
Annotating Components to Support Component-BasedStati Analyses of Software SystemsJudith A. Sta�ord and Alexander L. WolfDepartment of Computer SieneUniversity of ColoradoBoulder, CO 80309-0430 USAfjudys,alwg�s.olorado.eduAbstratCOTS (Commerial O� The Shelf) omponents are typ-ially viewed as blak-boxes; input and output informationis supplied in their interfaes. In this paper we argue thatinterfaes provide insuÆient information for many analy-sis purposes and suggest analysis-related annotations be sup-plied with omponents. We enter our disussion on statidependene analysis. We use an extensible language to an-notate omponents and perform dependene analysis overthese desriptions. We propose that omponent annotationsbe erti�ed, thereby providing a base for erti�able analysis.1 IntrodutionComponent-based development is intended to inreasereliability and evolvability of systems while at the sametime derease the ost of system development. These ben-e�ts are expeted beause a omponent an be developedand tested in isolation, and then, based on its interfae andstated funtionality, used in a variety of systems Kozazyn-ski [6℄ presents three omponent views that are relevant todi�ering onerns during di�erent phases of system devel-opment: a design view, an implementation view, and a de-ployment view. We propose adding a fourth view to this list:an analysis view to support stati analyses. Prior work hasshown that stati analysis of system behavior based solelyon omponent interfaes is inadequate to diagnose inorretomponent interations [1, 3℄. The proposed analysis viewwill provide the neessary information for reasoning aboutomponent interations beyond the ompatibility of theirinterfaes.Knowledge of ertain behavior- and resoure-related at-tributes is used as a basis for hoosing among similar soft-This work was supported in part by the National Siene Foun-dation under grant CCR-97-10078 and by the Air Fore MaterielCommand, Rome Laboratory, and the Defense Advaned ResearhProjets Ageny under Contrat Number F30602-94-C-0253. Theontent of the information does not neessarily reet the positionor the poliy of the U.S. Government and no oÆial endorsementshould be inferred.

ware omponents. This is not unlike the information pro-vided through parts annotations, suh as voltage require-ments and model number, used in the building and repairof hardware systems, automobiles, eletrial systems, andplumbing systems. Consider the purhase of a simple lightbulb. The interfae of most light bulbs is idential; howeverthe hoie of whih to purhase involves tradeo�s related tothe voltage, wattage, and prie of the light bulb. All of thesethings are listed on the light bulb as attributes of the bulb.They are guaranteed to be orret, and thus a person feelsseure in making a deision about whih bulb to purhaseto meet their spei� needs.Various types of system analyses require spei� typesof knowledge about software omponents. It is useful toassoiate suh properties as performane ratings, resourerequirements, safety levels, and seurity levels with ompo-nents. The spei�ation of omponent quality attributes issuggested by Han [5℄. He identi�es the need to understandhow to haraterize the quality attributes for a omponent aswell as the need to understand how to use suh attributes asa part of overall system analysis. The MetaH [9℄ arhiteturedesription language (ADL) allows a system arhitet to as-sign spei� types of attributes to arhitetural omponents,and then to perform various types of analyses as early as thedesign phase of software development. The set of annotationtypes supported in MetaH is limited to those that supportanalyses spei�ally tailored for developing real-time, faulttolerant systems with primary emphasis on avionis applia-tions. There is growing support in the software developmentommunity for building systems out of prefabriated ompo-nents. COTS omponent annotations must provide supportfor a more broad spetrum of analyses in support of theneeds of a wide range of possible users and uses.We propose the use of an extensible language that sup-ports the de�nition of annotation types. We use Ame [4℄, alanguage developed at Carnegie Mellon University, for thispurpose. Ame supports the desription of omponent andonnetor interfaes, their internal properties, and their in-teronnetions. Ame is an interhange language for ar-hitetural desriptions written in various ADLs. Propertytypes are de�ned as needed for analysis or interhange pur-poses to apture the semantis of di�erent ADLs; it is thisfeature of the language that makes Ame espeially use-ful for our purposes. We use Ame to desribe omponentinterfaes and de�ne analysis-related annotations as Ameproperties. Annotation types are suggested by developers ofanalysis tehniques and inluded as omponent propertiesat the disretion of omponent developers.



2 Pathway AnnotationsThere are many types of annotations that would be use-ful to ertify and supply with omponents in support ofanalyses suh as performane tradeo� analysis and seureinformation ow analysis [8℄. As an example, suppose theset of annotations assoiated with omponents inludes someperformane rating, say average time to omplete a alu-lation, and that another annotation delares the amount ofdisk spae required to install the omponent; these anno-tations an be used in performane tradeo� analysis. If anappliation is typially to be used in an environment wheredisk spae is abundant but proessing speeds are slow, oneould hoose to use the omponent that uses more disk spaebut performs its funtion more eÆiently.We are applying software dependene analysis tehniquesto omponent-based systems. Dependene analysis is thestudy of how one element of a system an a�et or be af-feted by other elements of the system. Component inter-faes alone do not provide suÆient information for identify-ing useful sets of potentially interating omponents. We an-notate omponents with information required for performingomponent-level dependene analysis. This information is inthe form of pathways onneting omponent input ports tooutput ports; pathways apture the potential for an input toa�et an output in some way. The behavioral relationshipsamong the input and output ports of a omponent de�nethe interation behavior of that omponent. It is importantto note that the interation behavior is not intended to ap-ture the omponent's funtional behavior. For example, thedesription of how a server interats with its lients is in-dependent of the omputation arried out by the server onbehalf of its lients. Many software maintenane ativitiesrequire knowledge about the potential for interation amongelements of a system; examples of suh appliations are im-pat analysis, fault loalization, system re-engineering, andregression test set seletion. Software dependene analysisis used as a soure of information in support of these andsimilar ativities.Most appliations of dependene analysis tehniques re-quire that onservative sets of dependenies be identi�ed;that is, at least all potential dependenies must be inludedin the dependeny set. If one is to be onservative whenperforming omponent-level dependene analysis based onomponent interfaes alone, one must assume that eah andevery input has the potential to impat every output. Thisassumption an result in omputation of very impreise de-pendene sets. The simple example shown in Figure 1 il-lustrates the improvement in preision that is gained wheninput-to-output pathways are inluded in the informationused to determine possible dependenies. Figure 1 ontainsthree diagrams. The boxes in eah diagram represent om-ponents in a system; two systems are represented: system Somposed of omponents X, Y, and Z and system S0 in whihwe have replaed omponent Y with a its variant, Y0. Theports into and out of eah omponent are named as shownin the irles inside eah omponent in the diagram to theleft. The arrows in the �gure represent the ability for a box,or some port into or out of that box, to ommuniate withanother box in the diagram; we all them onnetors andrefer to them by the names given in the squares over eahar in the diagram to the left. The solid ars in this �guredenote ars that must be traversed in order to identify a on-servative set of dependenies representing the parts of thesystem that have potential to a�et port 1 of omponent X.In the view of system S shown to the left in Figure 1, the

intra-omponent pathways are unknown. The lak of in-formation about the internal port-to-port interation of theomponent fores the analysis to inlude ports of all om-ponents of the system in the dependeny set. If, however,one knows for ertain that partiular input-output pairs areindependent, as illustrated in the diagram in the enter, thepreision of the analysis is greatly improved.In support of omponent-level dependene analysis, weuse intra-omponent dependene analysis to identify poten-tial interations among omponent inputs and outputs andall the resulting dependenies intra-omponent pathways ori-pathways. These pathways an be supplied as annotationswith COTS omponents in support of system-wide depen-dene analysis. We are developing a formal model of depen-denies for multi-proedure programs that will support er-ti�ation of i-pathway identi�ation by independent erti�-ation houses. Suh erti�ation is required for use of COTSomponents in appliation domains where issues suh as se-urity and safety are of great importane. In suh areas,potential for information ow among omponent inputs andoutputs must be well understood and doumented.As mentioned above, the behavioral relationships amongports of a omponent de�ne its interation behavior. It isimportant to understand this when hoosing among di�er-ent omponents that provide similar funtionality. We use asimple example arhiteture to onvine the reader that mi-nor hanges in the internal dependene struture of a ompo-nent have potential to result in major hanges to the system-level dependene struture. We replae one omponent withanother having an idential interfae and a single additionalpathway. Reall that the solid lines in the box and arrow di-agrams of Figure 1 represent the onnetors and omponentsof systems S and S0 that will be inluded in a dependeneset representing the parts of the system that are identi�edas having potential to a�et port 1 of omponent X. The i-pathway represented by the squiggle in the diagram to theright in Figure 1 has been added to omponent Y. When thedependene set is alulated using omponent Y0, ports asso-iated with onnetors B and E and omponent Z are addedto the set of dependenies.As a real life example, one an imagine suh a situ-ation arising in the development of two omponents de-signed to work within a banking system. Suppose thatGet Aount Balane is a type of omponent. Componentsof this type take a bank-user's aount number, hekingaount information, and overdraw-protetion aount (pro-tetion aount for short) information as inputs and returnsthe user's debt to the protetion aount as well as the user'savailable ash balane as outputs. Now suppose that AB1and AB2 are omponents of this type. AB1 determines theuser's available ash balane by examining the urrent hek-ing aount balane; AB2 on the other hand, onsiders avail-able redit in the protetion aount to be available ash.AB2 returns the sum of the heking aount balane andavailable protetion as the user's available ash balane. If adeveloper wishes to replae AB1 with AB2 in order to improvebank servie, hanges in the system's dependene struturemust be onsidered. The additional onnetion between theinput of the protetion aount information and the avail-able balane output results in additional dependenies on allomponents required for managing the protetion aount.If an inorret balane is reported, these omponents mustbe inluded in the set of omponents that ould have on-tributed to the misalulation.



X

Z

Y

Start

1

2

3

4

Exit

1

2

3

4

1

2

3

4A

B

C

DE

F

Added IC-Pathway

System S System S¶System S

Y¶

Figure 1: Intra-omponent pathways support identi�ation of dependene sets.3 Automated Dependene AnalysisIn this setion we provide a brief overview of Ame [4℄and disuss the omposition of an Ame desription of ourexample system. We then introdue Aladdin [8℄, a toolthat we have developed to identify hains of dependenies inarhitetural desriptions, and disuss its use in reasoningabout the e�ets of replaing omponent Y with the variantomponent, Y0, that inludes one additional pathway.The development of ADLs is still at a point where thereis a general lak of agreement on the full set of linguistionepts required to desribe software arhitetures. Never-theless, there is an emerging onsensus on a ore set of on-epts that primarily have to do with the strutural aspetsof software arhitetures. Reognizing this emerging onsen-sus, the designers of the Ame language are attempting torepresent a useful intersetion of existing ADLs as a meansto support some degree of interoperability among their as-soiated tools. Additional goals for the language inludeproviding a desriptive standard for arhitetural tools, as-sistane in the development of new ADLs, and a languagethat is aessible to most system developers.The language provides seven basi onstruts for desrib-ing software arhitetures. To some extent, these onstrutsserve as a \least-ommon denominator" and, therefore, someimportant language-spei� onepts annot be diretly rep-resented. As mentioned above, the orientation of the on-struts is toward struture, so the missing onepts enteron behavior; this is the same issue that arises in spei�a-tion of COTS omponents. An additional Ame onstrut,Property, allows an arhitet (or developer of an ADL-to-Ame translator) to desribe properties that may be usefulfor analysis purposes, but not representable using the otheronstruts. We de�ne a \path" property that is used byAladdin to reason about the dependenies in a system. Apath property is spei�ed to indiate the ability of an in-put to ontribute to the stimulation of an output in someway. Figure 2 shows the Ame desription of omponent X ofsystem S. The inputs and outputs are listed as ports and an-notations of the i-pathways are spei�ed as path propertiesafter using the Ame keyword \Property".Aladdin [8℄ is a tool developed at the University of Col-orado that identi�es dependenies in software arhitetures.It an be used as a stand-alone tool or in onjuntion withADLs. It was designed to be easily integrated with ADL toolkits developed elsewhere, and is urrently available for usein analyzing Ame and Rapide [7℄ arhitetural desriptions.Figure 3 shows the use of Aladdin to study the e�ets ofadding the new pathway to omponent Y. If one thinks ofan arhitetural desription as a set of boxes and arrows in

Component X = fPort Start;Port 1;Port 2;Port 3;Port 4;Port Exit;Property paths = f[sr="Start"; target="3";relationship="auses"℄[sr="Start"; target="4";relationship="auses"℄[sr="1"; target="Exit";relationship="auses"℄[sr="2"; target="Exit";relationship="auses"℄g;g;Figure 2: Ame desription of omponent X.a diagram as we did in Setion 2, then one an think aboutAladdin as walking forwards or bakwards from a given box,traversing arrows either from heads to tails or vie versa.In Aladdin, the arrows are alled links and the proess ofwalking (i.e., performing a transitive losure) over the linksis alled haining.Aladdin's analysis is performed on demand in responseto an analyst's query. A query might request informationabout the existene of anomalous dependene relationships,or might request information about the parts of the systemthat ould a�et or be a�eted by a spei� omponent port.Figure 3 ontains a ombined sreen dump from two uses ofAladdin to analyze the two variants of our example system.An Ame desription of system S is displayed in the leftpane of the main Aladdin window to the left in the �gureand the Ame desription of S0 is shown in the main Aladdinwindow to the right. The right pane of eah window displaysthe list of omponent ports that have been identi�ed fromthe respetive desriptions.The analyst an selet to perform any of several queries.The analyst an hoose to see a list of ports with no soureor those with no target, whih are two kinds of port-relatedanomalies. Ports with no soure or no target may indiatean unspei�ed onnetion or they may indiate a funtion ofthe omponent that is not used in this system. The analyst



Figure 3: The use of Aladdin to identify di�erenes in dependene hains.an also hoose to reate a hain. If \Queries" is seleted,then the window \Get Query" appears. The analyst seletsa query, in this ase wanting to see a hain of all the portsin the arhiteture that ould ausally a�et port X.1. Al-addin uses dotty [2℄, a graph layout tool, to display the resul-tant hains. The windows on the left and right of the mainAladdin window show hains of dependenies for port X.1of two variants of system S. A hain is displayed as a di-reted graph rooted at the retangular vertex representingthe spei�ed port of interest, in these ases the vertex X.1 atthe bottom of the graph. The ars are labeled with a rela-tionship type and represent diret dependene relationshipsbetween pairs of ports. The verties of the graph representall ports that ould ause the port of interest, X.1, to beativated.The branh in the dependeny hain for X.1 shownin the dotty window to the right in the �gure representsthe additional dependenies that are identi�ed when thei-pathway Y.2�!Y.3 is added to omponent Y. Aladdinmakes suh di�erenes visually aessible to the analyst.Compare the hain of dependenies of X.1 omputed with-out bene�t of the knowledge of i-pathways that is shownin Figure 4. In this ase X.1, the port of interest, is shownat the top and a yle of possible dependenies is indiatedby the fat that ars enter as well as exit from the vertexrepresenting X.1. Clearly either hain shown in Figure 3 ismore useful for analysis purposes. Figure 4: The dependene hain forport X.1 when i-pathways areunknown.



4 ConlusionsComponent annotations provide a means for reasoningabout important system properties early in the developmentproess as well as when onsidering replaing one omponentwith another during system evolution. We envision that de-signers of analysis tools will speify omponent annotationsrequired to support their partiular kind of analysis. If aomponent manufaturer wishes for their omponent to beinluded in a system over whih this type of analysis is tobe performed, the annotations must be provided and erti-�ed by an independent erti�ation ageny. In this COTSworld, system builders an reason about interoperability ofsystem omponents with on�dene. We use Ame, an ex-tensible modeling language, to desribe omponent inter-faes and annotations. We perform automated dependeneanalysis over systems omposed of Ame-desribed ompo-nents to determine far-reahing a�ets assoiated with mak-ing hanges to individual omponents.REFERENCES[1℄ D. Compare, P. Inverardi, and A.L. Wolf. UnoveringArhitetural Mismath in Component Behavior. Si-ene of Computer Programming, 33(2):101{131, Febru-ary 1999.[2℄ E.R. Gansner, E. Koutso�os, S.C. North, and K.-P. Vo.A Tehnique for Drawing Direted Graphs. IEEE Trans-ations on Software Engineering, 19(3):214{230, Marh1993.

[3℄ D. Garlan, R. Allen, and J. Okerbloom. ArhiteturalMismath: Why Reuse is So Hard. IEEE Software,12(6):17{26, November 1995.[4℄ D. Garlan, R. Monroe, and D. Wile. ACME: An Arhi-teture Desription Interhange Language. In Proeed-ings of CASCON '97, pages 169{183. IBM Center forAdvaned Studies, November 1997.[5℄ J. Han. An Approah to Software Component Spei�a-tion. In Proeedings of the 1999 International Workshopon Component Based Software Engineering, pages 97{102, May 1999.[6℄ W. Kozazynski. Composite Nature of Component.In Proeedings of the 1999 International Workshop onComponent Based Software Engineering, pages 73{77,May 1999.[7℄ D.C. Lukham and J. Vera. An Event-based Arhite-ture De�nition Language. IEEE Transations on Soft-ware Engineering, 21(9):717{734, September 1995.[8℄ J.A. Sta�ord, D.J. Rihardson, and A.L. Wolf. Aladdin:A Tool for Arhiteture-Level Dependene Analysis ofSoftware Systems. Tehnial Report CU-CS-858-98, De-partment of Computer Siene, University of Colorado,Boulder, Colorado, April 1998.[9℄ S. Vestal. MetaH Programmer's Manual Version 1.27.Honeywell, In., Minneapolis, MN, 1998.


