or may not get used. Therefore, situations where
entities are provided but not requested might be common, and
so the entry at Al is considered an anomaly rather than an
error. (Control over whether such an anomaly would even be
reported by an analysis tool is discussed in Section 3.4.) As
another example, consider the entry at El. Tradition dictates
that requisition of an entity that is not provided be considered
an error, irrespective of whether there is an actual reference to
the entity. Conceivably, such an interface relationship could in-
stead be considered an anomaly until it is determined that an
erroneous reference does or does not exist (cf., E3).

The correspondence between the six basic interface analyses
and the requisition/provision errors and anomalies is given in
Table 2. (Although not indicated in that table, the analyses
also involve the other sorts of checks that would be possible on
the submodules-specifically, the analysis of type information
and analysis of concerns local to a module, which are mentioned
above.) The table is arranged so that those erron, and anoma-
lies that can be uncovered by examining a smgle submodule
are listed with analyses 1 and 2 and by examining a pair of
submodules are listed with analyses 3 through 6. Thus, while
any analysis involving a specification or specification stub sub-
module could detect E5, that error is only listed with the &st
analysis.

The first two analyses examine single submodules. The fact
that analysis of a body in isolation cannot reveal any requisi-

SUEtMODULE INVOLVED ERRORS D
Spec or

I I
Spec or

I I
ANOMALIES

Spec-Stub Body Spec-Stub Body

In PIG/Ada, reference to non4ocal entity in spec or apec+tub im-
plicitly causer request for that entity.

Table 2r Correspondence Between Bnalc Interface Analyses
and Requlritton/Provlrlon Errors and Anomalies.

tion/provision errors or anomalies (although it may reveal type
errors or anomalies) is consistent with the fact that bodies are
not involved in interface control per se. The third analysis is
an inter-module analysis that compares the specification (stub)
submodule of a module B to the specification (stub) submod-
ule of another module A, checking the entities requested by
A against the entities provided by B. The fourth analysis is
an intra-module analysis that checks the entities requested in
the specification (stub) submodule against the entities actually
referred to in the corresponding body submodule. In addition,
this analysis checks that a subprogram provided in the specifica-
tion (stub) submodule has a body defined in the body submod-
ule. The 6fth basic interface analysis is an inter-module analysis
that checks the entities provided by a module, through a speci-
fication (stub) submodule, against the entities referred to in the
body submodule of a second module. This analysis also checks
the subprogram references in the specification (stub) submod-
ule against the subprogram bodies defined in the body submod-
ule. Finally, the sixth analysis is an inter-module analysis that
checks the subprogram bodies defined in the body submodule
of a module B against the references in the body submodule of
a module A. This last analysis could be disregarded (hence the
dashed line in Figure 4) if the reasonable assumption is made
that a body submodule would not be analyzed with respect
to any other module until that body’s corresponding specifi-
cation (stub) submodule is present and intra-module analysis
number 4 performed. If this assumption is made, then no new
information about the interface consistency of the modules is
gained by the sixth analysis, since an error in the interface re-
lationship would always be -revealed as one or both of E3 or
E4.

3.2 Stub Analyses

As described in Section 2, a specification stub submodule
represents the view some set of modules has of a given module.
The two stub analyses provide information on the consistency
of such a view, seeking to uncover interface problems, as do
the basic interface analyses, by examining the available type
and requisition/provision information. Thus, while a number
of specification stub submodules of a module may be indepen-
dently constructed, their development, and the development of
the modules using them, can be monitored using the informa-
tion supplied by the two stub analyses.

The first stub analysis is used to check the consistency of
one view of a module with respect to another view of that same
module. The two primary functions of this analysis are: (1) to

79

Al. entity provided to a module by spec&ation, but not pro-
vided to that module by speciecation stub

A2. entity provided to a module by speciecation stub, but not
provided to that module by speciacation

A3. entity provided exclusively to a module by specitlcation
stub, but not provided exclusively to that module by spec-
ification

Al. entity requested la specltlcation stub, but not requested ia
specillcation

AS. entity requested in specikatios, but not requested in spec-
i5cation stub

Table 2: Requi3ltlon/Provlrlon AnomaI1er Detectea by
Spec/Stub Stub Analysis.

identify the entities occurring in one specification stub submod-
ule and not the other (i.e., a Vifference” analysis); and (2) to
identify the entities occurring in both specification stubs, such
as common declaration3 or common references, and checking
the consistency of those common occurrences. For the Erst
function, when an entity occurs in only one of the views, the
situation is not considered an inconsistency, since it is the ex-
press purpose of specification stubs to accommodate differences
during development. For the second function, the checking of
common occurrence3 mostly involve3 analysis of type informa-
tion. In fact, the only requisition/provision problem that can
be detected is when two specification stubs provide the same
entity, but one of the specification stubs attempts to provide
the entity exclusively to some module (see Section 2).

The second stub analysis is used to check the consistency
of each view of a module with respect to the “official” speciE-
cation submodule of that module. The information contained
in a specification stub submodule must be some subset of the
information contained in the specification submodule and that
subset must be type and requisition/provision consistent. Ta-
ble 3 summarizes the requisition/provision problems that can
be detected by this analysis. (Again, type errors are not dis-
cussed here.) III PIG/Ada, the entries in the table are con-
sidered anomalies, since they do not necessarily indicate the
existence of an error. For example, consider entry A2. If the
entity is not actually requested by the module using the specifi-
cation stub, then the fact that the entity is not provided to the
module by the specification leaves the relationship consistent.

3.3 Update Analyses

Change is an intrinsic characteristic of any software devel-
opment process. Particularly in the development of a large
system, it is important to know not only what has changed but
what e5ect a change has on the system, since those effects can
be far reaching and perhaps unanticipated.

The PIC environment provide3 three update analyses, which
correspond to each of the three Lids of submodules. To provide
information on changes to interface relationships, each analysis
involves a comparison between two versions of the same sub-
module and looks for changes in declarations, requisition and
provision specifications, or references to non-local entities. The
greater precision with which a developer can specify interface
relationships using the PIC language features allows the a&y-
ses to supply more reveahng and meaningful information about
changes. For example, if the developer of a module has speci-
fied exactly which other modules an entity is provided to, then

a change to that provision, such as no longer providing that
entity to one of the modules, is detectable. This is in contrast
to the situation in Ada, where changes of this sort are masked
by the imprecision of the visible part of library units.

While the update analyses do not directly assess interface
consistency, which is the primary purpose of the other two
classes of analyses, they are important to interface consistency
analysis in that they reveal the relationships that must be sub-
jected to reanalysis as a result of a change. Moreover, knowl-
edge of exactly what is, and what is not, affected by a change
can help reduce the sheer amount of that reanalysis.3

3.4 From Analysee to Analyeis Toole

The auaIyses described above represent the primitive feed-
back capabilities made possible by the precision, redundancy,
and explicit treatment of incompleteness in the PIC language
features. Although it is conceivable to think of these analyses
as separate tools in the environment, they are probably best
thought of M composed of tool fragments. For example, the de-
tection of an anomaly by a basic-interface or stub analysis often
implies the need to perform further checking to determine if an
error WuaIly exists. An update analysis that reports a change
in provision or requisition is an example of where one analysis
can lead to or “triggers the application of other analyses. The
way in which the analyses are presented as tools to the user of
the environment, therefore, depend3 upon whether, and how,
the designer3 of that environment wish to enforce combinations
and/or sequences of analyses.

The combinations and sequences of analyses in different de-
velopment processes could be enforced by developer discipline.
This would allow flexibility (e.g., combinations of different soft-
ware processes, or even discovery of new ones) at the expense
of a lack of managerial control. Such a lack of control could
be costly when, for example, rechecking of interface relation-
ships that should follow update analysis is forgotten by the
developer. At the other extreme, the environment could rigidly
enforce predefmed combinations and sequences of analyses. A
better alternative is to make the combinations and sequences
of analyses a %rogrammable” aspect of the environment. This
compromise would allow Bexibility at the same time that it al-
lows managerial control.

Another concern is deciding what information the developer
is actually given as a result of a particular application of an
analysis. As pointed out above, reports of numerous anomalies
would be anticipated when analyzing incomplete modules; the
developer could easily be overwhelmed by all the “revealing and
meaningful information” produced! Thus, developer3 should be
able to turn on and off particular types of reports generated by
the analyses.

4. Incremental Development in PIC

It is commonly held that languages such 89 Ada, Mesa, and
MODULA-2 can, through their facilities for separate compi-
lation, support the incremental development of large software
systems. Unfortunately, that belief is not wholly justified, since
these languages can in fact onIy support a restricted form of in-
cremental development. Stated in the terminology of PIC, that
form is governed by the following ruIe for submitting submod-
ules for analysis (i.e., compilation).

*Tichy and Baker 191 discuss this ia the restricted context of recompilation
swiugs.

80

A module’s specification submodule must be ana-
lyzed and “accepted” before its body submodule is
submitted and before a body or specification sub-
module (of some other module) that uses it may be
submitted.

On the one hand, this rule means that body submodules can be
developed in any order, as long as the appropriate specification
submodules have already been analyzed and “accepted”. On
the other hand, it means that specification submodules must be
developed in a very particular order, namely one that is strictly
bottom up.’ This restriction has some rather severe method-
ological implications. In particular, it forces the programming
of the lowest-level modules to begin before any analysis can be
done at higher levels. Moreover, if one considers specification
submodules to represent design decisions concerning the mod-
ularization and interface relationships of a system, then those
decisions-if they are to be subject to incremental analysis-
can only be made from the bottom up.

The restriction these languages impose on the development
of specification submodules stems from a desire to perform code
generation at the same time as incremental interface analysis.
In Ada, for example, the representation of an abstract (i.e.,
“private”) type must appear in the specification part of a pack-
age even though that representation is logically hidden from
the users of that abstraction; its presence in the specification is
solely to provide code-generation information. The only way to
perform both code generation and incremental analysis at once
in languages such as Ada, Mesa, and MODULA-2 is to insist
on a bottom-up development process for specification submod-
ules. When such programming languages serve as models for
specification and design languages, then this restriction is car-
ried into pre-implementation phases, where it causes even worse
problems. This is the case for many Ada-&e design languages,
which because of this restriction impede hierarchical system de-
velopment.

While substantial information is indeed necessary to per-
form code generation (and, especially, code optimization),
meaningful interface analyses can be performed with much less
information. We would argue, therefore, that the concerns
of code generation, while extremely important, should be ad-
dressed separately from those of incremental analysis. Such a
separation would, for instance, facilitate the top-down devel-
opment of specification submodules by allowing those of high-
level modules to be analyzed early in development. Actual code
generation would occur, as before, once sufficient information
were present, yet subsequent to the analyses. Thus, to support
incremental development, the standard view of compilation be-
comes inadequate. Syntactic analysis, semantic analysis, and
code generation, for example, are now all analysis components
that may be invoked at very different times in the development
process.

The primary characteristics of PIC that permit it to fully
support incremental development arc (1) the formulation of
analyses as specialized tools in the environment that are dis-
tinct from other activities (such as code generation), and (2) the

‘The Ada snbanit facility that allows the body of a unit to be compiled

separately from its nested declaration VM specifically devised to suppofi
top-down program development (141, p. 10-S). In fact, it only supports

top-down development of the bodies of nested modules. The apeci6cr

tions of those nested modules ue still unavoidably limited to bottom-up

development.

availability of the incompleteness construct and the specifica-
tion stub submodule for explicitly deferring design decisions
by representing, in an analyzable form, incomplete information
about a module’s interface. The power of these two capabilities
is illustrated in the example below, which is an elaboration on
the automatic bank-teller example given in Section 2. In that
section, a package AutomaticTeller is described, which is at au
intermediate level in the hierarchical structure of the system;
the package’s position in the hierarchy is evident from the fact
that it both provides and requests entities. Here we show sev-
eral steps in the top-down development of that portion of the
automatic bank-teller system rooted at AutomaticTeller.

As discussed in Section 2, AutomaticTeller contains requests
for entities from two packages: AccountManager and PINMan-
ager. If this system were being developed in pure Ada, then the
specification submodules of both those packages would have to
be created, analyzed, and ‘accepted’ before any analysis on
the submodules of AutomaticTeller could be performed. Fur-
thermore, if either of those specification submodules contained
a reference to another, lower-level module (which, as shown be-
low, they in fact do), then the specification of that lower-level
module would also have to be created, aualyzed, and “accepted”
before any analysis involving the submodules of AccountMan-
ager, PINManager, or AutomaticTeller could be performed, and
so on. The result, therefore, would be a bottom-up develop-
ment of the specification submodules in the automatic bauk-
teller system.

With just the specification and body submodules of Auto-
maticTeller available, an analysis (number 4 of Figure 4) can be
performed in PIC that provides, among other information, feed-
back about whether there are references in the body submod-
ule that exceed the requests in the specification submodule. To
begin inter-module analysis, nothing more needs to be done in
the way of development than to supply a specification stub sub-
module of either AccountManager or PiNManager to be used by
AutomaticTeller. Figure 2 shows such a submodule of PINMan-
ager. This submodule indicates that PINManager is expected to
provide AutomaticTeller with a type PINType, whose represen-
tation is not available, and a function Verify, whose parameters
have not been completely determined. Two additional analyses
can now be performed, one checking requests in the specifica-
tion submodule of Automaticfeller (number 3 of Figure 4) and
the other checking references in the body submodule of Auto-
maticTeller (number 5 of Figure 4).

At this point the question arises as to why a specification
stub submodule is used and not simply a specification submod-
ule with strategically placed incompleteness constructs. The
answer is that while only one specification submodule of a mod-
ule is permitted to exist (discounting multiple versions), several
specification stub submodules of that module can populate a de-
veloping system to account for the activities of several different
development groups. More generally, we feel that a common
situation arises in large software projects in which the client
modules of a shared module are developed separately-both
from each other and from the shared module. The role of spec-
ification stub submodules, then, is to represent the (possibly)
different views of the shared module held by the various clients.
The role of the specification submodule, on the other hand, is to
represent, and in fact distinguish, the one, “official” specifica-
tion of the shared module. The consistency of the various views,
as well as their compliance with the “official” specification, can
be determined by analyses described in Section 3. In terms
of the automatic bank-teller example, there are at least two

package PINManager Is
request ESManager;

type PINType Is prfvate;
function Verify (PIN : PINType; . . .) return Boolean

provldc to AutomaticTeller;
procedure Issue (. . .)

provlde to Oflicerlnterfact;
MasterPIN : constant PINType

provlde to Officerlnterface;
. . . .

private
type PINType Is new ESManager.EncryptedStringType;
MasterPIN : constant PINType :=

end PINManager;

Figure 6: Speeillcatlon Submodule of Package
PINManager.

modules that share PINManager: AutomaticTeller, whose view
is shown in Figure 2, and a module that embodies the interface
to bank officers, OfficerInterface, whose view of PINManager is
shown in Figure 3. The consistency of these two specification
stub submodules can be established using the stub/stub anal-
ysis.

Eventually, the ‘official” specification submodule of PIN-
Manager is made available (Figure 5). Once again, if the sys-

tern were being developed in pure Ada, then the specification
submodule of the lower-level module ESManager, which is re-
ferred to in PINManager, would have to be developed before
any analysis involving PiNManager could be performed. In-
stead, an analysis can already be performed in PIC that checks
the consistency between AutomaticTeller and PINManager. This
analysis would involve the specification stub submodule of PIN-
Manager used by AutomaticTeller (spec/atub analysis of Table 3)
or, alternatively, the specification and body submodules of AU-
tomaticTeller directly (analysis numbers 3 and 5 of Figure 4).
The choice depends mainly upon whether the specification stub
submodule sufficiently represents the use of PINManager by Au-
tomaticTeller. Although not discussed here, there are a num-
ber of ways to automatically determine the best choice, based
on previous analyrs, and to limit the amount of unnecessary
(re)auaIysis.

The automatic bank-teller system is now at a similar point
in its top-down development aa when AutomaticTeller was about
to undergo inter-module analysis; a specification stub submod-
ule of a lower-level module (ESManager) needs to be supplied
for a higher-level module (PINManager). Thus, development
would proceed from here in a manner similar to that discussed
above. The major advantage of the PIG approach to incremen-
tal development is that developem can be confident that, even
though the system is incomplete, the current description of the
system is consistent.

5. Concluding Remarkr

The PIG environment is an experimental investigation of
interface control and incremental development and their role in
the software development process. Although our current ver-
sion of these capabilities is oriented toward Ada and a some-
what traditional view of the software development process, we
believe that interface control and incremental development are
important no matter what particular model of that process one
might adopt.

we are currently constructing a prototype version of the

Ada-based version of the PIC environment. The environ-
ment’s analysis capabilities are being implemented as small,
self-contained analysis tools, so as to permit incremental analp
sie and order-independent development. The Odin component
of the Toolpack system [7j provides a starting point for inte-
grating these tool fragments to achieve higher-level analyses,
such as those described in Section 3.

Implementation of the prototype PIC environment is itself
being carried out incrementally, using the PIC language fea-
tures and analysis capabilities to facilitate a top-down incre-
mental development. Based on this preliminary use of the ap-
proach, we are encouraged about the contributions that the
completed environment will make to improving the software
development process.

REFERENCES

Special Section on Computing in Space, Communicrtiona of
the ACM, Vol. 27, No. 0, September 1084.

L.A. Clarke, J.C. Wileden, and A.L. Wolf, Nesting io Ada Pro-
grams is for tbe Birds, Proceedings of an ACM-SIGPLAN
Symposlum on the Ada Programming Language, appear-
ing in SIGPLAN Notlces, Vol. 15, No. 11, November 1080,
pp. 139-145.

F. DeRemer and Ii. Kron, Programming-in-tbe-Large Versus
Programming-in-the-Small, IEEE TransactIons on Software
Englneerlng, SE-2, No. 2., June 1076, pp. 80-86.

J.D. Ichbiah, et al., Ratlonalc for the Design of the Ada
Programming Language, appearing in SIGPLAN Notices,
Vol. 14, No. 6, June 1070.

M.R. Levy, Type Cbeckiog, Separate Compilation and Reusabil-
ity, Proceedings of the ACM SIGPLAN ‘84 Sympoalum
on Compller Constructton, appearing in SIGPLAN No-
tlcer, Vol. 10, No. 6, June 1084, pp. 285-280.

J.G. Mitchell, W. Maybury, and R. Sweet, Mesa Language Man-
ud Version 5.0, Technical Report CSL-IO-S, Xerox PARC,
Palo Alto, California, April 1979.

L.J. Osterweil, Too/pack-An Experimental Software Develop-
ment Environment Research Project, IEEE Transactlonr on
Software Engineering, Vol. SE-O, No. 6, November 1083,
pp. 673-685.

W.F. Tichy, Software Development Control Based on Module
Zntercoonection, Proceedings of the Fourth InternatIonal
Conference on Software Englneerlng, Munich, West Ger-
many, September 1070, pp. 20-41.

W.F. Ticby and MC. Baker, Smart Recompilation, Conference
F&cord of the 12th Annual ACM Symposium on Prlncl-
pies of Programming Languages, New Orleans, Louisiana,
January 1085.

J.C. Wileden and L.A. Clarke, Feedback-Directed Development
of Complex Software Systems, Proceedings of Software Pro-
cess Workshop, Egham, Surrey, England, February 1084,
pp. 89-03.

A.L. Wolf, L.A. Clarke, and J.C. Wileden, A Formalism for Dc-
scribing and Evaluating Visibility Control Mechanisms, Teeh-
nleal Report 83-34, COINS Department, University of Mas-
sachusetts, Amherst, hhsachusetts, October 1083.

A.L. Wolf, L.A. Clarke, and J.C. Wileden, Ada-Based @~pport
for Pmgr4mmin g-in-the-Large, IEEE Software, Vol. 2, No. 2,
March 1085, pp. 58-71.

