
Annotating Components to Support Component-BasedStati
 Analyses of Software SystemsJudith A. Sta�ord and Alexander L. WolfDepartment of Computer S
ien
eUniversity of ColoradoBoulder, CO 80309-0430 USAfjudys,alwg�
s.
olorado.eduAbstra
tCOTS (Commer
ial O� The Shelf) 
omponents are typ-i
ally viewed as bla
k-boxes; input and output informationis supplied in their interfa
es. In this paper we argue thatinterfa
es provide insuÆ
ient information for many analy-sis purposes and suggest analysis-related annotations be sup-plied with 
omponents. We 
enter our dis
ussion on stati
dependen
e analysis. We use an extensible language to an-notate 
omponents and perform dependen
e analysis overthese des
riptions. We propose that 
omponent annotationsbe 
erti�ed, thereby providing a base for 
erti�able analysis.1 Introdu
tionComponent-based development is intended to in
reasereliability and evolvability of systems while at the sametime de
rease the 
ost of system development. These ben-e�ts are expe
ted be
ause a 
omponent 
an be developedand tested in isolation, and then, based on its interfa
e andstated fun
tionality, used in a variety of systems Koza
zyn-ski [6℄ presents three 
omponent views that are relevant todi�ering 
on
erns during di�erent phases of system devel-opment: a design view, an implementation view, and a de-ployment view. We propose adding a fourth view to this list:an analysis view to support stati
 analyses. Prior work hasshown that stati
 analysis of system behavior based solelyon 
omponent interfa
es is inadequate to diagnose in
orre
t
omponent intera
tions [1, 3℄. The proposed analysis viewwill provide the ne
essary information for reasoning about
omponent intera
tions beyond the 
ompatibility of theirinterfa
es.Knowledge of 
ertain behavior- and resour
e-related at-tributes is used as a basis for 
hoosing among similar soft-This work was supported in part by the National S
ien
e Foun-dation under grant CCR-97-10078 and by the Air For
e MaterielCommand, Rome Laboratory, and the Defense Advan
ed Resear
hProje
ts Agen
y under Contra
t Number F30602-94-C-0253. The
ontent of the information does not ne
essarily re
e
t the positionor the poli
y of the U.S. Government and no oÆ
ial endorsementshould be inferred.

ware 
omponents. This is not unlike the information pro-vided through parts annotations, su
h as voltage require-ments and model number, used in the building and repairof hardware systems, automobiles, ele
tri
al systems, andplumbing systems. Consider the pur
hase of a simple lightbulb. The interfa
e of most light bulbs is identi
al; howeverthe 
hoi
e of whi
h to pur
hase involves tradeo�s related tothe voltage, wattage, and pri
e of the light bulb. All of thesethings are listed on the light bulb as attributes of the bulb.They are guaranteed to be 
orre
t, and thus a person feelsse
ure in making a de
ision about whi
h bulb to pur
haseto meet their spe
i�
 needs.Various types of system analyses require spe
i�
 typesof knowledge about software 
omponents. It is useful toasso
iate su
h properties as performan
e ratings, resour
erequirements, safety levels, and se
urity levels with 
ompo-nents. The spe
i�
ation of 
omponent quality attributes issuggested by Han [5℄. He identi�es the need to understandhow to 
hara
terize the quality attributes for a 
omponent aswell as the need to understand how to use su
h attributes asa part of overall system analysis. The MetaH [9℄ ar
hite
turedes
ription language (ADL) allows a system ar
hite
t to as-sign spe
i�
 types of attributes to ar
hite
tural 
omponents,and then to perform various types of analyses as early as thedesign phase of software development. The set of annotationtypes supported in MetaH is limited to those that supportanalyses spe
i�
ally tailored for developing real-time, faulttolerant systems with primary emphasis on avioni
s appli
a-tions. There is growing support in the software development
ommunity for building systems out of prefabri
ated 
ompo-nents. COTS 
omponent annotations must provide supportfor a more broad spe
trum of analyses in support of theneeds of a wide range of possible users and uses.We propose the use of an extensible language that sup-ports the de�nition of annotation types. We use A
me [4℄, alanguage developed at Carnegie Mellon University, for thispurpose. A
me supports the des
ription of 
omponent and
onne
tor interfa
es, their internal properties, and their in-ter
onne
tions. A
me is an inter
hange language for ar-
hite
tural des
riptions written in various ADLs. Propertytypes are de�ned as needed for analysis or inter
hange pur-poses to 
apture the semanti
s of di�erent ADLs; it is thisfeature of the language that makes A
me espe
ially use-ful for our purposes. We use A
me to des
ribe 
omponentinterfa
es and de�ne analysis-related annotations as A
meproperties. Annotation types are suggested by developers ofanalysis te
hniques and in
luded as 
omponent propertiesat the dis
retion of 
omponent developers.



2 Pathway AnnotationsThere are many types of annotations that would be use-ful to 
ertify and supply with 
omponents in support ofanalyses su
h as performan
e tradeo� analysis and se
ureinformation 
ow analysis [8℄. As an example, suppose theset of annotations asso
iated with 
omponents in
ludes someperforman
e rating, say average time to 
omplete a 
al
u-lation, and that another annotation de
lares the amount ofdisk spa
e required to install the 
omponent; these anno-tations 
an be used in performan
e tradeo� analysis. If anappli
ation is typi
ally to be used in an environment wheredisk spa
e is abundant but pro
essing speeds are slow, one
ould 
hoose to use the 
omponent that uses more disk spa
ebut performs its fun
tion more eÆ
iently.We are applying software dependen
e analysis te
hniquesto 
omponent-based systems. Dependen
e analysis is thestudy of how one element of a system 
an a�e
t or be af-fe
ted by other elements of the system. Component inter-fa
es alone do not provide suÆ
ient information for identify-ing useful sets of potentially intera
ting 
omponents. We an-notate 
omponents with information required for performing
omponent-level dependen
e analysis. This information is inthe form of pathways 
onne
ting 
omponent input ports tooutput ports; pathways 
apture the potential for an input toa�e
t an output in some way. The behavioral relationshipsamong the input and output ports of a 
omponent de�nethe intera
tion behavior of that 
omponent. It is importantto note that the intera
tion behavior is not intended to 
ap-ture the 
omponent's fun
tional behavior. For example, thedes
ription of how a server intera
ts with its 
lients is in-dependent of the 
omputation 
arried out by the server onbehalf of its 
lients. Many software maintenan
e a
tivitiesrequire knowledge about the potential for intera
tion amongelements of a system; examples of su
h appli
ations are im-pa
t analysis, fault lo
alization, system re-engineering, andregression test set sele
tion. Software dependen
e analysisis used as a sour
e of information in support of these andsimilar a
tivities.Most appli
ations of dependen
e analysis te
hniques re-quire that 
onservative sets of dependen
ies be identi�ed;that is, at least all potential dependen
ies must be in
ludedin the dependen
y set. If one is to be 
onservative whenperforming 
omponent-level dependen
e analysis based on
omponent interfa
es alone, one must assume that ea
h andevery input has the potential to impa
t every output. Thisassumption 
an result in 
omputation of very impre
ise de-penden
e sets. The simple example shown in Figure 1 il-lustrates the improvement in pre
ision that is gained wheninput-to-output pathways are in
luded in the informationused to determine possible dependen
ies. Figure 1 
ontainsthree diagrams. The boxes in ea
h diagram represent 
om-ponents in a system; two systems are represented: system S
omposed of 
omponents X, Y, and Z and system S0 in whi
hwe have repla
ed 
omponent Y with a its variant, Y0. Theports into and out of ea
h 
omponent are named as shownin the 
ir
les inside ea
h 
omponent in the diagram to theleft. The arrows in the �gure represent the ability for a box,or some port into or out of that box, to 
ommuni
ate withanother box in the diagram; we 
all them 
onne
tors andrefer to them by the names given in the squares over ea
har
 in the diagram to the left. The solid ar
s in this �guredenote ar
s that must be traversed in order to identify a 
on-servative set of dependen
ies representing the parts of thesystem that have potential to a�e
t port 1 of 
omponent X.In the view of system S shown to the left in Figure 1, the

intra-
omponent pathways are unknown. The la
k of in-formation about the internal port-to-port intera
tion of the
omponent for
es the analysis to in
lude ports of all 
om-ponents of the system in the dependen
y set. If, however,one knows for 
ertain that parti
ular input-output pairs areindependent, as illustrated in the diagram in the 
enter, thepre
ision of the analysis is greatly improved.In support of 
omponent-level dependen
e analysis, weuse intra-
omponent dependen
e analysis to identify poten-tial intera
tions among 
omponent inputs and outputs and
all the resulting dependen
ies intra-
omponent pathways ori
-pathways. These pathways 
an be supplied as annotationswith COTS 
omponents in support of system-wide depen-den
e analysis. We are developing a formal model of depen-den
ies for multi-pro
edure programs that will support 
er-ti�
ation of i
-pathway identi�
ation by independent 
erti�-
ation houses. Su
h 
erti�
ation is required for use of COTS
omponents in appli
ation domains where issues su
h as se-
urity and safety are of great importan
e. In su
h areas,potential for information 
ow among 
omponent inputs andoutputs must be well understood and do
umented.As mentioned above, the behavioral relationships amongports of a 
omponent de�ne its intera
tion behavior. It isimportant to understand this when 
hoosing among di�er-ent 
omponents that provide similar fun
tionality. We use asimple example ar
hite
ture to 
onvin
e the reader that mi-nor 
hanges in the internal dependen
e stru
ture of a 
ompo-nent have potential to result in major 
hanges to the system-level dependen
e stru
ture. We repla
e one 
omponent withanother having an identi
al interfa
e and a single additionalpathway. Re
all that the solid lines in the box and arrow di-agrams of Figure 1 represent the 
onne
tors and 
omponentsof systems S and S0 that will be in
luded in a dependen
eset representing the parts of the system that are identi�edas having potential to a�e
t port 1 of 
omponent X. The i
-pathway represented by the squiggle in the diagram to theright in Figure 1 has been added to 
omponent Y. When thedependen
e set is 
al
ulated using 
omponent Y0, ports asso-
iated with 
onne
tors B and E and 
omponent Z are addedto the set of dependen
ies.As a real life example, one 
an imagine su
h a situ-ation arising in the development of two 
omponents de-signed to work within a banking system. Suppose thatGet A

ount Balan
e is a type of 
omponent. Componentsof this type take a bank-user's a

ount number, 
he
kinga

ount information, and overdraw-prote
tion a

ount (pro-te
tion a

ount for short) information as inputs and returnsthe user's debt to the prote
tion a

ount as well as the user'savailable 
ash balan
e as outputs. Now suppose that AB1and AB2 are 
omponents of this type. AB1 determines theuser's available 
ash balan
e by examining the 
urrent 
he
k-ing a

ount balan
e; AB2 on the other hand, 
onsiders avail-able 
redit in the prote
tion a

ount to be available 
ash.AB2 returns the sum of the 
he
king a

ount balan
e andavailable prote
tion as the user's available 
ash balan
e. If adeveloper wishes to repla
e AB1 with AB2 in order to improvebank servi
e, 
hanges in the system's dependen
e stru
turemust be 
onsidered. The additional 
onne
tion between theinput of the prote
tion a

ount information and the avail-able balan
e output results in additional dependen
ies on all
omponents required for managing the prote
tion a

ount.If an in
orre
t balan
e is reported, these 
omponents mustbe in
luded in the set of 
omponents that 
ould have 
on-tributed to the mis
al
ulation.



X

Z

Y

Start

1

2

3

4

Exit

1

2

3

4

1

2

3

4A

B

C

DE

F

Added IC-Pathway

System S System S¶System S

Y¶

Figure 1: Intra-
omponent pathways support identi�
ation of dependen
e sets.3 Automated Dependen
e AnalysisIn this se
tion we provide a brief overview of A
me [4℄and dis
uss the 
omposition of an A
me des
ription of ourexample system. We then introdu
e Aladdin [8℄, a toolthat we have developed to identify 
hains of dependen
ies inar
hite
tural des
riptions, and dis
uss its use in reasoningabout the e�e
ts of repla
ing 
omponent Y with the variant
omponent, Y0, that in
ludes one additional pathway.The development of ADLs is still at a point where thereis a general la
k of agreement on the full set of linguisti

on
epts required to des
ribe software ar
hite
tures. Never-theless, there is an emerging 
onsensus on a 
ore set of 
on-
epts that primarily have to do with the stru
tural aspe
tsof software ar
hite
tures. Re
ognizing this emerging 
onsen-sus, the designers of the A
me language are attempting torepresent a useful interse
tion of existing ADLs as a meansto support some degree of interoperability among their as-so
iated tools. Additional goals for the language in
ludeproviding a des
riptive standard for ar
hite
tural tools, as-sistan
e in the development of new ADLs, and a languagethat is a

essible to most system developers.The language provides seven basi
 
onstru
ts for des
rib-ing software ar
hite
tures. To some extent, these 
onstru
tsserve as a \least-
ommon denominator" and, therefore, someimportant language-spe
i�
 
on
epts 
annot be dire
tly rep-resented. As mentioned above, the orientation of the 
on-stru
ts is toward stru
ture, so the missing 
on
epts 
enteron behavior; this is the same issue that arises in spe
i�
a-tion of COTS 
omponents. An additional A
me 
onstru
t,Property, allows an ar
hite
t (or developer of an ADL-to-A
me translator) to des
ribe properties that may be usefulfor analysis purposes, but not representable using the other
onstru
ts. We de�ne a \path" property that is used byAladdin to reason about the dependen
ies in a system. Apath property is spe
i�ed to indi
ate the ability of an in-put to 
ontribute to the stimulation of an output in someway. Figure 2 shows the A
me des
ription of 
omponent X ofsystem S. The inputs and outputs are listed as ports and an-notations of the i
-pathways are spe
i�ed as path propertiesafter using the A
me keyword \Property".Aladdin [8℄ is a tool developed at the University of Col-orado that identi�es dependen
ies in software ar
hite
tures.It 
an be used as a stand-alone tool or in 
onjun
tion withADLs. It was designed to be easily integrated with ADL toolkits developed elsewhere, and is 
urrently available for usein analyzing A
me and Rapide [7℄ ar
hite
tural des
riptions.Figure 3 shows the use of Aladdin to study the e�e
ts ofadding the new pathway to 
omponent Y. If one thinks ofan ar
hite
tural des
ription as a set of boxes and arrows in

Component X = fPort Start;Port 1;Port 2;Port 3;Port 4;Port Exit;Property paths = f[sr
="Start"; target="3";relationship="
auses"℄[sr
="Start"; target="4";relationship="
auses"℄[sr
="1"; target="Exit";relationship="
auses"℄[sr
="2"; target="Exit";relationship="
auses"℄g;g;Figure 2: A
me des
ription of 
omponent X.a diagram as we did in Se
tion 2, then one 
an think aboutAladdin as walking forwards or ba
kwards from a given box,traversing arrows either from heads to tails or vi
e versa.In Aladdin, the arrows are 
alled links and the pro
ess ofwalking (i.e., performing a transitive 
losure) over the linksis 
alled 
haining.Aladdin's analysis is performed on demand in responseto an analyst's query. A query might request informationabout the existen
e of anomalous dependen
e relationships,or might request information about the parts of the systemthat 
ould a�e
t or be a�e
ted by a spe
i�
 
omponent port.Figure 3 
ontains a 
ombined s
reen dump from two uses ofAladdin to analyze the two variants of our example system.An A
me des
ription of system S is displayed in the leftpane of the main Aladdin window to the left in the �gureand the A
me des
ription of S0 is shown in the main Aladdinwindow to the right. The right pane of ea
h window displaysthe list of 
omponent ports that have been identi�ed fromthe respe
tive des
riptions.The analyst 
an sele
t to perform any of several queries.The analyst 
an 
hoose to see a list of ports with no sour
eor those with no target, whi
h are two kinds of port-relatedanomalies. Ports with no sour
e or no target may indi
atean unspe
i�ed 
onne
tion or they may indi
ate a fun
tion ofthe 
omponent that is not used in this system. The analyst



Figure 3: The use of Aladdin to identify di�eren
es in dependen
e 
hains.
an also 
hoose to 
reate a 
hain. If \Queries" is sele
ted,then the window \Get Query" appears. The analyst sele
tsa query, in this 
ase wanting to see a 
hain of all the portsin the ar
hite
ture that 
ould 
ausally a�e
t port X.1. Al-addin uses dotty [2℄, a graph layout tool, to display the resul-tant 
hains. The windows on the left and right of the mainAladdin window show 
hains of dependen
ies for port X.1of two variants of system S. A 
hain is displayed as a di-re
ted graph rooted at the re
tangular vertex representingthe spe
i�ed port of interest, in these 
ases the vertex X.1 atthe bottom of the graph. The ar
s are labeled with a rela-tionship type and represent dire
t dependen
e relationshipsbetween pairs of ports. The verti
es of the graph representall ports that 
ould 
ause the port of interest, X.1, to bea
tivated.The bran
h in the dependen
y 
hain for X.1 shownin the dotty window to the right in the �gure representsthe additional dependen
ies that are identi�ed when thei
-pathway Y.2�!Y.3 is added to 
omponent Y. Aladdinmakes su
h di�eren
es visually a

essible to the analyst.Compare the 
hain of dependen
ies of X.1 
omputed with-out bene�t of the knowledge of i
-pathways that is shownin Figure 4. In this 
ase X.1, the port of interest, is shownat the top and a 
y
le of possible dependen
ies is indi
atedby the fa
t that ar
s enter as well as exit from the vertexrepresenting X.1. Clearly either 
hain shown in Figure 3 ismore useful for analysis purposes. Figure 4: The dependen
e 
hain forport X.1 when i
-pathways areunknown.



4 Con
lusionsComponent annotations provide a means for reasoningabout important system properties early in the developmentpro
ess as well as when 
onsidering repla
ing one 
omponentwith another during system evolution. We envision that de-signers of analysis tools will spe
ify 
omponent annotationsrequired to support their parti
ular kind of analysis. If a
omponent manufa
turer wishes for their 
omponent to bein
luded in a system over whi
h this type of analysis is tobe performed, the annotations must be provided and 
erti-�ed by an independent 
erti�
ation agen
y. In this COTSworld, system builders 
an reason about interoperability ofsystem 
omponents with 
on�den
e. We use A
me, an ex-tensible modeling language, to des
ribe 
omponent inter-fa
es and annotations. We perform automated dependen
eanalysis over systems 
omposed of A
me-des
ribed 
ompo-nents to determine far-rea
hing a�e
ts asso
iated with mak-ing 
hanges to individual 
omponents.REFERENCES[1℄ D. Compare, P. Inverardi, and A.L. Wolf. Un
overingAr
hite
tural Mismat
h in Component Behavior. S
i-en
e of Computer Programming, 33(2):101{131, Febru-ary 1999.[2℄ E.R. Gansner, E. Koutso�os, S.C. North, and K.-P. Vo.A Te
hnique for Drawing Dire
ted Graphs. IEEE Trans-a
tions on Software Engineering, 19(3):214{230, Mar
h1993.

[3℄ D. Garlan, R. Allen, and J. O
kerbloom. Ar
hite
turalMismat
h: Why Reuse is So Hard. IEEE Software,12(6):17{26, November 1995.[4℄ D. Garlan, R. Monroe, and D. Wile. ACME: An Ar
hi-te
ture Des
ription Inter
hange Language. In Pro
eed-ings of CASCON '97, pages 169{183. IBM Center forAdvan
ed Studies, November 1997.[5℄ J. Han. An Approa
h to Software Component Spe
i�
a-tion. In Pro
eedings of the 1999 International Workshopon Component Based Software Engineering, pages 97{102, May 1999.[6℄ W. Koza
zynski. Composite Nature of Component.In Pro
eedings of the 1999 International Workshop onComponent Based Software Engineering, pages 73{77,May 1999.[7℄ D.C. Lu
kham and J. Vera. An Event-based Ar
hite
-ture De�nition Language. IEEE Transa
tions on Soft-ware Engineering, 21(9):717{734, September 1995.[8℄ J.A. Sta�ord, D.J. Ri
hardson, and A.L. Wolf. Aladdin:A Tool for Ar
hite
ture-Level Dependen
e Analysis ofSoftware Systems. Te
hni
al Report CU-CS-858-98, De-partment of Computer S
ien
e, University of Colorado,Boulder, Colorado, April 1998.[9℄ S. Vestal. MetaH Programmer's Manual Version 1.27.Honeywell, In
., Minneapolis, MN, 1998.


